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1 Introduction

A smooth n-manifold is called an exotic sphere if it is homeomorphic but not di↵eomorphic
to Sn. Until 1953, when John Milnor discovered the first example of an exotic sphere in
dimension 7, it was widely believed that no such object existed. This was firstly because
of the subtleties underlying the definitions involved, though also due to the way in which
dimension was believed to a↵ect problems in topology. We begin by illustrating some of
these subtleties and giving an overview of what was known at the time of this discovery.

1. Firstly, recall that the definition of a smooth manifold M is su�ciently generous
that it allows us to choose any (possibly pathological) chart to define the smooth
structure so long as it is smoothly compatible with the other charts chosen. For
example (R,') is a smooth manifold for any homeomorphism ' : R! R.
This is rectified by choosing a similarly generous notion of equivalence. Namely a
di↵eomorphism between smooth manfolds M and N can be any homeomorphism
that induces smooth maps on the coordinate patches. For example (R,') and (R, )
are di↵eomorphic via the homeomorphism  �1 � ' : R! R.
We will use smooth structure (on M) to refer to an equivalence class of smooth
manifolds homeomorphic to M up to di↵eomorphism.

2. Secondly we remark that, before 1953, little was known about smooth structures on
manifolds except in very small dimensions where direct proofs are often tractable.

For example, to show S1 has a unique smooth structure, note that a homeomorphism
' : U ! '(U) ✓ R for U ✓ S1 open gives a local di↵eomorphism '�1 : (a, b)! S1

for some a, b 2 R [ {1}. The image of '�1 is open and, by stitching it together
with local di↵eomorphisms around the boundary points of '�1((a, b)), we can also
assume the image of '�1 is closed. This shows that '�1 is surjective and must have
(a, b) = R. It can then be checked that it descends to a di↵eomorphism R/Z! S1.

With more di�culty, it had also been shown that S2 and S3 had a unique smooth
structure1 and it was thought that the higher dimensional cases would be similar.

It was therefore considered very surprising when exotic spheres were shown to exist, and
later even more surprising that they could be constructed in so many di↵erent ways and
even classified in any given dimension. It was also shown in 1960 that not every topological
manifold admitted a smooth structure (see [5]). Clearly these definitions have a lot more
in them than was initially thought, and it is exploring this that will be the starting point
for this exposition.

Suppose we wanted to prove that exotic n-spheres do not exist. We might attempt to use
that every homeomorphism f : M ! Sn can be uniformly approximated by a smooth
map M ! Sn though, whilst we get smooth maps M ! Sn and Sn ! M , we have no
way of amalgamating these approximations to give a di↵eomorphism. Whilst this may be
extremely counterintuitive, the reason for this comes from the fact that homeomorphisms
can be far more pathological than our intuition usually suggests.

On the other hand, suppose we wanted to prove that exotic n-spheres do exist. Since no
progress was (or ever could have been) made for n  3, we would be interested in any
result that is unique to higher dimensions. For example, in 1962 Stephen Smale proved

1
In fact, it was proven later that every smooth n-manifold has a unique smooth structure for n  3.



the h-cobordism theorem which implied the Poincaré conjecture2 in dimensions n � 5.
These ideas can be applied to the following construction which arose in the 1960s, known
as twisting. Consider the smooth n-manifold

⌃f = Dn tf Dn,

where f : Sn�1 ! Sn�1 is an orientation-preserving di↵eomorphism, and assume n � 5.
Since f must have degree 1, it is homotopic to the identity and so ⌃f is homotopic to
Sn = Dn [id Dn. Hence ⌃f is homeomorphic to Sn by the Poincaré conjecture for n � 5.
Furthermore, the h-cobordism theorem can be used to show that every smooth n-manifold
homeomorphic to Sn can be represented in this form. It is then not di�cult to see that
smoothly isotopic di↵eomorphisms f : Sn�1 ! Sn�1 induce di↵eomorphic manifolds ⌃f .
In fact, it was shown by Jean Cerf in 1970 that the two are in correspondence.

Figure 1: Discs Dn tDn (left) being attached by f to form ⌃f (right).

Whilst it may seem a good approach to study these smooth isotopy classes instead, explicit
examples of di↵eomorphisms not smoothly isotopic to the identity are di�cult to work
with3. Instead, what we should take away from this viewpoint is an understanding of how
smooth structures can be inequivalent: whilst f can be “shrunken to a point” to give a
homeomorphism to Sn, the derivatives of f may not behave nearly so well.

The primary focus of this essay will be to give an overview of the various constructions of
exotic spheres as well as the techniques used for proving firstly that they are homeomorphic
to Sn and secondly that they are not di↵eomorphic to Sn. The first of these tasks usually
amounts to a straightforward computation of the (co)homology groups and fundamental
group of a space, with the heavy lifting being performed by the Poincaré conjecture for
n � 5, though an alternate approach using Morse Theory will also be considered for
completeness. With this is mind, the main obstacle lies is in developing invariants that
are able to distinguish smooth structure. As a result, we will consider constructions which
lend themselves particularly well to such an analysis.

The exotic spheres discovered by Milnor were constructed as S3 bundles over S4. In this
case, the invariant � we will develop that distinguish smooth structure will come from
invariants of vector bundles, namely characteristic classes. We thus begin by giving an
introduction to fibre bundles and characteristic classes before expanding the details of
Milnor’s original paper. We then show how these ideas can only be made to work in
dimensions 7 and 15.

We next take a detour to consider the theory of cobordism, an equivalence relation
whereby two compact manifolds are equivalent if their disjoint union is the boundary

2
This states that every oriented compact simply-conncted smooth n-manifold M with the homology

of Sn
is homeomorphic to Sn

. In particular, every such homotopy n-sphere is homeomorphic to Sn

3
Such maps can however be written down using already known exotic spheres. See [8] for an example.
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of a compact manifold of one dimension higher. Here we prove Hirzebruch’s signature
theorem, the key ingredient in defining the invariant � we previously used, and briefly
discuss the h-cobordism theorem.

In search of more exotic spheres, and armed with various machinary, we then consider two
further constructions known as Plumbing and Brieskorn varieties. These constructions
will be restricted to the odd-dimensional cases and, common to both constructions of a
suitible closed (2n � 1)-manifold M , will be a bounding 2n-manifold B. In fact, we can
choose our constructions so that all the Ms we consider will be (n � 2)-connected and
the Bs will be (n � 1)-connected. Thus showing M is homeomorphic to S2n�1 amounts
to showing just one further connectivity condition, a condition we can characterise in a
number of ways. We also find many interesting links to Lie groups and knot theory.

We end by discussing the classification of exotic spheres of a given dimension, showing
that this is related to the problem in homotopy theory of computing the stable homotopy
groups of spheres. The key step is to use the h-cobordism to allow us to swap di↵eomor-
phism for the much easier to work with condition of being h-cobordant. The computations
then rely on showing that the exotic n-spheres form a group ⇥n under connected sum and
identifying the subgroup bPn+1 of manifolds which bound manifolds with trivial tangent
bundle, the bounded parallelisable manifolds.
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2 Characteristic Classes

In this chapter, we start by developing the basic theory of fibre bundles before describing
a correspondence between fibre bundles over spheres and higher homotopy groups that we
will use to construct exotic spheres in the following chapter. We next use the Euler class
to construct further characteristic classes and give an overview of the various techniques
we will need for computing them.

Here and elsewhere in the essay, we will rely on basic facts from Homotopy Theory. We
will assume without further mention the definition of higher homotopy groups and the
basic theory of vector bundles. Other facts will be stated briefly without proof, with the
primary reference being the fourth chapter of [13].

2.1 Fibre Bundles

It is well known that any (real) vector bundle Rn ,! E ! X has an associated sphere
bundle Sn�1 ,! S(E)! X and disc bundle Dn ,! D(E)! X by operating on the fibres.
All of these bundles can be considered under the following heading:

Definition (Fibre bundle). A fibre bundle structure on a space E is a pair of spaces F
and X equipped with a projection map ⇡ : E ! X such that there is an open cover
{Ui} of X and homeomorphisms hi : ⇡�1(Ui) ! Ui ⇥ F coinciding with ⇡ in the first
coordinate. We write:

F E X.⇡

In particular, this means that each fibre Fx = ⇡�1(x) maps homeomorphically to {x}⇥F .
We call E the total space, X the base space, F the fibre and hi the (local) trivialisations.

This also generalises covering spaces which are fibre bundles with discrete fibres. For
example, the covering map Sn ! RPn gives a fibre bundle {±1} ,! Sn ! RPn. Note
that, when n = 1, this specialises to the sphere bundle S0 ,! S1 ! S1. We may wonder
if there are any other fibre bundles where all three spaces are spheres:

Example. (i) The quotient map (Cn+1)⇥ ! CPn has fibres C⇥ and induces a fibre
bundle S1 ,! S2n+1 ! CPn. When n = 1 this gives: S1 ,! S3 ! S2.

(ii) If H is the algebra of quaternions, we can similarly define HPn = Hn+1/ ⇠ where
(q0, . . . , qn) ⇠ (cq0, . . . , cqn) for any c 2 H⇥. Since H = R4 as spaces, we get a fibre
bundle S3 ,! S4n+3 ! HPn. Now HP1 = {[q, 1] : q 2 H}[{[1, 0]} ⇠= R4[{1} ⇠= S4

is the compactification of R4. Hence when n = 1 this gives: S3 ,! S7 ! S4.

Remark. The only further example of this construction (and the only other real finite-
dimensional division algebra) is the octonionic algebra O which gives S7 ,! S15 ! S8. In
fact, it can be shown that these are the only fibre bundles where F , E and X are spheres.

Note that, when defining vector bundles, each fibre comes equipped with the structure of
a vector space that has to be respected by the trivialisations. More generally we have:

Definition (Structure group). Let F ,! E ! X be fibre bundle and G a group acting
on F by homeomorphisms such that any Ui, Uj in the trivialising open cover has

hi � h�1
j : (Ui \ Uj)⇥ F ! (Ui \ Uj)⇥ F, (x, y) 7! (x, gij(x)y)

for some continuous gij : Ui \ Uj ! G. We call G the structure group and such a fibre
bundle a G-bundle.
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Example. For a fibre bundle Rn ,! E ! X, giving a description of how GL(n,R) acts
on the fibres is equivalent to giving a vector space structure on each fibre. Hence a real
vector bundle is precisely a fibre bundle with fibre Rn and structure group GL(n,R).
Furthermore, note that giving an orientation on the vector bundle corresponds to a con-
tinuous choice of orientation on the fibres. This is equivalent to describing an action by
SL(n,R) and so oriented vector bundles are fibre bundles with structure group SL(n,R).
Finally, this action on the correponding sphere bundle Sn�1 ,! S(E) ! X then corre-
sponds to O(n,R) and to SO(n,R) for oriented vector bundles.

We can define a morphism of fibre bundles exactly as for vector bundles and can also make
similar definitions in the category of smooth manifolds: if all spaces above are smooth
manifolds and all maps are smooth, then we call such a fibre bundle a smooth fibre bundle.

In general, classifying fibre bundles up to isomorphism is a di�cult task. However, in the
case that the base space is a sphere, such fibre bundles are characterised by the following
construction known as clutching.

First observe that, given a topological group G of di↵eomorphisms of a space F , we can
construct a class of smooth fibre bundles over Sn with fibre F and structure group G from
a map f : Sn�1 ! G (the clutching map) as follows.

1. First let UN and US be Sn without the north and south poles respectively and note
that f induces a map f̄ : UN \ US ! G by projecting to the equator.

2. Now let Ef = (UN ⇥ F ) t (US ⇥ F )/ ⇠, where (u, x) ⇠ (u, f̄(u)x).

3. Then F ,! Ef ! Sn is a fibre bundle with projection onto the first coordinate.

Remark. This may remind us of the twisting construction from the introduction, though
the two are very di↵erent: whilst here the gluing is trivial along the zero section, the
gluing done in the twisting construction can be non-trivial everywhere.

Indeed all such smooth fibre bundles arise in this way (for a proof, see [14]):

Theorem. Every smooth fibre bundle over Sn with fibre F and structure group G is
isomorphic to one obtained by the construction above, and Ef , Eg are isomorphic i↵
f, g : Sn�1 ! G are homotopic, i.e. there is a correspondence

⇡n�1(G) ! FibF (S
n) = {G-bundles over Sn}.

Hence we can use knowledge of ⇡n�1(G) to give us a supply of smooth fibre bundles of a
particular form. We now show how this can be used to construct S3-bundles over S4.

Example. We showed above that ensuring transition functions induce isometries on S3

is the same as requiring that fibre bundle has structure group SO(4). Hence constructing
S3-bundles over S4 amounts to finding an explicit form for ⇡3(SO(4)).

Each � 2 SO(4) acts on by rotations on S3, which we take to be the unit ball in the
quaternionic space generated by {1, i, j, k}. If SO(3) is the subgroup of rotations in the
{i, j, k}-plane, then �(1)�1� 2 SO(3) since it fixes 1. Hence we have a homeomorphism

SO(4) ⇠= S3 ⇥ SO(3)

given by � 7! (�(1),�(1)�1�) and with inverse (u, ) 7! (v 7! u (v)). Now consider

⇢ : S3 ! SO(3), u 7! (v 7! uvu�1),
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where multiplication is quaternionic. To show the image is in SO(3), observe that it must
be in O(3) since it is an R-linear, norm-preserving map fixing the identity. It contains
the identity and is connected, since S3 is connected, and so lies in SO(3).

We claim this is a two-sheeting covering map. This can be shown by, for example, noting
that an isomorphism SO(3) ! RP3 can be constructed that makes ⇢ into the quotient
map from S3 to RP3. We can now get an explicit form for ⇡3(SO(4)) as follows.

1. First note that ⇡3(S3) = Z and its elements can be represented in the form

�i : S
3 ! S3, u 7! ui

for i 2 Z. This is proven using the Hurewicz theorem which states that the first non
trivial Hk(S3) for k � 1 coincides with (the abelianisation of) ⇡k(S3).

2. Next, we note that ⇡3(SO(3)) ⇠= Z and its elements can be represented in the form
⇢ � �j for j 2 Z. This is proven using that covering maps ⇢ : S3 ! SO(3) induce
isomorphisms on higher homotopy groups.

3. Combining with the homeomorphism S3 ⇥ SO(3) ! SO(4) established above, we
have

S3 S3 ⇥ SO(3) SO(4)

u (ui, ⇢(uj)) (v 7! ui+jvu�j)

with the last term coming from v 7! ui⇢(uj)(v) by noting that ⇢(uj)(v) = ujvu�j.
There are no further elements since4 ⇡n(X ⇥ Y ) ⇠= ⇡n(X)⇥ ⇡n(Y ) for any X, Y .

