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Patterns in nature
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Buckling of a cylinder

Right panel: courtesy G. Lord
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Buckling of a cylinder
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Ferrofluid in a magnetic field

Stationary peaks in a ferrofluid experiment: Richter and Barashenkov, PRL
94, 1 (2005)
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Oscillons
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Oscillons

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 9 / 239



Bound state of oscillons

Faraday resonance in a colloidal suspension: Lioubashevski et al., PRL 83,
3190 (1999)
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Photonics: Cavity solitons

Writing and erasing of cavity solitons in a broad area VCSEL. See

Fundamentals, Functionalities, and Applications of Cavity Solitons:

www.funfacs.org
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Photonics: liquid crystal light valve with feedback
Solitary localized structures 5
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Figure 2. Experimental PDF (left) and instantaneous snapshots (right) showing the

transition from a) a HEX pattern to c) a frozen configuration of SLS, through b) a

transient characterized by particle interaction and annihilation.

perturbation at the HSS state and by checking if one or more solitary structures remain

after removing the perturbation. On the other side, the boundary between the HEX

and the SLS is determined by starting with V0 in the HEX region and then decreasing

it to the SLS region. We show in Fig. 2 three typical instantaneous snapshots recorded

for Iin = 0.38 mW/cm2 and by changing the rms value of V0 from 13.30 to 13.22 V . We

first observe an hexagonal pattern (Fig. 2a). When decreasing the voltage, a transition

takes place and the system evolves towards a final distribution of SLS appearing in

random space positions (Fig. 2c). During the transition, the solitary structures interact

one with each other (Fig. 2b), displaying a gas-like behavior characterized by continuous

collisions between the particles. At difference with a real gas, the collisions may lead

to particle annihilation, so that in the course of time the number of particles is not

conserved.

After a transient, which lasts for a few seconds, a final frozen configuration of

SLS is reached, where the particles remain fixed in their position and interactions

become negligible. Starting from different initial conditions, different final frozen

LS in a liquid crystal light-valve experiment: Bortolozzo et al., NJP 11,
093037 (2009)
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Photonics: Bortolozzo et al., NJP 11, 093037 (2009)

Solitary localized structures 7

particles collide and that after the collision one particle has been annihilated.

On the other side, the transition from the SLS (state 1) to the HEX pattern (state 2)

occurs by starting with V0 in the SLS region and then increasing it to the HEX region.

Experimentally, a single localized structure is created in the SLS state by applying

a local, and small, perturbation. In Fig.4 we show a set of experimental snapshots

recorded during the transition from a single localized structure to an hexagonal pattern.

The input intensity is Iin = 0.45 mW/cm2 and the voltage is first fixed to V0 = 13.22

V , panel a). Then, it is increased to V0 = 13.30 V , panel b). The successive frames on

the same line correspond to successive instant times with a time step of 0.4 s. We can

see that the evolution towards the HEX state takes place through the nucleation of new

cells in random space positions, triggered mainly by the spatial inhomogeneities of the

liquid crystal orientation.

a) b)

Figure 4. Experimental snapshots showing the transition from the SLS (state 1) to

the HEX pattern (state 2); a) V0 = 13.22 V , b) V0 = 13.30 V : successive frames

correspond to successive instant times with a time step of 0.4 s; Iin = 0.45 mW/cm2.

4. Numerical simulations

Numerical simulations of the full model for the LCLV system–Eqs.(1) and (2)–are

performed by a pseudo-spectral method and Runge-Kutta integration and by fixing

periodic boundary conditions. In order to characterize the transition 1 → 2 → 1, as

marked in Fig.1, we have performed simulations for either increasing or decreasing the

control parameter V0 and by keeping fixed the input intensity at Iin = 0.45 mW/cm2.

In Fig.5 we show the transitions 1 → 2 → 1. In panel a) the voltage is fixed to

V0 = 13.22 V and a single localized structure is switched on by a triggering intensity

pulse (state 1). Then, the voltage is increased to V0 = 13.22 V , panel b). The successive

frames on the same line show the evolution toward the final HEX state, panel c). In panel

d) the voltage is decreased back to its initial value, V0 = 13.22 V , and the successive

frames on the same line show the evolution toward the final SLS state, panel e).

Both from the top and the bottom line of the temporal evolution (direct,

respectively, reverse transition from SLS to HEX), we note that the intermediate states

are characterized by a process of filamentation and successive break-up, which can

lead either to cells replication or annihilation. Note that a similar mechanisms of

spot self-replication has recently been described for a Schnakenburg model in a two-

dimensional domain [35] and for the spot deformation and replication in the two-

dimensional Belousov-Zhabotinski reaction-diffusion system [36].

Solitary localized structures 8
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Figure 5. Numerical snapshots showing the evolution of the liquid crystal tilt angle

θ(x, y, t) during the transition 1 → 2 → 1. The spatial scales are identical in all

panels. a) V0 = 13.22 V with a single localized structure (state 1); b) V0 = 13.22

V : successive frames correspond to successive instant times with a time step of 0.4

s; Iin = 0.45 mW/cm2; c) final HEX pattern (state 2); d) V0 = 13.22 V : successive

frames correspond to successive instant times with a time step of 0.4 s; e) final state

of SLS (state 1).

The numerical transition from HEX to SLS displays the same scenario as the one

observed in the experiment, with a transient characterized by particle interactions,

collisions and annihilations. Correspondingly, the PDF of the intensity obtained from

the numerical simulations are in good agreement with the experimental PDFs. As for the

SLS to HEX transition we observe that new cells nucleate spontaneously over concentric

rings around the first cell, while in the experiment this behaviour is not observed and

localized structures nucleate instead in random space positions. This different behaviour

is due to the presence of spatial inhomogeneities that destroy the radial symmetry of

the ring-shaped disturbances around the first localized structure.

To test the influence of spatial inhomogeneities, we have performed numerical

simulations of the 1 → 2 transitions by adding a small amplitude distribution of spatial

noise. The maximum noise amplitude is kept less than 4 percent of the maximum

pattern amplitude. In Fig.6 we show the first stages of the transition 1 → 2 with and

without noise. The top and bottom lines display numerical snapshots of the liquid

crystal tilt angle θ(x, y, t) with, respectively, without noise. In Fig.6a and c the voltage

is fixed to V0 = 13.22 V and a single localized structure is switched on by a triggering

intensity pulse (state 1). Then, in panels b and d the voltage is increased to V0 = 13.30

V and the system is let to evolve. On each line, the successive panels correspond to the

temporal evolution for reaching the final hexagonal state (state 2).

On the top line we observe that new cells nucleate spontaneously over concentric

rings around the first localized structure. Indeed, in the absence of any external

perturbation, the only triggering signal for the nucleation of new localized structures

is the slightly higher intensity of the rings around the first cell. When the voltage is

slightly increased, the intensity on the rings increases and new cells are nucleated from

the ring break-up, thus leading to a pattern with radial symmetry. Note that a similar

LS in a liquid crystal light-valve experiment: Bortolozzo et al., NJP 11,
093037 (2009)
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Convectons

x
10

z

Γ

g

T = C = 0 T = C = 1

Ghorayeb & Mojtabi, Phys. Fluids 9, 2339 (1997); Ghorayeb, PhD Thesis,

Toulouse, 1997
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Convectons in magnetoconvection

Blanchflower, Phys. Lett. A 261, 74 (1999)
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Convectons in binary fluid convection

Odd convecton

(a)
Θ

C

Even convecton

(b)
Θ

C

Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Vortices in rotating convection

Sprague et al., J. Fluid Mech. 551, 141 (2006)
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Hurricane Katrina, 28 August 2005
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The Swift-Hohenberg equation

ut = _ (1+▽2)2u + ru + f(u)
competition between localised patterns:

 (a) hexagons & targets preferred for 

 (b) stripes & targets preferred for

f (u) = su2 - u3

f (u) = su3 - u5

(a) (b)
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Spatially localized states
Spatially localized states (LS) are common in fluid flows and are present in
convection, shear flows, and as vortices in both rotating and nonrotating
flows. They are also of great importance outside of fluid dynamics:
nonlinear optics, reaction-diffusion systems arising in chemistry, structural
mechanics, and increasingly in ecology.

LS exist in one, two and three spatial dimensions, and may be
stationary or propagate in the form of traveling pulses
LS are usually created by finite amplitude perturbation and are
therefore strongly nonlinear
Instability may lead to splitting, decay and disappearance,
propagation or complex dynamics
LS may form bound structures or a gas-like state

Question: What do these systems have in common? Is there a universal
description of LS?

