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Lecture outline

@ Lecture 1: Spatially localized structures and the Swift-Hohenberg
equation: derivation

@ Lecture 2: Spatially localized structures and the Swift-Hohenberg
equation: basic properties

Lecture 3: The Swift-Hohenberg equation in one dimension
Lecture 4: The Swift-Hohenberg equation in two dimensions
Lecture 5: Oscillons

Lecture 6: Spatially localized states in fluid mechanics: convectons
Lecture 7: Colliding convectons

Lecture 8: Binary convection in porous media

Lecture 9: The conserved Swift-Hohenberg equation and
crystallization

@ Lecture 10: Localized states in systems with a conserved quantity
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Patterns in nature

e Spontaneous (!) 1
Symmetry Breaking \
e Universality 3 Caze
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Buckling of a cylinder

Right panel: courtesy G. Lord
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Buckling of a cylinder
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Ferrofluid in a magnetic field
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Stationary peaks in a ferrofluid experiment: Richter and Barashenkov, PRL
94, 1 (2005)
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Oscillons
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Oscillons
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Bound state of oscillons

3190 (1999)

Faraday resonance in a colloidal suspension: Lioubashevski et al., PRL 83,
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Photonics: Cavity solitons

Writing and erasing of cavity solitons in a broad area VCSEL. See
Fundamentals, Functionalities, and Applications of Cavity Solitons:
www.funfacs.org
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Photonics: liquid crystal light valve with feedback

Solitary localized structures
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Figure 2. Experimental PDF (left) and instantaneous snapshots (right) showing the
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Photonics: Bortolozzo et al., NJP 11, 093037 (2009)

Figure 4. Experimental snapshots showing the transition from the SLS (state 1) to
the HEX pattern (state 2); a) Vo = 13.22 V, b) V; = 13.30 V: successive frames
correspond to successive instant times with a time step of 0.4 s; I;;, = 0.45 mW/ em?.

Solitary localized structures 8

Figure 5. Numerical snapshots showing the evolution of the liquid crystal tilt angle
0(z,y,t) during the transition 1 — 2 — 1. The spatial are identical in all
panels. a) Vp = 13.22 V with a single localized structure (state 1); b) V5 = 13.22
V': successive frames correspond to successive instant times with a time step of 0.4
s1 Iiy = 0.45 mW/em?; ) final HEX pattern (state 2); d) Vy = 13.22°V: successive
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Convectons

P
s

Ghorayeb & Mojtabi, Phys. Fluids 9, 2339 (1997); Ghorayeb, PhD Thesis,
Toulouse, 1997
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Convectons in magnetoconvection

Blanchflower, Phys. Lett. A 261, 74 (1999)
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Convectons in binary fluid convection

Odd convecton
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Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Vortices in rotating convection
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Sprague et al., J. Fluid Mech. 551, 141 (

2006)
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Hurricane Katrina, 28 August 2005
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The Swift-Hohenberg equation

u =—(1+V>u + ru+ f(u)

competition between localised patterns:

(a) hexagons & targets preferred for f'(u) = su? - u’

(b) stripes & targets preferred for f'(u) = su’ - u’
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Spatially localized states

Spatially localized states (LS) are common in fluid flows and are present in
convection, shear flows, and as vortices in both rotating and nonrotating
flows. They are also of great importance outside of fluid dynamics:
nonlinear optics, reaction-diffusion systems arising in chemistry, structural
mechanics, and increasingly in ecology.

@ LS exist in one, two and three spatial dimensions, and may be
stationary or propagate in the form of traveling pulses

@ LS are usually created by finite amplitude perturbation and are
therefore strongly nonlinear

@ Instability may lead to splitting, decay and disappearance,
propagation or complex dynamics

@ LS may form bound structures or a gas-like state

Question: What do these systems have in common? Is there a universal
description of LS?

Remark: Although LS are sometimes called dissipative solitons they are NOT
solitons in the classical sense. So interactions between moving LS are generally

inelastic.
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Swift-Hohenberg equation: a derivation

Inviscid long water waves:

bxx+ Py =0 in —H<y<((xt) (1)

with
$,=0 on y=-H (2)

and
Ct+¢x€x_¢y:0 on y:C(Xa t) (3)

and

KGox

L oo
¢t+§(¢x+¢y)+gC—W

=0 on y=((xt). (4)

Here ¢(x, y, t) is the velocity potential (v = ¢, v = ¢, ), the flow is
assumed to be two-dimensional, and & is the surface tension.
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Linear theory

The problem (1)—(4) has the trivial solution ¢ =0, ( = 0. An infinitesimal
perturbation of the free surface of the form { = {psin(kx — wt), where k is
the perturbation wavenumber and w is its frequency, represents a periodic
wave traveling to the right with phase speed ¢ = w/k. Associated with
this disturbance is a velocity disturbance given by ¢ = ¢o(y)cos(kx — wt),
where the function ¢o(y) captures the decrease of the velocity with depth.
With this Ansatz Eq. (1) yields

¢0yy - k2¢0 = 0. (5)

The boundary condition (2) implies that ¢g, = 0 at y = —H and hence
that

do = Acosh [k(y + H)]. (6)

where A is an arbitrary constant. The perturbed velocity potential then
reads

¢ = Acosh [k(y + H)] cos(kx — wt). (7)
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Linear theory
Equation (3), linearized about y = 0, now yields
Cow = — Ak sinh(kH), (8)
while Eq. (4) yields
—wAcosh(kH) + glo + rk?Co = 0. (9)

Elimination of the arbitrary amplitude A yields finally the dispersion
relation for infinitesimal gravity-capillary waves:

w? = (g + xk?)k tanh(kH). (10)

We will be interested in long waves, i.e., waves for which kH < 1. Since
tanh(kH) = kH(1 — k?H?/3) 4+ O(k®H°®) the relation (10) becomes

w? = gk?H + gk*H3}(Bo — 1/3) + O(k®), (11)

where Bo = k/gH? is the Bond number. Thus long waves are
nondispersive at leading order but with a dispersive correction at higher
order as described by the second term provided Bo # 1/3. In the following
we study the weakly nonlinear regime near the special value Bo = 1/3.
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Swift-Hohenberg equation: a derivation

We first write the equations in a frame traveling with phase speed ¢ to the
right:

Gee + by =0 in —H <y <((t) (12)

with
¢y=0 on y=-H (13)

and
CetcCe+oele—dy =0 on y=(((t) (14)

and

1 KC,

b+ coe + 5 (0 + 0)) +C — ﬁ =0 on y=((&1). (15)

Here £ = x — ct.
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Swift-Hohenberg equation: a derivation

We look at long waves with wavelength of order ¢! > 1: we introduce
the large spatial scale X = €¢£ and anticipate the need for a slow time

T = €%t (in the moving frame). We also pick x = kg + kae?, where kg is
determined by the requirements of the theory: kg = %gH2 (see below).
Finally we let (¢,¢) — (e3¢, €*():

Edxx + by =0 in —H<y<e(X,T) (16)
with
¢, =0 on y=—-H (17)
and
OCT +ce®Cx +oxCx —dy =0 on y=€*¢(X,T) (18)
and

o1 + cox + %62(€2¢§< + qﬁi) + g¢ — (ko + r2€%)Cxx = O('?) (19)

ony=¢€*(X,T).
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Swift-Hohenberg equation: a derivation

We now write ¢ = ¢g + €do + ..., and { = (o + 2Co+ .. ...
At leading order Eq. (16) yields

Poyy =0 (20)

subject to ¢g, =0 on y = —H. Thus ¢g = fo(X, T), where (X, T) is
unknown. At O(€?) we obtain

b2yy = —Tfoxx (21)

subject to ¢, =0 on y = —H. Thus

b2 = —%(y+H)2foxx+f2(X, T), (22)

where f(X, T) is unknown.
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Swift-Hohenberg equation: a derivation