Hence ⇡3(SO(4)) ⇠= Z2 and its elements can be represented in the form

�ij : u 7! (v 7! uivuj),

where we substitute (i, j) 7! (i+ j,�j).
Write Eij to refer to the smooth fibre bundle S3 ,! Eij ! S4 corresponding to �ij 2
⇡3(SO(4)). We will return to this in the following chapter to show that the Eij are
homeomorphic to S7 when i+ j = ±1 and that many are in fact exotic spheres.

2.2 Chern Classes

Throughout this section, we will use Z coe�cients and let ⇠ = (E,X, ⇡) denote a d-
dimensional vector bundle with total space E, base space X and projection ⇡. We also
use E# to denote E \ s0(X), where s0 : X ! E is the zero section.

In the case where ⇠ admits a Z-orientation {"x}x2X , recall that there is a unique class
u⇠ 2 Hd(E,E#) (the Thom class) which restricts to "x on each fibre. The Euler class

e(⇠) 2 Hd(X) is then defined by the image of u⇠ under the composition

Hd(E,E#) Hd(E) Hd(X)
s⇤0
⇠ .

This has the property that, if ⇠0 = (E 0, X 0, ⇡0) is another oriented d-dimensional real
vector bundle and (F, f) : ⇠ ! ⇠0 is an orientation-preserving bundle morphism, then
f ⇤e(⇠0) = e(⇠). We say that e satisfies the naturality condition.

4
This is an immediate consequence of the fact that we can combine homotopies hX : Sn⇥ I ! X and

hY : Sn ⇥ I ! Y to give homotopies (hX , hY ) : Sn ⇥ I ! X ⇥ Y .
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That is, e(⇠) is an invariant for the category of oriented real vector bundles. We call an
invariant of this form for (some set of) vector bundles a characteristic class.

We will primarily be concerned with the following property of the Euler class:

Definition (Gysin sequence). The long exact sequence for the pair (E,E#) gives:

H i+d(E,E#) H i+d(E) H i+d(E#) H i+d+1(E,E#)

H i(X) H i+d(X) H i+1(X)

s⇤0� ⇠

·^e(⇠)

⇡⇤
⇡⇤
0

� ⇠

where � is the Thom isomorphism, given by cupping with the Thom class. The bottom
sequence, with maps such that the diagram commutes, is the Gysin sequence.

Since the top row is exact, the Gysin sequence must be also. This shows:

Proposition. ⇡⇤
0 : H i(X)! H i(E#) is an isomorphism for i < d.

We now consider the case where ⇠ is a complex d-dimensional vector bundle. This can be
considered as a real vector bundle ⇠R by identifying C with R2. Note that bases for each
fibre induce local orientations and that all such orientations are equivalent, a consequence
of GL(n,C) being connected. That is, ⇠R has a canonical orientation.

Remark. In the real case, the determinant splits GL(n,R) into two connected components.

Hence we immediately get a top-dimensional invariant of complex vector bundles, namely
e(⇠R) 2 H2d(X). To find more invariants, observe that the above proposition gives a way
to relate cohomology classes of vector bundles over X to those of vector bundles over E#.
Fortunately, we have a natural way to construct a bundle over E# as follows:

1. For each v 2 E#
x ✓ E#, let eEv = Ex/Cv.

2. Now let eE =
S

v2E#
eEv with the natural projection map e⇡ : eE ! E#.

3. Then ⇠# = ( eE,E#, e⇡) is a (d� 1)-dimensional complex vector bundle.

Since this is one dimension lower, it has an invariant e(⇠#R ) 2 H2(d�1)(E#) which indeed
gives us an invariant (⇡⇤

0)
�1e(⇠#R ) 2 H2(d�1)(X) of the original vector bundle. By con-

sidering a sequence ⇠, ⇠#, (⇠#)#, . . . of vector bundles, we get a family of invariants for
⇠:

Definition. We define the ith Chern class ci(⇠) 2 H2i(X) inductively on d by:

ci(⇠) =

(
e(⇠R), i = d.

(⇡⇤
0)

�1ci(⇠#), i < d.

It is often useful to package all this information as a single element in the graded ring
H⇤(X). In particular, the total Chern class is defined as

c(⇠) = 1 + c1(⇠) + c2(⇠) + · · ·+ cd(⇠) 2 H⇤(X).

In certain cases, as in the following example, computing the Chern classes is simply a
consequence of noting that particular cohomology groups of the base space vanish.
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Example. Recall that, similarly to R and C, we can define the tautological (line) bundle
over the quaternions H

H ,! �nH = {(x, v) 2 HPn ⇥Hn+1 : [v] = x}! HPn

which we view an a 2-dimensional complex vector bundle by identifying H with C2. We
will consider the case n = 1. We remarked earlier that HP1 is di↵eomorphic to S4 and so
c1(�1H) 2 H2(HP1) = H2(S4) = 0. If e = e(�1H), then c2(�1H) = e and so c(�1H) = 1 + e.

Remark. The result is identical for n > 1 since H2(HPn) = 0. To show this, we use the
Gysin sequence to compute H⇤(HPn) = Z[e]/(en+1) just as for RPn and CPn.

In general, computing the Chern classes usually requires understanding how the vector
bundle relates to known cases like the one just considered. We now state a few basic
properties of Chern classes, the proofs of which are standard and can be found in [15].

Proposition. Let ⇠ = (E,X, ⇡) and ⇠0 = (E 0, X 0, ⇡0) be complex vector bundles. Then:

(i) If (F, f) : ⇠ ! ⇠0 is a bundle map, then f ⇤ci(⇠0) = ci(⇠).

(ii) If "k : X ⇥ Ck ! X is the trivial k-bundle, then c(⇠ � "k) = c(⇠).

(iii) If ⇠ � ⇠0 denotes the Whitney sum, then c(⇠ � ⇠0) = c(⇠)c(⇠0).

(iv) If ⇠ denotes the conjugate bundle, formed by composing each trivialisation with the
map that takes the complex conjugate on each copy of C, then ci(⇠) = (�1)ici(⇠).

Example. To compute the Chern classes of the tangent bundle

Cn ,! TCPn ! CPn,

recall that CPn = S2n+1/ ⇠ where u ⇠ �u for all � 2 S1. Then

TCPn = {[u, v] : (u, v) 2 S2n+1 ⇥ Cn+1, u · v = 0},

where [u, v] is the equivalence class of (u, v) 2 Cn+1⇥Cn+1 under (u, v) ⇠ (�u,�v) for all
� 2 S1. We can write the trivial 1-bundle as "1 = {[u, µu] : u 2 S2n+1, µ 2 C}. Since u, v
are orthogonal in TCPn, we have

TCPn � "1 ⇠= {[u, v + µu] : (u, v) 2 S2n+1 ⇥ Cn+1, µ 2 C, u · (v + µu) = Re(µ)}
⇠= {[u, v + µu] : (u, v + µu) 2 S2n+1 ⇥ Cn+1} ⇠= {[u, v] : (u, v) 2 S2n+1 ⇥ Cn+1}

where the second isomorphism is since requiring that u · v0 = Re(µ) for some µ 2 C is no
restriction at all. Since �nC = {[u, v] : (u, v) 2 S2n+1 ⇥ C}, this shows that

TCPn � "1 ⇠= �nC � · · ·� �nC,

where there are n + 1 terms in the sum. It is easy to see that c(�nC) = 1 + a where
a = e(�nC) 2 H2(CPn), and this is generator by the Gysin sequence for C ,! �nC ! CPn.
Hence we get

c(TCPn) = c(TCPn � "1) = c(�nC)
n+1 = (1 + a)n+1.

2.3 Pontryagin Classes

Recall that we found a characteristic class for oriented real vector bundles and then used
it to construct an invariant for complex vector bundles. Interestingly we can now get an
invariant for not-necessarily-oriented real vector bundles ⇠ as follows.
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Definition. We define the ith Pontryagin class pi(⇠) 2 H4i(X) by:

pi(⇠) = (�1)ic2i(⇠ ⌦R C),

where ⇠ ⌦R C is the complex vector bundle formed by tensoring each fibre with C.

Remark. We only consider the even Chern classes since ⇠ ⌦R C ⇠= ⇠ ⌦R C implies that
c2i+1(⇠ ⌦R C) = (�1)2i+1c2i+1(⇠ ⌦R C) and so 2c2i+1(⇠ ⌦R C) = 0.

We can similarly define the total Pontryagin class

p(⇠) = 1 + p1(⇠) + p2(⇠) + · · · pn(⇠) 2 H⇤(X),

where n is maximal so that 4n  d, the dimension of ⇠. Most of the basic properties of
of Chern classes carry over immediately, with one small change:

Proposition. Let ⇠ = (E,X, ⇡) and ⇠0 = (E 0, X 0, ⇡0) be complex vector bundles. Then
p(⇠ � ⇠0) = p(⇠)p(⇠0) modulo 2-torsion elements.

Proof: The above remark shows that c(⇠ ⌦R C) ⌘
P

(�1)ipi(⇠) modulo 2-torsion. Since
(⇠ � ⇠0)⌦R C ⇠= (⇠ ⌦R C)� (⇠0 ⌦R C), the product formula for Chern classes gives

X

k

(�1)kpk(⇠ � ⇠0) ⌘
X

i

(�1)ipi(⇠) ·
X

j

(�1)jpj(⇠0)

⌘
X

k

X

i+j=k

(�1)kpi(⇠)pj(⇠0) modulo 2-torsion.

We can then cancel the (�1)ks by noting this holds at each grade in H⇤(X).

We now introduce a useful computational tool that allows us to compute Pontryagin
classes from Chern classes.

Proposition. Let ⇠ be a complex vector bundle. Then

1� p1(⇠R) + p2(⇠R)� · · · = (1� c1(⇠) + c2(⇠)� · · · )(1 + c1(⇠) + c2(⇠) + · · · ).

Proof: This amounts to noting that ⇠R⌦RC is isomorphic to ⇠�⇠, which can be checked on
the fibres. It then follows directly from c(⇠R⌦RC) = c(⇠)c(⇠) and the fact that the
odd terms vanish completely: c2i+1(⇠R ⌦R C) =

P
k(�1)kck(⇠)c2i+1�k(⇠) = 0.

Example. We can then use this to continue the examples we established before.

(i) For the line bundle �1H over HP1, we now have:

1� p1(�
1
H) + p2(�

1
H)� · · · = (1 + e)2 = 1 + 2e+ e2,

where e = e(�1H). Hence p(�1H) = 1� 2e+ e2, i.e. p1(�1H) = �2e and p2(�1H) = e2.

(ii) For the tangent bundle of CPn we now have:

1� p1(TCPn) + p2(TCPn)� · · · = (1� a)n(1 + a)n+1 = (1� a2)n+1,

where a = e(�nC). Hence p(TCPn) = (1 + a2)n+1, i.e. pi(TCPn) =
�
n+1
i

�
a2i.

Example. The n-sphere has tangent and normal bundle:

TuS
n = {v 2 Rn+1 : u · v = 0}, (VSn✓Rn+1)u = Ru.

for any u 2 Sn. Now TSn � V is the trivial bundle since TuSn � Vu = Rn+1. Since V is
also trivial, we get p(TSn) = p(TSn � V) = 1, i.e. pi(TSn) = 0 for all i.
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We will now conclude this chapter by considering how the Pontryagin classes can be used
to give invariants for smooth manifolds. Consider a compact connected oriented smooth
manifold M and the Pontryagin classes pi(TM) 2 H4i(M) of its tangent bundle. Whilst
previously we wanted to compare di↵erent vector bundles with the same base space, we
now want to compare the tangent bundles of di↵erent manifolds M and N . To do this,
we have to get around the issue that the Pontryagin classes lie inside H⇤(M) and H⇤(N)
which do not necessarily have a canonical identification. The solution is to extract an
integer-valued invariant, and this can be done as follows when M is 4d-dimensional.

First recall that we have a canonical element in H4d(X) given by the fundamental class
[M ] (corresponding to an orientation on M). Taking the cap product of an element in
H4d(M) with [M ] then induces a map

H4d(M)! H0(M) ⇠= Z

where we fix an identification with Z (this is of course one the Poincaré duality maps).
Furthermore, for any partition (i1, · · · , ir) of d, we get an element of H4d(M) given by
pi1(TM) ^ · · · ^ pir(TM) since this has grading 4i1 + · · · + 4ir = 4d. This motivates
the following definition.

Definition. Let M be a compact connected oriented manifold of dimension 4d and I =
(i1, · · · , ir) a partition of d. The I th Pontryagin number is

pI [M ] = pi1 · · · pir [M ] = (pi1(TM) · · · pir(TM))[M ] 2 Z.

Example. Consider the compact connected 4n-dimensional smooth manifold CP2n. Note
that this is orientable since, as before, its underlying real manifold has a canonical orien-
tation. We showed that

pi(TCP2n) =

✓
2n+ 1

i

◆
a2i,

where a 2 H2(CP2n) is a generator, so we need to compute a2n[CP2n]. To do this, note
that

e(TCP2n)[CP2n] = c2n(TCP2n)[CP2n] = (2n+ 1)a2n[CP2n].

A standard fact5 about the Euler class, and the reason for its name, is that e(TM)[M ] =
�(M) where � is the Euler characteristic of M . We compute

�(CP2n) =
X

i

(�1)irankH i(CP2n) = 2n+ 1

and so we must conclude that a2n[CP2n] = 1. Hence

pI [CP2n] =

✓
2n+ 1

i1

◆
· · ·
✓
2n+ 1

ir

◆
.

Remark. We can similarly construct Chern numbers to get invariants for complex mani-
folds, though will not consider them in this essay.

5
For a proof, see chapter 11 of [15].
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3 Milnor’s Exotic Spheres

The goal of this chapter will be to construct the exotic spheres discovered by Milnor in
1953, expanding the details of the arguments given in [1]. The spaces Milnor considered
were the sphere bundles

S3 ,! Eij ! S4

we constructed in the previous chapter, for each i, j 2 Z. More specifically, let Mk be the
total space Eij when i+ j = 1 and i� j = k.

We will start by showing that the Mk are homeomorphic to S7 using the tools that were
available to Milnor at the time, namely Morse theory6. We next use Pontryagin classes
to develop an invariant � that can distinguish smooth structure; this will rely heavily
on Hirzebruch’s signature theorem, the proof of which we delay to the following chapter.
This chapter then concludes by showing how these ideas can also be used to construct
exotic 15-spheres but do not work in other dimensions.