Remark: Although LS are sometimes called dissipative solitons they are NOT

solitons in the classical sense. So interactions between moving LS are generally

inelastic.
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Swift-Hohenberg equation: a derivation

Inviscid long water waves:

φxx + φyy = 0 in − H < y < ζ(x , t) (1)

with
φy = 0 on y = −H (2)

and
ζt + φxζx − φy = 0 on y = ζ(x , t) (3)

and

φt +
1

2
(φ2

x + φ2
y ) + gζ − κζxx

(1 + ζ2
x )3/2

= 0 on y = ζ(x , t). (4)

Here φ(x , y , t) is the velocity potential (u = φx , v = φy ), the flow is
assumed to be two-dimensional, and κ is the surface tension.
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Linear theory

The problem (1)–(4) has the trivial solution φ ≡ 0, ζ ≡ 0. An infinitesimal
perturbation of the free surface of the form ζ = ζ0sin(kx − ωt), where k is
the perturbation wavenumber and ω is its frequency, represents a periodic
wave traveling to the right with phase speed c = ω/k. Associated with
this disturbance is a velocity disturbance given by φ = φ0(y)cos(kx − ωt),
where the function φ0(y) captures the decrease of the velocity with depth.
With this Ansatz Eq. (1) yields

φ0yy − k2φ0 = 0. (5)

The boundary condition (2) implies that φ0y = 0 at y = −H and hence
that

φ0 = A cosh [k(y + H)] , (6)

where A is an arbitrary constant. The perturbed velocity potential then
reads

φ = Acosh [k(y + H)] cos(kx − ωt). (7)
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Linear theory
Equation (3), linearized about y = 0, now yields

ζ0ω = −Ak sinh(kH), (8)

while Eq. (4) yields

−ωAcosh(kH) + gζ0 + κk2ζ0 = 0. (9)

Elimination of the arbitrary amplitude A yields finally the dispersion
relation for infinitesimal gravity-capillary waves:

ω2 = (g + κk2)k tanh(kH). (10)

We will be interested in long waves, i.e., waves for which kH � 1. Since
tanh(kH) = kH(1− k2H2/3) +O(k5H5) the relation (10) becomes

ω2 = gk2H + gk4H3(Bo− 1/3) +O(k6), (11)

where Bo ≡ κ/gH2 is the Bond number. Thus long waves are
nondispersive at leading order but with a dispersive correction at higher
order as described by the second term provided Bo 6= 1/3. In the following
we study the weakly nonlinear regime near the special value Bo = 1/3.
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Swift-Hohenberg equation: a derivation

We first write the equations in a frame traveling with phase speed c to the
right:

φξξ + φyy = 0 in − H < y < ζ(ξ, t) (12)

with
φy = 0 on y = −H (13)

and
ζt + cζξ + φξζξ − φy = 0 on y = ζ(ξ, t) (14)

and

φt + cφξ +
1

2
(φ2
ξ + φ2

y ) + gζ − κζξξ

(1 + ζ2
ξ )3/2

= 0 on y = ζ(ξ, t). (15)

Here ξ ≡ x − ct.
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Swift-Hohenberg equation: a derivation
We look at long waves with wavelength of order ε−1 � 1: we introduce
the large spatial scale X = εξ and anticipate the need for a slow time
T ≡ ε5t (in the moving frame). We also pick κ = κ0 + κ2ε

2, where κ0 is
determined by the requirements of the theory: κ0 ≡ 1

3gH
2 (see below).

Finally we let (φ, ζ)→ (ε3φ, ε4ζ):

ε2φXX + φyy = 0 in − H < y < ε4ζ(X ,T ) (16)

with
φy = 0 on y = −H (17)

and
ε6ζT + cε2ζX + ε6φX ζX − φy = 0 on y = ε4ζ(X ,T ) (18)

and

ε4φT + cφX +
1

2
ε2(ε2φ2

X + φ2
y ) + gζ − ε2(κ0 + κ2ε

2)ζXX = O(ε12) (19)

on y = ε4ζ(X ,T ).
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Swift-Hohenberg equation: a derivation

We now write φ = φ0 + ε2φ2 + . . . , and ζ = ζ0 + ε2ζ2 + . . . .
At leading order Eq. (16) yields

φ0yy = 0 (20)

subject to φ0y = 0 on y = −H. Thus φ0 = f0(X ,T ), where f0(X ,T ) is
unknown. At O(ε2) we obtain

φ2yy = −f0XX (21)

subject to φ2y = 0 on y = −H. Thus

φ2 = −1

2
(y + H)2f0XX + f2(X ,T ), (22)

where f2(X ,T ) is unknown.
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Swift-Hohenberg equation: a derivation

It follows that on y = ε4ζ(X ,T )

φy = φ0y + ε2φ2y + O(ε4) = −ε2Hf0XX + O(ε4). (23)

Thus Eq. (18) becomes, at leading order,

cζ0X = −Hf0XX (24)

or, integrating once,
cζ0 = −Hf0X . (25)

Eq. (19) becomes, at leading order,

cf0X + gζ0 = 0, (26)

implying the usual dispersion relation for long waves: c2 = gH.
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Swift-Hohenberg equation: a derivation

We now proceed to next order. Eq. (16) yields

φ4yy = −φ2XX =
1

2
(y + H)2f0XXXX − f2XX , (27)

and so

φ4 =
1

24
(y + H)4f0XXXX −

1

2
(y + H)2f2XX + f4(X ,T ). (28)

Likewise

φ6yy = −φ4XX = − 1

24
(y +H)4f0XXXXXX +

1

2
(y +H)2f2XXXX − f4XX , (29)

and so

φ6y = − 1

120
(y + H)5f0XXXXXX +

1

6
(y + H)3f2XXXX − (y + H)f4XX . (30)
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Swift-Hohenberg equation: a derivation
We now need to impose the surface boundary conditions. Eq. (18) yields
at O(ε4)

cζ2X = φ4y =
1

6
H3f0XXXX − Hf2XX , (31)

or

cζ2 =
1

6
H3f0XXX − Hf2X , (32)

Eq. (19) yields at O(ε2)

cφ2X + gζ2 − κ0ζ0XX = 0, (33)

or equivalently,

c(−1

2
H2f0XXX + f2X ) + gζ2 +

cκ0

g
f0XXX = 0. (34)

Equations (32) and (34) are identical provided

κ0 =
1

3
gH2, i.e., Bo = 1/3. (35)
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Swift-Hohenberg equation: a derivation
We proceed next to O(ε6) in Eq. (18):

ζ0T + cζ4X + f0X ζ0X = − 1

120
H5f0XXXXXX +

1

6
H3f2XXXX −Hf4XX − ζ0f0XX .

(36)
The last term in this equation arises from the ζ contribution to φ2y . We
also have from Eq. (19) at O(ε4)

φ0T + cφ4X +
1

2
(f0X )2 + gζ4 − κ0ζ2XX − κ2ζ0XX = 0, (37)

where φ4 is to be evaluated at y = 0 (to this order) using Eq. (28).
Eliminating f4 and ζ4 from the resulting equations we obtain a solvability
condition which can in turn be simplified by eliminating f0 in favor of ζ0.
We obtain

2c

H
ζ0T−

3g

H
ζ0ζ0X +κ2ζ0XXX +

1

30
gH4ζ0XXXXX = −κ0ζ2XXX−

1

3
cH2f2XXXX .

(38)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 30 / 239



Swift-Hohenberg equation: a derivation

The right hand side of this equation can be evaluated in terms of ζ0 with
the help of Eqs. (34) and (35) leading finally to an evolution equation
satisfied by ζ0:

2c

H
ζT −

3g

H
ζζX + κ2ζXXX −

1

45
gH4ζXXXXX = 0. (39)

This is a generalization of the Korteweg-de Vries equation.

Solitary waves: Solitary waves traveling to the right with speed V may
now be obtained by writing z = X − VT . After one integration such
waves are found to satisfy the ordinary differential equation

1

45
gH4ζ ′′′′ − κ2ζ

′′ +
2cV

H
ζ +

3g

2H
ζ2 = 0, (40)

where the prime denotes a derivative with respect to z . This is the
simplest case of the Swift-Hohenberg equation. This SH20 equation
was studied by Buffoni, Champneys, Toland ...
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The Korteweg-de Vries equation
When κ− κ0 = O(1) the (scaled) equation for the surface elevation is the
KdV equation

ζτ + ζζX ± ζXXX = 0, (41)

depending on sgn(Bo− 1/3). Writing z = X − V τ , we integrate twice,
obtaining

±1

2
ζ2
z + U(ζ) = E , (42)

where E is a constant and U(ζ) ≡ 1
6ζ

3 − 1
2V ζ

2.

Potential U(ζ) when V = 1. The gray region indicates periodic solutions and the

horizontal line delimitating this region at the top corresponds to a solitary wave.
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The Korteweg-de Vries equation

Thus sinusoidal oscillations are present around the local minimum of the
potential provided E + 2V 2/3� 1. As E increases the oscillations become
more and more nonlinear and their (spatial) period increases. When E = 0
the solutions have infinite period, i.e., they are solitary waves. For κ < κ0

these form a one parameter family,

ζ

H
= a sech2 a

2
√

3H
[x −

√
gH(1 +

a

3
)t], (43)

with a > 0 (solitary waves of elevation: bright solitons). Thus all finite
amplitude solitons travel faster than

√
gH and larger solitons travel faster

than smaller solitons. Greene, Kruskal and Zabusky discovered that these
solutions interact in a particle-like manner: this makes them into solitons.
This is a consequence of complete integrability of the KdV equation as an
infinite-dimensional Hamiltonian system.

Remark: If κ > κ0 we have solitary waves of depression: dark solitons
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The Korteweg-de Vries equation

Collision of two KdV solitons
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Swift-Hohenberg equation in one spatial dimension
The Swift-Hohenberg equation

ut = ru −
(
q2
c + ∂2

x

)2
u + f (u)

is very simple but has very remarkable properties. These are a consequence
of the following:

Fourth order in space

Intrinsic length scale 2π/qc
Bistability due to competing nonlinear terms

Spatial reversibility: x → −x , u → ±u
Variational dynamics

ut = −δF
δu
,

where

F =

∫ ∞

−∞
dx

{
− 1

2
ru2 +

1

2

[
(q2

c + ∂2
x )u
]2 −

∫ u

0
f (v) dv

}

In the following we think of F [u] as the (free) energy of the system
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Localized solutions of the Swift-Hohenberg equation SH23

r

||u||
L2

(a)  

(b)  

−0.3 0

0

0.9

E
−

E
+

P

M

L
0

Lπ

(i,v)

−50 0 50

0

1.8 (i)

−50 0 50

(ii)

−50 0 50

(iii)

−50 0 50

(iv)

−50 0 50

0

1.8 (v)

−50 0 50

(vi)

−50 0 50

(vii)

−50 0 50

(viii)
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Temporal vs spatial dynamics: Kirchgässner (1982)
The linearized problem around u = 0 is

ut = ru −
(
q2
c + ∂2

x

)2
u.

Thus u(x , t) ∝ exp(σt + iqx) grows in time if σ(q) > 0. So steady
solutions are present when σ = 0, i.e., at q = q±, and these collide at
(r , q) = (rc , qc). Thus r = rc = 0 is a reversible Hopf bifurcation in space
with 1:1 resonance: for r < 0 the spatial growth rate λ ≡ ±λr ± iλi ,
λr 6= 0, thereby allowing both growth and decay in space:
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Spatial dynamics and homoclinics

u

x0

u ∼ eλx u ∼ e−λx

??