It follows that on y = €*¢(X, T)
by = oy + 2y + O(e*) = —€*Hfoxx + O(€*). (23)
Thus Eq. (18) becomes, at leading order,
cox = —Hfoxx (24)

or, integrating once,
cCo = —Hfox. (25)

Eq. (19) becomes, at leading order,

cfox + &G0 =0, (26)

implying the usual dispersion relation for long waves: c? = gH.
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Swift-Hohenberg equation: a derivation

We now proceed to next order. Eq. (16) yields

1
Payy = —oxx = 5()’ + H)? foxxxx — Faxx,

and so
1 y 1 ,
Ga = ﬂ(y + H) foxxxx — E(y + H) hxx + fa(X, T).
Likewise
1
Doy = —baxx = — =~ (v + H)* foxxxxxx +
24
and so

1

(27)

(28)

1
E(er H)? faxxxx — faxx, (29)

1
Pey = 120 —(y + H)*faxoooox + 6()/ + H)> faxxxx — (v + H)faxx. (30)
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Swift-Hohenberg equation: a derivation

We now need to impose the surface boundary conditions. Eq. (18) yields

at O(e%)

1
Clox = Pay = 6H3foxxxx — Hbxx,

or
1

Q= 6H3foxxx — Hfx,
Eq. (19) yields at O(€?)

cpax + 8¢ — koCoxx = 0,
or equivalently,

1 CK
C(—§H2foxxx + hx) + g0 + ?Oﬂ)XXX =0.

Equations (32) and (34) are identical provided

1
ko = ggHz, ie., Bo=1/3.
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Swift-Hohenberg equation: a derivation
We proceed next to O(e®) in Eq. (18):

1
CoT + clax + foxCox = _EOHB foxxxxxx + 6/‘/3f2xxxx — Hfyxx — Cofoxx-
(36)

The last term in this equation arises from the ¢ contribution to ¢»,. We
also have from Eq. (19) at O(€*)

1
o1 + Chax + E(ﬁ)x)2 + gCa — kolaxx — k2Coxx =0, (37)

where ¢4 is to be evaluated at y = 0 (to this order) using Eq. (28).
Eliminating f4 and (4 from the resulting equations we obtain a solvability
condition which can in turn be simplified by eliminating fy in favor of (p.
We obtain

2c 1 1
—CoT— éCoCox +raloxxx + == gH* Coxxxxx = —rolaxxx — = cH* faxxxx -
H H 30

(38)
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Swift-Hohenberg equation: a derivation

The right hand side of this equation can be evaluated in terms of (3 with
the help of Egs. (34) and (35) leading finally to an evolution equation
satisfied by (p:

2c 3g 1 4
o328 _ oH —0.
0 CT o CCx + Kalxxx 258 Cxxxxx =0 (39)

This is a generalization of the Korteweg-de Vries equation.

Solitary waves: Solitary waves traveling to the right with speed V may
now be obtained by writing z = X — VT. After one integration such
waves are found to satisfy the ordinary differential equation

1 2cV 3g

= gHA M " 26 2 4
Js8HC" — ol + (227 =0, (40)
where the prime denotes a derivative with respect to z. This is the
simplest case of the Swift-Hohenberg equation. This SH20 equation

was studied by Buffoni, Champneys, Toland ...
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The Korteweg-de Vries equation

When x — kg = O(1) the (scaled) equation for the surface elevation is the
KdV equation

G+ CCx = Cxxx =0, (41)

depending on sgn(Bo — 1/3). Writing z = X — V7, we integrate twice,
obtaining

1
G+ UQ) =E, (42)
where E is a constant and U(¢) = %C3 — %V{2.
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The Korteweg-de Vries equation

Thus sinusoidal oscillations are present around the local minimum of the
potential provided E + 2V2/3 <& 1. As E increases the oscillations become
more and more nonlinear and their (spatial) period increases. When E =0
the solutions have infinite period, i.e., they are solitary waves. For k < kg
these form a one parameter family,

%:asech2 \; [x—\/7(1+3) t], (43)
with a > 0 (solitary waves of elevation: bright solitons). Thus all finite
amplitude solitons travel faster than \/gH and larger solitons travel faster
than smaller solitons. Greene, Kruskal and Zabusky discovered that these
solutions interact in a particle-like manner: this makes them into solitons.
This is a consequence of complete integrability of the KdV equation as an
infinite-dimensional Hamiltonian system.

Remark: If k > kg we have solitary waves of depression: dark solitons
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The Korteweg-de Vries equation

60

Collision of two KdV solitons
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Swift-Hohenberg equation in one spatial dimension
The Swift-Hohenberg equation

ur = ru — (g2 +8§)2u+ f(u)

is very simple but has very remarkable properties. These are a consequence
of the following:

Fourth order in space

Intrinsic length scale 27 /q.

Bistability due to competing nonlinear terms
Spatial reversibility: x — —x, u — +u
Variational dynamics

oF
Su’

ug = —

where

F:/de{—;ru2+;[( + %) / f(v }

In the following we think of F|[u] as the (free) energy of the system
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Localized solutions of the Swift-Hohenberg equation SH23
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Temporal vs spatial dynamics: Kirchgassner (1982)

The linearized problem around u =20 is
2
Uy = ru— (qg + 8)%) u.
Thus u(x, t) < exp(ot + igx) grows in time if o(q) > 0. So steady
solutions are present when o = 0, i.e., at ¢ = g%, and these collide at
(r,q) = (reygc). Thus r = r. =0 is a reversible Hopf bifurcation in space

with 1:1 resonance: for r < 0 the spatial growth rate A = +X, & i}\;,
Ar # 0, thereby allowing both growth and decay in space:

H f | X X T %
; ‘ i 1 >< >< l i
i i i
q9- qac .
2 () r<0 (byr=0 ©r>0
Edgar Knobloch (UC Berkeley) Localized patterns

May 2016 37 / 239



Spatial dynamics and homoclinics

We can establish the presence of homoclinic orbits near r = 0 by setting
r = 1 = —€e?po and using a multiple scale expansion with spatial scales x
and X = ex,

up(x) = e (x, X) + (3, X) + ...,

where _
ur(x, X) = Z(X;€)e'%* + c.c. (44)

We start by computing Z at r = 0.
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Weakly nonlinear theory: SH35

Multiple scale expansion at r = 0 with spatial scales x and X = ex,

up(x) = e (x, X) + (3, X) + ...,

yields

O0): (R+)°um=0 (45)
O@): (B +¢) =80 (2 + %) un (46)
oE):  (F+ q§)2 u3 = —40xx (02 + G2) tp — 40xexx 1 (47)

— 20xx (02 + q2) u1 + bsu3
O(e*y:  (92+ q§)2 ug = —40xx (02 + q2) uz — 40xexx o (48)
— 20xx (8)2( + qg) Uy — 40, xxx U1 + 3bsuZ uy
0(65) : (8)% + q?)2 us = —40,x (83 + qg) ug — 40, xx U3 (49)

— 20xx ((9)2( + qg) uz — 40, xxx Uy — (93‘( u

+3bs (103 + uus) — bsuj .
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Weakly nonlinear theory: SH35
The O(e, €2) equations are solved by

ui(x, X) = A1(X)e ¥ + c.c., ta(x, X) = Ay(X)e' 9 + c.c.,

where Aj 2(X) are as yet undetermined and c.c. denotes a complex
conjugate. The Ansatz

uz(x, X) = A3(X)e' 9 + C3(X)e39x + c.c.

in the O(€3) equation leads to the two results

b
4q2A7 = —3bsA1|A1l?, G= 6434 Al
Cc

)

with Az arbitrary. The Ansatz

ug(x, X) = Ag(X)e' 9 + C4(X)e39x + c.c.
in the O(€*) equation likewise leads to

4qG2AY = 4ig AY — 3bs (2|A1)PAx + AA,)

the expression for (4 in terms of Aq 5 is not needed in what follows.
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Weakly nonlinear theory: SH35
Finally, the O(€®) equation with the Ansatz

us(x, X) = As(X)e' 9> + Cs(X)e39* 4 E5(X)e®9 4 c.c. (55)

yields
AG2AY = 4ig Ay + AL — 3bs (2A1|Ax|* + AL A3 + 2| AP As + AA3)
3b3 .
+ ( 64" + 10b5> A1|A1] (56)

after elimination of Cs. Egs. (52), (54) and (56) can now be assembled
into a single equation for Z(X, €) = A1(X) + eAx(X) + €2A3(X) +