3.1 Morse Theory

The observation of Morse theory is that topological information about a manifold M can
be inferred from knowledge of the existence of a smooth map f : M ! R with certain
properties. In particular, we would like such functions to be of the following form.

Definition. Let M be a smooth compact manifold. We say a smooth map f : M ! R
is a Morse function if every critical point is non-degenerate, i.e. if p 2 M has local

coordinates x1, · · · , xn around p with @f
@xi

���
p
= 0 for all i, then det

✓
@2f

@xi@xj

���
p

◆
6= 0.

This is well-defined since it can be shown that non-degeneracy of a critical points is a
coordinate-independent phenomenon. We have the following key lemma.

Lemma (Morse’s Lemma). Let M be a smooth compact n-manifold and f : M ! R a
Morse function. If p 2 M is a critical point, then there are local coordinates v1, · · · , vn
around p such that

f(v1, · · · , vn) = f(p)� v21 � · · ·� v2k + v2k+1 + · · ·+ v2n

for some 1  k  n� 1 which we call the index of f .

Intuitively this says that we can pick coordinates on a neighbourhood U around a critical
point p so that each coordinate axis cuts through U in such a way that its image under
f gives the shape of a “±x2-graph”. To prove this, note that we can expand f near p to
get

f(x1, · · · , xn) = f(p) +
X

i,j

xixjHij(x1, · · · , xn)

for smooth functionsHij. We can assumeH is symmetric replacingHij with (Hij+Hji)/2.
The rest is a straightforward exercise in diagonalisation using the inverse function theorem.

We can then use this to deduce the following important theorem. We will assume basic
knowledge of Di↵erential Geometry.

6
As we will see in the following section, this can alternatively be done by computing the homology

groups using the Gysin sequence by the Poincaré conjecture for n � 5.
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Theorem (Reeb’s Theorem). Let M be a smooth compact manifold and f : M ! R a
Morse function with exactly two critical points. Then M is homeomorphic to Sn.

Proof: By compactness, f has a minimum x0 and a maximum x1 and so these are the only
critical points and, by linear rescaling, we can assume that f(x0) = 0, f(x1) = 1.
The Morse lemma gives us a neighbourhood U around x0 and coordinates such
that

f(v1, · · · , vn) = v21 + · · ·+ v2n,

since x0 is a minimum point. Thus dv21 + · · ·+ dv2n is a Riemannian metric h · , · i
on U , which can be extended to M by partitions of unity. We can now let rf be
the vector field defined by hX,rfi = X(f) for all f : M ! R and vector fields X,
noting that this is singular precicely at x0 and x1.

Conisder the vector field rf/krfk2 defined on M \ {x0, x1} and let �t : M !M
be the associated flow, a 1-parameter family of di↵eomorphisms. For any q 2 M ,
note that

df(�t(q))

dt
=

⌧
d�t(q)

dt
,rf

�
=

*
rf
krfk2

,rf
+

= 1

and so f(�t(q)) = f(q) + t. Hence for each 0  " < 1 � t, the flow map �"

induces a di↵eomorphism f�1[0, t] ! f�1[0, t + "]. Now Dn = f�1[0, "] is a disc
for su�ciently small ", and we define

� : Dn !M, q 7! �f(q)/"(q)

which retricts to a di↵eomorphism D̊n !M \ {x1}. Since @Dn 7! {x1}, this then
descends to a homeomorphism Sn !Mn.

To apply this to the Mk recall that it was defined via the clutching construction to be

Mk = (H⇥ S3) t (H0 ⇥ S3)/ ⇠

where H = S4 \ {N} and H0 = S4 \ {S} are each identified with the quaternions for ease
of notation. Note that, to identify H and H0, we have to “flip” the algebraic structure in
that u 2 H⇥ corresponds to u�1 2 (H0)⇥. More generally

(u, v) ⇠ (u0, v0) =

 
u�1,

uivuj

kuki+j

!
=

 
u�1,

ui(vu)u�i

kuk

!

since i+ j = 1. Define a function f : H0 ⇥ S3 ! R by

f(u0, v0) =
Re(v0)

(1 +ku0k2)1/2

where Re(v0) denotes the real part of the quaternion v0 2 S3 ✓ H0. Since the real part is
the kernel of the action by SO(3), it is fixed by conjugation and so

f(u0, v0) =
Re(ui(vu)u�i)

(1 +kuk2)1/2
=

Re(vu)

(1 +kuk2)1/2

which we take as our definition for f(u, v) for (u, v) 2 H⇥S3, thus extending f to a smooth
map f : Mk ! R. We can then check by writing f out explicitly using coordinates that f
has two critical points (u0, v0) = (0,±1) in the first chart and none in the second. Hence
Mk is homeomorphic to S7 by Reeb’s theorem.
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3.2 Milnor’s � Invariant

Here we use Pontryagin numbers to construct an invariant � for manifolds homeomorphic
to S7 which is able to distinguish smooth structure. From this point onwards, we will
take n-manifold to mean a connected compact orientable smooth n-dimensional manifold-
with-boundary and closed to in addition mean that a manifold has no boundary.

Let M be an closed 7-manifold with the homology of S7 and which bounds7 an 8-manifold
B. Note that, since H3(M) = H4(M) = 0, the inclusion map i : M ,! B gives rise to an
isomorphism i : H4(B,M)! H4(B) by the long exact sequence for (B,M).

Note that, similarly to the case of closed manifolds, an orientation on B is determined by
its fundamental class [B] 2 H8(B,M). The relative cap product then gives a symmetric
bilinear form h · , · i : H4(B,M)⇥H4(B,M)/(torsion)! Z given by

hx, yi = (x^ y)[B].

Since this form is symmetric, it has a well-defined signature which we denote �(B). Ob-
serve that there is a formula for the signature in the case of closed manifolds. The proof
uses cobordism theory and will be postponed until the following chapter.

Theorem (Hirzebruch’s Signature Theorem). If M is a closed 4n-manifold as above, then
there is a polynomial Ln(x1, · · · , xn) 2 Q[x1, · · · , xn] such that

�(M) = Ln(p1, · · · , pn)[M ],

where pi = pi(TM) 2 H4i(M) and each monomial in Ln(p1, · · · , pn) lies in H4n(M). In
particular L1 =

1
3p1 and L2 =

1
45(7p2 � p21).

Whilst B is not a closed manifold, we might wonder if expression was still true in a certain
sense. Consider the Pontryagin classes p1 = p1(TB) 2 H4(B) and p2 = p2(TB) 2 H8(B).
Now p1 can be pulled back along i to get i�1p1 2 H4(B,M) and hence an invariant

(i�1p1)
2[B] 2 Z.

However, there is no analogous quantity for p2 since i : H8(B,M) ! H8(B) isn’t nec-
essarily an isomorphism. So since “�(B) � 1

45(7(i
�1p2) � (i�1p1)2)[B]” is not properly

defined (let alone equal to �(B)), the best we can hope for is that they are equal when
we kill the i�1p2 term by dropping to a quotient ring. In particular, multiplying through
by 45 and reducing mod 7 gives 3�(B) + (i�1p1)2[B] mod 7.

Definition (Milnor Invariant). Let M be a closed 7-manifold as above. Then define

�(M) = 2q(B)� �(B) = 2(q(B) + 3�(B)) mod 7

for any 8-manifold B with boundary M , where q(B) = (i�1p1)2[B].

Example. Let M = S7 be the standard 7-sphere and choose B = D8. Since H4(B,M) =
H4(B) = 0, the quadratic form H4(B,M)⌦H4(B,M)! Z is zero and so �(M) = 0.

The di�culty comes in showing that �(M) is independent of the choice of B. If so then �
being a di↵eomorphism invariant follows from noting that a di↵eomorphism f : M !M 0

can be extended8 to a di↵eomorphism between B and a suitible B0 with boundary M 0.

7
In fact, as will we see in the following section, every such closed 7-manifold bounds such an 8-manifold.

8
This uses that oriented cobordism is an equivalence relation on the category of manifolds, which we

prove in the following section.
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To show that this is independent of the choice of B, i.e. that the defect to the signature
theorem holding for B1 and B2 are the same, we form a closed 8-manifold C = B1 tM B2

by gluing along M and give it orientation compatible with that of B1 and �B2 (i.e. the
opposite orientation to the one on B2). Since C is closed, the signature theorem gives
that �(C) = 0 (noting that i⇤ = id and so q(C) = p21[C]) and so it remains to show that

�(C) = �(B1)� �(B2).

This follows immediately from the following lemma.

Lemma. (i) �(C) = �(B1)� �(B2), and (ii) q(C) = q(B1)� q(B2).

Proof: We start by considering all the relevant cohomology groups and the maps between
them. We get the following diagram of isomorphisms:

H4(C,M) H4(B1,M)�H4(B2,M)

H4(C) H4(B1)�H4(B2)

h
⇠

j⇠ i1�i2⇠

k
⇠

where h and k come from the Mayer-Vietoris sequence for relative cohomology
and i1, i2 and j are the inclusions of M into B1, B2 and C respectively. This is
commutative by naturality of the Mayer-Vietoris sequence.

(i) Let ↵i 2 H4(Bi,M) and the corresponding ↵ = jh�1(↵1 � ↵2) 2 H4(C).
Then, since [C] = (jh�1)([B1]� [�B2]) by construction, we get:

↵2[C] = jh�1(↵2
1 � ↵2

2)[C] = (↵2
1 � ↵2

2)([B1]� (�[B2])) = ↵2
1[B1]� ↵2

2[B2].

Hence the quadratic form for C splits as a direct sum of the quadratic forms
for B1 and �B2, i.e. the matrix for C is block diagonal consisting of B1 and
�B2. The result then follows.

(ii) Note that inclusion fi : Bi ,! C is an embedding and so (Dfi, fi) : TBi ! TC
is a bundle map. By naturality, this gives that (fi)⇤p1(TC) = p1(TBi) for
i = 1, 2. By definition of k, this says that

k(p1(TC)) = p1(TB1)� p1(TB2).

By commutativity, this is equivalent to

p1(TC) = jh�1(i�1
1 p1(TB1)� i�1

2 p1(TB2)).

The formula dervied above then gives that what we want:

p1(TC)2[C] = (i�1
1 p1(TB1))

2[B1]� (i�1
2 p1(TB2))

2[B2].

This completes the proof that � is a well-defined di↵eomorphism invariant. Hence by our
previous example if M is di↵eomorphic to S7 then �(M) = 0. The rest of this subsection
will be devoted to computing �(Mk). We start by considering a special case.

Example. To compute E01 we note that it is di↵eomorphic to �1H, the total space of the
tautological bundle over HP1. This can be shown by writing down the obvious maps
between the pairs of charts used to define each manifold and checking they agree.

We showed previously that p1(�1H) = �2e and p2(�1H) = e2 where e = e(�1H) 2 H4(HP1).
To write this is a more universal form, fix an isomorphism H4(HP1) ! H4(S4) and let
⌫ 2 H4(S4) be the image of e under this map. Hence p1(E01) = �2⌫ and p2(E01) = ⌫2.
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Recall the Grassmannian Grk(Rn) = {k-dimensional linear subspaces of Rn} and �k its
tautological bundle. Then it can be shown that every n-dimensional vector bundle over
Sk is a pullback of �k. In particular, this construction gives a group homomorphism

FibS3(S4)

⇡3(SO(4)) ⇡4(G4(R8))

Eij 7!(u 7!(R(Eij))u)/�ij 7!Eij

where R4 ,! R(Eij) 7! S4 is the vector bundle corresponding to the sphere bundle Eij.
We use this to establish the following.

Proposition. p1(Eij) = 2(i� j)⌫.

Proof: We start by showing that p1(Eij) is linear in i and j, i.e. that (i, j) ! p1(Eij) is
a group homomorphism. This is done by exhibiting the map as the composition:

Z2 ! ⇡3(SO(4))! ⇡4(G4(R8))! H4(S4),

where the third map is [f ] 7! p1(f ⇤(�4)). To show this is a group homomorphism,
note that p1(f ⇤(�4)) = f ⇤(p1(�4)) by naturality and so

(f · g)⇤(p1(�4)) = f ⇤(p1(�
4))g⇤(p1(�

4))

for f, g 2 ⇡4(G4(R8)). Hence p1(Eij) is linear.

Next note that if Eij is formed by taking quaternionic conjugate on each fibre,
then p1(Eij) = p1(Eij) by earlier results. The transitions function between the two
charts is (u, v) 7! (u�1, uivuj

kuki+j ) and conjugating both fibres gives

(u, v̄) 7! ūj v̄ūi

kuki+j =
u�j v̄u�i

kuk�j�i ,

so Eij has transition function (u, v) 7! u�jvu�i

kuk�j�i , which shows9 that Eij
⇠= E�j,�i.

Hence p1(Eij) = p1(E�j,�i). By linearity, we can now write p1(Eij) = a(i� j)⌫ for
some a 2 Z and generator ⌫ 2 H4(S4). Finally a = 2 since p1(E01) = �2⌫.

Remark. We can also show that e(Eij) = (i+j)⌫ using e(Eij) = e(E�i,�j) and e(E01) = ⌫.

Note that Mk has a corresponding disc bundle D4 ,! Bk ! S4 where the total space Bk

has boundary Mk, and so Mk is indeed of the form we have considered in this chapter.
So far we know that p1(Mk) = 2k⌫ and we want to compute p1(TBk). This is done using
the following trick:

Lemma. If ⇡ : E ! X is a smooth fibre bundle over a closed manifold X equipped with
a Riemannian metric on each fibre, then

TE ⇠= ⇡⇤(TX)� ⇡⇤(E).

This can be proven by noting that the surjection D⇡ : TE ! ⇡⇤(TX) induces a short
exact sequence

0 TvE TE ⇡⇤(TX) 0.D⇡

It can then be checked that this splits and that TvE = ⇡⇤(E).

9
This is why we ignored the cases where i+ j = �1 even though Eij is homeomorphic to S7

.
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Theorem. �(Mk) ⌘ k2 � 1 mod 7.

Proof: Since Bk is a vector bundle, the zero section gives a homotopy equivalence Bk ' S4.
Hence H4(Bk) ⇠= Z and we can pick our orientation so that �(Bk) = 1.