We can establish the presence of homoclinic orbits near r = 0 by setting
r ≡ µ = −ε2µ2 and using a multiple scale expansion with spatial scales x
and X ≡ εx ,

u`(x) = εu1(x ,X ) + ε2u2(x ,X ) + . . . ,

where
u1(x ,X ) = Z (X ; ε)e iqcx + c.c . (44)

We start by computing Z at r = 0.
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Weakly nonlinear theory: SH35
Multiple scale expansion at r = 0 with spatial scales x and X ≡ εx ,

u`(x) = εu1(x ,X ) + ε2u2(x ,X ) + . . . ,

yields

O(ε) :
(
∂2
x + q2

c

)2
u1 = 0 (45)

O(ε2) :
(
∂2
x + q2

c

)2
u2 = −4∂xX

(
∂2
x + q2

c

)
u1 (46)

O(ε3) :
(
∂2
x + q2

c

)2
u3 = −4∂xX

(
∂2
x + q2

c

)
u2 − 4∂xxXXu1 (47)

− 2∂XX
(
∂2
x + q2

c

)
u1 + b3u

3
1

O(ε4) :
(
∂2
x + q2

c

)2
u4 = −4∂xX

(
∂2
x + q2

c

)
u3 − 4∂xxXXu2 (48)

− 2∂XX
(
∂2
x + q2

c

)
u2 − 4∂xXXXu1 + 3b3u

2
1u2

O(ε5) :
(
∂2
x + q2

c

)2
u5 = −4∂xX

(
∂2
x + q2

c

)
u4 − 4∂xxXXu3 (49)

− 2∂XX
(
∂2
x + q2

c

)
u3 − 4∂xXXXu2 − ∂4

Xu1

+ 3b3

(
u1u

2
2 + u2

1u3

)
− b5u

5
1 .
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Weakly nonlinear theory: SH35
The O(ε, ε2) equations are solved by

u1(x ,X ) = A1(X )e iqcx + c .c. , u2(x ,X ) = A2(X )e iqcx + c .c . , (50)

where A1,2(X ) are as yet undetermined and c .c . denotes a complex
conjugate. The Ansatz

u3(x ,X ) = A3(X )e iqcx + C3(X )e3iqcx + c .c. (51)

in the O(ε3) equation leads to the two results

4q2
cA
′′
1 = −3b3A1|A1|2 , C3 =

b3

64q4
c

A3
1 , (52)

with A3 arbitrary. The Ansatz

u4(x ,X ) = A4(X )e iqcx + C4(X )e3iqcx + c .c. (53)

in the O(ε4) equation likewise leads to

4q2
cA
′′
2 = 4iqcA

′′′
1 − 3b3

(
2|A1|2A2 + A2

1Ā2

)
; (54)

the expression for C4 in terms of A1,2 is not needed in what follows.
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Weakly nonlinear theory: SH35
Finally, the O(ε5) equation with the Ansatz

u5(x ,X ) = A5(X )e iqcx + C5(X )e3iqcx + E5(X )e5iqcx + c .c . (55)

yields

4q2
cA
′′
3 = 4iqcA

′′′
2 + A′′′′1 − 3b3

(
2A1|A2|2 + Ā1A

2
2 + 2|A1|2A3 + A2

1Ā3

)

+

(
− 3b2

3

64q4
c

+ 10b5

)
A1|A1|4 (56)

after elimination of C3. Eqs. (52), (54) and (56) can now be assembled
into a single equation for Z (X , ε) ≡ A1(X ) + εA2(X ) + ε2A3(X ) + . . . :

4q2
cZ
′′= −3b3Z |Z |2+4iqcεZ

′′′+ε2

[
Z ′′′′+

(
− 3b2

3

64q4
c

+ 10b5

)
Z |Z |4

]
+O(ε3)

or

4q2
cZ
′′ = −3b3Z |Z |2 −

3iεb3

qc
(2Z ′|Z |2 + Z 2Z̄ ′) (57)

+ ε2

[
9b3

2q2
c

(
2Z |Z ′|2 + (Z ′)2Z̄

)
+

(
−327b2

3

64q4
c

+ 10b5

)
Z |Z |4

]
+O(ε3)
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Normal form theory: Iooss and Pérouème (1993)
The normal form for the reversible Hopf bifurcation with 1:1 resonance is

Ȧ = iqcA + B + iA P (µ; y ,w)

Ḃ = iqcB + iB P (µ; y ,w) + AQ (µ; y ,w) ,
(58)

where y ≡ |A|2, w ≡ i
2 (AB̄ − ĀB), µ is an unfolding parameter analogous

to r , and P and Q are polynomials with real coefficients:

P(µ; y ,w) = p1µ+ p2y + p3w + p4y
2 + p5wy + p6w

2 + · · ·
Q(µ; y ,w) = −q1µ+ q2y + q3w + q4y

2 + q5wy + q6w
2 + · · · .

To compute the coefficients in this normal form we set µ = 0 and write
(A,B) = (εÃ(X ), ε2B̃(X ))e iqcx , obtaining

ε2A′ = ε2B + iεA

[
ε2p2|A|2 + ε3p3

i

2
(AB̄ − ĀB)

]
+O(ε5) (59)

ε3B ′ = iε2B

[
ε2p2|A|2 + ε3p3

i

2
(AB̄ − ĀB)

]

+ εA

[
ε2q2|A|2 + ε3q3

i

2
(AB̄ − ĀB) + ε4q4|A|4

]
+O(ε6)(60)
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Coefficients in the normal form
Eq. (59) yields a power series expansion for B in terms of A,

B = A′ − iεp2A|A|2 + ε2 p3

2
A(AĀ′ − ĀA′) +O(ε3), (61)

and this equation can be used to eliminate B from Eq. (60):

A′′ = q2A|A|2 + iε

[(
3p2 −

1

2
q3

)
A′|A|2 +

(
p2 +

1

2
q3

)
A2Ā′

]
(62)

+ ε2
[
p3((A′)2Ā− AA′Ā′) + (q4 − q3p2 + p2

2)A|A|4
]

+O(ε3) .

Finally, writing Z = A + ε2ρA|A|2 +O(ε4) allows one to deduce the
normal coefficients:

ρ =
9b3

16q4
c

, p2 = − 9b3

16q3
c

, q2 = −3b3

4q2
c

, p3 = 0 , q3 = −3b3

8q3
c

,

q4 = −177b2
3

128q6
c

+
5b5

2q2
c

.
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Unfolding of the normal form

The remaining coefficients p1 and q1 are determined as part of the
unfolding. We write r ≡ µ = −ε2µ2, where µ2 is O(1). The unfolded
versions of Eqs. (57) and (62) through O(ε) are

4q2
cZ
′′ = µ2Z − 3b3Z |Z |2

+
iε

qc

[
µ2Z

′ − 3b3(2Z ′|Z |2 + Z 2Z̄ ′)
]

+O(ε2)

A′′ = q1µ2A + q2A|A|2

+ iε

[
−2p1µ2A

′ +
(

3p2 −
1

2
q3

)
A′|A|2 +

(
p2 +

1

2
q3

)
A2Ā′

]
+O(ε2) .

Matching terms through this order gives

p1 = − 1

8q3
c

, q1 =
1

4q2
c

. (63)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 44 / 239



Properties of the normal form

We transformed SH35 to normal form near r = 0 because the properties of
this normal form are already analyzed. Specifically, the normal form is
completely integrable, with integrals

K ≡ 1

2
(AB̄ − ĀB), H ≡ |B|2 −

∫ |A|2

0
Q(µ, s,K ) ds. (64)

Orbits homoclinic to (0, 0) lie in the surface H = K = 0. In this case the
equation for a ≡ |A|2 > 0 takes the form

1

2

(
da

dX

)2

+ V (a) = 0, (65)

where

V (a) = 2q1µa
2 − q2a

3 − 2

3
q4a

4. (66)
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Homoclinics and heteroclinics
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Homoclinics
The leading order amplitude equation

4q2
cZ
′′ = µ2Z + 4q2

cq2Z |Z |2 +O(ε),

has two types of solution when q2 < 0, µ2 > 0:

periodic: Z (X ) =

(
−µ2

4q2
cq2

)1/2

e iφ +O(ε)

corresponding to: u(x) =

(
r

4q2
cq2

)1/2

cos(qcx + φ) +O(r)

and

localized: Z (X ) =

(
−µ2

2q2
cq2

)1/2

sech

(
X
√
µ2

2qc

)
e iφ +O(ε)

corresponding to:

u(x) = 2

(
r

2q2
cq2

)1/2

sech

(
x
√−r
2qc

)
cos(qcx + φ) +O(r)

For the periodic states φ is arbitrary; this is not so for the localized states!
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Beyond all orders effects

φ=0φ=π φ=0
φ=π/2φ=π

φ=3π/2

(a) (b)

See G. Kozyreff and S.J. Chapman, PRL 97, 044502 (2006); Physica D
238, 319 (2009); A. Dean et al., Nonlinearity 24, 3323 (2011)
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Example: Natural doubly diffusive convection
Linear analysis about the conduction state in an infinite slot:
(u,w ,T ,C ) = (ũ, w̃ , T̃ , C̃ )(x) exp(λz) with λ = qr + iqi shows that
qr = 0, qi = ±qc at Grc = 650.9034. Moreover qc = 2.5318 and

Gr < Grc : λ = ±iqc ±O(
√
Grc − Gr)

Gr > Grc : λ = ±iqc ± iO(
√
Gr − Grc)

Bergeon and Knobloch, Phys. Fluids 20, 034102 (2008)
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Snakes-and-ladders structure of the pinning region: SH23
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Snakes-and-ladders structure of the pinning region: SH23
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Stability

The location of the pitchfork bifurcations is determined by linearizing SH23
about a localized solution u = u0(x) and solving the eigenvalue problem