4q27" = —3b03Z|Z|*+4ig.eZ"+€? [Z’”’+ <— 61”5? ) Z\Z\“] +0(€%)

or

422" = —3b3Z|Z|? - 3’;b3(22’|2|2 +227') (57)
9b3 327b3

+62

202 (2Z|1Z'? +(Z')*Z) + < bigh +10b5> Z|Z!4} + O()
C
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Normal form theory: looss and Péroueme (1993)

The normal form for the reversible Hopf bifurcation with 1:1 resonance is
A=igA+B+IiAP(uy,w)
B=ig:B+iBP(uy,w)+AQ(u;y,w),

where y = |A]?, w = f(AB AB), 1 is an unfolding parameter analogous
to r, and P and Q are polynomials with real coefficients:

(58)

P(u;y,w) = pips+ p2y + psw + pay? + pswy + pew? + - --

Qu;y, w) = —qupn+ Qoy + G3w + qay” + gswy + gew? + - - .
To compute the coefficients in this normal form we set = 0 and write
(A, B) = (€A(X), 2B(X))e, obtaining

O = B+ iA | CplAP + Op (4B - AB) +O) ()
eSB = ie’B [e p2| A 4 €p3= (AB AB)]

LA [ qalA? + Cay1 (AB — AB) + ¢ qﬂAVﬂ 1 O()(60)
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Coefficients in the normal form
Eq. (59) yields a power series expansion for B in terms of A,

B=A —icppAAPR + EZ%A(AA, — AA) + O(e%), (61)

and this equation can be used to eliminate B from Eq. (60):

2
T [pa(APA— ALA) + (aa — asp2 + PRAIAIY] + O(S).

. 1 1 _
A’ — AIAPR + e [(3p2 - q3) AP + <p2 i qu) Aw} (62)

Finally, writing Z = A+ €2pA|A|?> + O(e*) allows one to deduce the
normal coefficients:

9bs 9bs 3bs 3bs

P=T72, PP=—""T=, Q@2=—7>3, p3:05 Q3= —5 3,
16G¢ 16G2 4q2 8q2

_177b3 | 5bs
1288  2q2°

qs =
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Unfolding of the normal form

The remaining coefficients p; and g1 are determined as part of the
unfolding. We write r = 1 = —€2p2, where o is O(1). The unfolded
versions of Egs. (57) and (62) through O(¢) are

4q27" = 1pZ — 3032|Z)?

+ ;—6 (127’ — 3b3(22'|Z)2 + 722")] + O(€2)
A" = quiA+ @A|APP
. 1 1 -
+ ie [—2/01#2/4' + <3P2 - 2q3> AAP + (Pz + 2673) AQA'] +0(&
Matching terms through this order gives

1 1

=—— = —. 63
P1 8qc ) q1 4q2 ( )
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Properties of the normal form

We transformed SH35 to normal form near r = 0 because the properties of

this normal form are already analyzed. Specifically, the normal form is
completely integrable, with integrals

A2

LaB_AB),  H=1BP- [ Qs K)ds. (64)
0

K

N |

Orbits homoclinic to (0,0) lie in the surface H = K = 0. In this case the
equation for a = |A|2 > 0 takes the form

1/ da\?
> <dX> +V(a) =0, (65)
where 5
V(a) = 2qipa® — ga® — §q4a4. (66)
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Homoclinics and heteroclinics
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Homoclinics

The leading order amplitude equation
422" = p12Z + 44202 Z| Z|* + O(e),
has two types of solution when g2 < 0, up > 0:

1/2
e periodic: Z(X) = < I > e’ + O(e)

4qzq2

1/2
e corresponding to: u(x) = <4q§qz> cos(qgex + ¢) + O(r)

and

1/2
e localized: Z(X) = < _§Q> sech( \qcﬁ> e'? 4+ O(e)

2q:q2

@ corresponding to:

1/2
u(x) =2 <2ng2> sech(’?q?) cos(gex + @) + O(r)

For the periodic states ¢ is arbitrary; this is not so for the localized states!
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Beyond all orders effects

=T ©=0 Ak AT g0
% :
(@ (b)

See G. Kozyreff and S.J. Chapman, PRL 97, 044502 (2006); Physica D
238, 319 (2009); A. Dean et al., Nonlinearity 24, 3323 (2011)
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Example: Natural doubly diffusive convection
Linear analysis about the conduction state in an infinite slot:
(u,w, T,C) = (ii,w, T, C)(x) exp(Az) with A = g, + ig; shows that
gr =0, g = +q. at Gr. = 650.9034. Moreover g, = 2.5318 and
e Gr < Gre: A= +ig. £ O(/Gr. — Gr)
e Gr > Gre: A\ = +ige £ iO(+v/Gr — Gr.)

0.1
(a)
qr
0.05
O 1 1 1 1
0 0.2 0.4 0.6 0.8
Gr.— Gr
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Snakes-and-ladders structure of the pinning region: SH23
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Snakes-and-ladders structure of the pinning region: SH23
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Stability

The location of the pitchfork bifurcations is determined by linearizing SH23
about a localized solution u = up(x) and solving the eigenvalue problem

Llug(x)] 0 = {r — (¢% + d?)?> + 2by up — 303} U = oU (67)

for the eigenvalues o and for the corresponding eigenfunctions U. This
problem has to be solved numerically; if the domain used is much larger
than the length of the localized structure the resulting eigenvalues will be
independent of the boundary conditions imposed at the boundary. The
eigenvalues comprise the spectrum of the linear operator L[ug(x)] and this
spectrum consists of two components depending on the symmetry of the
eigenfunctions. Even eigenfunctions share the symmetry of up(x) and
correspond to amplitude modes. These modes are neutrally stable (o = 0)
at saddle-node bifurcations.
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Stability

Odd eigenfunctions will be called phase modes. There is always one
neutrally stable phase mode, the Goldstone mode. To see this consider
two stationary solutions of SH23, ug(x + d) and up(x), i.e., a pair of
solutions related by translation. Now subtract the equations satisfied by
these solutions, divide by d and take the limit d — 0. The result is

L[uo(x)] up =0, (68)

implying that ug is a neutrally stable eigenfunction of L[up(x)] for all
parameter values. This is a consequence of the translation invariance of
the system. In addition, there is a discrete set of neutrally stable phase
modes associated with symmetry-breaking bifurcations of up(x), i.e., the
creation of the rung states. The next figure shows these eigenfunctions for
a relatively long localized state high up the snakes-and-ladders structure.
We make two important observations: the amplitude and phase modes are
localized in the vicinity of the fronts bounding up(x); by adding and
subtracting these modes we construct eigenfunctions localized at one or
other front. This observation implies that both the saddle-nodes and the

iitchfork bifurcations are associated with instabilities of individual fronts:
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Stability
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Marginal modes
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Snakes-and-ladders structure of the pinning region: SH23
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One and two pulse states occupy the same pinning region
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Snakes-and-ladders structure of the pinning region: SH23
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Snakes-and-ladders structure of the pinning region: SH23
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Warning!
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Insufficient accuracy results in branch jumping
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Snakes-and-ladders structure of the pinning region: SH23
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Dynamical systems interpretation: Beck et al (2009)
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Horseshoe dynamics near the Maxwell point
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Energetics: Maxwell point
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First order phase transition in terms of the free energy
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First order phase transition in a van der Waals fluid

Van der Waals isotherms
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reduced volume v
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Front pinning: Pomeau (1984)
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The fronts may pin to the heterogeneity within the localized-state
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Front pinning: SH23
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Wavelength selection: SH23
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Wavelength L = 27 /k of the pattern varies across the pinning region, and
is determined by the condition H = 0, where

