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Density functional theory (DFT) and variants
The grand free energy of a system of interacting particles is

Ω[ρ(r)] = kBT

∫
drρ(r)[ln Λdρ(r)− 1] + Fex [ρ(r)] +

∫
dr (Φ(r)− µ)ρ(r),

where Fex [ρ(r)] is the excess free energy due to particle-particle
interaction and Φ(r) is an external confining potential. When Φ = 0 (the
bulk case) Ω[ρ(r)] may be minimized by constant or nonconstant ρ,
depending on the temperature T .
Near-equilibrium dynamics are described by dynamical density functional
theory (DDFT):

∂ρ(r, t)

∂t
= Γ∇ ·

[
ρ(r, t)∇δΩ[ρ(r, t)]

δρ(r, t)

]
,

where ρ(r, t) is now the time-dependent nonequilibrium one-body density
profile and Γ ≡ βD is the mobility. Here D is the diffusion coefficient and
β = (kBT )−1. In deriving this equation we have used the equilibrium free
energy functional F ≡ Fid + Fex to approximate the unknown
nonequilibrium free energy.
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DDFT predictions generally agree well with studies of Brownian particles
governed by

ṙi = −Γ∇iU({ri}, t) + ΓXi (t),

where the index i = 1, ...,N labels the particles,

U({ri}, t) =
N∑
i=1

Φ(ri ) +
∑
i 6=j

V (ri − rj)

is the potential energy of the system and Xi (t) is a white noise term.
Simulations of this type of system are called Brownian dynamics
simulations.

The DDFT model can be simplified further, resulting in the so-called
Phase Field Crystal model (PFC). This model is characterized by an order
parameter φ(r) ∝ ρ(r)− ρ0, with φ = const identified with the liquid
phase and φ 6= const identified with the solid phase.
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The Phase Field Crystal model
The Phase Field Crystal (PFC) model is an approximation to Dynamical
Density Functional Theory [Archer et al, PRE 86, 031603 (2012)] and
takes the form

∂tφ(x, t) = α∇2 δF [φ]

δφ(x, t)
,

where F [φ] denotes the free energy functional

F [φ] ≡
∫

dx

[
φ

2
[r + (q2 +∇2)2]φ+

φ4

4

]
,

φ(x, t) is an order parameter field that corresponds to scaled density and α
is a (constant) mobility coefficient. Here x = (x , y , z), ∇ = (∂x , ∂y , ∂z). It
follows that the system evolves according to the equation

∂t φ = α∇2
[
rφ+ (q2 +∇2)2φ+ φ3

]
.

i.e., the conserved Swift-Hohenberg equation (cSHE). In 1D this equation
also describes stationary 2D binary fluid convection at positive separation
ratios [Knobloch, PRA 40, 1549 (1989)].
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In one dimension, with α = 1 and q = 1, we have

∂t φ = ∂2x
[
rφ+ (1 + ∂2x )2φ+ φ3

]
.

This equation is reversible in space (i.e., it is invariant under x → −x).

Moreover, it conserves the total “mass”
∫ L
0 φ dx , where L is the size of the

system. In the following we denote the average value of φ in the system by
φ0 ≡ 〈φ〉 so that perturbations φ̃ ≡ φ− φ0 necessarily satisfy 〈φ̃〉 = 0,

where 〈· · · 〉 ≡ L−1
∫ L
0 (· · · ) dx .

Linearizing about φ = φ0 results in the dispersion relation

σ = −k2 [r + (1− k2)2 + 3φ20],

and hence instability for r < −3φ20.
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Steady states

Steady states (∂t φ = 0) are solutions of the fourth order ordinary
differential equation

0 = rφ+ (1 + d2
x )2φ+ φ3 − µ,

where µ is an integration constant that corresponds to the chemical
potential. Each solution of this equation corresponds to a stationary value
of F .
We use the free energy to define the grand potential

Ω = F̃ − µ
∫ L

0
φ dx

and are interested in the free energy density f ≡ (F̃ [φ(x)]− F̃ [φ0])/L and
in the density of the grand potential ω ≡ Ω/L = F̃ [φ(x)]/L− µφ0.