L[u0(x)] Ũ ≡ {r − (q2
c + d2

x )2 + 2b2 u0 − 3u2
0}Ũ = σŨ (67)

for the eigenvalues σ and for the corresponding eigenfunctions Ũ. This
problem has to be solved numerically; if the domain used is much larger
than the length of the localized structure the resulting eigenvalues will be
independent of the boundary conditions imposed at the boundary. The
eigenvalues comprise the spectrum of the linear operator L[u0(x)] and this
spectrum consists of two components depending on the symmetry of the
eigenfunctions. Even eigenfunctions share the symmetry of u0(x) and
correspond to amplitude modes. These modes are neutrally stable (σ = 0)
at saddle-node bifurcations.
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Stability
Odd eigenfunctions will be called phase modes. There is always one
neutrally stable phase mode, the Goldstone mode. To see this consider
two stationary solutions of SH23, u0(x + d) and u0(x), i.e., a pair of
solutions related by translation. Now subtract the equations satisfied by
these solutions, divide by d and take the limit d → 0. The result is

L[u0(x)] u′0 = 0, (68)

implying that u′0 is a neutrally stable eigenfunction of L[u0(x)] for all
parameter values. This is a consequence of the translation invariance of
the system. In addition, there is a discrete set of neutrally stable phase
modes associated with symmetry-breaking bifurcations of u0(x), i.e., the
creation of the rung states. The next figure shows these eigenfunctions for
a relatively long localized state high up the snakes-and-ladders structure.
We make two important observations: the amplitude and phase modes are
localized in the vicinity of the fronts bounding u0(x); by adding and
subtracting these modes we construct eigenfunctions localized at one or
other front. This observation implies that both the saddle-nodes and the
pitchfork bifurcations are associated with instabilities of individual fronts.
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Stability

Growth rates of symmetric and antisymmetric perturbations along the
(a) L0 and (b) Lπ branches
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Marginal modes

Symmetric, antisymmetric and phase modes on the L0 branchEdgar Knobloch (UC Berkeley) Localized patterns May 2016 55 / 239



Snakes-and-ladders structure of the pinning region: SH23

One and two pulse states occupy the same pinning region
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Snakes-and-ladders structure of the pinning region: SH23

Other two-pulse states fall on a stack of isolas
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Snakes-and-ladders structure of the pinning region: SH23

Other two-pulse states fall on a stack of isolas
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Warning!

Insufficient accuracy results in branch jumping
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Snakes-and-ladders structure of the pinning region: SH23

Snaking of dissimilar pulses
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Dynamical systems interpretation: Beck et al (2009)

µ

‖U‖2
2

symmetric
localised

rolls

asymmetric
localised

rolls

Fix R0

W u(0)

W s(0)

γ(ϕ)

W u(0)

W s(0)

γ(ϕ)

Horseshoe dynamics near the Maxwell point
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Energetics: Maxwell point
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First order phase transition in terms of the free energy
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First order phase transition in a van der Waals fluid
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Front pinning: Pomeau (1984)
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Front pinning: SH23

The two different front types may be combined to produce three different
localized states
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Wavelength selection: SH23

r

k

−0.35 −0.25

0.98

1

E
−

E
+

 M

Wavelength L ≡ 2π/k of the pattern varies across the pinning region, and
is determined by the condition H = 0, where

H = −1

2

(
r − q4

c

)
u2 + q2

cu
2
x −

1

2
u2
xx + uxuxxx −

∫ u

0
f (v)dv .
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Pinning region: SH23

r

b
2

−1.6 0

0

3

E
+

E*
+

r
SN,P

E
−

 M

Pinning region opens out from the codimension-two point (0, q2
c

√
27/38)

and is of width ε−4 exp(−π/ε2) when r = O(ε4) and |b2 − q2
0

√
27/38|

= O(ε2), ε� 1 (Kozyreff and Chapman, PRL (2006); Physica D (2009))
Edgar Knobloch (UC Berkeley) Localized patterns May 2016 68 / 239



Pinning region: SH35

r

b
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−
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+

M

r
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9b3
exp(−8

√
30π/b3), rM = −27b2

3/160, b3 � 1.
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Spatial dynamics and spatial reversibility

Suppose that
ut = g(u, ux , uxx , . . . ),

with g real-valued and g(0) = 0. Then g(u, ux , uxx , . . . ) = 0 is a
dynamical system in space. Necessary conditions for the existence of LS
biasymptotic to the homogeneous state u = 0 is that u = 0 is hyperbolic.
The spatial eigenvalues are given by

gu(0) + gux (0)ux + guxx (0)uxx + · · · = 0

or, for u ∝ expλx ,
P(λ) = 0. (69)

Thus (a) P(λ) = 0 =⇒ P(λ̄) = 0. If the system is spatially reversible,
then (b) P(λ) = 0 =⇒ P(−λ) = 0. Thus generically the spatial
eigenvalues of the system come in complex quartets and we need at least a
fourth order problem in space to capture this property.
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Spatial dynamics and spatial reversibility

162 A.R. Champneys/Physica D 112 (1998) 158-186 

2.2. Linearisation and normal forms 

In order to examine the structure of  homoclinic solutions to (2) the first step is to consider its linearisation. 
Eigenvalues )~ of  the linear problem satisfy the characteristic equation )d - b)~ 2 + a = 0, from which it can be 
inferred that the linearisation is as depicted in Fig. l. Note that the spectrum is symmetric under reflection about 
the imaginary axis. It is immediate from the definition of  reversibility that this symmetry in the spectrum holds 
for all symmetric equilibria [56]. In the figure, four distinct regions of  the parameter plane have been identified 

corresponding to qualitatively distinct linear dynamics. The four regions are bounded by the following codimension- 
one curves (see also Table 1): Co given by a = 0, b > 0 on which there are two zero eigenvalues and two 
real; C1 given by a = 0, b < 0 on which there are two zero eigenvalues and two imaginary; C2 given by 
b = 2V~, on which there is a double complex conjugate pair of  imaginary eigenvalues -t-i b~/b-~; and C3 given 
by b = - 2 ~ / a ,  on which there are two double real eigenvalues, symmetric with respect to the imaginary axis 

4-4-6-/2. 
The four curves meet at a codimension-two point a = b = 0 where the linearisation of  the system corresponding 

to (2) has four zero eigenvalues with geometric multiplicity one. Iooss [85] has derived and analysed a normal form 
respective to such a codimension-two point arising in general fourth-order reversible vector fields for which the 
origin is a persistent symmetric fixed point. In particular, he computes the singular scaling that has to be applied to 
the (codimension-one) normal forms with respect to Ci, i = 0, 1, 2, originally analysed by Iooss and Kirchgassner 
[88] and Iooss and Peroubme [89] (see also [63] for the techniques involved in normal form reduction). 

Let us briefly review these three one-parameter normal forms (more generally than in specific application to 
(2)) and what may be gleaned from them concerning the existence of  homoclinic orbits. First, however, note that 
in regions 1 and 2 displayed in Fig. 1, the origin is hyperbolic. This then implies that homoclinic orbits to the 

origin are of  codimension-zero. More precisely, a homoclinic orbit is formed by the intersection of  the unstable 
manifold of  the origin W u and the symmetric section S :=  fix(R). If  such an intersection is transverse, then 

I 

® \ 4  ' I 

+ 

a /G 

y +  
® 

+ 
Fig. 1. Linearisation at the origin of (2). 

The roots of the equation λ4 + bλ2 + a = 0
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Stable and unstable manifolds
The eigenvectors of stable (unstable) eigenvalues span the stable
(unstable) eigenspace E s,u of the equilibrium O: u = ux = ... = 0;
associated with each eigenspace is an invariant manifold W s,u tangent to
E s,u at O. To get localized structures we need to find orbits homoclinic to
O, i.e., we need W u and W s to intersect. This is more likely if the
dimensions of these manifolds are high.

Reversible systems with n = 4:

Suppose g = 0 has a hyperbolic fixed point O with nu,s(O) = 2. In
n = 4 the intersection of W u(O) and W s(O) is generically of
codimension one, i.e., we expect homoclinics O → O at isolated
parameter values only. But in a reversible system the codimension is
zero and LS are structurally stable.

Suppose g = 0 has a pair of hyperbolic fixed points O and P with
nu(O) = 2 and ns(P) = 2. In n = 4 the intersection of W u(O) and
W s(P) is generically of codimension one, i.e., we expect (stationary!)
fronts O → P at isolated parameter values only.
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Stable and unstable manifolds

Reversible systems with n = 4:

Suppose next that g = 0 has a symmetric hyperbolic periodic solution
uP(x) satisfying uP(−x) = uP(x). Such a solution will have one
stable and one unstable Floquet multiplier plus two +1 multipliers.
Its center-stable eigenspace will therefore be three-dimensional and
W s(uP) is therefore also three-dimensional. Thus the intersection
between W u(O) and W s(uP) is of codimension zero and therefore
structurally stable, i.e. fronts O → uP are robust. Moreover, if this is
the case g = 0 will have a robust heteroclinic cycle O → uP → O.

