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We are given data (a time-series) from a high-dimensional,
multiscale deterministic or stochastic system.

We want to fit the data to a "simple" low-dimensional,
coarse-grained stochastic system.

The available data is incompatible with the desired model at small
scales.

Many applied statistical techniques use the data at small scales.

This might lead to inconsistencies between the data and the
desired model fit.

Additional sources of error (measurement error, high frequency
noise) might also be present.
Problems of this form arise in, e.g.

◮ Molecular dynamics.
◮ Econometrics.
◮ Atmosphere/Ocean Science.
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Data-Driven Coarse Graining

We want to use the available data to obtain information on how to
parameterize small scales and obtain accurate reduced,
coarse-grained models.

We want to develop techniques for filtering out observation error,
high frequency noise from the data.

We investigate these issues for some simple models.
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Consider a high dimensional dynamical system Zt with state
space Z.

Assume that the system has two-characteristic time scales, write
Z = X ⊕ Y with dim(X ) ≪ dim(Y).

Assume that a coarse-grained equation for the dynamics in X
exists:

dXt = F(Xt) dt + Σ(Xt) dWt.

Goal: obtain F(·), Σ(·) from a time series of the slow variable
Xt = P Zt, P : Z → X .

In this talk: assume that the functional form of the coarse-grained
drift and diffusion coefficients are known:

dXt = F(Xt; θ) dt + Σ(Xt; θ) dWt,

with θ ∈ Θ ⊂ R
d.

Goal: estimate these parameters from observations.
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Thermal Motion in a Two-Scale Potential
A.M. Stuart and G.P., J. Stat. Phys. 127(4) 741-781, (2007).

Consider the SDE

dxε(t) = −V ′

(
xε(t),

xε(t)
ε

;α

)
dt +

√
2σ dW(t), (1)

Separable potential, linear in the coefficient α:

V(x, y;α) := αV(x) + p (y) .

p(y) is a mean-zero smooth periodic function.

xε(t) ⇒ X(t) weakly in C([0,T]; Rd), the solution of the
homogenized equation:

dX(t) = −AV ′(X(t))dt +
√

2ΣdW(t).
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Figure: Bistable potential with periodic fluctuations
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The coefficients A, Σ are given by the standard homogenization
formulas.

Goal: fit a time series of xε(t), the solution of (1), to the
homogenized SDE.

Problem: the data is not compatible with the homogenized
equation at small scales.

Model misspecification.

Similar difficulties when studying inverse problems for PDEs with
multiple scales. See: J. Nolen, G.P., A.M. Stuart Multiscale
Modelling and Inverse Problems. in Lecture Notes in
Computational Science and Engineering, Vol. 83, Springer, 2012.
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Deriving dynamical models from paleoclimatic records
F. Kwasniok, and G. Lohmann, Phys. Rev. E, 80, 6, 066104 (2009)
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Fit this data to a bistable SDE

dx = −V ′(x; a) dt + σẆ, V(x) =

4∑

j=1

ajx
j. (2)

Estimate the coefficients in the drift from the palecolimatic data
using the unscented Kalman filter.

the resulting potential is highly asymmetric.
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Estimation of the Eddy Diffusivity from Noisy
Lagrangian Observations
C.J. Cotter and G.P. Comm. Math. Sci. 7(4), pp. 805-838 (2009).

Consider the dynamics of a passive tracer

dx
dt

= v(x, t), (3)

where v(x, t) is the velocity field. We expect that at sufficiently long
length and time scales the dynamics of the passive tracer
becomes diffusive:

dX
dt

=
√

2KdW
dt

(4)

We are given a time series of noisy observations:

Yti = Xti + εti , ti = i∆t, i = 0, . . .N − 1. (5)

Goal: estimate the Eddy Diffusivity K from the noisy Lagrangian
data (5).
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Econometrics: Market Microstructure Noise
S. Olhede, A. Sykulski, G.P. SIAM J. MMS, 8(2), pp. 393-427 (2009)

Observed process Yt:

Yti = Xti + εti , ti = i∆t, i = 0, . . .N − 1. (6)

Where Xt is the solution of

dXt = (µ− νt/2) dt + σtdBt, dνt = κ (α− νt) dt + γν
1/2
t dWt, (7)

Goal: Estimate the integrated stochastic volatility of Xt from the
noisy observations Yt.