We also use the L2 norm

||δφ|| =

√
1

L

∫ L

0
(φ− φ0)2 dx

as a convenient measure of the amplitude of the departure of the solution
from the homogeneous background state φ = φ0.
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The tricritical point

The thermodynamic tricritical point is located at

(φtcp, rtcp) = (±
√

3/38,−9/38)

[Archer et al, PRE 86, 031603 (2012)]. For r > rtcp there exists no
thermodynamic coexistence zone between the homogeneous and periodic
states. Such a region is only present for r < rtcp and is limited by the
binodal lines that indicate the values of φ0 for which the homogeneous and
periodic solutions at fixed r have equal chemical potential and pressure
(i.e., equal grand potential). Thus for r < rtcp the transition from the
homogeneous to the periodic state is of first order.

Remark: This is not the same as saying the bifurcation to the crystal
state is subcritical.

The results that follow are from Thiele et al., PRE 87, 042915 (2013).
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Bifurcation diagram for the 1D PFC model when r = −0.9, L = 100.
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Solution profiles for r = −0.9 and |φ0| = 0.15, 0.2, 0.25, 0.3, 0.35, 0.725.
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The role of the longwave mode
We begin with the cSHE in the form

φt = α∂2x [(r + q4)φ+ φ3 + 2q2∂2xφ+ ∂4xφ].

The linear problem for φ = φ0 has solutions ψ ∝ exp(σt + ikx):
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We therefore write r = −3φ20 − ε2ν, where ν = O(1) is positive and ε is a
small parameter that defines how far r is from rc . In this case a band of
wavenumbers near k = q grows slowly with growth rate σ = O(ε2), while
wavenumbers near k = 0 decay at a similar rate. There is therefore time
for these two disparate wavenumbers to interact.
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The role of the longwave mode

These considerations suggest that we perform a two-scale analysis with a
short scale x = O(q−1) and a long scale X = εx , so that ∂x → ∂x + ε∂X
etc. We also write

ψ = εA(X , t)e iqx + ε2B(X , t) + ε2C (X , t)e2iqx + c.c.+O(ε3),

where the amplitudes A and C are complex and B is real. Substituting, we
obtain

At = −ε2αq2(−νA− 4q2AXX + 6φ0AB + 6φ0CA
∗ + 3|A|2A) +O(ε3),

Bt = ε2α(q4BXX + 6φ0|A|2XX ) +O(ε3),

and
Ct = −4αq2(9q4C + 3φ0A

2) +O(ε).

Thus C evolves on an O(1) time scale to its asymptotic value,
C = −φ0A2/3q4 +O(ε).
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Weakly nonlinear theory

The remaining equations may be written in the form [Matthews and Cox,
Nonlinearity 13, 1293 (2000)]

At = νA + 4AXX − ξAθX − 3

(
1− ξ2

54

)
|A|2A +O(ε),

θt = θXX + ξ|A|2X +O(ε)

where B = θX . Here ξ ≡ 6φ0/q
2 < 0, and q has been absorbed into X

and ε2αq2 into t. These equations describe the dynamics of the cSHE in
the weakly nonlinear regime.

The coupling to the large scale mode θ requires ξ 6= 0 and destabilizes the
primary supercritical branch of periodic states. The resulting spatially
modulated states evolve into localized structures when this branch is
followed to higher amplitude. Thus LS exist in the absence of bistability!
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Solidification front at r = −0.9, φ0 = −0.43 (∆ = −0.35)

Archer et al., PRE 86, 031603 (2012)
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Solidification fronts: parameter dependence

r = −0.2, φ0 = −0.183 r = −0.5, φ0 = −0.365

Archer et al., PRE 86, 031603 (2012)
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Solidification fronts: parameter dependence

r = −0.9, φ0 = −0.516 r = −1.3, φ0 = −0.632

Archer et al., PRE 86, 031603 (2012)
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Bond angle evolution for r = −0.9
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Radial correlation function for r = −0.9
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1D solidification front: r = −0.9, φ0 = −0.4
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Speed of the solidification front
We assume that the speed of the front is determined by the marginal
stability criterion of Dee and Langer, and write the linearized equation in
the form