It turns out that near such cycles one finds a plethora of homoclinic orbits
O → O and so knowing where such cycles are is of great help in finding
different types of LS, particularly in systems that do not have gradient
structure.
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Snakes-and-ladders structure of the pinning region: SH23
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Depinning: SH23

New cells are nucleated symmetrically on either side of the structure

Burke and Knobloch, PRE 73, 056211 (2006)
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Depinning: SH23

New cells are destroyed symmetrically on either side of the structure

Burke and Knobloch, PRE 73, 056211 (2006)
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Depinning: theory

Marginal and near-marginal modesEdgar Knobloch (UC Berkeley) Localized patterns May 2016 77 / 239



Depinning: theory
When r = r(E−) + δ, |δ| � 1, we have

u(x , t) = u0(x) + |δ|1/2u1(x , τ) +O(|δ|), (70)

where τ = |δ|1/2t and

L[∂x , u0]u1(x , τ) = |δ|1/2(∂τu1− sgn(δ)u0−b2u
2
1 + 3u0u

2
1) +O(|δ|). (71)

Here L is a differential operator evaluated at r = r(E−). At leading order

L[∂x , u0]u1(x , τ) = 0, (72)

so that
u1(x , τ) = a(τ)Ũamp + b(τ)Ũph + c(τ)ŨG . (73)

Since the “center of mass” remains fixed b = c = 0 and at next order we
have a single solvability condition

α1∂τa = α2sgn(δ) + α3a
2, (74)

where

α1 ≡
∫ ∞

−∞
Ũ2
ampdx , α2 ≡

∫ ∞

−∞
u0Ũampdx , α3 ≡

∫ ∞

−∞
(b2−3u0)Ũ3

ampdx .
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Depinning: theory

Hence the transition time T− to pass between successive saddle-nodes is

T− =
πα1

(α2α3δ)1/2
≈ 4.388|δ|−1/2, δ < 0. (76)

For comparison simulation gives

T− ≈ (4.57± 0.34)|δ|−0.499±0.006, δ < 0. (77)

The corresponding results for r = r(E+) + δ, δ � 1, are

T+ =
πα1

(α2α3δ)1/2
≈ 5.944δ−1/2, δ > 0. (78)

For comparison simulation gives

T+ ≈ (6.04± 0.18)δ−0.501±0.003, δ > 0. (79)
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Drifting localized states and asymmetric nucleation
The addition of a third order derivative leads to pattern drift:

0 =
(
r −

(
1 + ∂2

x

)2
)
u + c∂xu + γ∂3

xu + b2u
2 − u3

Drifting localized states fall of stack of figure-eight isolas
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Drift speeds
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Figure-eight isolas as a function of γ
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Outside the isolas

γ = 0.001, r = r(E+) + 0.00015 γ = 0.001, r = r(E+) + 0.00065

In both cases the patterns are slowly drifting to the right

Very close to the saddle-node, the pattern only grows on the
right-hand side, i.e., the leading side

Further from the saddle-node, the pattern grows on both side, but at
different rates
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Outside the isolas

γ = 0.01, r = r(E+) + 0.00065

Increasing γ the pattern now only grows at the leading edge

Therefore, transition is dependent on degree of symmetry breaking

Drift speed has increased with γ

When γ = 0 (symmetric) the pattern grows symmetrically
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Theory

When r = r(E+) + δ we take γ = σ|δ|, σ = O(1), and write

u(x , t) = u0(x + θ(T )) + |δ|1/2u1(x + θ(T ), τ) + |δ|u2(x + θ(T ), τ) + . . .

where τ = |δ|1/2t, T = |δ|t and θ(T ) takes account of the spatial phase
of the solution. The leading-order, O(1), terms are

r(E+)u0 −
(
1 + ∂2

x

)2
u0 + b2u

2
0 − u3

0 = 0.

This is the equation for steady solutions of the reversible Swift-Hohenberg
equation and has solutions u0 = U0(x + θ(T )).

At next order, O(|δ|1/2),

Lu1 ≡
(
r(E+)− (1 + ∂2

x )2 + 2b2U0 − 3U2
0

)
u1 = 0,

and u1 is again a superposition of the three (almost) marginal modes.
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Solvability conditions

Since the translation has been included by introducing the phase θ(T ) the
ŨG mode is already included. Thus

u1 = a(τ)Ũamp (x + θ(T )) + b(τ)Ũph (x + θ(T )) ,

where a(T ), b(T ) and θ(T ) are determined from solvability conditions at
next order, O(|δ|).

At O(|δ|),

U ′0θT + u1τ = Lu2 + sgnδU0 + σU ′′′0 + (b2 − 3U0) u2
1 .

Multiplying in turn by ŨG ≡ U ′0, Ũamp and Ũph and integrating over the
real line yields three solvability conditions.
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Drift speed

The first solvability condition gives

θT = −0.9663σ

or, equivalently,
θt = −0.9663γ.

The predicted drift speed towards the right when γ = 0.001 is therefore
0.0009663.

The drift speed measured from numerical simulations is 0.0009589. The
prediction is in good agreement.

At leading-order the drift speed depends only on the magnitude of the
broken reversibility and not distance from the saddle-node.
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Nucleation times

The remaining solvability conditions give a coupled pair of equations

aτ = α1sgnδ + α2a
2 + α3b

2

bτ = −βσ + 2α4ab.

The coefficients in this equation depend on the length 2L of the localized
state. High up the snaking structure, 2L is large and the eigenfunctions
Ũamp, Ũph consist, up to exponentially small terms, of pairs of
non-overlapping neutral modes localized at the bounding fronts.
Consequently we may write Ũamp = v(x + L) + v(x − L),
Ũph = v(x + L)− v(x − L) for a suitable function v(x). From the
expressions for the coefficients it now follows that, up to exponentially
small terms, α2 = α3 = α4.

Thus
(a± b)τ = α1sgnδ ∓ βσ + α3 (a± b)2 .
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Nucleation times

We define the time for a new cell to be created at the leading edge to be

Tleading ≡
∫ ∞

−∞

dτ

a− b
=

π

α
1/2
3

1

(α1δ + βγ)1/2

and the time for a new cell to be created at the trailing edge to be

Ttrailing ≡
∫ ∞

−∞

dτ

a + b
=

π

α
1/2
3

1

(α1δ − βγ)1/2
.

This time diverges (i.e., nucleation ceases) when

δleadingc = −βγ/α1 = −0.3543γ, δtrailingc = βγ/α1 = 0.3543γ.

Thus when γ = 0.001 the predicted value of |r(E+)− rSN | = 0.0003543,
compared with the measured value 0.000356.
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Nucleation times
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Snakes-and-ladders structure of the pinning region: SH35
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Comparison of SH23 and SH35

Growth along the L0 branches in (a) SH23 and (b) SH35

Burke and Knobloch, Chaos 17, 037102 (2007)
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35

(a) (b)

σ

k
y

0 1

−0.01

0

0.01

Burke and Knobloch, Chaos 17, 037102 (2007)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 95 / 239



Two spatial dimensions: SH35
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Two spatial dimensions: SH35
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Two spatial dimensions: SH35 and SH23
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Two spatial dimensions: SH23

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 99 / 239



Two spatial dimensions: SH35
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Snaking of stripe-like patterns: SH35
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Avitabile et al., SIADS 9, 704 (2010)
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Snaking of stripe-like patterns: SH35
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Snaking of stripe-like patterns: SH35
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Snaking of stripe-like patterns: SH35
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Snaking of stripe-like patterns: SH35
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Snakes-and-ladders structure of the pinning region
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Snakes-and-ladders structure of the pinning region
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Localized states in two spatial dimensions: SH35
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Localized states in two spatial dimensions: SH35
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Localized states in two spatial dimensions: SH35
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Localized spots and targets in two spatial dimensions:
SH23

(a) Spots bifurcate from u = 0 at µ = 0 even when b2 < 0 with amplitude
∝ (−µ)1/4. (b) Rings bifurcate from u = 0 at µ = 0 provided
b2 >

√
27/38 and do so subcritically with amplitude ∝ (−µ)3/4 (Lloyd

and Sandstede, Nonlinearity 22, 485 (2009)).
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Snaking of spots in two spatial dimensions: SH23
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Spots in two spatial dimensions: SH23

There are in fact two types of axisymmetric spots: spot A with amplitude
∝ √−µ and spot B with amplitude ∝ (−µ)3/8 (McCalla and Sandstede,
SIADS 12, 831 (2013)). Spot A bifurcates from u = 0 at µ = 0 even if
b2 <

√
27/38.
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Snaking in two spatial dimensions: SH23

Localized hexagons in SH23: Lloyd et al., SIADS 7, 1049–1100 (2008)
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Snaking in two spatial dimensions: SH23

Lloyd et al., SIADS 7, 1049–1100 (2008)
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Localized states in two spatial dimensions: SH23
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Oscillons
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Forced Ginzburg-Landau equation

Different types of localized states in parametrically forced systems

In such systems a dynamical observable w takes the form

w = w0 + Ae iΩt/2 + c .c .+ · · · , (80)

where w0 represents the equilibrium state and A(x , t) is a complex
amplitude. The oscillation amplitude A(x , t) obeys the FCGL equation

At = (µ+ iν)A− (1 + iβ)|A|2A + (1 + iα)Axx + γĀ , (81)

where µ represents the distance from onset of the oscillatory instability, ν
is the detuning from the unforced frequency, and α, β and γ represent
dispersion, nonlinear frequency correction and the forcing amplitude,
respectively.
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Resonance tongues

Frequency-locked states when (a) µ < 0, (b) µ > 0
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Forced Ginzburg-Landau equation
When µ < 0, z > 0 a saddle-node bifurcation involving the uniform
phase-locked states A+

u and A−u occurs at γ = γb whenever ν > νβ. At
this point the uniform state has two zero spatial eigenvalues and two
nonzero spatial eigenvalues, and the nonzero eigenvalues are real provided
ν > νz . Along the A+

u branch the zero eigenvalues split along the real axis
and localized states may exist in the form of orbits homoclinic to A+

u .