Work of Ait-Sahalia et al: Estimator fails without subsampling.
Subsampling at an optimal rate+averaging+bias correction leads
to an efficient estimator.

We have developed an estimator for the integrated stochastic
volatility in the frequency domain.
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Homogenization for SPDEs with Quadratic
Nonlinearities
D. Blomker, M. Hairer, G.P., Nonlinearity 20 1721-1744 (2007),

M. Pradas Gene, D. Tseluiko, S. Kalliadasis, D.T. Papageorgiou, G.P. Phys. Rev. Lett 106, 060602 (2011).

Consider the noisy KS equation

∂tu = −(∂2
x + ν∂4

x )u − u∂xu + σ̃ξ, (8)

on 2π-domains with either homogeneous Dirichlet or Periodic
Boundary Bonditions. We study the long time dynamics of (8)
close to the instability threshold ν = 1 − ε2.
assume that noise acts only on the stable modes (i.e on Ker(L)⊥).
Define u(x, t) = εv(x, ε2t).
For ε≪ 1, PN v ≈ X(t) · e(x) where X(t) is the solution of the
amplitude (homogenized) equation

dXt = (AXt − BX3
t ) dt +

√
σ2

a + σ2
b X2

t dWt. (9)
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There exist formulas for the constants A, B, σ2
a , σ

2
b but they involve

knowledge of the spectrum of L = −(∂2
x + ∂4

x ) and the covariance
operator of the noise.

The form of the amplitude equation (9) is universal for all SPDEs
with quadratic nonlinearities.

Goal: assuming knowledge of the functional form of the amplitude
equation, estimate the coefficients A, B, σ2

a, σ
2
b from a time series

of PNu.

G.A. Pavliotis (IC) Statistical Inference for Multiscale Diffusions 14 / 67



Thermal Motion in a Two-Scale Potential

Consider the SDE

dxε(t) = −∇V

(
xε(t),

xε(t)
ε

;α

)
dt +

√
2σ dW(t),

Separable potential, linear in the coefficient α:

V(x, y;α) := αV(x) + p (y) .

p(y) is a mean-zero smooth periodic function.

xε(t) ⇒ X(t) weakly in C([0,T]; Rd), the solution of the
homogenized equation:

dX(t) = −αK∇V(X(t))dt +
√

2σKdW(t).
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In one dimension

dxε(t) = −αV ′(xε(t))dt − 1
ε

p′
(

xε(t)
ε

)
dt +

√
2σ dW(t).

The homogenized equation is

dX(t) = −AV ′(X(t))dt +
√

2Σ dW(t).

(A,Σ) are given by

A =
αL2

ZẐ
, Σ =

σL2

ZẐ
Z =

∫ L

0
e−

p(y)
σ dy, Ẑ =

∫ L

0
e

p(y)
σ dy.

A and Σ decay to 0 exponentially fast in σ → 0.

The homogenized coefficients satisfy (detailed balance):

A
α

=
Σ

σ
.
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Figure: Vε(x) and V(x).
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We are given a path of

dxε(t) = −αV ′(xε(t)) dt − 1
ε

p′
(

xε(t)
ε

)
dt +

√
2σ dβ(t).

We want to fit the data to

dX(t) = −ÂV ′(X(t))dt +
√

2Σ̂ dβ(t).

It is reasonable to assume that we have some information on the
large–scale structure of the potential V(x).

We do not assume that we know anything about the small scale
fluctuations.
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We fit the drift and diffusion coefficients via maximum likelihood
and quadratic variation, respectively.

For simplicity we fit scalars A,Σ in

dx(t) = −A∇V(x(t))dt +
√

2ΣdW(t).

The Radon–Nikodym derivative of the law of this SDE wrt Wiener
measure is

L = exp

(
− 1

Σ

∫ T

0
A∇V(x) dx(s) − 1

2Σ

∫ T

0
|A∇V(x(s))|2 ds

)
.