The embedding i : Mk ,! Bk induces a bundle map (Di, i) : TMk ! TBk and so
i⇤(p1(TBk)) = p1(TMk). By the lemma above,

TMk
⇠= ⇡⇤(TS4)� ⇡⇤(Mk)

where ⇡ : Mk ! S4 is projection. Since H⇤(S4) ⇠= Z has no 2-torsion, this gives

p1(TMk) = ⇡⇤(p1(TS
4))� ⇡⇤(p1(Mk)) = ⇡⇤(0)� ⇡⇤(2k⌫) = 2k⇡⇤(⌫),

where we showed that p1(TS4) = 0 in a previous example. This can be rewritten
as p1(TBk) = 2k↵, where ↵ = (i⇤)�1(⇡⇤(⌫)) is a generator of H4(Bk). Hence

�(Mk) = 2q(Bk)� �(Bk) = 2(i�1(2k↵))2[Bk]� 1 = 8k2 � 1 ⌘ k2 � 1 mod 7

where (i�1↵)2[Bk] = 1 since ↵ corresponds to our choice of orientation.

Hence, if k2 6⌘ 1 mod 7, then Mk cannot be di↵eomorphic to S7. So we have shown that
S7 has at least 4 distinct di↵erentiable structures S7, M0, M2 and M3, corresponding to
the quadratic residues mod 7. This concludes our construction of exotic 7-spheres.

3.3 Higher Dimensions

We will now more generally consider the case of closed (4k�1)-manifoldsM homeomorphic
to S4k�1. To generalise our � invariant, let B be a 4k-manifold with boundary M . Note
from before that inclusion M ,! B induces an isomorphism

i : Hn(B,M)! Hn(B)

when Hn(M) = Hn+1(M) = 0, i.e. whenever 2  n  4k� 3. Hence, if p1, · · · , pk denote
the Pontryagin classes of the tangent bundle of M , then p1, · · · , pk�1 can all be pulled
back to give invariants in Hn(B,M). As before, we must eliminate the pk terms:

Definition (Milnor Invariant). Let M be a closed (4k � 1)-manifold as above. Then
define

�(M) =
1

sk
(�(B)� Lk(i

�1p1, · · · , i�1pk�1, 0)[B]) 2 Q/Z

for any 4k-manifold B with boundary M , where sk is the coe�cent of pk in Lk(p1, · · · , pk).

Similarly to before, we could also clear denominators and reduce modulo the numerator
of sk; we write this as e�. The proof that this is an invariant is the same as before.

We will now try and generalise the above construction as much as possible to other values
of k. In particular, we want to find fibre bundles of the form

S2k ,! E ! S2k�1.

where E is homeomorphic to S4k�1. As mentioned before, such fibre bundles only exist
when 1  k  3, with structure groups SO(2), SO(4) and SO(8) respectively.

We will first consider the case k = 1. Since SO(2) is the group of rotations of R2, it
inherits the topology of S1 and so ⇡1(SO(2)) = Z. Thus the elements n 2 Z precisely
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correspond to fibre bundles S1 ,! En ! S2. Alternatively, for n 6= 0 the rotation group
Gn = {exp(2⇡i/n) : i 2 Z}  S1 induces a fibre bundle

S1/Gn
⇠= S1 ,! S3/Gn ! S3/S1 ⇠= S2.

Now S3/Gn has to equal Em for some m, and it can be checked that in fact S3/Gn
⇠= En

(see [14]). These are examples of Lens spaces which have ⇡1(S3/Gn) ⇠= Gn
⇠= Zn and so

are not homeomorphic to S3 except when n = ±1. It then follows that S1 ,! S3 ! S2 is
the only smooth fibre bundle with total space homeomorphic to S3. This agrees with the
fact that there are no exotic 3-spheres.

When k = 3, we can follow a similar process as in the k = 2 case. Indeed a similar proof
shows that ⇡7(SO(8)) ⇠= Z�Z generated by u 7! �ij(u) : v 7! uivuj where multiplication
is octonionic. We thus get a set of 15-manifolds Eij.

Since L4 =
1

14175(381p4 � 71p1p3 � 19p22 + 22p21p2 � 3p41), the � invariant is

�(M) =
14175

381
�(B)�

✓
� 71

381
p1p3 �

19

381
p22 +

22

381
p21p2 �

3

381
p41

◆

where, by abuse of notation, we write pi to denote i�1pi and omit the [B] from the end of
each term. For convenience, we multiply through by 381 and work mod 381 (rather than
mod 1):

e�(M) = 78�(B) + 71p1p3 + 19p22 � 22p21p2 + 3p41 mod 381.

We then similarly let Mk be Eij with i + j = 1 and i � j = k. To compute p1, p2 and
p3, let Bk be the corresponding disc bundle D8 ,! Bk ! S8. By the long exact sequence
on homotopy groups, this gives that ⇡8(Bk) = ⇡8(S8) ⇠= Z is the first non-vanishing
homotopy group and so H8(Bk) ⇠= Z is the first non-vanishing homology group by the
Hurewicz theorem. Poincaré Duality then gives that the only non-trivial homology groups
are H i(Bk) ⇠= Z when i = 0, 8, 16.

This implies p1 = p3 = 0, and it can be calculated similarly to above that p2 = 6k↵
where ↵ 2 H8(B,M) is a generator. That H8(B,M) ⇠= Z also gives that �(B) = 1 with
appropriate choice of orientation. Hence

e�(M) = 78 + 19(i�1(6k↵))2[Bk] = 78(1� k2) mod 381.

Since (78, 381) = 3 and 381/3 = 127, we get that e�(M) = 0 i↵ k2 ⌘ 1 mod 127. Choosing
suitable Morse functions also shows that Mk is homeomorphic to S15.

Hence, if k2 6⌘ 1 mod 127, then Mk is homeomorphic but not di↵eomorphic to S7. This
gives 127�1

2 = 63 distinct exotic 15-spheres, each corresponding to the quadratic residues
not equal to 1 (using that 127 is prime).

We have thus shown that there exist � 4 distinct smooth structures on S7 and � 64
distinct smooth structures on S15. As we shall see in the final chapter, there are many
more distinct smooth structures both on S7 and S15, as well as in other dimensions.
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4 Cobordism

The goal of this section will be to give an introduction to cobordism, the study of manifolds
up to the equivalence relation where two manifolds are equivalent if their disjoint union
is the boundary of a manifold of one dimension higher10. Next we repay the debt created
in the last chapter by proving Hirzebruch’s Signature Theorem and finally we state the
h-cobordism theorem, showing how it can be used to deduce the Poincaré conjecture for
n � 5. Throughout this section, �M will denote the oriented manifold M with opposite
orientation and + will denote the disjoint union.

Definition. An (oriented) cobordism between closed oriented n-manifolds M and N is a
compact oriented manifold X such that

@X ⇠= M + (�N)

is an orientation-preserving di↵eomorphism, where @X has the induced orientation. We
say M and N are (oriented) cobordant or belong to the same (oriented) cobordism class.

Note that we need compactness since otherwise M = @(M ⇥ [0,1)) and so all cobordism
classes would be trivial. Following the conventions from earlier, we now drop the words
oriented and compact. We will need the following result from Di↵erential Geometry:

Theorem (Collar Neighbourhood Theorem). If X is a smooth manifold, then there is an
open set @X ✓ U ✓ X such that U ⇠= @X ⇥ [0, 1) is a di↵eomorphism.

This can be proven similarly to Reeb’s theorem by picking a Riemannian metric (using
partitions of unity) and then considering the flow from an appropriate vector field.

Lemma. Oriented cobordism is an equivalence relation on the category of manifolds.

Proof: For reflexivity, suppose f : M ! M 0 is a di↵eomorphism. Then X = [0, 1] ⇥
M t(id,f) [0, 1]⇥M 0 has boundary M + (�M 0), as required. Symmetry is obvious.

For transitivity, suppose M ⇠ N and N ⇠ R, so that M + (�N) ⇠= @X1 and
N+(�R) ⇠= @X2 for (n+1)-manifolds X1 and X2. By applying the theorem above
and restricting to components of the boundary, we can find open sets @Xi ✓ Ui with
di↵eomorphisms fi : Ui ! N ⇥ [0, 1). We can check that X3 = X1 [f1(U1)⇠f2(U2)X2

is a smooth compact manifold with M + (�R) ⇠= @X3, and so M ⇠ R.

Let ⌦n denote the oriented cobordism classes of n- manifolds. Note that ⌦n forms an
abelian group under + with 0⌦n = [M ] for any closed manifold M . We also have a
bilinear product

⌦m ⇥ ⌦n ! ⌦m⇥n, ([M ], [N ]) 7! [M ⇥N ]

as M ⇥N is an (n+m)-manifold. Since (M tN)⇥R ⇠= (M ⇥R) t (N ⇥R), this gives
⌦⇤ the structure of a graded ring with 2-sided identity ⇤ 2 ⌦0. In fact, ⌦⇤ is graded
commutative since Mm ⇥Nn ⇠= (�1)mnNn ⇥Mm is orientation-preserving.

Example. (i) ⌦0
⇠= Z. This is since the boundaries of 1-manifolds are either ; or

P + (�Q), and so the sum of the signs of points is a complete cobordism invariant.

(ii) ⌦1,⌦2 = 0 since S1 = @D2 and ⌃g can be filled in by a connected sum of solid tori.

10
With the operation of passing to the boundary, this is a generalised homology theory in that it satisfies

all but one of the axioms of homology.
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To compute these groups, we need to develop a cobordism invariant. Recall that for a
4n- manifold M and a partition I = (i1, · · · , ir) of n, the Ith Pontryagin number is

pI [M ] = pi1···ir [M ] = (pi1(TM) · · · pir(TM))[M ].

Note that changing the orientation of M does not change the Pontryagin classes, but it
does change the sign of the fundamental class and so changes the sign of pI [M ]. Hence
if pI [M ] 6= 0, then there doesn’t exist an orientation-reversing di↵eomorphism. In fact,
it can be shown that, if M is the boundary of a (4n + 1)-dimensional manifold, then
pI [M ] = 0 for all partitions I of n. We can now to show that pI is a cobordism invariant:

Proposition. For any partition I of n, we have a well-defined homomorphism ⌦4n ! Z
given by [M ] 7! pI [M ].

Proof: It can be easily checked that pI [M + N ] = pI [M ] + pI [N ]. To show well-defined,
suppose [M ] = [N ]. Then there is a compact oriented (4n + 1)-manifold X such
that M + (�N) ⇠= @X. The above identity and lemma give that

pI [M ] + pI [�N ] = pI [M + (�N)] = pI [@X] = 0

for all partitions I. Noting pI [�N ] = �pI [N ] then gives that pI [M ] = pI [N ].

This now gives us a way of proving that ⌦n 6= 0 for various n.

Example. We can show ⌦4n 6= 0 by exhibiting a closed 4n-manifold with a non-vanishing
Pontryagin number. In particular, as computed previously, we have that

pI [CP2n] =

✓
2n+ 1

i1

◆
· · ·
✓
2n+ 1

ir

◆
6= 0.

So for each partition I = (i1, · · · , ir) of n, the products CP2i1 ⇥ · · ·⇥ CP2ir are non-zero
in ⌦4n. This gives p(n) elements in ⌦4n and p(n) invariants to distinguish them, where
p(n) is the number of partitions of n. By ordering the set of partitions appropriately,
the corresponding matrix can be show to be upper triangular with non-zero entries on
the diagonal and thus non-singular. Hence the CP2i1 ⇥ · · · ⇥ CP2ir represent linearly
independent elements in ⌦4n, and so rank(⌦4n) � p(n).

Remarkably, Thom showed the following using the Thom space construction (see [15]):

Theorem (Thom). The products CP2i1 ⇥ · · · ⇥ CP2ir , where i1, · · · , ir ranges over the
partitions of n, are a basis for ⌦4n. In particular, rank(⌦4n) = p(n).

Example. (i) The torsion-free part of ⌦4
⇠= Z is generated by CP2.

(ii) The torsion-free part of ⌦8
⇠= Z� Z is generated by CP2 ⇥ CP2 and CP4.

Furthermore, Terence Wall showed in 1960 that ⌦n is completely determined by the
Pontryagin numbers and the Stiefel-Whitney numbers, which come from corresponding
characteristic classes with Z2 coe�cients. This in turn shows that the ⌦n were the direct
sum of copies of Z2 and, if n is a multiple of 4, copies of Z:

n 0 1 2 3 4 5 6 7 8 9 10 11
⌦n Z 0 0 0 Z Z2 0 0 Z� Z Z2 � Z2 Z2 Z2
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4.1 Hirzebruch’s Signature Theorem

Here we will use rank(⌦4n) = p(n) to deduce Hirzebruch’s Signature Theorem. We start
by introducing the notion of a multiplicative sequence.

Let R be a commutative ring with unity and let A⇤ = (A0, A1, A2, · · · ) be a commutative
graded R-algebra with unity. Also let A⇡ be the formal sums a0 + a1 + · · · with ai 2 Ai

and let A⇡
1 be the subgroup consisting of those sums with a0 = 1. For example, we can

take R = Q and An = H4n(B;Q). Now consider a sequence of polynomials over R:

K1(x1), K2(x1, x2), K3(x1, x2, x3), · · ·

where we let deg(xi) = i, and with the property that each Kn(x1, · · · , xn) is homogeneous
of degree n. Given a = 1 + a1 + a2 + · · · 2 A⇡

1 , define K(a) 2 A⇡
1 by:

K(a) = 1 +K1(a1) +K2(a1, a2) + · · ·

Definition. The Kn form a multiplicative sequence of polynomials if K(ab) = K(a)K(b)
for all R-algebras A⇤ and for all a, b 2 A⇡

1 .

Example. Some examples of multiplicative sequences for general rings R are as follows.

(i) Given � 2 ⇤, let Kn(x1, · · · , xn) = �nxn. This is a multiplicative sequence with

K(1 + a1 + a2 + · · · ) = 1 + �a1 + �2a2 + · · ·

i.e. K simply replaces ai with �iai.

(ii) Insisting that K(a) = a�1 defines a multiplicative sequence:

�x1, x
2
1 � x2,�x3

1 + 2x1x2 � x3, · · ·

which, in general, takes the form

Kn(x1, · · · , xn) =
X

i1+2i2+···+nin=n

(i1 + · · · in)!
i1! · · · in!

(�x1)
i1 · · · (�xn)

in .

Now consider any t 2 A⇤ of degree 1. Then we have

K(1 + t) = 1 +K1(t) +K2(t, 0) + · · · = 1 + �1t+ �2t
2 + · · ·

where �n is the coe�cient of xn
1 in Kn(x1, · · · , xn). The following lemma says that this

relation is enough to determine the entire multiplicative sequence..