Spatial eigenvalues for (a) ν > νz , (b) ν < νz
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Forced Ginzburg-Landau equation
To find these states we write γ = γb + ε2δ, where ε� 1 and δ > 0, and
solve the time-independent problem

(L+N )

[
U
V

]
= 0, (82)

where A = U + iV . Localized states biasymptotic to A+
u take the form

[
U
V

]
=

[
U
V

]+

+

[
u
v

]
, (83)

where the first term is the uniform phase-locked state A+
u and the second

corresponds to the space-dependent terms that decay to zero as x → ±∞.
Thus A+

u can be approximated by the series
[
U
V

]+

=

[
U0

V0

]
+ ε

[
U1

V1

]
+ ε2

[
U2

V2

]
+ . . . , (84)

where [
U0

V0

]
=

[
ηb
1

]
Υ0 ,

[
U1

V1

]
=
√
δ

[
ξb
1

]
Υ1 . (85)
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Here

ηb = β + ρβ , ξb =
ηbν + (1− βηb)|Au(γb)|2
ν − (β + ηb)|Au(γb)|2 , (86)

Υ0 =
|Au(γb)|√

1 + η2
b

, Υ1 = sgn[ξbηb + 1]

√
ηb

(ξbηb + 1)(ξb − ηb)
. (87)

The second term in Eq. (83) can be expanded as

[
u
v

]
= ε

[
u1

v1

]
+ ε2

[
u2

v2

]
+ . . . , (88)

where all quantities depend on x via the slow spatial scale X ≡ ε1/2x . The
linear operator in Eq. (82) takes the form L = L0 + εL1 + ε2L2, where

L0 =

[
µ+ γb −ν
ν µ− γb

]
, L1 =

[
1 −α
α 1

]
∂XX , L2 =

[
δ 0
0 −δ

]
,

(89)
while the nonlinear terms take the form N = N0 + εN1 + ε2N2 + . . .,
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where

N0 = −
[
U0 V0

] [U0

V0

] [
1 −β
β 1

]
, N1 = −2

[
U0 V0

] [U1 + u1

V1 + v1

] [
1 −β
β 1

]
,

(90)

N2 = −
{[

U1 + u1 V1 + v1

] [U1 + u1

V1 + v1

]
+2
[
U0 V0

] [U2 + u2

V2 + v2

]}[
1 −β
β 1

]
.

(91)
At order ε0 stationary solutions to Eq. (82) satisfy

{L0 +N0}
[
U0

V0

]
=

[
0
0

]
, (92)

an equality that holds by virtue of the definition of U0 and V0. At order ε
we obtain

{L0 +N0}
[
U1 + u1

V1 + v1

]
= −{L1 +N1}

[
U0

V0

]
. (93)

The X -independent terms in this equation cancel by virtue of the
definition of U1 and V1, leaving
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{
L0 +N0 − 2

[
1 −β
β 1

] [
U2

0 U0V0

U0V0 V 2
0

]}[
u1

v1

]
=

[
0
0

]
. (94)

Thus [
u1

v1

]
=

[
ξb
1

]
B(X ) , (95)

where B(X ) is an unknown function of X .
Proceeding to order ε2 we obtain

{L0 +N0}
[
U2 + u2

V2 + v2

]
= −{L1 +N1}

[
U1 + u1

V1 + v1

]
− {L2 +N2}

[
U0

V0

]
.

(96)
Again the X -independent terms cancel. The solvability condition for this
equation is obtained by taking the scalar product with

Ξb =
[
−ηb 1

]
, (97)

to eliminate the u2, v2 terms, leaving

abBXX = bb
(
2V1B + B2

)
. (98)
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Here

ab = 1 + αξb + αηb − ηbξb , bb = −Υ0(1 + η2
b)

Υ2
1

. (99)

The latter quantity is always negative. Equation (98) admits spatially
homogeneous solutions B = −2V1, or

[
U
V

]
=

[
U0

V0

]
− ε
[
U1

V1

]
+ . . . , (100)

corresponding to the other branch of uniform phase-locked states, A−u . In
addition, Eq. (98) admits a branch of X -dependent localized states

B(X ) = −3Υ1

√
δ sech2





(
Υ1

√
δ

2ab/bb

)1/2

X



 (101)

corresponding to

[
U
V

]
=

[
U
V

]+

− 3Υ1
√
γ − γb

[
ξb
1

]
sech2

{
(γ − γb)1/4

(
Υ1

2ab/bb

)1/2

x

}
.

(102)
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Reciprocal oscillons
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Reciprocal oscillons

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 128 / 239



The 2 : 1 resonance: parameter plane for µ > 0
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The 2 : 1 resonance: collapsed snaking for ν > ν∗
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The 2 : 1 resonance: defect-mediated snaking for ν < ν∗
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The 2 : 1 resonance: defect-mediated snaking
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The 2 : 1 resonance: detail of defect-mediated snaking
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The 2 : 1 resonance: defect-mediated snaking
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The 2 : 1 resonance: localized breathers
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The 2 : 1 resonance: breathing front
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The 1 : 1 resonance
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A bound pair of steady 1D fronts between A± can be found by following the

weakly nonlinear LS near the lower saddle-node in γ. This branch is referred to as

the L0 branch and plotted using the L2-norm N. The branch undergoes collapsed

snaking to γCS = 1.8419. Temporally stable (unstable) segments are shown in

solid (dotted) lines.
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The 1 : 1 resonance
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between γDMS
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2 = 2.8970. In the snaking region, the solution

profile resembles a Turing pattern bifurcating from A+ embedded in an A−

background [Ma et al., Physica D 239, 1867 (2010)].
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The 1 : 1 resonance
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The 1 : 1 resonance
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The 1 : 1 resonance
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Type-II depinning: (a) Slow depinning (dγ = −2× 10−5): phase slips take
place at the center x = 0. (b) Fast depinning (dγ = −4× 10−3): phase
slips take place at a constant distance from the moving front. (c)
Intermediate case (dγ = −1× 10−3): phase slips gradually move towards
the front.
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Different mechanisms for front propagation
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Different mechanisms for front propagation
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Ma and Knobloch, Chaos 22, 033101 (2012)
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Radially symmetric solutions in 2D (ν = 5)

γ

||A||
x

(b)

1.86 1.88

0.54

0.6

−100

100

(a) The branch of 2D axisymmetric steady states followed from the lower

saddle-node at ν = 5. (b) A sample solution profile V (x , y).

For γ near γCS and ρ large, the speed c of an expanding circular front with
radius ρ depends on dγ ≡ γ − γCS and the front curvature κ ≡ ρ−1 as

c = cγdγ + cκκ, where cγ > 0, cκ < 0.
Edgar Knobloch (UC Berkeley) Localized patterns May 2016 144 / 239



Expanding circular fronts
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Radial space-time plots of V (r , t) showing traveling circular fronts at γ = 1.844.

The initial condition is the steady circular front at the same γ with radius

changed by (a) dr = −1; (b) dr = 1.
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2D radial pinning: localized rings (ν = 7)
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(a) The branch of 2D axisymmetric steady states followed from the lower
saddle-node at ν = 7. (b) A sample solution profile V (x , y).
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Fully 2D LS: circular localized hexagons

−100

100

−100

100

Snapshots of V (x , y) at (a) t = 300; and (b) t = 450, showing circular
localized hexagons. Parameters: ν = 7, γ = 2.8989.
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Planar 2D LS: planar localized hexagons

−100

100

−100

100

Snapshot of V (x , y) at (b) t = 100, starting from a localized stripe
pattern at (a) t = 0. Parameters: ν = 7, γ = 2.8972.
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2D depinning: shrinking planar localized hexagons

−100

100

−100

100

Snapshots of V (x , y) at (a) t = 400 and (b) t = 1000 showing the
shrinkage of planar localized hexagons. Parameters: ν = 7, γ = 2.8955.
Video:
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2D depinning: expanding planar localized hexagons

−100

100

−100

100

Snapshots of V (x , y) at (a) t = 1500 and (b) t = 4000 showing the
expansion of planar localized hexagons. Parameters: ν = 7, γ = 2.899.
Video:
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2D depinning: pinned planar localized hexagons?

−100

100

−100

100

Snapshots of V (x , y) at (a) t = 10000 and (b) t = 30000 showing the
competition between shrinkage and expansion of planar localized
hexagons. Parameters: ν = 7, γ = 2.8972. Video:
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Comparison of FCGL results and a nonautonomous PDE
A PDE with time-periodic forcing:

Ut = (µ+ iω)U + (α + iβ)Uxx + C |U|2U + iRe(U)F cos(2t) (103)
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Alnahdi et al, SIADS 13, 1311-1327 (2014). Blue: FCGL. Red: Eq. (103)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 152 / 239



Comparison of FCGL results and a nonautonomous PDE
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Left: FCGL. Right: Eq. (103)

Alnahdi et al, SIADS 13, 1311-1327 (2014). Left: FCGL. Right: Eq. (103)
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Summary of the first set of lectures

I have described

Spatially localized steady states of the SH equation

Homoclinic snaking and associated snakes-and-ladders structure

Interpreted the behavior in terms of pinning

Discussed stability and wavelength selection

Isola structure for (typical) multipulse states

Termination of homoclinic snaking in finite domains

Depinning and the calculation of the invasion speed

This behavior appears to be generic in systems with a heteroclinic cycle
between a homogeneous and structured state. It requires

Bistability

Spatial reversibility

High enough order

It does not require variational structure, or Hamiltonian structure in space
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Convectons

Odd convecton

(a)
Θ

C

Even convecton

(b)
Θ

C

Convectons in binary fluid convection (Batiste et al., J. Fluid Mech. 560,
149, 2006)
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Binary fluid convection

Binary mixtures with negative separation ratio S .

Two miscible components with concentration C1 of the heavier
component:

ρ = ρ0(1− α(T − T0) + β(C1 − C 1)), α > 0, β > 0.

The heavier component migrates towards the hotter boundary:

j1 = −ρ0D(SSoretC 1(1− C 1)∇T +∇C1).

The resulting concentration gradient is stabilizing and competes with
the destabilizing thermal gradient that produces it.

As a result the conduction state loses stability via a Hopf bifurcation
and the first state that is observed is time-dependent: dispersive
chaos.
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Binary fluid convection: Equations and properties

ut + (u · ∇)u = −∇P + PrR[(1 + S)θ − Sη]ẑ + Pr∇2u,

θt + (u · ∇)θ = w +∇2θ,

ηt + (u · ∇)η = τ∇2η +∇2θ,

where u = (u,w) in (x , z) coordinates. The Prandtl number Pr , the Lewis
number τ , the Rayleigh number R and the separation ratio S are defined
by

Pr =
ν

κ
, τ =

D

κ
, R =

g |ρT |∆T `3

νκ
, S = C 1(1− C 1)SSoret

ρC
|ρT |

.