This is the maximum likelihood function.
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Let x denote {x(t)}t∈[0,T] or {x(nδ)}N
n=0 with nδ = T.

Diffusion coefficient estimated from the quadratic variation:

Σ̂N,δ(x)) =
1

dNδ

N−1∑

n=0

|xn+1 − xn|2,

Choose Â to maximize log L :

Â(x) = −
∫ T

0 〈∇V(x(s)), dx(s)〉
∫ T

0 |∇V(x(s))|2 ds
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In practice we use the estimators on discrete time data and use
the following discretisations:

Σ̂N,δ(x) =
1

Nδ

N−1∑

n=0

|xn+1 − xn|2,

ÂN,δ(x) = −
∑N−1

n=0 〈∇V(xn), (xn+1 − xn)〉∑N−1
n=0 |∇V(xn)|2 δ

,

ÃN,δ(x) = Σ̂N,δ

∑N−1
n=0 ∆V(xn)δ∑N−1

n=0 |∇V(xn)|2 δ
,
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No Subsampling

Generate data from the unhomogenized equation (quadratic or
bistable potential, simple trigonometric perturbation).

Solve the SDE numerically using Euler–Marayama for a single
realization of the noise. Time step is sufficiently small so that
errors due to discretization are negligible.

Fit to the homogenized equation.

Use data on a fine scale δ ≪ ε2 (i.e. use all data).

Parameter estimation fails.
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Figure: Â, Σ̂ vs ε for quadratic potential.
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Figure: Â, Σ̂ vs σ for quadratic potential with ε = 0.1.
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Subsampling

Generate data from the unhomogenized equation.

Fit to the homogenized equation.

Use data on a coarse scale ε2 ≪ δ ≪ 1.

More precisely

δ := ∆tsam = 2k∆t, k = 0, 1, . . . .

Study the estimators as a function of ∆tsam.

Parameter Estimation Succeeds.
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Figure: Â, Σ̂ vs ∆tsam for quadratic potential with ε = 0.1.
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Figure: B̂ij, i, j = 1, 2 vs ∆tsam for 2d quadratic potential with σ = 0.5, ε = 0.1.
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Conclusions From Numerical Experiments

Parameter estimation fails when we take the small–scale (high
frequency) data into account.

Â, Σ̂ become exponentially wrong in σ → 0.

Â, Σ̂ do not improve as ε→ 0.

Parameter estimation succeeds when we subsample (use only
data on a coarse scale).

There is an optimal sampling rate which depends on σ.

Optimal sampling rate is different in different directions in higher
dimensions.
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Theorem (No Subsampling)

Let xε(t) : R
+ 7→ R

d be generated by the unhomogenized equation.
Then

lim
ε→0

lim
T→∞

Â(xε(t)) = α, a.s.

Fix T = Nδ. Then for every ε > 0

lim
N→∞

ΣN,δ(x
ε(t)) = σ, a.s.

Thus the unhomogenized parameters are estimated – the wrong
answer.
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Theorem (With Subsampling)

Fix T = Nδ with δ = εα with α ∈ (0, 1). Then

lim
ε→0

Σ̂N,δ(x
ε) = Σ in distribution.

Let δ = εα with α ∈ (0, 1), N = [ε−γ ], γ > α. Then

lim
ε→0

ÂN,δ(x
ε) = A in distribution.

Thus we get the right answer provided subsampling is used.
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A Fast-Slow System of SDEs
A. Papavasiliou, G.P. A.M. Stuart, Stoch. Proc. Appl. 119(10) 3173-3210

(2009).

Let (x, y) in X × Y. and consider the following coupled systems of
SDEs:

dx
dt

=
1
ε

f0(x, y) + f1(x, y) + α0(x, y)
dU
dt

+α1(x, y)
dV
dt
, (10a)

dy
dt

=
1
ε2 g0(x, y) +

1
ε

g1(x, y) +
1
ε
β(x, y)

dV
dt
. (10b)
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Here fi : X × Y → R
l, α0 : X × Y → R

l×n, α1 : X × Y → R
l×m,

g1 : X × Y → R
d−l and g0, β and U, V are independent standard

Brownian motions in R
n.