Lemma (Hirzebruch). Given a formal power series f(t) = 1+�1t+�2t2+· · · with �i 2 R,
there is a unique multiplicative sequence {Kn} with coe�cients in ⇤ such that

K(1 + t) = f(t).

We say {Kn} belongs to f(t).

Proof: For uniqueness, let A⇤ = ⇤[t1, · · · , tn] where deg(ti) = 1 and let

� = (1 + t1) · · · (1 + tn) 2 A⇡
1 .

Since K is multiplicative, we have

K(�) = K(1 + t1) · · ·K(1 + tn) = f(t1) · · · f(tn).
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Now � = 1 + �1 + · · · �n, where �i are the elementary symmetric polynomials,
so Kn(�1, · · · , �n) is determined by f . Hence f determines Kn since it is a basic
result from Galois Theory that �1, · · · , �n are algebraically independent.

For existence, let I = i1, · · · , ir be a partition of n and let

sI(�1, · · · , �n) =
X

ti11 · · · tirr ,

where the sum over all the distinct monomials that are produced by permuting
the tis. It can be shown that the sI form an additive basis for the set of symmetric
polynomials. Now let

Kn(�1, · · · , �n) =
X

I

�IsI(�1, · · · , �n),

which gives a well-defined sequence since the �i are algebraically independent, as
above. To show the Kn are multiplicative, we can easily check that

sI(ab) =
X

HJ=I

sH(a)sJ(b),

where HJ denotes adjoining of partitions. Hence

K(ab) =
X

I

�IsI(ab) =
X

I

X

HJ=I

sH(a)sJ(b) =
X

H,J

�HsH(a)�JsJ(b) = K(a)K(b).

Example. Applying the above lemma to our examples from before, we get:

(i) (�x1,�x2,�x3, · · · )$ 1 + �t, since K(1 + a1) = 1 + �a1.

(ii) (�x1, x2
1 � x2, · · · )$ 1� t+ t2 � · · · , since K(1 + a1) = (1 + a1)�1.

Consider now a multiplicative sequence K with rational coe�cients and a closed 4n-
manifold M .

Definition. The K-genus of a 4n-manifold M is given by:

K[M ] = Kn(p1, · · · , pn)[M ],

where pi = pi(TM) 2 H4i(M ;Q) is the Pontryagin class and [M ] is the fundamental class.
If 4 doesn’t divide the dimension of M , we define K[M ] = 0.

In turns out that the K-genus is a cobordism invariant which respects the disjoint union
and cartesian product of manifolds. This is summarised in the following lemma.

Lemma. If Kn is a multiplicative sequence with rational coe�ents, then [M ] 7! K[M ]
defines a ring homomorphism ⌦⇤ ! Q and hence an algebra homomorphism ⌦⇤⌦Q! Q.

Proof: We previous had that pI [M +N ] = pI [M ] + pI [N ] and pI [@X] = 0 and so we need
only show that K[M ⇥N ] = K[M ]K[N ]. Indeed note that

p(T (M ⇥N)) = p(TM � TN) ⌘ p(TM)p(TN) modulo 2-torsion,

so are equal with Q coe�cients. Since K is multiplicative, we have

K(p(T (M ⇥N))) = K(p(TM))K(p(TN)).

Comparing top dimenional terms and noting that [M ⇥ N ] = [M ][N ] then gives
that K[M ⇥N ] = K[M ]K[N ], as required.
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We note that the signature of a manifold satisfies the same properties.

Lemma. The map [M ] 7! �(M) defines a ring homomorphism � : ⌦⇤ ! Z and hence an
algebra homomorphism ⌦⇤ ⌦Q! Q.

Proving this amounts the showing the following for manifolds M and N .

1. �(M +N) = �(M) + �(N).

2. �(M ⇥N) = �(M)�(N).

3. If M bounds, then �(M) = 0.

The first part is immediate from noting that the matrix for M + N is block diagonal
consisting of M and N . The second part can be proven using the Künneth isomorphism
and the final part using Poincaré duality. Whilst illuminating, we will omit the arguments
for brevity and direct the reader to [17].

Our goal is now to find a multiplicative sequence L such that �(M) = L[M ] for any
4n-manifold M or equivalently to find the corresponding power series f(t). Once we find
such an f , showing that it works is an exercise in finding the nth term in a Taylor Series11.
Here however we take special care to show how such an f can be derived without any
previous knowledge.

First note that, since M 7! �(M) and any M 7! L[M ] both give rise to algebra homo-
morphisms ⌦⇤ ⌦Q ! Q, we need only check equality on a set of generators for ⌦⇤ ⌦Q,
i.e. on the complex projective spaces CP2k for 1  k  n.

Using a 2 e(�nC) 2 H2(CP2n) as a generator gives that �(CP2k) = 1 since the correspond-
ing matrix sends 1 7! a2n[CP2n] = 1, by earlier calculation. So we require

Lk(p1, · · · , pk)[CP2k] = L[CP2k] = 1

for all k � 1, where pi = pi(TCP2k). Since p(TCP2k) = (1 + a2)2k+1 we know that if
f(t) = L(1 + t), then

(f(a2))2k+1 = L(1+a2)2k+1 = L(1+p1+p2+ · · · ) = 1+L1(p1)+ · · ·+Lk(p1, · · · , pk)+ · · ·

and so Lk(p1, · · · , pk) = �a2k where � is the coe�cient of t2k in the Taylor expansion
of (f(t2))2k+1. Hence the above gives that �a2k[CP2k] = 1 and so � = 1 by earlier
calculations. Hence we need a formal power series f(t) such that

(f(t2))2k+1 = a0 + a2t
2 + · · ·+ t2k + · · ·

for all k � 1. To find such a power series, we appeal to a classical formula which relates
the Taylor series of a power of a function f to the Taylor series of the inverse of x/f(x):

Theorem (Lagrange-Bürmann formula). Let f be a formal power series with non-zero
constant term and '(t) = t/f(t). If f(t)n = ao + a1t+ · · · , then

'�1(t) = b0 + b1t+ · · ·+ an�1

n
tn + · · ·

The proof is an exercise in computing residues and so is omited for brevity. Given our
f above, the corresponding ' must be an odd function and consist of only odd terms.

11
This can be achieved by computing residues and such a treatment can be found in [15].
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Furthermore, the coe�cient of t2k+1 must be 1
2n+1 , so formal integration gives

'�1(t) = t+
1

3
t3 +

1

5
t5 + · · · =

Z
(1 + t2 + t4 + · · · ) dt =

Z
1

1� t2
dt

=
1

2

Z ✓
1

1 + t
+

1

1� t

◆
dt =

1

2
log

✓
1 + t

1� t

◆

and finally

1

2
log

✓
1 + '(t)

1� '(t)

◆
= t) 1 + '(t)

1� '(t) = e2t ) '(t) =
e2t � 1

e2t + 1
= tanh(t).

Hence, by the formula above, we get f(t2) = t/ tanh(t) and so f(t) =
p
t/ tanh

p
t. Hence,

by using general formulae to find the nth term of this series, we have shown:

Theorem (Hirzebruch’s Signature theorem). If {Ln} be the multiplicative sequence of
polynomials belonging to the power series

p
t

tanh
p
t
= 1 +

1

3
t� 1

45
t2 +

2

945
t3 � · · ·+ 22nB2n

(2n)!
tn + · · ·

where the Bn are the Bernoulli numbers, then the signature �(M) of any 4n-manifold M
is equal to the L-genus L[M ].

This in particular shows that the L-genus is an integer-valued homotopy invariant.

Example. Note that each term of the sequence gives a constraint on the Pontryagin
numbers pi = pi(TM). To compute these polynomials, we will use the formula

Ln(�1, · · · , �n) =
P

I �IsI(�1, · · · , �n)

from the proof that multiplicative sequences correspond to formal power series, where
�1 = 1/3, �2 = �1/45, �3 = 2/945, · · · are the coe�cients in the Taylor series above.

(i) That L1 = �1p1 =
1
3p1 follows immediately.

(ii) The partitions of 2 are (1, 1), (2), and �1 = p1 + p2, �2 = p1p2, so

L2(�1, �2) = �21p1p2 + �2(p
2
1 + p22) =

1

9
�2 �

1

45
(�2

1 � 2�2) =
1

45
(7�2 � �2

1)

Hence L2 =
1
45(7p2 � p21).

(iii) We have �1 = p1 + p2 + p3, �2 = p1p2 + p2p3 + p3p1 and �3 = p1p2p3, so

L3(�1, �2, �3) = �31p1p2p3 + �1�2
X

i

(pip
2
i+1 + p2i pi+1) + �3(p

3
1 + p32 + p33)

=
1

27
�3 �

1

135
(�1�2 � 3�3) +

2

945
(�3

1 � 3�1�2 + 3�3).

Hence L3 =
1

945(62p3 � 13p1p2 + 2p31).

(iv) Similarly we can compute that L4 =
1

14175(381p4 � 71p1p3 � 19p22 + 22p21p2 � 3p41).

As above, computing Ln amounts to finding expressions for the each sI in terms of the
�i. The coe�cient of pn1 in each Ln is �n = 22nB2n/(2n)! by construction, and using such
formulae we can also get that the coe�cient of pn is

22n(22n�1 � 1)B2n/(2n)!

However, surprisingly little is own about the other coe�cients. For example, it is not
even known whether or not every monomial has non-zero coe�cient.

23



4.2 h-Cobordism Theorem

We end this section by outlining an important result in high-dimensional topology, namely
the h-cobordism theorem. This will be a key ingredient in the classification of exotic
spheres, though for now our aim will be to show that this implies the Poincaré conjecture
for n � 5. We end by showing how this will allow us to develop tools for proving manifolds
are homeomorphic to spheres, which we use in the following sections. We start by refining
the notion of cobordism that we considered previously.

Definition. An (oriented) cobordism X between closed n-manifolds M and N is a h-
cobordism if the inclusion maps M ,! X and N ,! X are homotopy equivalences.
We say a h-cobordism is simply-connected if M , N and X are all simply-connected.

It is easy to see that h-cobordism between closed manifolds and simply-connected h-
cobordism between simply-connected closed manifolds are both equivalence relations. In
1962, Stephen Smale proved12 the following.

Theorem (h-Cobordism Theorem). LetM andN be simply-connected closed n-manifolds
and X a simply-connected h-cobordism between them. If n � 5, then X is di↵eomorphic
to M ⇥ [0, 1]. In particular, M and N are di↵eomorphic.

This is done by finding a Morse function on X and showing that this decomposes X in
to a number of “handles” of di↵erent types. This handle decomposition can then be put
into a canonical form where we can then attempt to “cancel” handles. A careful analysis
using the Whitney trick then reveals that having su�ciently high dimensions is necessary
to ensure that the resulting manifold remains simply-connected.

Hence to show two simply connected n-manifolds M and N for n � 5 are di↵eomorphic,
it su�ces to show that they are (simply-connectedly) h-cobordant. Indeed, this led to
many of the key questions in simply-connected topology being solved over the coming
years13. For convenience (but not necessity), we record the following results which allow
us to avoid working with maps M,N ,! X

Theorem (Poincaré Duality for Cobordisms). If X is a cobordism between n-manifolds
M and N , then Hi(X,M) ⇠= Hn+1�i(X,N).

This can be proven using handles, as in the proof on the theorem above.

Lemma. If X is a simply-connected cobordism between simply-connected manifolds M
and N , then X is a h-cobordism i↵ H⇤(X,M) = 0.

Proof: By the relative version of the Hurewicz theorem, we have that ⇡⇤(X,M) = 0. By
noting that the relative homotopy groups fit into a long exact sequence (as do the
homology groups), this gives that the inclusion M ,! X induces isomorphisms
⇡⇤(M) ! ⇡⇤(X). The Whitehead theorem tells us that a map which induces
isomorphisms on all homotopy groups must be a homotopy equivalence, and so
M ,! X is a homotopy equivalence.

By the theorem above, we have that H⇤(X,N) = 0 and so H⇤(X,N) = 0 also.
Hence N ,! X is also a homotopy equivalence. The converse follows easily by
reversing the above argument.

12
Actually he originally proved this for n � 7, though the result was later expanded. For this, he was

awarded the Fields Medal 1966.

13
For example, Terence Wall completed a classification of (n� 1)-connected (2n� 1)-manifolds.
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We can use this to give the above application.

Theorem. Let M be a simply-connected n-manifold with simply-connected boundary,
for n � 5. Then M is di↵eomorphic to Dn i↵ M has the homology of a point.

Proof: Suppose M has the homology of a point and let D0 ✓ M \ @M be an n-disc
embedded in a chart ofM . ThenM\D̊0 is still simply-connected since @D0

⇠= Sn�1

and n > 2, and so is a simply-connected cobordism between @M and @D0. To
show this is a h-cobordism, we need that H⇤(M \ D̊0, @D0) = 0 by the above.

Since M and D0 both have the homology of a point, it follows that H⇤(M,D0) = 0.
To apply excision we have @D0 ' D0

0 \ D̊0 for a larger disc D0 ✓ D0
0. Hence

H⇤(M \ D̊0, @D0) = H⇤(M \ D̊0, D
0
0 \ D̊0) = H⇤(M,D0

0) = 0.

By the h-cobordism theorem, M \ D̊0 is di↵eomorphic to @D0 ⇥ [0, 1]. There are
many ways to show this can be extended to a di↵eomorphisc between M and Dn.
For example, note that M and Dn are both the composition of the cobordism from
; to @D0 (given by D0) and the cobordism from @D0 to @M (given by M \ D̊0).
Since there is a unique smooth structure on this composition of two cobordisms,
we must have that M is di↵eomorphic to D.

Hence we have shown that any n-manifold homeomorphic to Dn must be di↵eomorphic
to Dn for any n � 5. This is the statement that there are no exotic n-discs for n � 5.

Even better, this is then powerful enough to resolve all but a handful of cases of one of
the longest standing theorems in topology.

Theorem (Poincaré Conjecture). Let M be a closed simply-connected n-manifold with
the homology of Sn. If n � 5, then M is homeomorphic to Sn.

Proof: Let D ✓M be an n-disc embedded in a chart of M . Now, by Poincaré Duality (for
manifolds-with-boundary) as well as using the excision argument from the proof
above, we have

Hi(M \ D̊) ⇠= Hn�i(M \ D̊, @D) ⇠= Hn�i(M,D).

The long exact sequence on relative homology gives thatHn�i(M,D) ⇠= Hn�i(M) ⇠=
Hn�i(Sn) when i 6= n, and H0(M,D) ⇠= 0. So M \ D̊ has the homology of a point
and, by the result above, M \ D̊ is di↵eomorphic to the n-disc. Hence M is a the
union of two n-discs glued along a di↵eomorphism of their boundaries, i.e. M is a
twisted sphere, which we previously showed is homeomorphic to Sn.