1 1 ’
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Pinning region: SH23
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Pinning region opens out from the codimension-two point (0, g21/27/38)

and is of width ¢* exp(—7/€?) when r = O(e*) and |by — g31/27/38|

, € < 1 (Kozyreff and Chapman, PRL (2006); ‘Physica D (2009))

= O(e?
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Pinning region: SH35

Pinning region opens out from the codimension-two point (0,0) and is of
width |r — ry| < %397 exp(—8+/30m/bs), rv = —27b3/160, b < 1.
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Spatial dynamics and spatial reversibility

Suppose that

U = g(ua uX7 UXX7 R )a
with g real-valued and g(0) = 0. Then g(u, ux, Uxx,...) =01is a
dynamical system in space. Necessary conditions for the existence of LS

biasymptotic to the homogeneous state u = 0 is that u = 0 is hyperbolic.
The spatial eigenvalues are given by

8u(0) + gy, (0)ux + gu, (0)usx +--- =0

or, for u o< exp Ax,

P(\) = 0. (69)
Thus (a) P(A\) =0 = P()\) = 0. If the system is spatially reversible,
then (b) P(A\) =0 = P(—A\) = 0. Thus generically the spatial
eigenvalues of the system come in complex quartets and we need at least a
fourth order problem in space to capture this property.
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Spatial dynamics and spatial reversibility

Ay G

-

The roots of the equation A\* + bA\°> +a =0
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Stable and unstable manifolds

The eigenvectors of stable (unstable) eigenvalues span the stable
(unstable) eigenspace E5Y of the equilibrium O: u=u, = ... =0;
associated with each eigenspace is an invariant manifold W*" tangent to
E=" at O. To get localized structures we need to find orbits homoclinic to
O, i.e., we need W*" and W* to intersect. This is more likely if the
dimensions of these manifolds are high.

Reversible systems with n = 4:

@ Suppose g = 0 has a hyperbolic fixed point O with n, s(O) = 2. In
n = 4 the intersection of WY(0O) and W*(O) is generically of
codimension one, i.e., we expect homoclinics O — O at isolated
parameter values only. But in a reversible system the codimension is
zero and LS are structurally stable.

@ Suppose g = 0 has a pair of hyperbolic fixed points O and P with
ny(0) =2 and ns(P) = 2. In n = 4 the intersection of W"(O) and
WS (P) is generically of codimension one, i.e., we expect (stationary!)
fronts O — P at isolated parameter values only.

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 72 /239



Stable and unstable manifolds

Reversible systems with n = 4:

@ Suppose next that g = 0 has a symmetric hyperbolic periodic solution
up(x) satisfying up(—x) = up(x). Such a solution will have one
stable and one unstable Floquet multiplier plus two +1 multipliers.
Its center-stable eigenspace will therefore be three-dimensional and
W*(up) is therefore also three-dimensional. Thus the intersection
between W"(O) and W*(up) is of codimension zero and therefore
structurally stable, i.e. fronts O — up are robust. Moreover, if this is
the case g = 0 will have a robust heteroclinic cycle O — up — O.

It turns out that near such cycles one finds a plethora of homoclinic orbits
O — O and so knowing where such cycles are is of great help in finding
different types of LS, particularly in systems that do not have gradient
structure.
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Snakes-and-ladders structure of the pinning region: SH23
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Depinning: SH23
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Depinning: SH23
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Depinning: theory
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Depinning: theory
When r = r(E_) + 4, |6] < 1, we have
u(x, t) = up(x) + 8] (x, 7) + O(19]), (70)
where 7 = |§|'/2¢ and
L0y, uolur(x,7) = [6]/?(0rur — sgn(8)uo — bouf +3uoui) +O(|3]). (71)
Here L is a differential operator evaluated at r = r(E_). At leading order
L[0x, up]ur(x,7) =0, (72)
so that y ~ 5
ur(x,7) = a(7)Uamp + b(7)Uph + c(7) Us. (73)

Since the “center of mass” remains fixed b = ¢ = 0 and at next order we
have a single solvability condition

a10;a = aosgn(d) + aza’, (74)
where
[ee] - o0
o = / amp a2 E/ UOUamde7 0% E/ (b2_3u0)Uamde

—00 —00
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Depinning: theory

Hence the transition time T_ to pass between successive saddle-nodes is

- 7T051 _1/2
T = ——"—- ~4.388/) , 0 < 0. 76
(O[2a35)1/2 | | ( )
For comparison simulation gives
T_ ~ (4.57 £ 0.34)|¢| 704990006 5 ~ 0 (77)

The corresponding results for r = r(E;) + 6, § < 1, are

T, =———-=5.9446 6 > 0. 78
+ (OQO[3(5)1/2 ) ( )

For comparison simulation gives

T, ~ (6.04 +£0.18)§ 05010003 = 5~ ¢, (79)
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Drifting localized states and asymmetric nucleation
The addition of a third order derivative leads to pattern drift:

0= (r— (1+0)2<)2> U+ cOxu +~y3u + bou® — 13

Drifting localized states fall of stack of figure-eight isolas

5
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Drift speeds
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Parameters: by = 2.0 and different values of
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Figure-eight isolas as a function of ~

0.21 o T - T T

Amplitude

-0.3

Parameters: b, = 2.0 and v = 0.05,0.10,0.20,0.35
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Outside the isolas

cong <l
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v =0.001,r = r(E4) 4+ 0.00015  ~=0.001, r = r(E,) + 0.00065

@ In both cases the patterns are slowly drifting to the right

@ Very close to the saddle-node, the pattern only grows on the
right-hand side, i.e., the leading side

@ Further from the saddle-node, the pattern grows on both side, but at
different rates
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Outside the isolas
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v = 0.01, r = r(E;) + 0.00065

@ Increasing v the pattern now only grows at the leading edge

@ Therefore, transition is dependent on degree of symmetry breaking
@ Drift speed has increased with ~

@ When v = 0 (symmetric) the pattern grows symmetrically
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Theory
When r = r(Ey) + 0 we take v = old|, 0 = O(1), and write
u(x,t) = ug(x + 0(T)) + 0]} 2ur(x 4+ O(T), 7) + |6|ua(x + 0(T),7) + ...

where 7 = |§|Y/2t, T = |5|t and 6(T) takes account of the spatial phase
of the solution. The leading-order, O(1), terms are

r(Ex)uo — (1+82) uo + b — 1 = 0.

This is the equation for steady solutions of the reversible Swift-Hohenberg
equation and has solutions uy = Up(x + 6(T)).

At next order, O(|5|*/?),
Luy = (r(Ey) — (14 02)? + 2bUg — 3U3) un = 0,
and uj is again a superposition of the three (almost) marginal modes.
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Solvability conditions

Since the translation has been included by introducing the phase 6(T) the
Ug mode is already included. Thus

u = 3(7') Uamp (X + 9( T)) + b(T)Uph (X + ‘9(7—)) >

where a(T), b(T) and 6(T) are determined from solvability conditions at
next order, O(|d]).

At O(|4]),
Uo7 + u1r = Lup +sgndUp + o Ug' + (by — 3Up) u3.

Multiplying in turn by Ug = Uj, Usmp and Uy, and integrating over the
real line yields three solvability conditions.
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Drift speed

The first solvability condition gives

01 = —0.9663¢0

or, equivalently,
0 = —0.9663.

The predicted drift speed towards the right when v = 0.001 is therefore
0.0009663.

The drift speed measured from numerical simulations is 0.0009589. The
prediction is in good agreement.

At leading-order the drift speed depends only on the magnitude of the
broken reversibility and not distance from the saddle-node.

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 87 / 239



Nucleation times

The remaining solvability conditions give a coupled pair of equations

ar = a1sgné + apa® + Oé3b2
b, = —fo + 2aab.