σ(k) = −αk2[∆ + (q2 − k2)2],

where ∆ = r + 3φ20. To determine the front speed we go into the reference
frame of the front moving at speed c , Ω(k) = ick + σ(k), and solve

dΩ

dk
= 0 Re(Ω) = 0

for kr , ki and c as functions of ∆. The resulting density profile at the
front is ρ̃front(ξ, t) ∼ exp(−kiξ) sin(krξ + Im(Ω)t) relative to the front.
The pattern left behind is period in space with wavenumner k∗ given by
conservation of nodes [Ben-Jacob et al, Physica D 14, 348 (1985)]

k∗ =
1

c
Im(Ω) = kr +

1

c
Im[σ(k)].
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Speed of the solidification front in 1D

 0

 2

 4

 6

 8

 0  0.3  0.6  0.9

c
/α

|∆|

(a)

full theory
Eq. (22)
dx = 0.2
dx = 0.5
dx = 1.0
dx = π/3

 0.9

 1

 1.1

 1.2

 1.3

 0  0.3  0.6  0.9

k
*

|∆|

(d)

k
*

k
r

dx = 0.2
dx = 0.5
dx = 1.0

 0.9

 1

 1.1

 1.2

 0  0.3  0.6  0.9

Archer et al., PRE 86, 031603 (2012)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 31 / 47



Speed of the solidification front in 1D
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Speed of the solidification front in 2D
The 2D case is much complicated but also more interesting because of the
competition between stripes (the first pattern to form) and hexagons (the
final pattern to form):
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Fig. 1. The front velocity c as a function of the chemical potential µ from DNS

of a GEM-4 fluid with temperature kBT/ε = 1 compared with the prediction of

the marginal stability calculation (red solid line).Edgar Knobloch (UC Berkeley) Localized patterns May 2016 33 / 47



Speed of the solidification front in 2D
Model equations:

∂Ak

∂t
= γAk +

∂2Ak

∂x2k
+ A∗[k−1]A

∗
[k+1] − (|Ak |2 + λ|A[k−1]|2 + λ|A[k+1]|2),

where k = 0, 1, 2. Here Ak are the complex amplitudes of the three
wavevectors n0 ≡ (1, 0)kc , n1 ≡ (−1,

√
3)kc/2, n2 ≡ (−1,−

√
3)kc/2 in

the (x , y) plane, and xk ≡ x · nk [Golubitsky et al., Physica D 10, 249
(1984)]. Here kc is the critical wave number at onset of the hexagon-
forming instability (γ = 0), and [k ± 1] ≡ (k ± 1)(mod3). These equations
constitute a gradient flow with free energy

F ≡
∫ ∞
−∞

2∑
k=0

(
1

2
|∂Ak

∂xk
|2 − V

)
dx ,

where

V ≡
2∑

k=0

(
1

2
γ|Ak |2 −

1

4
|Ak |4

)
− λ

2
(|A0|2|A1|2 + |A1|2|A2|2 + |A2|2|A0|2)

+ A∗0A
∗
1A
∗
2.
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Speed of the solidification front in 2D

We focus on planar fronts perpendicular to n0 ≡ (1, 0)kc and thus focus
on solutions independent of the variable y along the front. Symmetry with
respect to y → −y implies the presence of solutions with A1 = A2 ≡ B,
say. Absorbing the wave number kc in the variable x , and writing A0 ≡ A
we obtain the equations

∂A

∂t
=
∂2A

∂x2
+ γA + B2 − A3 − 2λAB2

∂B

∂t
=

1

4

∂2B

∂x2
+ γB + AB − (1 + λ)B3 − λA2B.