We will refer to (10) as the homogenization problem.

We assume that the coefficients of SDEs (10) are such that, in the
limit as ε→ 0, the slow process x converges weakly in C([0,T],X )
to X, the solution of

dX
dt

= F(X) + K(X)
dW
dt
. (11)

This can be proved for very general classes of SDEs and formulas
for F(x) and K(x) can be obtained ( G.P. and A.M. Stuart
Multiscale Methods: Averaging and Homogenization, Springer
2008).

Our aim it to estimate parameters in (11) given {x(t)}t∈[0,T].
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We want to fit data {x(t)}t∈[0,T] to a limiting (homogenized or
averaged) equation, but with an unknown parameter θ in the drift:

dX
dt

= F(X; θ) + K(X)
dW
dt
. (12)

We assume that the actual drift that is compatible with the data is
given by F(X) = F(X; θ0).

We want to correctly identify θ = θ0 by finding the maximum
likelihood estimator (MLE) when using a statistical model of the
form (12), but using data from the slow-fast system.
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Given data {z(t)}t∈[0,T], the log likelihood for θ satisfying (12) is
given by

L(θ; z) =

∫ T

0
〈F(z; θ), dz〉a(z) −

1
2

∫ T

0
|F(z; θ)|2a(z)dt, (13)

where
〈p, q〉a(z) = 〈K(z)−1p,K(z)−1q〉.

We can define the MLE through

dP

dP0
= exp (−L(θ; X))

where P is the path space measure for (12) and P0 the path pace
measure for

dX
dt

= K(X)
dW
dt
.

The MLE is
θ̂ = argmaxθL(θ; z).
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Assume that we are given data {x(t)}t∈[0,T] from (10) and we want
to fit it to the equation (12). In this case the MLE is
asymptotically biased, in the limit as ε→ 0 and T → ∞. The
MLE does not converge to the correct value θ0.

Theorem

Assume that the slow-fast system (10) as well as the averaged
equation (12) are ergodic. Let {x(t)}t∈[0,T] be a sample path of (10)
and X(t) a sample path of (12) at θ = θ0. Then the following limits, to
be interpreted in L2(Ω) and L2(Ω0) respectively, are identical:

lim
ε→0

lim
T→∞

1
T

L(θ; x) = lim
T→∞

1
T

L(θ; X) + E∞(θ),

with an explicit expression for E∞(θ).
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In order to estimate the the parameter in the drift correctly, we
need to subsample, i.e. use only a (small) portion of the data that
is available to us.

Assume that we are given observation of x(t) at equidistant
discrete points {xn}N

n=1 where xn = x(nδ), Nδ = T.

The log Likelihood function has the form

L
δ,N(z) =

N−1∑

n=0

〈F(zn; θ), zn+1 − zn〉a(zn) −
1
2

N−1∑

n=0

|F(zn; θ)|2a(zn)
δ.

If we choose δ = εα appropriately, then we can estimate the drift
parameter correctly.
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Theorem

Let {x(t)}t∈[0,T] be a sample path of (10) and X(t) a sample path of (12)
at θ = θ0. Let δ = εα with α ∈ (0, 1) and let N = [ε−γ ] with γ > α. Then
(under appropriate assumptions) the following limits, to be interpreted
in L2(Ω′) and L2(Ω0) respectively, and almost surely with respect to
X(0), are identical:

lim
ε→0

1
Nδ

L
N,δ(θ; x) = lim

T→∞

1
T

L(θ; X). (14)

Define
θ̂(x; ε) := arg max

θ
L

N,δ(θ; x).