This is often stated in the following slightly weaker form.

Corollary. Let M be a closed n-manifold. If n � 5, then M is homotopic to Sn i↵ M is
homeomorphic to Sn.

We will now give a few applications of this result. We start by giving an alternate proof
that the spheres Mk constructed in the previous section are indeed homeomorphic to S7.

Proposition. If Eij is the sphere bundle S3 ,! Eij ! S4 constructed in the previous
section, then Eij is homeomorphic to S7 i↵ i+ j = ±1. In particular Mk is homeomorphic
to S7.

Proof: Firstly, the long exact sequence associated to the fibre bundle gives easily that
⇡1(Eij) = 0. Secondly, the Gysin sequence for the corresponding 4-dimensional
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vector bundle then gives

0 H3(Mk) H0(S4) H4(S4) H4(Mk) 0
· ^e(Eij)

sinceH1(S4) = H3(S4) = 0, and also gives thatH i(Mk) = H i(S7) for all i 6= 0, 3, 4.
Since Eij is simply-connected, the result above gives it is homeomorphic to S7 i↵
H3(Mk) = H4(Mk) = 0 i↵ the middle map is an isomorphism. We previously
calculated that e(Eij) = (i + j)⌫, where ⌫ 2 H4(S4) is a generator, and so the
middle map is an isomorphism i↵ i+ j = ±1.

Remark. This actually follows from the Whitehead theorem which we used earlier in this
section. In particular, Hurewicz implies ⇡7(Mk) = H7(Mk) = Z and the generator gives a
map S7 !Mk which we can show is an isomorphism on all homotopy groups.

We conclude this section by extracting the key ingredients of the above proof. In par-
ticular, consider a closed (n � 2)-connected (2n � 1)-manifold M . Then the Hurewicz
theorem implies that Hi(M) = 0 for all 1  i  n � 2. Since all these homology groups
are free, Poincaré duality then tells us this holds for n + 1  i  2n � 2 and also that
H2n�1(M) = H0(M) = Z. Hence we need only worry about the (n�1)th homology group
in this case. Explicitly, we have:

Corollary. If M is a closed (n�2)-connected (2n�1)-manifold, then M is homeomorphic
to S2n�1 i↵ Hn�1(M) = 0.

In the following two sections, we give two di↵erent constructions of (n � 2)-connected
(2n � 1)-manifolds M which bound (n � 1)-connected manifolds B and which we claim
are exotic spheres. To show they are homeomorphic to S2n�1, consider the long exact
sequence for the pair (B,M). Since M is (2n� 1)-connected, this reduces to

0 Hn(M) Hn(B) Hn(B,M) Hn�1(M) 0,
i⇤

where we use Poincaré duality and the universal coe�cients formula to deduce that
Hn+1(B,M) ⇠= Hn�1(B) = 0. By the condition above, we know that M is homeo-
morphic to S2n�1 i↵ the middle map i⇤ is an isomorphism. We get the same situation for
cohomology by dualising to f ⇤.

Now in the example of Mk above, we used that the bounding manifold B was the total
space of a fibre bundle ⇡ : B ! X to show that i⇤ : Hn(B,M)! Hn(B) induces a map

Hn(B,M) Hn(B)

Hn�d(X) Hn(X)

i⇤

� ⇠ ⇡⇤ ⇠

where d is the dimension of the bundle and � is the Thom isomorphism. We then identified
the bottom map as cupping with the Euler class of the fibre bundle and thus were able
to show that M was homeomorphic to asphere i↵ e(M) = ±1.

The examples we will consider in the following two sections will not be sphere bundles,
but in both cases we alter i to give a linear map Zm ! Zm for some m and note that this
is an isomorphism if the corresponding matrix M is unimodular, i.e. det(M) = ±1.
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5 Plumbing

Here we give a brief overview of a di↵erent method of constructing exotic spheres, also
introduced by Milnor14. We introduce an operation on disc bundles over manifolds known
as plumbing, and show that this operation can be used to construct manifolds with a given
intersection form. The basic construction is as follows.

5.1 Plumbing Disc Bundles

For i = 1, 2, consider disc bundles

Dn
i Ei Ni,

⇡i

where the Ni are closed n-manifolds and the Ei are oriented compatibly with the Ni. Let
xi 2 Ni and pick an n-disc xi 2 D0

i ✓ Ni that is contained is a trivialising open set of the
disc bundle. Then ⇡�1

i (xi) ✓ D0
i ⇥Di under the trivialisation around D0

i, for i = 1, 2.

Now pick canonical di↵eomorphisms h± : D0
1 ! D2 and k± : D1 ! D0

2 such that h+, k+
and h�, k� are orientation-preserving and orientation-reversing respectively.

Definition (Plumbing). The result of plumbing together E1 and E2 with sign ±1 is

E1 2E2 = E1 t E2/ ⇠,

where (x, y) 2 D0
1 ⇥D1 is identified with (k±(y), h±(x)) 2 D0

2 ⇥D2, for some sign ±.

More generally, if m � 1, the result of plumbing together m points with sign ±1 is given
by repeating the above for m distinct pairs of points. In particular, pick points pji 2 Di

for j = 1, . . . ,m, disjoint discs D0j
i around each pji , maps hj

± : D0j
1 ! D2, k

j
± : D1 ! D0j

2

and then identify (x, y) 2 D0j
1 ⇥D1 with (kj

±(y), h
j
±(x)) 2 D0j

2 ⇥D2 for each j = 1, . . . ,m.

Example. We will consider the where case n = 1, N1 = N2 = S1 and E1 = E2 =
S1⇥ [0, 1]. Here the neighbourhoods D0

i correponds to arcs of S1 and so the identification
of the squares [0, 1] ⇥ D0

i corresponds to the diagram below. The picture below is in
general a good way to picture plumbing disc bundles in higher dimensions.

Figure 2: Two disc bundles E1 and E2 attached to form E1 2E2.

14
This construction goes back at least to [3], a set of particularly illuminating unpublished notes written

by Milnor in 1959. A more recent exposition of this material can be found in [19].
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This can be made into a smooth manifold by “straightening out the angles” using bump
functions at the intersection points, and it can be given an orientation compatible with
N1 and also either N2 if n is even or �N2 if n is odd.

It can be shown that E1 2E2 is an n-disc bundle over an appropriate n-manifold. Also
observe the e↵ect of plumbing on the boundary.

Proposition. If @E1 and @E2 are (n� 2)-connected, then @(E1 2E2) is the union of two
(n� 2)-connected sets whose intersection is (n� 2)-connected.

Proof: We start by noting that noting that

@(E1 2E2) = (@E1 \D0
1 ⇥ @D1) [ (@E2 \D0

2 ⇥ @D2)

which is clear from the picture above. Now @Ei \D0
i⇥ @Di ' @Ei \ @Di and, since

Sn�1 ⇠= @Di ,! @Ei is a codimension n embedding, we know that

⇡j(@Ei \D0
i ⇥ @Di)! ⇡j(@Ei) = 0

is an isomorphism for j  n� 2, and so (@Ei \D0
i ⇥ @Di) is (n� 2)-connected.

To see that intersection is (n� 2)-connected since, the picture above gives that

(@E1 \D0
1 ⇥ @D1) \ (@E2 \D0

2 ⇥ @D2) = @D0
1 ⇥ @D1

⇠= Sn�1 ⇥ Sn�1

and we have that ⇡j(Sn�1 ⇥ Sn�1) ⇠= ⇡j(Sn�1)⇥ ⇡j(Sn�1) = 0 for j  n� 2.

Now note that we can consider Ni as lying in E1 2E2 by mapping into Ei along the zero
section followed by inclusion. If E1 and E2 are plumbed together at m points p1, · · · , pn,
then N1 and N2 have intersection N1 \N2 = {p1, · · · , pn}. Since E1 2E2 has dimension
2n, this is transverse with sgn(pi) = ±1 for each i, depending on the sign of the plumbing.

Now let W = E1 2E2 and consider the intersection product

Hn(W )⇥Hn(W )! H0(W ) ⇠= Z, (x, y) 7! x · y = DW (D�1
W (x)^ D�1

W (y))

where DW : Hn(W, @W ) ! Hn(W ) is the Poincaré duality map. To compute the inter-
section product of N1 and N2, let i1 : N1 ,! W and i2 : N2 ,! W be as above and note
that push forward the fundamental classes [N1] and [N2] givest elements in Hn(W ). The
following standard result then gives this in terms of the signs of the intersection points.

Lemma.
(i1)⇤[N1] · (i2)⇤[N2] =

X

x2N1\N2

sgn(x).

Since E1 2E2 is still a disc bundle of the same form, we can carry out this process for
k disc bundles Ei ! Ni for i = 1, · · · , k. In particular, for any mij 2 Z for i 6= j, we
can build a 2n-manifold W with submanifolds N1, · · · , Nm each with intersection number
(i1)⇤[N1] · (i2)⇤[N2] = nij, i.e. plumb together |mij| points with sign sgnmij. The case
when i = j is described the the following result.

Lemma.
(i1)⇤[N ] · (i2)⇤[N ] = e(VN✓W )[N ].

This is proven by considering a tubular neighbourhood of N in W and using the Hopf
index theorem. The proofs of these lemmas can be found in [19]. We can now use this to
find manifolds which attain any intersection form possible.
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Theorem. Let M be an k⇥ k symmetric matrix with integer entries and even entries on
the diagonal. The for every n � 2, there is a 4n-manifold W with boundary such that

(i) The matrix corresponding to the intersection form H2n(W )⇥H2n(W )! Z is M .

(ii) W is (2n� 1)-connected, @W is (2n� 2)-connected and H2n(W ) is free abelian.

Proof: Let M = (mij), where mij = mji and mii = 2�i. Consider spheres S2n
1 , · · · , S2n

k

their tangent bundles
R2n ,! TS2n

i ! S2n
i

which have associated disc and sphere bundles D(TS2n
i ) and S(TS2n

i ) respectively.
Since S(TS2n

i ) can be build from the clutching construction, it must correspond
to an element in ⇡2n�1(SO(2n)) from our earlier work. Let �iS(TS2n

i ) denote the
sphere bundle corresponding to �i times this element in ⇡2n�1(SO(2n)), and let
Ei = �iD(TS2n

i ) be the corresponding disc bundle. Now note that, by the relation
between the Euler class and Euler characteristic given earlier, we have

e(TS2n
i )[S2n

i ] = �(S2n
i ) = 1 + (�1)2n = 2

and this can be extended to show that e(VS2n
i ✓Ei

)[S2n
i ] = e(�iTS2n

i )[S2n
i ] = 2�i.

Now let U = E1 2 · · · 2Ek, where each Ei and Ej are plumbed together at |mij|
points with sign sgnmij, when i 6= j. This gives the right matrix o↵ the diagonal
and on the diagonal gives 2�i = mii by our calculation above. To show there are no
other entries inthe matrix, i.e. thatH2n(U) has basis (ij)⇤[S2n

j ] where ij : S2n
j ,! U ,

it su�ces to note that U deformation retracts onto
S

i S
2n
i / ⇠ where ⇠ attaches

points on the spheres in such a way that S2n
i \ S2n

j = |mij|.
By our earlier remark about the e↵ect of Plumbing on the boundary of the mani-
fold, using that the S2n

i are (2n� 1)-connected, we have that @U is the union of k
di↵erent(2n�2)-connected sets with a number of (2n�2)-connected intersections.
Mayer-Vietoris then gives that Hi(X) = Hi(@X) = 0 for all 2  i  2n � 2 for
each connected component of U , where we note that n � 2.

It can then be shown, by a series of attachments on the boundary, that U can be
extended to a manifold W which is simply connected and has Hi(W ) = Hi(U) for
all i and Hi(@W ) = Hi(@U) for all i  2n� 2. The still has intersection matrix M
and, by the Hurewicz theorem, W is (2n � 1)-connected, has (2n � 2)-connected
boundary and has free 2n-th homology.

Since @W is a (2n � 2)-connected (4n � 1)-manifold and bounds a (2n � 1)-connected
4n-manifold W , we follow the approach outlined in the previous section to characterise
when is homeomorphic to S4n�1. In particular, we have that the long exact sequence for
the pair (W, @W ) gives

0 H2n(@W ) H2n(W ) H2n(W, @W ) H2n�1(@W ) 0,
i⇤ @

where i : @W ,! W is inclusion. Now note that Poincaré duality gives an isomorphism
D�1

W : H2n(W, @W ) ! H2n(W ) and the universal coe�cients formula gives an isomor-
phism H2n(W )! Hom(H2n(W ),Z).
We can thus characterise whether or not this map is an isomorphism as follows.

29



Theorem. If W is as above, then @W is homeomorphic to S4n�1 i↵ det(M) = ±1.

Proof: Consider the map ↵ : H2n(W )! Hom(H2n(W ),Z) defined by the diagram below.

H2n(W ) H2n(W, @W )

H2n(W )

Hom(H2n(W ),Z)

i⇤

↵

D�1
W⇠

UCT⇠

Now ↵ sends x 2 H2n(W ) to D�1
W (x) 2 H2n(W ) and then to the map y 7!

DW (D�1
W (x) ^ D�1

W (y)) in Hom(H2n(W ),Z), which can be checked by running
through the proof of the universal coe�cients theorem and showing this definition
works. So ↵ corresponds to the intersection product on H2n(W ) and so is repre-
sented by the matrix M : Z2n ! Z2n. Hence @W is homeomorphic to S4n�1 i↵ i⇤
an isomorphism i↵ M is unimodular, i.e. det(M) = ±1.

5.2 Examples of Exotic Spheres

Our aim now is to find unimodular matrices M of the above form. We would then know
that the corresponding smooth (4n�1)-manifold @W would be homotopic to S4n�1. Since
this comes with a bounding manifold W , we would then have some hope of showing that
@W is an exotic sphere using the characteristic class invariants established earlier.

Consider the following 8⇥ 8 matrix M (left) which is of the required form. By successive
row and column operations, we get the diagonal matrix D (right).
0

BBBBBBBBBBB@

2 1
1 2 1

1 2 1
1 2 1

1 2 1 0 1
1 2 1 0
0 1 2 0
1 0 0 2

1

CCCCCCCCCCCA

!

0

BBBBBBBBBBB@

2 0
0 3

2 0
0 4

3 0
0 5

4 0
0 6

5 1 0 1
1 2 1 0
0 1 2 0
1 0 0 2

1

CCCCCCCCCCCA

!