The coefficients in this equation depend on the length 2L of the localized
state. High up the snaking structure, 2L is large and the eigenfunctions
Uamp, Up;, consist, up to exponentially small terms, of pairs of
non-overlapping neutral modes localized at the bounding fronts.
Consequently we may write U,mp = v(x + L) + v(x — L),

Uph = v(x + L) — v(x — L) for a suitable function v(x). From the
expressions for the coefficients it now follows that, up to exponentially
small terms, ay = a3 = ay.

Thus
(a+ b), = arsgnd F fo + a3 (a+ b)?.
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Nucleation times

We define the time for a new cell to be created at the leading edge to be

T . /OO dr 7r 1
leading = =
eading o d— b a;/2 (O[]_(S—’— ﬁ’y)l/z

and the time for a new cell to be created at the trailing edge to be

T :/OO dr  « 1
trailing = _ooa‘i‘b_a;/z(alé_ﬁ’y)l/z'

This time diverges (i.e., nucleation ceases) when

Sleading — _ By /oy = —0.3543y, 6NN = By /a; = 0.3543.

Thus when v = 0.001 the predicted value of |r(Ey) — rsn| = 0.0003543,

compared with the measured value 0.000356.
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Nucleation times
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Snakes-and-ladders structure of the pinning region: SH35
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Comparison of SH23 and SH35
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Burke and Knobloch, Chaos 17, 037102 (2007)
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35
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Burke and Knobloch, Chaos 17, 037102 (2007)
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35 and SH23
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Two spatial dimensions: SH23
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Snaking of stripe-like patterns: SH35
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Avitabile et al., SIADS 9, 704 (2010)
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Snaking of stripe-like patterns: SH35
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Snaking of stripe-like patterns: SH35
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Snaking of stripe-like patterns:
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Snaking of stripe-like patterns: SH35
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Snakes-and-ladders structure of the pinning region
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Snakes-and-ladders structure of the pinning region
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Isolas
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Localized states in two spatial dimensions: SH35




Localized states in two spatial dimensions: SH35
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Localized states in two spatial dimensions:

SH35
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Localized spots and targets in two spatial dimensions:
SH23
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(a) Spots bifurcate from u =0 at 1 = 0 even when by < 0 with amplitude
o (—u)'/*. (b) Rings bifurcate from u = 0 at = 0 provided

by > +/27/38 and do so subcritically with amplitude o (—z)3/* (Lloyd
and Sandstede, Nonlinearity 22, 485 (2009)).
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Snaking of spots in two spatial dimensions: SH23

llullz-
0.12 0.14 2
2
u 0] U @ u ®
1 1 1
0 0] 0
-1
0 20 40 80 80 100 T 20 40 60 80 100 20 40 60 80 100 p
(a)
*
-t
R
s
Edgar Knobloch C Berkeley) Localized patterns May 2016 113 / 239




Spots in two spatial dimensions: SH23

W u(0) /
E spot B

spot A
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There are in fact two types of axisymmetric spots: spot A with amplitude
o /=g and spot B with amplitude oc (—)3/8 (McCalla and Sandstede,
SIADS 12, 831 (2013)). Spot A bifurcates from v =0 at u = 0 even if

by < \/27/38.
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Snaking in two spatial dimensions: SH23

[lell}

-0.35

Localized hexagons in SH23: Lloyd et al., SIADS 7, 1049-1100 (2008)
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Snaking in two spatial dimensions: SH23
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Lloyd et al., SIADS 7, 1049-1100 (2008)
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Localized states in two spatial dimensions: SH23

T
Snaking
localized
hexagons

Domain-covering
hexagons

1
No patterns
0 L 1 1 1 1
-0.6 -05 -0.4 -0.3 -0.2 -0.1
r
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Oscillons

TYPES OF OSCILLATING LOCALIZED STATES

Damped oscillations

iStandard” oscillons

Self-excited oscillations

“Reciprocal” oscillons

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 118 / 239



Forced Ginzburg-Landau equation

(a) SSO (b) SRO (c) SIF (d) SSF

Different types of localized states in parametrically forced systems
In such systems a dynamical observable w takes the form
24 e (80)

where wy represents the equilibrium state and A(x, t) is a complex
amplitude. The oscillation amplitude A(x, t) obeys the FCGL equation

Ar = (u+ iv)A— (L+iB)|APA+ (1 +ia)Ax + A, (81)

where p represents the distance from onset of the oscillatory instability, v
is the detuning from the unforced frequency, and «, 8 and ~ represent
dispersion, nonlinear frequency correction and the forcing amplitude,
respectively.
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Resonance tongues
AR
@ Ny, WARLIANA
v v
,"" %
v Yb
0 p 0
-1 0 \Y -1 v
Frequency-locked states when (a) 4 <0, (b) u >0
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Forced Ginzburg-Landau equation

When © < 0, z > 0 a saddle-node bifurcation involving the uniform

phase-locked states A} and A, occurs at v = 7, whenever v > vz. At

this point the uniform state has two zero spatial eigenvalues and two

nonzero spatial eigenvalues, and the nonzero eigenvalues are real provided
v > v,. Along the A} branch the zero eigenvalues split along the real axis
and localized states may exist in the form of orbits homoclinic to A}l

z;/

A A"

u

(a)

(b)

Spatial eigenvalues for (a) v > v,, (b) v < v,
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Forced Ginzburg-Landau equation
To find these states we write ¥ = 7, + €25, where € < 1 and 6 > 0, and
solve the time-independent problem

(L+N) [\lﬂ =0, (82)
where A= U + iV. Localized states biasymptotic to A take the form

ul Ut Ju

=)+ @

where the first term is the uniform phase-locked state A} and the second
corresponds to the space-dependent terms that decay to zero as x — +o0.
Thus A can be approximated by the series

R I R

W= Bl=vfn e
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Here )
nev + (1 — B1p)|Au(7s)]

=Bt ps &= v—(B+n)Au(v)? (#6)
To= M’ T1 = senl&oms + 1]\/ (&pmp +1 77b(ﬁb —p) (87)

\/1+7?

The second term in Eq. (83) can be expanded as

[5] e [gj e H o (85)

where all quantities depend on x via the slow spatial scale X = ¢'/2x. The
linear operator in Eq. (82) takes the form £ = Lo + L1 + €2L5, where

502[#4_% - }7 »Clz[l _a}ﬁxx, 522[5 0],
v = Yp a 1 0 —0
(89)

while the nonlinear terms take the form N = Ng + eN7 + €N + . ..,
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where

No=—[Uo Vo [Uo] [1 —6} M= —2[Up Vo] [U1+ul] [1 8

Vol 18 1 Vitwl g 1
(90)
B U+ u Ua + up 1 -
Ny = —{ [U1 +ur Vi+ Vl] [Vl I VJ +2 [Uo VO] [Vz 4 Vz] } LB 1 ]
(91)
At order €0 stationary solutions to Eq. (82) satisfy
Uo| |0
o+ N} |12 = o] (52)

an equality that holds by virtue of the definition of Uy and V4. At order €

we obtain
Ui + unq

{Lo + No} [Vl tw

| = teasnip [1] (93)

The X-independent terms in this equation cancel by virtue of the
definition of U; and V4, leaving
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{£°+N°_2 [;3 _ﬂ [Ul:(\)io U\()/;;OH [lﬂ = [8] . (94)

- [¢]

Vi

Thus

where B(X) is an unknown function of X.
Proceeding to order €2 we obtain

Vo + vy Vi+wv

Uz +
{Lo + No} [ 2 ”2} = —{L1+ N1} [
(96)
Again the X-independent terms cancel. The solvability condition for this

equation is obtained by taking the scalar product with

Eb — [_nb 1:| ) (97)
to eliminate the uy, v» terms, leaving
apBxx = by (2V4B + B?) . (98)
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Here )
TO(l + 771;)

ap=1+alp+an, —np€p, bp=— 2 (99)
1
The latter quantity is always negative. Equation (98) admits spatially
homogeneous solutions B = -2V}, or
ul | U1
91 [%] e[ ... -

corresponding to the other branch of uniform phase-locked states, A, . In
addition, Eq. (98) admits a branch of X-dependent localized states