Then, under additional assumptions,

lim
ε→0

θ̂(x; ε) = θ0, in probability.
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Thermal motion in a two-scale potential

dx
dt

= −∇Vε(x) +
√

2β−1 dW
dt

(15)

where
Vε(x) = V(x) + p(x/ε),

where p(·) is a smooth 1-periodic function. The coarse-grained
equation is The homogenized equation is

dX
dt

= −K∇V(X) +
√

2β−1K
dW
dt

(16)

where

K =

∫

Td
(I + ∇yΦ(y))(I + ∇yΦ(y))Tρ(y) dy.
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Suppose there is a set of parameters θ ∈ Θ in the large-scale part
of the potential

dX
dt

= −K∇V(X; θ) +
√

2β−1K
dW
dt

using data from (15).

The error in the asymptotic log Likelihood function is:

E∞(θ) =
(
− 1 + Ẑ−1

p Z−1
p

)βZ−1
V

2

∫

R

|∂xV|2e−βV(x;θ) dx. (17)

where ZV =
∫

R
e−βV(q;θ) dq, Zp =

∫ 1
0 e−βp(y) dy Ẑp =

∫ 1
0 eβp(y) dy. In

particular, E∞ < 0.
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Estimating the Eddy Diffusivities from Noisy
Lagrangian Observations
C.J. Cotter and G.P. Comm. Math. Sci. 7(4), pp. 805-838 (2009).

Consider the equation for the Lagrangian trajectories

ẋ = v(x, t) +
√

2κẆ. (18)

For v(x, t) being either periodic or random solutions to (18)
converge to an effective Brownian motion:

lim
ε→0

εx(t/ε2) =
√

2KW(t), (19)

weakly on C([0,T]; Rd). At long length-time scales the dynamics of
the passive tracer is given by

Ẋ =
√

2KẆ. (20)

We want to estimate the eddy diffusivity and other large-scale
quantities (e.g. effective drift) from noisy Lagrangian observations.

G.A. Pavliotis (IC) Statistical Inference for Multiscale Diffusions 41 / 67



The eddy diffusivity (along the direction ξ ∈ R
d) is given by

Kξ = κ‖∇zχ
ξ(z) + ξ‖2

L2(Td)

where
−L0χ = v, L0 = v(z) · ∇z + κ∆z

with periodic boundary conditions.
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The homogenized equation (20) is compatible with the data only
at sufficiently large scales.

We do not know a priori what the right length and time scales are
for which the dynamics can be adequately described by (20).

The diffusive time scale at which (20) is valid depends on the
detailed properties of v(x, t) and on κ.
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For the estimation of the eddy diffusivity we use

KN,δ =
1

2Nδ

N−1∑

n=0

(
xn+1 − xn

)
⊗

(
xn+1 − xn

)
, (21)

where N is the number of observations. We have that

lim
N→∞

N−1∑

j=0

(
x(j+1)∆t − xj∆t

)
⊗

(
x(j+1)∆t − xj∆t

)
= 2κIT, a.s., (22)

with ∆tN = T, fixed.

The eddy diffusivity satisfies the bounds

κ 6 Kξ
6

C
κ
, (23)

The estimator KN,δ underestimates the value of the eddy
diffusivity, in particular when κ≪ 1.
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Theorem

Let v(z) be a smooth, divergence-free smooth vector field on T
d. Then

lim
κ→0

E|KN,δ
ξ −Kξ|2 = 0. (24)

when N ∼ κζ and δ ∼ κγ where the exponents γ and ζ depend on the
properties of the velocity field v(x, t).
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Simply subsampling is clearly not the optimal strategy since we
are not using a large portion (almost all!) of the data. Note
however that the data that we do not use is highly correlated.

We combine subsampling with averaging, in order to reduce the
bias of the estimator and to remove the measurement error.
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We split the data into NB bins of size δ with δNB = N and to
perform a local averaging over each bin. Let

xj
n := x((n − 1)δ + (j − 1)∆t),

n = 1, . . .NB, j = 1, . . . J, JNB = N,

be the j-th observation in the n-th bin. J = δ/∆t is the number of
observations in each bin. The box-averaged estimator is

KN,δ
bx =

1
2Nδ

N−1∑

n=0



1
J

J∑

j=1

xj
n+1 −

1
J

J∑

j=1

xj
n





⊗



1
J

J∑

j=1

xj
n+1 −

1
J

J∑

j=1

xj
n



 . (25)
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Compute a series of estimators, each using a different
observation from each bin, and then to compute the average. This
is the shift-averaged estimator:

KN,δ
st =

1
J

J∑

j=1

1
2Nδ

N−1∑

n=0

(
xj

n+1 − xj
n

)
⊗

(
xj

n+1 − xj
n

)
. (26)
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Effect of Observation Error
Assume that the observed process is

Yξ
tj = Xξ

tj + θεξtj , j = 1, . . .N, (27)

where θ > 0 and εξtj is collection of i.i.d N (0, 1) random variables ,
independent from the Brownian motion driving the Lagrangian
dynamics.
We have

E

∣∣∣Kξ
N,δ(Yt) −Kξ

∣∣∣
2

= E

∣∣∣Kξ
N,δ(Xt) −Kξ

∣∣∣
2
+ 3

θ4

δ2

+2θ2
(

1
δ

+
2

Nδ

)
(Kξ + R),

Provided that ,N, δ → ∞ at an appropriate rate, then

lim
κ→0

E

∣∣∣Kξ
N,δ(Yt) −Kξ

∣∣∣
2

= 0.
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Figure: Estimated eddy diffusivity for shear flow with observation error.
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Figure: K for modulated shear flow with observation error.
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Figure: K for Taylor-Green flow with observation error.
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Figure: K for OU-modulated shear flow with observation.
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Semiparametric Drift and Diffusion Estimation
S. Krumscheid, S. Kalliadasis, G.P., Preprint 2011

Optimal subsampling rate and estimator curves generally
unknown

MLE only feasible for drift parameters.

QVP only applicable for constant diffusion coefficients.

We propose new estimators that are applicable in a
semiparametric framework and for non-constant diffusion
coefficients.
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The Estimators

Scalar-valued Itô SDE

dxt = f (xt) dt +
√

g(xt) dWt , x(0) = x0

Parameterization of drift and diffusion coefficient

f (x) ≡ f (x;ϑ) :=
∑

j∈Jf

ϑjx
j and g(x) ≡ g(x; θ) :=

∑

j∈Jg

θjx
j

Goal
Determine ϑ ≡ (ϑj)j∈Jf

∈ R
p and θ ≡ (θj)j∈Jg

∈ R
q, with Jf , Jg ⊂ N0
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By the Martingale property of the stochastic integral we find

E(xt − x0) = E

(∫ t

0
f (xs) ds

)
=

∑

j∈Jf

ϑj

∫ t

0
E(xs

j) ds , for t > 0 fixed

This can be rewritten as

b1(x0) = a1(x0)
Tϑ

with b1(ξ) := Eξ(xt − ξ) ∈ R and a1(ξ) :=
(∫ t

0 Eξ(xs
j) ds

)

j∈Jf

∈ R
p

Equation a1(x0)
Tϑ = b1(x0) is ill-posed

Since the equation is valid for each initial condition, we can
overcome this shortcoming by considering multiple initial
conditions (x0,i)16i6m, m > p, and obtain

A1ϑ = b1

with A1 :=
(
a1(x0,i)

T
)

16i6m ∈ R
m×p, b1 :=

(
b1(x0,i)

)
16i6m ∈ R

m

Define estimator to be the best approximation

ϑ̂ := A+
1 b1
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Assume now that drift f is already estimated, hence known

By Itô Isometry and the parameterization of g we find

E

((
xt − x0 −

∫ t

0
f̂ (xs) ds

)2
)

= E

(∫ t

0
g(xs) ds

)
=

∑

j∈Jg

θj

∫ t

0
E(xs

j) ds

Provides the same structure as for ϑ

Thus, we can follow the same steps as before: Rewriting,
considering multiple initial conditions, and taking the best
approximation to obtain

θ̂ := A+
2 b2

with A2 and b2 defined appropriately
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Summary: Two Step Estimation Procedure

1 Estimate drift coefficient via ϑ̂ := A+
1 b1

2 Based on ϑ̂ estimate diffusion coefficient via θ̂ := A+
2 b2

Further Approximations
Discrete Time Data: Approximate integrals via trapezoidal rule