In writing these equations we have assumed that A and B are real in order
to focus on the behavior of the amplitudes, thereby setting the phase
Φ ≡ arg(A) + 2arg(B) = 0. This phase distinguishes so-called
up-hexagons from down-hexagons [Golubitsky et al., Physica D 10, 249
(1984)].

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 35 / 47



Speed of the solidification front in 2D
These equations have solutions in the form of regular hexagons (A,B) =
(Ah,Ah), stripes (A,B) = (Ar , 0) and the homogeneous liquid state
(A,B) = (0, 0), where

Ah =
1 +

√
1 + 4γ(1 + 2λ)

2(1 + 2λ)
, Ar =

√
γ,

and are critical points of the potential V (A,B) = 1
2γ(A2 + 2B2) + AB2

−[14A
4 + λA2B + 1

2(1 + λ)B4]. Note that without loss of generality we
have taken Ah > 0, Ar > 0 since negative values can be compensated for
by choosing Φ = π, i.e., by an appropriate spatial translation.
The hexagons and the liquid state coexist stably in the subcritical regime,
−[4(1 + 2λ)]−1 < γ < 0; the liquid state becomes unstable when γ > 0. A
front traveling with speed c to the right, connecting the hexagonal state
on the left with the liquid state to the right, takes the form

A(x , t) = Ã(ξ), B(x , t) = B̃(ξ), ξ ≡ x − ct.
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Speed of the solidification front in 2D
Thus

∂2Ã

∂ξ2
+ c

∂Ã

∂ξ
+ γÃ + B̃2 − Ã3 − 2λÃB̃2 = 0,

1

4

∂2B̃

∂ξ2
+ c

∂B̃

∂ξ
+ γB̃ + ÃB̃ − (1 + λ)B̃3 − λÃ2B̃ = 0

with the boundary conditions

Ã = B̃ = Ah as ξ → −∞, Ã = B̃ = 0 as ξ →∞.

The speed c vanishes in the subcritical regime when γ = γ0 < 0 defined by
the requirement V (Ah,Ah) = V (0, 0) = 0 and is positive for γ > γ0
(V (Ah,Ah) < 0) and negative for γ < γ0 (V (Ah,Ah) > 0). An elemetary
calculation gives γ0 = −2[9(1 + 2λ)]−1. The situation is more complicated
in the supercritical regime where γ > 0 because this regime contains
supercritical (but unstable!) stripes oriented parallel to the front. As a
result one now finds fronts that connect the hexagonal structure to the
stripe pattern and the stripe pattern to the liquid state, in addition to the
front connecting the hexagonal structure and the (unstable) liquid state.
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Speed of the solidification front in 2D
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Speed of the solidification front in 2D
The marginal stability condition implies that stripes invade the
homogeneous state with speed ce = 2

√
γ, while an analogous calculation

shows that the hexagons invade the unstable stripes with speed
cr = [

√
γ − (λ− 1)γ]1/2 (Hari & Nepomnyashchyy, PRE 61, 4835

(2000)). This speed exceeds ce in the interval 0 < γ < (λ+ 3)−2.
It is evident that the speed ce cannot be selected when γ is too close to
threshold since c remains positive for all γ > γ0. In the spatial dynamics
picture of the front one seeks a heteroclinic connection between
(Ã, Ã) = (Ah,Ah) and (0, 0). Near (0, 0) we have the asymptotic behavior

Ã ∼ eκAξ B̃ ∼ eκBξ, as ξ →∞,
where

κ±A = −c

2
± 1

2

√
c2 − 4γ, κ±B = −2c ± 2

√
c2 − γ.