1/2
B(X) = —3T1V/§ sech? ( Tlﬁ) X (101)
2ap/ by

corresponding to
ul_[u]” &) e a1\
R R S Gt -

(102)
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Reciprocal oscillons
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- o
0 . e eeerenaannn .A=0
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Reciprocal oscillons

1
z ! I
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-1 L@ —ImA (b
1
\[ \[
., /8< 0 v )
(c) : (d)
! SRO -1 H(e) ()]
=50 0 50 =50 0 50
May 2016

128 / 239



The 2 : 1 resonance: parameter plane for p > 0

Parameter plane for « = —2, =2 and u = 1 (excitable regime)

Ma et al., Physica D 239, 1867 (2010)
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The 2 : 1 resonance: collapsed snaking for v > v*
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The 2 : 1 resonance: defect-mediated snaking for v < v*
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The 2 : 1 resonance: defect-mediated snaking

A A0
I ) ‘ ‘ ‘
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The 2 : 1 resonance: defect-mediated snaking
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The 2 : 1 resonance: localized breathers

1 to+140 \ {
N ij
0.9
X
Yy Y YH,L l0
@ 06 ¥ (b)
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The 2 : 1 resonance: breathing front

t0+167
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The 1 : 1 resonance

0.9

IIAIILz

0.5

(a)

Ve !
Uk (1’

(b) 40 0 40

A bound pair of steady 1D fronts between A* can be found by following the
weakly nonlinear LS near the lower saddle-node in 7. This branch is referred to as
the Ly branch and plotted using the L?-norm N. The branch undergoes collapsed
snaking to v = 1.8419. Temporally stable (unstable) segments are shown in

solid (dotted) lines.
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The 1 : 1 resonance

1

IIAIILz

0.5

(a)

v !
U(x) (1’

(b) —90 0 9%

The Lo branch at v = 7. The branch undergoes defect-mediated snaking (DMS)
between 7PM> = 2.8949 and vPM> = 2.8970. In the snaking region, the solution
profile resembles a Turing pattern bifurcating from AT embedded in an A~
background [Ma et al., Physica D 239, 1867 (2010)].
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The 1 : 1 resonance

400 400 200
t - I - r E
0 0 0
-160 0 P 160 ~160 0 2 160 -160 0 3 160

Type-| depinning at (a) dy = 0.04; (b) dy = —0.04; (c) dy = —0.24

Ma and Knobloch, Chaos 22, 033101 (2012)
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The 1 : 1 resonance

5000 50000

—
—

0 iy
-40 0 40

Type-1l depinning at (a) N =45, dy = —1 x 1073; (b) N = 46,
dy=1x10"*

Edgar Knobloch (UC Berkeley) May 2016 140 / 239



The 1 : 1 resonance

20000

1000

0
-100 0

Type-Il depinning: (a) Slow depinning (dy = —2 x 107°): phase slips take
place at the center x = 0. (b) Fast depinning (dy = —4 x 1073): phase
slips take place at a constant distance from the moving front. (c)
Intermediate case (dy = —1 x 1073): phase slips gradually move towards
the front.
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Different mechanisms for front propagation




Different mechanisms for front propagation

Ma and Knobloch, Chaos 22, 033101 (2012)
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Radially symmetric solutions in 2D (v = 5)

0.6

Al
X|

(b)

0.54

186 ¥ 188

(a) The branch of 2D axisymmetric steady states followed from the lower
saddle-node at v = 5. (b) A sample solution profile V(x, y).

For v near v and p large, the speed ¢ of an expanding circular front with

radius p depends on dy = v — < and the front curvature k = p~! as

¢ =c,dy+ckk, where ¢, >0, ¢, <0.
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Expanding circular fronts

8000 10000
t m t -
0 0
-80 0 r 80 -80 0 r 80

Radial space-time plots of V/(r,t) showing traveling circular fronts at v = 1.844.
The initial condition is the steady circular front at the same « with radius
changed by (a) dr = —1; (b) dr = 1.
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2D radial pinning: localized rings (v = 7)

(a) The branch of 2D axisymmetric steady states followed from the lower
saddle-node at v = 7. (b) A sample solution profile V(x, y).
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Fully 2D LS: circular localized hexagons

Snapshots of V/(x,y) at (a) t = 300; and (b) t = 450, showing circular
localized hexagons. Parameters: v =7, v = 2.89809.
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Planar 2D LS: planar localized hexagons

Snapshot of V(x,y) at (b) t = 100, starting from a localized stripe
pattern at (a) t = 0. Parameters: v =7, v = 2.8972.
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2D depinning: shrinking planar localized hexagons

Snapshots of V/(x,y) at (a) t =400 and (b) ¢t = 1000 showing the
shrinkage of planar localized hexagons. Parameters: v =7, v = 2.8955.
Video:
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2D depinning: pinned planar localized hexagons?

Snapshots of V/(x,y) at (a) t = 10000 and (b) t = 30000 showing the
competition between shrinkage and expansion of planar localized
hexagons. Parameters: v =7, v = 2.8972. Video:
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Comparison of FCGL results and a nonautonomous PDE
A PDE with time-periodic forcing:

Ur = (4 iw)U + (o + iB) U + ClUJPU 4 iRe(U) F cos(2t)  (103)

1 T T T T
0‘8/

0.6

= l @
0.4r (d) 3
©
)"
0.2

Alnahdi et al, SIADS 13, 1311-1327 (2014). Blue: FCGL. Red: Eq. (103)
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Comparison of FCGL results and a nonautonomous PDE

@ ——ReA

08 —ImA
06
L 04
02
-0.2

0 10 20 30 40 50 60

X
Left: FCGL.

(b)

—ReU
—Imu

100 200 300 400 500 600
T

Right: Eq. (103)

Alnahdi et al, SIADS 13, 1311-1327 (2014). Left: FCGL. Right: Eq. (103)
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Summary of the first set of lectures

| have described

Spatially localized steady states of the SH equation

@ Homoclinic snaking and associated snakes-and-ladders structure
@ Interpreted the behavior in terms of pinning

@ Discussed stability and wavelength selection

@ Isola structure for (typical) multipulse states

@ Termination of homoclinic snaking in finite domains

@ Depinning and the calculation of the invasion speed

This behavior appears to be generic in systems with a heteroclinic cycle
between a homogeneous and structured state. It requires

o Bistability
@ Spatial reversibility
@ High enough order
It does not require variational structure, or Hamiltonian structure in space
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Convectons

Odd convecton

| 0CUP0RNERNNNRL0 |

I
NN aaaaaaa——————————

Even convecton

o| e |
c ENENENE!

Convectons in binary fluid convection (Batiste et al., J. Fluid Mech. 560,
149, 2006)

(b)
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Binary fluid convection

@ Binary mixtures with negative separation ratio S.

@ Two miscible components with concentration C; of the heavier
component:

p=po(l—aT—To)+B(Ct—C1)), «a>0, B>0.
@ The heavier component migrates towards the hotter boundary:
jl = _pOD(SSOretfl(1 - fl)VT + VCI)

@ The resulting concentration gradient is stabilizing and competes with
the destabilizing thermal gradient that produces it.

@ As a result the conduction state loses stability via a Hopf bifurcation
and the first state that is observed is time-dependent: dispersive
chaos.
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Binary fluid convection: Equations and properties

ur+(u-Viu = —VP+PrR[(1+ S)0 — Sn)z + Prv2u,
0: +(u-V)d = w4 V30,
ne+(u-Vp = 7Vn+ V3,
where u = (u, w) in (x, z) coordinates. The Prandtl number Pr, the Lewis

number 7, the Rayleigh number R and the separation ratio S are defined
by

v D AT — _

= R = %7 S= Cl(l - Cl)SSOretpic-

K K VK loT|
The boundary conditions are
at z=1: u=w=T=n,=0,
at z=0: u=w=T-1=n,=0,
with either periodic boundary conditions (PBC) with period I' in x or

Neumann boundary conditions (NBC) or no-slip sidewalls (ICCBC) at
x=4l/2. Thus§=T—-14+z=0atz=0,1.
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Even and odd convectons

These equations have the symmetries

Ry : (u(x,z), w(x, 2),0(x, z),n(x, z)) = (—u(—x, z), w(—x, z),0(—x, z),
1(-x.2))

Ry : (u(x,z),w(x, z),0(x,z),n(x,z)) = (u(x,1 - z), —w(x,1 — z),
—0(x,1—2z),—n(x,1— z)).