Approximate expectations via Monte Carlo experiments
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Fast OU Process Revisited

Fast/Slow System

dxt =
(σ
ε

yt + Axt
)

dt ,

dyt = − 1
ε2 yt dt +

√
2
ε

dVt

Effective Dynamics

dXt = AXt dt +
√

2σ dWt
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Fast OU Process II
Fast/slow system:

dxt =
(yt

ε

√
σa + σbx2

t + (A − σb)xt − Bxt
3) dt ,

dyt = − 1
ε2 yt dt +

√
2
ε

dVt

Effective Dynamics:
dXt = (AXt − BXt

3) dt +

√
2(σa + σbXt

2) dWt

True values:

A = 1 , σa = 0.81

B = 2 , σb = 0.49

ε = 0.1
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Brownian Motion in two-scale Potential [Pavliotis, Stuart ’07]

Fast/slow system:

dxt = − d
dx

Vα

(
xt,

xt

ε

)
dt +

√
2σ dUt

Two-scale potential: Vα(x, y) = αV(x) + p(y), with p(·) periodic
Effective Dynamics:

dXt = −AV ′(Xt) dt +
√

2Σ dWt

with:
V(x) = x2/2

p(y) = cos (y)

True values:
α = 1 , A ≈ 0.192

σ =
1
2
, Σ ≈ 0.096

ε = 0.1
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Fast Chaotic Noise
Fast/slow system:

dx
dt

= x − x3 +
λ

ε
y2 ,

dy1

dt
=

10
ε2 (y2 − y1) ,

dy2

dt
=

1
ε2 (28y1 − y2 − y1y3) ,

dy3

dt
=

1
ε2 (y1y2 −

8
3

y3)

Effective Dynamics: [Melbourne, Stuart ’11]

dXt = A
(
Xt − Xt

3) dt +
√
σ dWt

true values:

A = 1 , λ =
2

45
, σ = 2λ2

∫ ∞

0
lim

T→∞

1
T

∫ T

0
ψs(y)ψs+t(y) ds dt
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Fast Chaotic Noise
Estimators

Values for σ reported in the literature (ε = 10−3/2)
◮ 0.126 ± 0.003 via Gaussian moment approx.
◮ 0.13 ± 0.01 via HMM

[Givon, Kupferman, Stuart ’04]

here: ε = 10−1 → σ̂ ≈ 0.121 and ε = 10−3/2 → σ̂ ≈ 0.124

But we estimate also Â
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Truncated Burgers Equation

Diffusively time rescaled variant of Burgers’ equation

dut =
( 1
ε2 (∂2

x + 1)ut +
1
2ε
∂xu2

t + νut

)
dt +

1
ε

Q dWt

on an open interval equipped with homogeneous Dirichlet
boundary conditions

Effective dynamics for dominant mode

dXt =
(
AXt − BXt

3) dt +
√
σa + σbXt

2 dWt

For the three-term truncated representation the true values are:

A = ν +
q1

2

396
+

q2
2

352
, B =

1
12

, σa =
q1

2q2
2

2112
, and σb =

q1
2

36
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Truncated Burgers Equation
Estimators

ν = 1, q1 = 1 = q2 and ε = 0.1
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Fast Chaotic Noise II
Fast/slow system:

dx
dt

= x − x3 +
λ

ε
(1 + x2)y2 ,

dy1

dt
=

10
ε2 (y2 − y1) ,

dy2

dt
=

1
ε2 (28y1 − y2 − y1y3) ,

dy3

dt
=

1
ε2 (y1y2 −

8
3

y3)

Effective Dynamics:
dXt =

(
AXt + BXt

3 + CXt
5) dt +

√
σa + σbXt

2 + σcXt
4 dWt

true values (λ = 2/45):

A = 1 + σ , B = σ − 1 , C = 0 , σa = σ , σb = 2σ , σc = σ ,

σ = 2λ2
∫ ∞

0
lim

T→∞

1
T

∫ T

0
ψs(y)ψs+t(y) ds dt
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Fast Chaotic Noise
Estimators
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