The boundary conditions are

at z = 1 : u = w = T = ηz = 0,

at z = 0 : u = w = T − 1 = ηz = 0,

with either periodic boundary conditions (PBC) with period Γ in x or
Neumann boundary conditions (NBC) or no-slip sidewalls (ICCBC) at
x = ±Γ/2. Thus θ ≡ T − 1 + z = 0 at z = 0, 1.
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Even and odd convectons
These equations have the symmetries
R1 : (u(x , z),w(x , z), θ(x , z), η(x , z))→ (−u(−x , z),w(−x , z), θ(−x , z),

η(−x , z))
R2 : (u(x , z),w(x , z), θ(x , z), η(x , z))→ (u(x , 1− z),−w(x , 1− z),

− θ(x , 1− z),−η(x , 1− z)).
Theory guarantees the existence of solutions with R1 symmetry (even
parity solutions) satisfying

(u(x , z),w(x , z), θ(x , z), η(x , z)) =

(−u(−x , z),w(−x , z), θ(−x , z), η(−x , z)),

relative to a suitable origin in x , and solutions with R1 ◦ R2 symmetry (i.e.,
point symmetry) satisfying

(u(x , z),w(x , z), θ(x , z), η(x , z)) =

−(u(−x , 1− z),w(−x , 1− z), θ(−x , 1− z), η(−x , 1− z)).

Point-symmetric solutions have odd parity in the midplane z = 1/2.
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Formation of a convecton

Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Relaxation oscillations at R = 1774
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Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Formation of a convecton
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Bifurcation diagram showing N as a function of the Rayleigh number R
when Γ = 60.
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Bifurcation diagram
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Odd and even convectons

Batiste et al., J. Fluid Mech. 560, 149 (2006)
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Odd and even convectons

Odd branch
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Stability of the convectons
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Experiments: S = −0.20, σ = 5.97, τ = 0.0085

Kolodner, Phys. Rev. E 48, R665 (1993)
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Experiments: S = −0.20, σ = 5.97, τ = 0.0085

Kolodner, Phys. Rev. E 48, R665 (1993)
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Snaking in periodic and finite domains: binary fluid
convection with Γ = 14: S = −0.1, σ = 7, τ = 0.01

PBC ICCBC

1820 1880 1940 2000
0

0.04

0.08

0.12

Rayleigh number

N
u−

1

P
7

L
even

L
odd

1880 1930 1980
0

0.05

0.1

0.15

Rayleigh number

N
u−

1

L
even

L
odd

Convecton branches terminate together on P7

Convecton branches turn continuously into mixed modes
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Convectons with PBC: Γ = 14
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Convectons and holes with PBC: Γ = 14
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Mixed modes with PBC: Γ = 14
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Even parity states with NBC: Γ = 14
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Wall states with NBC: Γ = 14
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Odd parity convectons with NBC: Γ = 14
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Odd parity holes with NBC: Γ = 14
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Convectons and holes with NBC: Γ = 14
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Even parity convectons with ICCBC: Γ = 14
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Odd parity convectons with ICCBC: Γ = 14
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Wall states with ICCBC: Γ = 14
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Reflection-symmetric two-pulse states with NBC: Γ = 14
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Odd parity two-pulse states with NBC: Γ = 14
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Odd parity two-pulse states with NBC: Γ = 14
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Mercader et al., J. Fluid Mech. 667, 586-606 (2011)
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Bound states with ICCBC: Γ = 14

1850 1900 1950 2000 2050 2100 2150
0

0.05

0.1

Rayleigh number

N
u
 −

 1

Hole

2P

point-symmetric two-pulse states

1850 1900 1950 2000 2050 2100 2150
0

0.05

0.1

Rayleigh number

N
u
 −

 1

Hole

2P

even two-pulse states

Mercader et al., J. Fluid Mech. 667, 586-606 (2011)

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 183 / 239



Bound states with ICCBC: Γ = 14
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Bound states with ICCBC: Γ = 14
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The preceding construction accounts for the states discovered by
time-stepping natural doubly diffusive convection:

Ghorayeb & Mojtabi, Phys. Fluids 9, 2339 (1997); Ghorayeb, PhD Thesis,

Toulouse, 1997
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Homotopic continuation: Γ = 14
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Aspect ratio dependence with PBC

−25 −20 −15 −10 −5 0 5 10 15 20 25
x

η(
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1/
2)

With NBC an odd parity convecton and its image form an even parity
bound state. Thus in closed containers the pinning regions for odd and
even states have the same width.
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Depinning: Γ = 60
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Edgar Knobloch (UC Berkeley) Localized patterns May 2016 189 / 239



Convectons in three dimensions
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(2008)
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Colliding convectons: Swift-Hohenberg model
Case 1: f (u) = b2u

2 − u3 (SH23)

The equation has the symmetries

R1 : x → −x , u → u
T : x → x + d , u → u

As a result there are two types of localized solutions, those fixed by R1

(even states L0, Lπ) as well as asymmetric “rung” states with no
symmetry.

Case 2: f (u) = b3u
3 − u5 (SH35)

The equation has the symmetries

R1 : x → −x , u → u
R2 : x → x , u → −u
T : x → x + d , u → u

As a result there are three types of localized solutions, those fixed by R1

(even states L0, Lπ) and those fixed by R1 ◦ R2 (odd states Lπ/2, L3π/2).
In addition, there are also asymmetric “rung” states.
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Comparison of SH23 and SH35: symmetries matter

Growth along the L0 branches in (a) SH23 and (b) SH35

Burke and Knobloch, Chaos 17, 037102 (2007).
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From SH35 to SH23: SH35 with broken R2 symmetry

Consider the variational equation

ut = ru −
(
1 + ∂2

x

)2
u + b3u

3 − u5 + εu2

When ε = 0 the equation has the symmetries

R1 : x → −x , u → u

R2 : x → x , u → −u
T : x → x + d , u → u

When ε 6= 0 the equation only has the symmetries R1 and T and the only
symmetric states are L0, Lπ. The odd states become states with no
symmetry and reconnect with the rung states forming two types of
branches: S branches and Z branches.

Edgar Knobloch (UC Berkeley) Localized patterns May 2016 193 / 239



From SH35 to SH23: variational case with ε = 0.03
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From SH35 to SH23: variational case with ε = 0.03
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The Swift-Hohenberg equation: the variational case
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The Swift-Hohenberg equation: the nonvariational case

ut = ru −
(
1 + ∂2

x

)2
u + 2u3 − u5 + ε(∂xu)2
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The Swift-Hohenberg equation: the nonvariational case
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The S and Z branches for ε = 0.01
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Collision of like pulses for r = −0.65, ε = 0.1
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Collision of unlike pulses: ε = 0.1, r = −0.65
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Collision of unlike pulses: ε = 0.1, r = −0.65
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Houghton and Knobloch, PRE 84, 016204 (2011)
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Binary fluid convection – again

ut + (u · ∇)u = −∇P + σR[(1 + S)θ − Sη]ẑ + σ∇2u,

θt + (u · ∇)θ = w +∇2θ,

ηt + (u · ∇)η = τ∇2η +∇2θ,

where u = (u,w) in (x , z) coordinates. The Prandtl number σ, the Lewis
number τ , the Rayleigh number R and the separation ratio S are

σ =
ν

κ
, τ =

D

κ
, R =

g |ρT |∆T `3

νκ
, S = C 1(1− C 1)SSoret

ρC
|ρT |

.

The boundary conditions are

at z = 1 : u = w = (1− β)θz + βθ = ηz = 0,

at z = 0 : u = w = θ = ηz = 0.

When β = 1 the above system has the symmetries R1 and R2. When
β < 1 (heat loss from the upper boundary) the symmetry R2 is lost and
only R1 remains. The change in symmetry is completely analogous to the
breaking of the u → −u symmetry in SH35.
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Binary fluid convection with heat loss
TU

T+

T−

TL

g

We consider two-dimensional Boussinesq convection between boundaries
responsible for the boundary conditions

dT−
dz

= −B−
d

(TL − T−) at z = 0,

dT+

dz
= −B+

d
(T+ − TU) at z = d ,

where d is the layer depth, and define

R =
|ρT |gd3

κν
∆T c , ∆T c = (TL − TU)

B+B−
B+B− + B+ + B−

(104)

so that R is independent of the dynamics in the cell.
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Binary fluid convection with β = 1

Newton’s law of cooling:

(1− β)θz + βθ = 0 on z = 1, θ = 0 on z = 0.
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Binary fluid convection with β = 1
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Binary fluid convection with β = 1
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Binary fluid convection with heat loss: β = 0.95
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Binary fluid convection with heat loss: β = 0.50
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Binary fluid convection with heat loss: β = 0.30
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Binary fluid convection with heat loss: β = 0
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Binary fluid convection with heat loss: β = 0
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He3-He4 mixture: S = −0.5, σ = 0.6, τ = 0.03, R = 2750
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Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Conclusions

We have seen that

odd parity spatially localized convectons move in the absence of
midplane reflection symmetry

their collisions are sticky but are accompanied by complex dynamics

convectons interact nonlocally via the background concentration
distribution

In addition

I have described the expected breakup of the snakes-and-ladders
structure of the pinning region due to the loss of the midplane
reflection symmetry

I have shown that the interactions of convectons in binary fluid
convection behaves in a very similar manner to SH35 with broken R2

symmetry

the Swift-Hohenberg equation passes another test!
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Porous media convection

Binary fluid convection in a saturated porous medium

∂tT = − (u · ∇)T +∇2T

ε∂tC = − (u · ∇)C + τ
(
∇2C −∇2T

)

u = −∇p + Ra (T + SC ) ez , ∇ · u = 0

• Periodic lateral boundary conditions
• Parameters:

τ =
D

κ
, Ra =

gα∆T `

λκ
, S = SSoret

β

α
< 0.
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Porous media convection: 2D

Basic state: T = 1− z , C = 1− z , u = 0
Equations for the departure (Θ,Σ,u) have important symmetry properties

Invariance under translations in x

Invariance under reflection with respect to x = 0:
R1 : (x , z)→ (−x , z), (u,w ,Θ,Σ)→ (−u,w ,Θ,Σ)

Invariance under reflection with respect to z = 1/2:
R2 : (x , z)→ (x , 1− z), (u,w ,Θ,Σ)→ (u,−w ,−Θ,−Σ)

These operations generate the symmetry group O(2)× Z2

Consequence: Two solutions bifurcate from the conduction state:

Even solutions : R1 invariant

Odd solutions : R2 ◦ R1 invariant

Parameters: Γ = 20λc , τ = 0.5, S = −0.1, ε = 1.
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Porous media convection
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in space: (Θ,C ) = (Θ̃, C̃ )(z) exp(qx) with
q = qr + iqi

Ra ≡ Rac = 47.71 ; q = ±iqc ,
qc = 3.40 (S = −0.01, τ = 0.1)

Ra < Rac :
q = ±iqc ±O(

√
Rac − Ra)

Ra > Rac :
q = ±iqc ± iO(

√
Ra− Rac)
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Convectons
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even parity states
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odd parity states
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Porous media convection: 3D

Basic state: T = 1− z , C = 1− z , u = 0
Equations for the departure (Θ,Σ,u) have important symmetry properties:

Symmetries

Equivariance under translations in (x , y) modulo Γ

Equivariance under the reflection (x , y)→ (−x , y)

Equivariance under the π/2 rotation (x , y)→ (y ,−x)

These three operations generate the symmetry group D4+̇T 2.