Theory guarantees the existence of solutions with R; symmetry (even

parity solutions) satisfying

(u(x,z),w(x,z),0(x, z),n(x,z)) =
(—u(—x, 2)7 W(_X7 Z)? 0(_X7 Z)a 77(—X7 Z))7

relative to a suitable origin in x, and solutions with Ry o Ry symmetry (i.e.,
point symmetry) satisfying

(u(x,z),w(x,z),0(x, z),n(x,z)) =
—(u(—x,1—2),w(—x,1—2),0(—x,1—2z),n(—x,1— z2)).

Point-symmetric solutions have odd parity in the midplane z = 1/2.
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Formation of a convecton
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Relaxation oscillations at R = 1774
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Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Formation of a convecton
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Bifurcation diagram
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Odd and even convectons

(a) odd branch
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(b) even branch
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Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Odd and even convectons

@ Odd branch
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(b) Even branch
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Stability of the convectons
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Experiments: S = —0.20, 0 = 5.97, 7 = 0.0085

12-;§ /j/ _
=T ' =7 i
4—§./;% \§

1

90° 180° 270° 360°

POSITION IN CELL

FIG. 1. Coexisting state of TW bursts and steady rolls at
€=0.012 12. In this “phase plot,” solid curves show the space-
time paths of equal-phase points, which correspond to the boun-
daries of convective rolls in fully developed convection. In this
run, persistent steady rolls (SR’s) fill the region between angular

locations 190° and 280°. Outside the SR region, TW bursts ap-
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Experiments: S

= —0.20, 0 = 5.97, 7 = 0.0085

_ 8
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POSITION IN CELL
FIG. 2. Evolution of the dynamical state of Fig. 1 with Ray-

80 o

leigh number. (a) e=0.011 31; {b) €=0.01293; {c) e=0.01535.
‘With increasing €, the TW region shrinks.

Edgar Knobloch (UC Berkeley)

Localized patterns



Snaking in periodic and finite domains: binary fluid
convection with ' =14: S=-0.1,c =7, 7= 0.01

PBC ICCBC

0 1820 1880 1940 2000 1%80 1930 198
Rayleigh number Rayleigh number

@ Convecton branches terminate together on Py

@ Convecton branches turn continuously into mixed modes
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Convectons with PBC: [ = 14
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Convectons and holes with PBC: [ = 14
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Mixed modes with PBC: [ = 14
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Even parity states with NBC: [ = 14
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Wall states with NBC: [ = 14
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Odd parity convectons with NBC: I' = 14
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Odd parity holes with NBC: I = 14
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Convectons and holes with NBC: [ = 14
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Even parity convectons with ICCBC: [ = 14
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Odd parity convectons with ICCBC: [ = 14
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Wall states with ICCBC: [ = 14
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Reflection-symmetric two-pulse states with NBC: [ = 14
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Odd parity two-pulse states with NBC: I = 14
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Odd parity two-pulse states with NBC: I = 14
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Point-symmetric two-pulse states

Mercader et al., J. Fluid Mech. 667, 586-606 (2011)
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Bound states with ICCBC: [ = 14
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Mercader et al., J. Fluid Mech. 667, 586-606 (2011)
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Bound states with ICCBC: [ = 14
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Bound states with ICCBC: [ = 14
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The preceding construction accounts for the states discovered by
time-stepping natural doubly diffusive convection:

Ghorayeb & Mojtabi, Phys. Fluids 9, 2339 (1997); Ghorayeb, PhD Thesis,
Toulouse, 1997
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Homotopic continuation: [ = 14
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Aspect ratio dependence with PBC

1/2)

n(z

With NBC an odd parity convecton and its image form an even parity

bound state. Thus in closed containers the pinning regions for odd and
even states have the same width.
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Depinning: [ = 60

(b) R=1779
1500 A A e Ry e e A AV AR VRV

1000

time

=

500

60
X

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 189 / 239



Convectons in three dimensions

Convecton-like structures in 3D: Mercader et al., Phys. Rev. E 77, 036313
(2008)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 190 / 239



Colliding convectons: Swift-Hohenberg model
Case 1: f(u) = bu? — 3 (SH23)

The equation has the symmetries

@ Ry :x— —x, u—u

o T :x—>x+d, u—u
As a result there are two types of localized solutions, those fixed by R;
(even states Lp, L) as well as asymmetric “rung” states with no
symmetry.

Case 2: f(u) = bsu® — u® (SH35)

The equation has the symmetries

o Ry x— —x, u—u
@ Ry :x—x, u— —u
o T:x—x+d, u—u

As a result there are three types of localized solutions, those fixed by R;
(even states Lo, L) and those fixed by Ry o Ry (odd states L./, L3;/2).

In addition, there are also asymmetric “rung” states.
Edgar Knobloch (UC Berkeley) Localized patterns May 2016 191 / 239



Comparison of SH23 and SH35: symmetries matter

LA
lo -’\MA 71:(:: 'W /
Mall | =5 - = el [ =5 - > /
My || i L
W

(a) (@

Growth along the Lo branches in (a) SH23 and (b) SH35

Burke and Knobloch, Chaos 17, 037102 (2007).
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From SH35 to SH23: SH35 with broken R, symmetry

Consider the variational equation
2
U = ru— (1—1—8)2() u+ b — u® + el

When € = 0 the equation has the symmetries

o Ry x— —x, u—u
o R :x—x, u— —u
o T:x—x+d, u—u

When € # 0 the equation only has the symmetries R; and T and the only
symmetric states are Lp, L. The odd states become states with no
symmetry and reconnect with the rung states forming two types of
branches: S branches and Z branches.
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From SH35 to SH23: variational case with € = 0.03
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From SH35 to SH23: variational case with € = 0.03
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The Swift-Hohenberg equation: the variational case

0.45 tr 0.45
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Both symmetric and asymmetric states are stationary
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The Swift-Hohenberg equation: the nonvariational case

ug=ru— (1+ 8)%)2 u+ 203 — 0P+ €(Oyu)?
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=0.01 e =0.03

Asymmetric states are no longer stationary
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The Swift-Hohenberg equation: the nonvariational case

Solution amplitude

Solution amplitude
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The S and Z branches for e = 0.01
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Collision of like pulses for r = —0.65, ¢ = 0.1
L —
i c
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i
I
/”’,’,z":‘%“"’/u\\w\.‘g"" ﬁ 0.38
= e
. /w’“’ ”. %3000 5500 6000 6500 7000 7500
Houghton and Knobloch, PRE 84, 016204 (2011)
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Collision of unlike pulses: ¢ = 0.1, r = —0.65
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Houghton and Knobloch, PRE 84, 016204 (2011)
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Collision of unlike pulses: ¢ = 0.1, r = —0.65
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Houghton and Knobloch, PRE 84, 016204 (2011)
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Binary fluid convection — again

ur+(Uu-Viu = —VP+0oR[(1+S5)0— Snjz+ oV3u,
0: +(u-V)d = w4 V30,
ne+u-V)y = 7V2%n+ V2,

where u = (u, w) in (x, z) coordinates. The Prandtl number o, the Lewis
number 7, the Rayleigh number R and the separation ratio S are

v D glpr|ATE
co=—, T=—, R=="——
K K VK |

) S :?1(1 _?1)550retp7C-
24

The boundary conditions are

at z=1: uv=w=(1-75)0,+ 050 =n,=0,
at z=0: u=w=60=n,=0.