Evidently, for γ < 0 the stable manifold of (0, 0) is two-dimensional, and
since one expects the heteroclinic to connect to (0, 0) along the slow
direction one anticipates that the solution will approach (0, 0) in the ”A”

direction, with Ã ∼ eκ
−
A ξ as ξ →∞.
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Speed of the solidification front in 2D
However, as soon as γ > 0 the stable manifold of (0, 0) becomes

four-dimensional, and the slowest direction is suddenly Ã ∼ eκ
+
A ξ. H&N

solve the problem numerically and find that for c < 2
√
γ the front speed

departs from the prediction c = ce and instead follows a speed c = c0 for
which the asymptotic behavior of the front continues to be Ã ∼ eκ

−
A ξ as

ξ →∞, thereby providing a smooth connection to the speed computed for
γ < 0. We refer to the value of γ at which ch = ce as γ = γ1. H&N also
show that in the region γ1 < γ < γ2 ≡ (λ+ 3)−2 both the front
connecting the hexagonal state to the stripes and the front connecting the
stripes to the liquid state travel with the same speed ce . As a result the
width of the stripe region between the hexagons and the liquid state
remains constant; in numerical simulations this width is independent of the
initial conditions, despite the nonuniqueness of the overall front solution,
and to increase with γ. Finally, for γ > γ2 the front speed ce > cr and the
front connecting the stripes to the liquid state outruns the hexagons
invading the stripes and the width of the stripe interval in front of the
hexagons grows without bound.
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Speed of a solidification front in 2D: model problem
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We define γ = γ1 as the point of intersection of ch and cs and γ = γ2 as
the point chs = cs . The model predicts that γM ≈ −2.5γ1 for all λ, a
result that is not in agreement with the GEM-8 simulation.
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Two-component system: equilibrium state in GEM-8

Equilibrium structures for density ρR2
11 = 4 and for ρ1/ρ = 0.1, 0.25, 0.5 and 0.9

from left to right, with ρ = ρ1 + ρ2, εij = ε = kBT , R22/R11 = 1.5, R12/R11 = 1.

We plot ρ1(r)− ρ2(r). We have confirmed that these profiles are all local minima

of the free energy, but we have not ascertained whether they are global minima at

the given state points. We observe a square lattice structure – see (b), a binary

hexagonal lattice structure (a) and (c) and also simple hexagonal lattice (d),

where the minority species of particles (species 1) occupy the same lattice sites as

the majority species particles, in contrast to the lattice structures in (a) – (c).

Note that for the case in (d) if one plots just the density profile for species 1 or 2,

one obtains a very similar density profile, the only difference being in the height of

the density peaks.
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Two-component system: front propagation in 2D

Snapshots from an advancing solidification front from the GEM-8 mixture

advancing into an unstable fluid with (ρ1 + ρ2)R2 = 8 and ρ1/(ρ1 + ρ2) = 0.5,

εij = ε = kBT for i , j = 1, 2 and R22 = R11 = R.
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Two-component system: t = 2 (top), t = 400 (bottom)
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Two-component system: ageing
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Speed of the solidification front in 2D
How good is this type of theory? The amplitude equations predict:

γM = − 2

9(1 + 2λ)
γsn = − 1

4(1 + 2λ)
,

i.e., γM/γsn = 8/9. From the simulations of the GEM-4 front we have

βµsn ≈ 16.5 and βµM ≈ 16.8,

while the linear instability threshold corresponds to βµlin ≈ 19.6. Thus
(µM − µlin)/(µsn − µlin) ≈ 0.90, very close to the predicted value 8/9.
But all is not well. The amplitude equations also predict that
|γM|/γ1 ≈ 2.5 over the entire range of nonlinear coefficients λ while
simulations indicate that |γM|/γ1 ≈ 1.4.
The possible sources of discrepancy are:

Absence of pinning between the first front and the stripes, and
between the second front and the hexagons/stripes

Absence of the long wave mode arising from particle number
conservation
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Conclusions
We have shown that the speed of crystallization fronts can be computed
within both

PFC model

DDFT

and discussed the differences between the corresponding behavior in one
and two spatial dimensions. We have shown that a moving front selects a
nonequilibrium wavelength and hence that front propagation leads to a
state that must undergo glass-like behavior as it seeks to find local
thermodynamic equilibrium after the passage of the front, at least for
sufficient supercooling. The results can be interpreted within appropriate
theory describing front propagation in 1D and 2D.
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