Equivariance under reflection in the horizontal midplane z → −z .

Parameters
Γ = 6λc , 12λc , 18λc , for τ = 0.5, S = −0.1, ε = 1.
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Porous media convection: Γ = 18λc
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Porous media convection: Γ = 18λc
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Porous media convection: Γ = 18λc
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D4 and D2 symmetric states at successive folds showing concentration
contours overlaid on temperature (color): Lo Jacono et al., JFM 730, R2

(2013)
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Transition to shear flow turbulence: turbulent puffs

(a) Two-dimensional spatially localized structure in boundary shear flow, viewed

from above [Gad-El-Hak et al., JFM 110, 73 (1981)]. (b) Edge solution in plane

Couette flow at Re = 375 in a 2× 30× 200 domain. The structure is elongated

in the streamwise direction, with yellow (blue) indicating positive (negative)

streamwise velocity perturbation [Duguet et al., PF 21, 111701 (2009)]
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Turbulent stripes in plane Couette flow

Barkley and Tuckerman, J. Fluid Mech. 576, 109 (2007)
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Plane Couette flow
The problem:

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u, ∇ · u = 0

subject to the boundary conditions u = ±1, v = w = 0 on y = ±1. Here
Re ≡ UL/ν is the Reynolds number. The base flow the plane Couette flow

u = y , v = 0, w = 0.

This flow is linearly stable for all values of Re, but is unstable to finite
amplitude perturbations for sufficiently large Re, and consequently falls
within the class of systems that may exhibit localization. Since the
equations for the perturbations are equivariant with respect to R1 :
(x , y , z)→ (x , y ,−z), (δu, v ,w)→ (δu, v ,−w) and R2 : (x , y , z)→
(−x ,−y , z), (δu, v ,w)→ (−δu,−v ,w) the solutions behave like those of
SH35. We measure the amplitude of the departure from Couette flow
using the dissipation D ≡ (LxLyLx)−1

∫
Ω |∇ × u|2dx dy dz , where

Ω = 4π × 2× 16π is the domain and look for solutions localized in the
cross-stream direction. These exhibit snaking, with LS0,π corresponding to
TW in the streamwise direction and LS±π/2 stationary.
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Plane Couette flow: Schneider et al., PRL 104, 104501
(2010) plus a long awaited longer paper
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FIG. 2: (color online). Snaking of the localized uTW,uEQ solutions of plane Couette flow in (Re,D)

plane. The spatially periodic Nagata solution uP is shown as well; the uTW solution connects with

it near (131, 1.75). Velocity fields of the localized solutions at the saddle-node bifurcations labeled

a,b,c,d are shown in Fig. 3. The rung branches are shown with solid lines connecting the uEQ and

uTW in the snaking region; velocity fields for the points marked α, β, γ are shown in Fig. 4. Open

dots on the uTW traveling wave branch mark points at which the wavespeed passes through zero.

iteration. The computations were performed with 32×33×256 collocation points and 2/3-style

dealiasing and checked against computations with (3/2)3 more gridpoints. The numerical

software is available at www.channelflow.org.

The bifurcation diagram in Fig. 2 shows the uTW and uEQ solutions from Fig. 1 under

continuation in Reynolds number. As Re decreases below 180, the solution branches snake

upwards in dissipation D; that is, they pass through a sequence of sub- and supercritical

saddle-node bifurcations which nearly line up, creating a large multiplicity of localized solu-

tions in 169 < Re < 177. Each saddle-node bifurcation adds structure at the edges (fronts)

of the localized solution while preserving its symmetry. This spatial growth is illustrated

in Fig. 3, which shows the velocity fields at several points along the snaking branches. For

example, Fig. 3(a) shows the y = 0 midplane of uTW at the saddle-node bifurcation marked

a in Fig. 2. Continuing up the solution branch from (a) to (c), the solution gains a pair

of streaks at the fronts while the interior structure stays nearly constant. The marginal

eigenfunction associated with the saddle-node bifurcation at (c) is shown in Fig. 3(g); it is

weighted most heavily at the fronts of the localized solution and has the same symmetry,

so that adding a small component of the eigenfunction strengthens and slightly widens the

5 (December 15, 2009)
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(b) |
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|
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FIG. 1: (color online). Localized traveling wave uTW (a,b) and equilibrium uEQ (c,d) solutions of

plane Couette flow at Re = 400, from [19]. The velocity fields are shown in the y = 0 midplane

in (a,c), with arrows indicating in-plane velocity and the color scale indicating streamwise velocity

u: blue/green/red correspond to u = −1, 0,+1. The x-averaged streamwise velocity is shown in

(b,d), with y expanded by a factor of three.

D = (LxLyLz)
−1

∫
Ω
(|∇ × u|2) dΩ. The laminar profile has D = 1 while solutions such as

those shown in Fig. 1 have D > 1.

Figure 1 shows two exact solutions of (1) at Re = 400 and Ω = 4π×2×16π, originally iden-

tified in [19] for Ω = 4π×2×8π. The solutions are localized in the spanwise z direction and

consist of two to three prominent pairs of alternating wavy roll-streak structures embedded

in a laminar background flow. Figure 1(a,b) is a traveling-wave solution uTW of (1) satisfying

[u, v, w](x, y, z, t) = [u, v, w](x − cxt, y, z, 0), where cx = 0.028 is the streamwise wavespeed.

Figure 1(c,d) is a stationary, time-independent solution uEQ. The equilibrium uEQ is sym-

metric under inversion [u, v, w](x, y, z, t) = [−u, −v, −w](−x, −y, −z, t), and the traveling

wave uTW has a shift-reflect symmetry, [u, v, w](x, y, z, t) = [u, v, −w](x + Lx/2, y, −z, t).

These symmetries ensure that neither uEQ nor uTW drifts in the localization direction z.

To continue these solutions in Re, we combine a Newton-Krylov hookstep algorithm [20]

with quadratic extrapolation in pseudo-arclength along the solution branch. The Navier-

Stokes equations are discretized with a Fourier-Chebyshev-tau scheme in primitive variables

and 3rd-order semi-implicit backwards differentiation time stepping. Bifurcations along

the solution branches are characterized by linearized eigenvalues computed with Arnoldi
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FIG. 3: (color online). Localized traveling wave uTW (left) and equilibrium uEQ (right) solutions

of plane Couette flow at points marked on the solution branches in Fig. 2. (a,c) show the velocity

fields of uTW at its first and second saddle-node bifurcations, moving up each branch from lower

to higher dissipation D; similarly (b,d) for uEQ. (e,f) show the x-averaged velocity, with in-plane

velocity indicated by arrows and streamwise velocity by the colormap. The marginal eigenfunctions

at the saddle-node bifurcations (c,d) are shown in (g,h).
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FIG. 4: (color online). Localized solutions of plane Couette flow along a rung branch, for the

points marked α, β, γ in Fig. 2, and plotted in terms of x-averaged streamwise velocity 〈u〉x(y, z)

as in Fig. 1(b,d). (α) shows the beginning of the rung solution on the uEQ branch with symmetry

〈u〉x(y, z) = −〈u〉x(−y,−z). Midway along the rung, (β) is non-symmetric. The rung terminates

at (γ) on the uTW branch with symmetry 〈u〉x(y, z) = 〈u〉x(y,−z).
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FIG. 4: (color online). Localized solutions of plane Couette flow along a rung branch, for the

points marked α, β, γ in Fig. 2, and plotted in terms of x-averaged streamwise velocity 〈u〉x(y, z)

as in Fig. 1(b,d). (α) shows the beginning of the rung solution on the uEQ branch with symmetry

〈u〉x(y, z) = −〈u〉x(−y,−z). Midway along the rung, (β) is non-symmetric. The rung terminates

at (γ) on the uTW branch with symmetry 〈u〉x(y, z) = 〈u〉x(y,−z).
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fields of uTW at its first and second saddle-node bifurcations, moving up each branch from lower

to higher dissipation D; similarly (b,d) for uEQ. (e,f) show the x-averaged velocity, with in-plane
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FIG. 4: (color online). Localized solutions of plane Couette flow along a rung branch, for the

points marked α, β, γ in Fig. 2, and plotted in terms of x-averaged streamwise velocity 〈u〉x(y, z)

as in Fig. 1(b,d). (α) shows the beginning of the rung solution on the uEQ branch with symmetry

〈u〉x(y, z) = −〈u〉x(−y,−z). Midway along the rung, (β) is non-symmetric. The rung terminates

at (γ) on the uTW branch with symmetry 〈u〉x(y, z) = 〈u〉x(y,−z).
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