When 8 =1 the above system has the symmetries R; and R>. When
B < 1 (heat loss from the upper boundary) the symmetry R, is lost and
only Ry remains. The change in symmetry is completely analogous to the

breaking of the u — —u symmetry in SH35.
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Binary fluid convection with heat loss

| .
g T

I ——
Ty,

We consider two-dimensional Boussinesq convection between boundaries

responsible for the boundary conditions

dT_ B_

g - Ern-T _
e 7 (T ) at z=0,
aT, B -
? = 7(7__’_ TU) at z= d,

where d is the layer depth, and define

lprlgd? B, B-
R = ATS, AT =(T,-T
KU (Tt w&&+&+&
so that R is independent of the dynamics in the cell.
Edgar Knobloch (UC Berkeley) Localized patterns May 2016

(104)

204 / 239



Binary fluid convection with 5 =1
Newton's law of cooling:
(1-5)0,+p0=0 on z=1, =0 on z=0.

R=1908

- 1 098®6 O

0.05

0.04

R=1902

E RIOCLIONE
J——xidbase ——

R=1910
| ‘ d °@@@®0
0'%390 1910 1930 1950 1970 , —— N —
Rayleigh number ﬂ; A g

Mercader et al., JFM 722, 240 (2013)
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Binary fluid convection with 5 =1
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Mercader et al., JFM 722, 240 (2013)
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Binary fluid convection with 5 =1
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Binary fluid convection with heat loss: 5 = 0.95

0.01
Z-branch
t Z-branch

0.04 0.008

- .. 0.006
] =
5 0.03¢ 17
z >

0.004

S-branch S-branch
0.02f 0.002
1830 1850 1870 1%30

1850 1870
Rayleigh number Rayleigh number

Mercader et al., JFM 722, 240 (2013)
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Binary fluid convection with heat loss: 3 = 0.50
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Binary fluid convection with heat loss: 5 = 0.30
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Binary fluid convection with heat loss: 5 =0
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Binary fluid convection with heat loss: 5 =0
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He3-He* mixture: S = —0.5, ¢ = 0.6, 7 = 0.03, R = 2750
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Binary fluid convection with heat loss: 3 = 0.9
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Binary fluid convection with heat loss: 3 = 0.9
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Binary fluid convection with heat loss: 3 = 0.9
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Binary fluid convection with heat loss: 3 = 0.9
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Binary fluid convection with heat loss: 3 = 0.9
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Conclusions

We have seen that

@ odd parity spatially localized convectons move in the absence of
midplane reflection symmetry

@ their collisions are sticky but are accompanied by complex dynamics

@ convectons interact nonlocally via the background concentration
distribution

In addition

@ | have described the expected breakup of the snakes-and-ladders
structure of the pinning region due to the loss of the midplane
reflection symmetry

@ | have shown that the interactions of convectons in binary fluid
convection behaves in a very similar manner to SH35 with broken R
symmetry

@ the Swift-Hohenberg equation passes another test!
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Porous media convection

w=T=09,T—-0.C=0

w=T-1=8.T—9.C=0 z

Binary fluid convection in a saturated porous medium

T = —(u-V)T+V3T
€C = —(u-V)C+7(V2C-V?T)
u = —Vp+Ra(T+SC)e,, V-u=0

e Periodic lateral boundary conditions

e Parameters:
D _ gaAT! I}

T=—, Ra s S = Ssoret_ < 0.
K AR o
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Porous media convection: 2D

T=0, stress-free

2
g 3 i saturated porous medium
St

Periodic

T=1, stress-free

Basicstate: T=1—2z, C=1—2z,u=0

Equations for the departure (©, X, u) have important symmetry properties

@ Invariance under translations in x
@ Invariance under reflection with respect to x = 0:
Ri:(x,z) = (—x,2), (u,w,0,X) = (—u,w,0,%)
@ Invariance under reflection with respect to z = 1/2:
Ry:(x,z) = (x,1-2), (u,w,0,Y) = (u,—w,—0,-Y)
These operations generate the symmetry group O(2)x Z,
Consequence: Two solutions bifurcate from the conduction state:
@ Even solutions : Rj invariant
@ Odd solutions : R, o Ry invariant
Parameters: = 20A., 7 =05, § = 0.1, e = 1.
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Porous media convection

Steady state  Ra
bifurcation |

Bifurcation to steady states: linear stability
in space: (©,C) = (6, €)(z) exp(gx) with
q=qr+iqi

@ Ra= Ra. =47.71 ; g = *iq.,
! gc =3.40 (S =-0.01,7 =0.1)
v ® Ra< Rac :

Hopf
bifurcation

q = tigc = O(v/Rac — Ra)
@ Ra> Ra. :

q = tigc £ iO(v/Ra — Ra.)

Hopf Subcritical  Ra
bifurcation pitchfork
bifurcation
006 3405
(a) (b) (c)
o0t 340 oo
A X w
o ™ o
o san o
b s oo oois %0 o TTom T mws - o o T o 0w
Ra — R — Ra Ra. — Ra
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Convectons
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Bifurcation diagram for periodic and spatially localized states in 2D when
=20\ (Lo Jacono et al., PF 22, 073601, 2010)
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Convectons

(a) 300 (b) 300 1

250 250 4
200 200 +
150 150 +

100 100 A

24
L20

50 50 - R

53.45 53.5 53.55 53.6 53.45 53.5 53.55 53.6
Ra Ra
1-pulse states 2-pulse states

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 224 / 239
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Bound states of two convectons (Lo Jacono et al., PF 22, 073601, 2010)
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Porous media convection: 3D

Basicstate: T=1—2z, C=1-—2z,u=0
Equations for the departure (©, X, u) have important symmetry properties:

Symmetries

e Equivariance under translations in (x,y) modulo I
e Equivariance under the reflection (x,y) — (—x,y)
e Equivariance under the /2 rotation (x,y) — (y, —x)

These three operations generate the symmetry group D+ T?2.

@ Equivariance under reflection in the horizontal midplane z — —z.

Parameters
[ =6M., 12X\, 18X\, for 7 =05, S = —-0.1, e = 1.
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Porous media convection: [ = 18\,
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Ra

Branches of Dy and D, symmetric states: Lo Jacono et al., JFM 730, R2
2013
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Porous media convection: [ = 18\,
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D, and D, symmetric states at successive folds: Lo Jacono et al., JFM
730, R2 (2013)
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Porous media convection: [ = 18\,
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Transition to shear flow turbulence: turbulent puffs
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Turbulent stripes in plane Couette flow

Barkley and Tuckerman, J. Fluid Mech. 576, 109 (2007)

=
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Plane Couette flow
The problem:
Ou 1
a-%u-Vu-—Vp—F%
subject to the boundary conditions u =+1, v=w =0 on y = +1. Here

Re = UL/v is the Reynolds number. The base flow the plane Couette flow

Vu, V-u=0

u=y, v=0, w=0.

This flow is linearly stable for all values of Re, but is unstable to finite
amplitude perturbations for sufficiently large Re, and consequently falls
within the class of systems that may exhibit localization. Since the
equations for the perturbations are equivariant with respect to Rj :
(x,y,z) = (x,y,—2), (Ou,v,w) — (du,v,—w) and Rx : (x,y,z) —

(=x, -y, z), (du,v,w) — (—du, —v, w) the solutions behave like those of
SH35. We measure the amplitude of the departure from Couette flow
using the dissipation D = (LcLyLy)™! [ |V x u|?dx dy dz, where

Q = 4x x 2 x 167 is the domain and look for solutions localized in the
cross-stream direction. These exhibit snaking, with LSq . corresponding to

TW in the streamwise direction and LS. . ,, stationary:
May 2016 236 / 239



Plane Couette flow: Schneider et al., PRL 104, 104501
(2010) plus a long awaited longer paper
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Plane Couette flow: Schneider et al., PRL 104, 104501
(2010)

localized TW (LS4.r/2) localized steady states (LS;)
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Plane Couette flow: Schneider et al., PRL 104, 104501
(2010)
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