0

BBBBBBBBBBB@

2
3
2

4
3

5
4

7
10

4
7

1
4

2

1

CCCCCCCCCCCA

This shows that M has signature 8 and determinant 1. Hence, for any n > 1, we get a
corresponding 4n-manifold W with boundary @W homeomorphic to S4n�1.
In the notation of the section on higher dimensions at the end of the third chapter, we
now want to compute

�(@W ) =
1

sn
(�(W )� Ln(i

�1p1, · · · , i�1pn�1, 0)[W ]) 2 Q/Z,

where sn is the coe�cent of pn in Ln(p1, · · · , pn). The important thing here is that, since
W is (2n� 1)-connected, we have that H i(W, @W ) ⇠= H4n�i(W ) = 0 for i 6= 0, 2n, 4n. In
particular

i�1pi 2 H4i(W, @W ) = 0

when 4i 6= 0, 2n, 4n and so all Pontryagin classes in the expression above, except possibly
i�1pn/2 in the case where n is even, are zero. In fact i�1pn/2 = 0 by noting that the
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Pontyagin classes of TS2n
i are all zero, by previous calculations, and we can check that the

result of Plumbing then restricting to the boundary doesn’t change this fact. Combining
with the fact the signature is 8 from the matrix above, we then have that

�(@W ) = 8/sn 2 Q/Z.

Finally, this can be computed by the formula

sn = 22n(22n�1 � 1)B2n/(2n)!

which we stating in this previous section. The denominator of �(@W 4n�1) is then 7, 31,
127 and 73 when n = 2, 3, 4 and 5 respectively. It turns out that the denominator is
always > 1 and so @W is always an exotic sphere for any n � 2. We call this the Milnor

sphere and denote it by ⌃M . In particular, this shows that there are exotic spheres of
arbitarirly large dimension of the form S4n�1.

An interesting observation can be made by representing the construction of W by a graph,
namely by letting the vertices be the spheres S2n

1 , · · · , S2n
k and drawing |m| appropriately

signed edges between S2n
i and S2n

j whenever they are plumbed together at |m| points. In
this case all attachments are made by single points with sign 1 and give the graph

•

• • • • • • •

which can be identified as the dynkin diagram of the Lie group E8. These links can be
explained by considering the theory of symmetric matrices with integer entries and even
entries on the diagonal.

These constructions can be taken much further and can in fact be used to construct exotic
spheres of the form S4n+1 also. In particular the Kervaire sphere, which we write as ⌃K ,
can be constructed by plumbing together two copies of D(TS2n+1) in such a way that the
associated intersection form is  

0 1
�1 0

!

which has determinant �1. This gives a (4n+2)-manifold K and @K is indeed an exotic
sphere for some values of n. In fact, determining which n have @K4n+2 an exotic sphere
has turned out to be closely related to many other problems in algebraic topology. This
is known as the Kervaire invariant problem and very recent breakthroughs have shown
that it is true precisely when n = 2, 6, 14, 30, 62 and possibly 162 (the only unknown
case). This gives us exotic spheres in dimensions 9, 25, 57, 121, 249 and possibly 649.

An interesting application of this comes from resticting our attention to the 9-dimensional
Kervaire sphere ⌃K . Let W be the 10-manifold bounding ⌃K in the above construction.
If f : ⌃K ! S9 is a homeomorphism, then let

W = W [f D10

be the topological 10-manifold form by gluing W and D10 along f . Amazingly, the fact
that ⌃K is an exotic sphere can be used to show that this topological manifold does not
admit any smooth structure. For a proof, the reader is directed to [5].

We will return to both the Milnor spheres and Kervaire spheres in the following chapters.
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6 Brieskorn Varieties

Here we discuss a construction of Exotic Spheres which can be build out of taking a
complex hypersurface in Cn+1 and intersecting it with a very small (2n+1)-sphere around
a particular point in V .

Explicitly, let f(z1, · · · , zn+1) be a polynomial in complex variables and let

V = V (f) = f�1(0)

be the zero set of f , equipped with the subspace topology from Cn+1. Pick z0 2 V , " > 0
and define the link at z0 to be

K = V \ S",

where S" = {z 2 Cn+1 :kz � z0k = "} is the small sphere of radius " around z0.

Figure 3: An illustration of the link around a singularity K.

From now on, we will assume deg f > 1. This ensures we can find i for which @f/@zi is
non-constant. Hence any critical point of f is a root of @f/@zi which shows that the set
⌃(V ) of critical points is finite.

Proposition. K is an (2n� 1)-manifold for all " > 0 su�ciently small.

Proof: Since ⌃(V ) is finite, we know that Cn+1 \⌃(V ) is an open (2n+2)-manifold. Now
0 2 C is a regular value for

f |Cn+1\⌃(V ) : C
n+1 \ ⌃(V )! C

and so V \⌃(V ) is a smooth 2n-manifold, by the preimage theorem. Now consider
the radius map

r : V \ ⌃(V )! R, z 7!kz � z0k2 .
Since r is a polynomial, it has finitely many critical points (as above) and so finitely
many critical values. Hence we can find "2 > 0 smaller than all critical values in
R (except possibly 0). The preimage theorem then gives that

r�1("2) = (V \ ⌃(V )) \ S"

is a smooth (2n � 1)-manifold. Since the critical points of f are isolated, we can
pick " su�cently small so that S"\⌃(V ) = ;, even if z0 is itself a critical point.
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Remark. This also works in the real case and the case of more general algebraic varieties.

Inclusion i : K ,! S" in then a codimension 2 embedding. If K was homeomorphic
to S2n�1, then this would be a higher dimensional knot. As we shall soon see, this K
often has an exotic di↵erentiable structure and invariants that distinguish di↵erentiable
structure are closely related to invariants for knots.

We start with the less interesting case when z0 2 V is a regular point.

Example. If z0 2 V is a regular point of f , then z0 2 V \ ⌃(V ) and so r : z 7!kz � z0k2

now has a critical point at z0. In fact, z0 is non-degenerate since @2f
@zi@zj

���
p
= 2�ij.

Since ⌃(V ) is finite and does not contain z0, we can pick " su�ciently small so that
B" \ ⌃(V ) = ;, i.e. so that r : V \ B" ! R. Now r is a Morse function mapping from a
compact 2n-manifold so, by Morse’s lemma and the fact that r(z) � 0, we can find local
real coordinates u1, · · · , u2n for V \B" near z0 such that

r(u1, · · · , u2n) = u2
1 + · · ·+ u2

2n.

Rechoosing " so that V \ B" corresponds to this neighbourhood, we now have a di↵eo-
morphism

K = V \ S" ! {(u1, · · · , u2n) 2 R2n : u2
1 + · · ·+ u2

2n = "2} = S2n�1.

As mentioned before, K ,! S" is an embedding S2n�1 ,! S2n+1 and so is a higher
dimensional knot. However, K is not knotted. Indeed, the above argument can be
extended so that r : Cn+1 \ B" ! R is given local real coordinates u1, · · · , u2n+2 and so
that V \ B" is retrieved by the slice coodinates u2n+1 = u2n+2 = 0.

So if z0 is a regular point, the corresponding K is both di↵eomorphic to S2n�1 and is
unknotted when embedded into S2n+1. In search of more interesting examples, we now
consider two cases where z0 is a critical point.

Example. Let f(z1, z2) = z21 + z32 , which has a single critical point at the origin. Since
K is a smooth 1-manifold, we know that K is di↵eomorphic to S1. However, by finding
K explicitly, it is possible to show that K ,! S3 is knotted.

Pick " > 0 and let (z1, z2) 2 K = V (f) \ S" so that z21 = �z32 and |z1|2 + |z2|2 = "2.
Combining gives that

|z2|3 + |z2|2 = "2.

Since the left side is strictly increasing, there is a unique ⌘ > 0 such that |z2| = ⌘ (by, for
example, the intermediate value theorem) and so also a unique ⇠ > 0 such that |z1| = ⇠.
Hence (z1, z2) lies in a torus

T = {(z1, z2) 2 C2 : |z1| = ⇠, |z2| = ⌘}.

If z1 = ⇠e3i✓, then z2 = ⌘eki⇡/3z2/31 = ⌘e2i✓+ki⇡/3 for some 1  k  3 corresponding to the
three roots of unity. By swapping ✓ for ✓ + 2⇡/3 successively changes the value of k, so
we can assume k = 3. Hence

K = {(⇠e3i✓,�⌘e2i✓) 2 T : 0  ✓ < 2⇡}.

which is the (2, 3) torus knot, i.e. the right-handed trefoil knot. It can easily be shown,
using the standard tools of knot theory, that this is in fact knotted. Note that this always
works for 2 and 3 replaced by any coprime p and q, giving a (p, q) torus knot.
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Figure 4: The (2, 3) torus knot, i.e. the right-handed trefoil.

To have any hope of finding an exotic sphere, we must of course consider higher-dimensional
varieties. In particular, the above example can be generalised by considering

f(z1, · · · , zn+1) = z21 + · · ·+ z2n + z3n+1.

Here K ,! S2n+1 turns out to give what is refered to as a generalised trefoil knot. As
we shall soon see, K is homeomorphic to S2n�1 when n is odd. When n = 1 (above) or
n = 3, this is di↵eomorphic to S2n�1 however when n = 5, we can show that this is an
exotic 9-sphere. The focus of the rest of this section will be to outline to tools needed to
establish this fact.

For the sake of introducing a piece of standard terminology, we note that this is an
example of a Brieskorn variety, which are those links K around the origin which come
from polynomials of the form za11 + · · ·+ zan+1

n+1 for integers ai � 2.

6.1 The Alexander Polynomial of K

We now construct an invariant for K which generalises the Alexander polynomial for
knots. For a modern construction of the Alexander polynomial for knots, see [21].

As in our discussion above, let deg f > 1, V = f�1(0) and z0 2 V be a critical point
(which we showed must be isolated). Let S" be a sphere centred at z0 with " su�ciently
small so that K = V \ S" is a smooth (2n� 1)-manifold.

Consider the knot complement S" \K = {z 2 S" : f(z) 6= 0} and the well-defined map

� : S" \K ! S1, z 7! f(z)/
��f(z)

�� .

Let F✓ = ��1(ei✓) = {z 2 S" \K : arg(f(z)) = ✓} be the fibres of this map.

We will assume the following fact, for which the reader is directed to [20] for a proof.

Theorem (Milnor’s Fibration Theorem). The radial projection map � induces a smooth
fibre bundle

F✓ S" \K S1.
�

Each fibre F✓ is a smooth 2n-manifold which is homotopic to the wedge of µ � 1 copies
of Sn and has F✓ = F✓ [K, where the common boundary K is (n� 2)-connected.

34



To define our invariant �, we first define an action of ⇡1(S1) on the fibre F0 = ��1(1). If
z 2 F0 and � 2 ⇡1(S1) is a loop based at 1, then the fact that � above is a fibre bundle
and hence a fibration (see [13]) means we can lift � to a unique path e� : [0, 2⇡]! S" \K
starting at z. Then action15 is then defined as � : z 7! e�(2⇡).
Let h : F0 ! F0 denote the action of the generator id 2 ⇡1(S1) on F0, which induces an
automorphism

h⇤ : H⇤(F0)! H⇤(F0).

Now note that the above theorem gives that Hi(F✓) = Zµ when i = n and is trivial for all
other 1  i  2n, so the only non-trivial map is hn : Zµ ! Zµ. Our invariant then comes
from the characteristic polynomial of this linear map.

Definition (Alexander polynomial). The Alexander polynomial of a link K is

�K(t) = �(t) = det(tIn � hn),

where I is the identity map on F0.

Since hn is an isomorphism, we must have that det(hn) = ±1. Therefore �(t) is a
polynomial with integer coe�cients of the form

tm + a1t
m�1 + · · ·+ am�1t± 1.

To take things further, we note that the monodromy action of id 2 ⇡1(S1) induces a
mapping F0 ⇥ [0, 2⇡]! S" \K given by (z, t) 7! e�(t) 2 Ft. We can then check this gives
an isomorphism

Hi(F0 ⇥ [0, 2⇡], F0 ⇥ {0} [ F0 ⇥ {2⇡})! Hi(S" \K,F0).

Furthermore, the long exact sequence for relative homology can be used to show that the
group on the left is Hi�1(F0). Replacing Hi(S" \K,F0) with Hi�1(F0) in the long exact
sequence for the pair (S" \K,F0) then gives us the following.

Lemma (Wang sequence). The fibre bundle F0 ,! S" \ K ! S1 induces a long exact
sequence

· · · Hi+1(S" \K) Hi(F0) Hi(F0) Hi(S" \K) · · ·h⇤�I⇤

Since K is an (n � 2)-connected (2n � 1)-manifold and bounds the (n � 1)-connected
2n-manifold F0, we can follow a similar approach to the one outlined at the end of the
section on cobordism to characterise when K is homeomorphic to S2n�1.

Indeed, since S" \K is a compact subspace of a (2n + 1)-sphere, Alexander duality (see
[13]) gives that Hi(S" \ K) ⇠= H2n�i(K) and H2n�i(K) ⇠= Hi�1(K) by Poincaré duality.
The Wang sequence is then

0 Hn(K) Hn(F0) Hn(F0) Hn�1(K) 0.
hn�In

We know from our comments of highly-connected manifolds that K is homeomorphic to
S2n�1 i↵ Hn�1(K) = 0 i↵ the map hn � In is an isomorphism which happens precicely
when �(1) = det(hn � In) = ±1. Hence we have shown the following.

15
This is the same construction we have already seen in covering space theory, sometimes known as the

monodromy action. Also note that this corresponds to the construction of the infinite cyclic cover found

in [21], and so indeed can be seen to generalise the Alexander polynomial.
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Theorem. If n � 3, then K is homeomorphic to S2n�1 i↵ �(1) = det(In � hn) = ±1.

Now assume K is homeomorphic to S2n�1. To characterise the smooth structure, we can
of course use the characteristic class invariants we have already established. However,
complete invariants can also be derived. There are two distinct cases.

1. When n is odd, i.e. dimK ⌘ 1 mod 4, the smooth structure is completely deter-
mined by the Kervaire invariant c(F0) 2 Z/2Z (a definition can be found in [4]).

2. When n is even, i.e. dimK ⌘ 3 mod 4, the smooth structure is completely deter-
mined by the signature of the intersection product

s : Hn(F0)⇥Hn(F0)! Z.

Whilst proofs of these facts are beyond the scope of this essay, we will state a remarkable
result of Levine (see [11]). Namely, if n is odd, then

c(F0) =

(
0, if �(�1) ⌘ ±1 mod 8

1, if �(�1) ⌘ ±3 mod 8

Hence to verify that a particular K of dimension (4n+ 1) is an exotic sphere amounts to
computing �(t).

6.2 Examples of Exotic Spheres

Here we will present two constructions of exotic spheres and illustrate the two approachs
mentioned above for classifying their smooth structure. In both cases, we must compute
the Alexander polynomial (or at least the sum of its coe�cients). Here is where it is
helpful to restrict to the case of Brieskorn varieties, where the Alexander polynomials can
be classified as follows.

Theorem (Brieskorn-Pham). Let F0 be the fibre associated with the Brieskorn variety
za11 + · · ·+ zan+1

n+1 . Then Hn(F0) has rank µ = (a1 � 1) · · · (an+1 � 1) and

�(t) =
Y

(t� !1 · · ·!n+1),

where the product is over all the non-trivial ai-th roots of unity wi for each i.

For a proof, the reader is directed to [20]. We now consider the two examples.

1. Consider, as mentioned before, the (2n� 1)-dimensional link K corresponding to

f(z1, · · · , zn+1) = z21 + · · ·+ z2n + z3n+1.

To compute �(t), note that w1 = · · · = wn = �1 and wn+1 = µ±1, where µ is a
non-trivial third root of unity. Hence

�(t) = (t� (�1)nµ)(t� (�1)nµ�1) = t2 � (�1)n(µ+ µ�1)t+ 1 = t2 + (�1)nt+ 1,

which gives that �(1) = 2 + (�1)n and �(�1) = 2 + (�1)n+1.

If n = 2m+ 1 is odd and n � 3, this shows that K is homeomorphic to S4m+1. We
can also compute that �(�1) = 3 and so

c(F0) = 1.
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It remains to detemine which value of c(F0) corresponds to the standard sphere in
each dimension. When n = 3, we must have the standard smooth structure since
there are no exotic 5-spheres. However, when n = 4, this turns out to give an exotic
9-sphere. In fact, this is the Kervaire 9-sphere we considered in the previous section.

2. Consider the 7-dimensional link K corresponding to

f(z1, z2, z3, z4, z5) = z21 + z22 + z23 + z54 + z35 .

Now �(t) has w1 = w2 = w3 = �1, w4 = ⌫±1, ⌫±2 and w5 = µ±1, where ⌫ is a
non-trivial fifth root of unity and µ is as above. We compute �(1) directly:

�(1) =
Y

i=±1,±2

(1 + µ⌫i)(1 + µ�1⌫i) =
Y

i=±1,±2

(1� ⌫i + ⌫2i).

Now note that (1� ⌫ + ⌫2)(1� ⌫2 + ⌫�1) can be expanded out to give

(1� ⌫2 + ⌫�1) + (�⌫ + ⌫�2 � 1) + (⌫2 � ⌫�1 + ⌫) = ⌫�2

and so (1 � ⌫�1 + ⌫�2)(1 � ⌫�2 + ⌫) = ⌫2, by replacing ⌫ with ⌫�1 in the formula.
Hence �(1) = ⌫2 · ⌫�2 = 1 and so K is homeomorphic to S7.

We can show this is an exotic 7-sphere by showing that the signature of the bounding
manifold N = F0 is �(N) = �8, and then computing the Pontryagin classes using
the methods we have used throughout this essay.

Generalising the last example, Hirzebruch established that the link around the origin of

z21 + · · ·+ z22n�1 + z6k�1
2n + z32n+1

was homeomorphic to S4n�1 and characterised the k for which this gives an exotic sphere.
For example, when n = 2 this gives distinct exotic 7-spheres for k = 1, . . . , 28. As we
shall see in the following section, these are all the possible exotic 7-spheres.

We conclude by mentioning a generalisation of this result, proven by Brieskorn:

Theorem (Brieskorn). Every homotopy (2n�1)-sphere for n � 4 that bounds a manifold
with trivial tangent bundle is the link K around the origin of a hypersurface V = f�1(0)
where

f(z1, · · · , zn+1) = za11 + · · ·+ zan+1
n+1 ,

for some integers ai � 2.

We will return to these results in the following section, showing how they fit in amongst
the bigger picture of the classification.
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7 Classification of Exotic Spheres

The goal of this section will be to bring together many of the idea presented in this essay
and to talk about the classification of exotic spheres that exist in any given dimension.
For n � 5, it was reduced to solving classical problems in Algebraic Topology by Milnor
and Kervaire in 1963 (see [4]). We will give an overview of the methods used to do this
and, finally, will make a few brief remarks about how the various constructions we have
presented fit in to this picture.

The idea is to find a way to put an algebraic structure on the di↵eomorphism classes of
manifolds homeomorphic to Sn. In particular, the operation we will use is connected sum
M#N . This can be defined in a smooth setting and we can check that it is unique up to
orientation-preserving di↵eomorphisms.

Let ⇥n be the set of oriented n-manifolds homotopic to Sn up to h-cobordism. If n � 5,
we know that being h-cobordant is the same as being di↵eomorphic and being homotopic
to Sn is then same as being homeomorphic to Sn. Thus ⇥n also corresponds to the set of
distinct smooth structures on Sn.

Proposition. ⇥n is an abelian group under connected sum.

Proof: First note that if M 2 ⇥n, then Sn#M is di↵eomorphic to M , so [Sn] acts as the
identity. That # is associative and commutative is immediate. To show closure,
simply note that the connected sum of two copies of Sn is a homotopy sphere.

Finally, let M 2 ⇥n be a homotopy n-sphere. To show that inverses exist, we claim
that M#(�M) = Sn. To prove this, note that M#(�M) bounds the cylinder
B = (M \Dn)⇥[0, 1] for a small n-disc Dn ✓M . Since B is a compact contractible
manifold with simply-connected boundary, it must be di↵eomorphic to Dn by our
first corollary of the h-cobordism theorem. In particular M#(�M) = Sn, which
completes the proof.

Thus the problem of finding the number of exotic n-spheres is reduced to finding the order
of the group of h-cobordism classes of homotopy n-spheres.

It can be shown that ⇥n is finite for every n � 5. The proof of this fact, which we will not
give, relies on identifying a finite-index subgroup and then showing that the subgroup is
finite.

Definition. A smooth manifold M is said to be parallelisable if its tangent bundle is
trivial and almost-parallelisable if M \ F is parallelisable for some finite set F .

We write bPn+1 for the set of h-cobordism classes of n-manifolds which are boundaries of
parallelisable manifolds.

Note that bPn+1 is a subgroup of ⇥n since, if M1,M2 2 bPn+1 bound parallelisable mani-
folds B1 and B2 respectively, then M1#M2 bounds the parallelisable manifold formed by
attaching B1 and B2 using an approriate operation.

We will now briefly review a few basic facts and definitions from homotopy theory. Firstly,
note that the suspension homomorphism induces a map

⇡n+k(S
k)! ⇡n+k+1(S(S

k)) = ⇡n+k+1(S
k+1)

and this map is an isomorphism for n > k+1. We can thus define the nth stable homotopy

group of spheres to be the group this stabilises to, i.e. ⇡s
n = limk!1 ⇡n+k(Sk). Some
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examples of these groups can be found in the table below. By noting that the homotopy
groups of spheres are finite except for a class of known examples, it can be shown that
the ⇡s

n are finite for all n.

Secondly, note that a homomorphism Jn : ⇡n(SO(k)) ! ⇡n+k(Sk) can be constructed as
follows. An element of ⇡n(SO(k)) has the form Sn ⇥ Sk�1 ! Sk�1 and so, by the Hopf

construction (see [13]), this induces a map

Sn+k = Sn ⇤ Sk�1 ! S(Sk�1) = Sk,

where ⇤ denotes the join of two spaces, and so gives an element of ⇡n+k(Sk). This in
turn induces a map J : ⇡n(SO) ! ⇡s

n, where SO denotes the direct limit of the special
orthogonal groups, known as the J-homomorphism. It can be shown that the image,
which we denote by J , is a cyclic subgroup of ⇡s

n. These are related to our groups as
follows.

Theorem. There is an injective homomorphism

⇥n/bPn+1 ! ⇡s
n/J.

In particular, since ⇡s
n is finite, this shows that ⇥n/bPn+1 is also finite. This relationship

can be seen in the examples tabulated below.

n 1 2 3 4 5 6 7 8 9 10
⇡s
n Z2 Z2 Z24 0 0 Z2 Z240 Z2 � Z2 Z2 � Z2 � Z2 Z6

⇡s
n/J 0 Z2 0 0 0 Z2 0 Z2 Z2 � Z2 Z6

⇥n/bPn+1 0 0 0 0 0 0 0 Z2 Z2 � Z2 Z6

Interestingly, this map turns out to either be an isomorphism of have index 2. The above
table shows this it is index 2 when n = 2 or 6 and is an isomorphism otherwise. It can
be shown that it is always an isomorphism when n ⌘ 3 mod 4.

Remark. Classifying the cases for which the index is 2 is equivalent to the Kervaire
invariant problem which we discussed at the end of the previous section. Recall that
recent results have deduced that this is only the case in dimensions n = 2, 6, 14, 30, 62
and possibly 162.

We now review a few basic facts about bPn+1. Firstly, it is finite cyclic group which is
trivial when n is even and has order 1 or 2 when n ⌘ 1 mod 4. The complicated case is
when n = 4m� 1, which we construct below.

Let �m be the smallest positive signature obtained by an almost-parallelizable 4m-manifold
without boundary. If M 2 bP4m bounds the parallelisable 4m-manifold B, then let

M 7! �(B) mod �m.

This can be shown to be a well-defined homomorphism bP4m ! Z�m using the facts we
previously established about the signature. It can also be shown to be injective and have
image of size �m/8, hence showing that bP4m is cyclic. Furthermore, we have the following
result.

Theorem. Let B2m be the Bernoulli numbers, jm = |J(⇡4m�1(SO))| and am is 1 when m
is even and 2 when m is odd. Then

�m = 22m�1(22m�1 � 1)
|B2m|amjm

m
.
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Hence, since the map ⇥n/bPn+1 ! ⇡s
n/J is an isomorphism for n = 4m� 1, we get that

|⇥4m�1| = |⇡s
n/J | · �m/8 = 22m�4(22m�1 � 1)

|B2m||⇡s
4m�1|am
m

.

Subject to computing whether or not bPn+1 has order 1 or 2 when n ⌘ 1 mod 4, we can
extends our above table to get:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|⇥n| 1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256 2

|bPn+1| 1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128 1

Note that ⇥n only gives us the number of exotic n-spheres for n � 5. In particular, this
shows that we found 4 of the 28 exotic 7-spheres and 64 of the 16256 exotic 15-spheres by
the sphere bundles construction. Of course, in many cases we can also determine ⇥n as a
group from this information alone. For instance, whenever |⇥n| = |bPn+1|, we know that
⇥n is cyclic. So the 28 exotic 7-spheres form a cyclic group under connected sum. We now
consider how this classification relates to the constructions from the last two sections.

Firstly, recall the Milnor spheres ⌃M of dimensions 4n�1 and the Kervaire spheres ⌃K of
dimensions 4n+ 1 that we constructed in the section on Plumbing. We can easily verify
that they both bound parallelisable manifolds. In fact, it can be shown that they each
generate bP4n and bP4n+2 respectively. The latter case shows the equivalence of the two
forms of the Kervaire invariant problem that we have mentioned in this essay.

We might also ask how the exotic spheres we found as Brieskorn varieties fit into this
picture. Recall that the sphere K we constructed was the boundary of the fibre F0.
It can be shown that F0 is always parallelisable and so each K lies in bPn+1. Hence,
since |bP10| = 2, the exotic 9-sphere we found was the only bounded parallelisable sphere
other than S9. This proves that it is di↵eomorphic to the corresponding Kervaire sphere.
Furthermore, the Brieskorn varieties which come from polynomials of the form

z21 + · · ·+ z22n�1 + z6k�1
2n + z32n+1

are homotopy (4n� 1)-spheres and can be shown to represent the class of (�1)nk 2 bP4n

(where we take 1 to be the generator). For example, when n = 2, the exotic 7-spheres
are all bounded parallelisable and so are precisely these varieties for k = 1, . . . , 28, as
mentioned in the previous section. More generally, recall the result proven by Brieskorn
that said that every homotopy (2n � 1)-sphere for n � 4 that bounds a parallelisable
manifold corresponds to a Brieskorn variety. This shows the Brieskorn varieties generate
bP2n for every n � 4. We now conclude by making a number of final remarks.

Firstly, and perhaps rather unexpectedly, we comment on the real world applications of
exotic spheres. Recall that spacetime can be meaningfully modelled as a smooth manifold
in such a way that changes in reference frames corresponds to di↵eomorphisms of space-
time. We therefore would expect exotic spheres to have at least some physical significance,
and in fact many believe they do. In particular it is conjectured by Edward Witten that
gravitational instantons and/or solitons take the form of very exotic spheres, i.e. those
that do not bound parallelisable manifolds. Such ideas can be found in a paper written by
Witten in 1985 (see [12]) where he argues that the existence of exotic spheres are needed
to explain certain global gravitiational anomolies. For a more recent exposition, see [22].
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Secondly, we may wonder whether or not the results we have proven about smooth (i.e.
C1) structures would be completely di↵erent had we considered Ck structures for k � 1.
However this is not the case by the delightful result that any Ck structure can be extended
to a C1 structure uniquely up to di↵eomorphisms. In fact, the corresponding map from
Ck structures to C1 structures is a bijection on the corresponding equivalence classes.
Hence the classification of Ck structures are completely identical for any k 2 Z�0 [ {1}.
Finally we remark that these ideas developed in a number of di↵erent directions once the
h-cobordism theorem was proven and the classification of exotic spheres was completed.
On one hand, note that the 4th dimension which remains characteristically absent from
any of the results we have established: it is still not known whether or not there exists
an exotic 4-sphere. In fact, it is not even known whether or not the number of smooth
structures is finite. The 4th dimension tends to be a wild and unusual place; for example, it
can be shown that Rn has a unique smooth structure for all n 6= 4, though infinitely many
when n = 4. Alternatively, one might consider leaving spheres and perhaps even simply-
connected spaces altogether. In this direction, we note that the h-cobordism theorem was
later generalised to the s-cobordism theorem which states that a (general) h-cobordism X
between N and M is trivial if and only if an invariant ⌧(X,M) known as the Whitehead

torsion vanishes. These ideas live on today in the field of Algebraic K-Theory, where
many of Milnor’s next great accomplishments can be found.
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