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Abstract.

We give a description of infinite families of finite primitive permutation
groups for which there is a uniform finite upper bound on the diameter of all
orbital graphs. This is equivalent to describing families of finite permutation
groups such that every ultraproduct of the family is primitive. A key result
is that, in the almost simple case with socle of fixed Lie rank, apart from very
specific cases, there is such a diameter bound. This is proved using recent
results on the model theory of pseudofinite fields and difference fields.

1 Introduction

In this paper we classify classes of finite primitive permutation groups with
a boundedness property which is motivated by logic — namely, the property
that all orbital graphs have bounded diameter. This condition ensures that,
in an obvious first order language for permutation groups, primitivity is
implied by a first order expressible condition, so extends to ultraproducts.
We believe that the bounded diameter property is also of group-theoretic
interest.

Throughout, a permutation group will be regarded as a two-sorted struc-
ture (X,G) in a language L, with a definable group structure on G and a
definable faithful action of G on the set X; so the language will have a
binary operation (group multiplication) on the sort G, a unary operation
(inversion) on G, a constant symbol for the group identity, and a binary
function X ×G→ X for the group action.

A first order theory T has the finite model property if every sentence in T
has a finite model. We consider complete theories T of infinite permutation
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groups such that T has the finite model property, and for all models (X,G) of
T , the group G acts primitively on X. Equivalently, we consider ω-saturated
pseudofinite permutation groups which are primitive, where a structure is
said to be pseudofinite if it is elementarily equivalent to a non-principal
ultraproduct of finite structures.

Recall that a transitive permutation group (X,G) is primitive if and only
if each point stabiliser Gx (x ∈ X) is a maximal subgroup of G. In a per-
mutation group viewed as an L-structure, any point stabiliser is parameter-
definable in L. Thus, by compactness, an ω-saturated permutation group
(X,G) is primitive if and only if there is d ∈ N such that for any x ∈ X

and any g, h ∈ G \ Gx, h can be written as a word of length at most d
in g, g−1 and elements from Gx; that is, Gx is boundedly maximal. Conse-
quently the determination of ω-saturated primitive pseudofinite permutation
groups amounts to classifying families of finite primitive permutation groups
in which the point stabilisers are uniformly boundedly maximal.

Another interpretation of this problem comes from the theory of orbital
graphs. If G is a transitive permutation group on X, then an orbital graph for
(X,G) is a graph with vertex set X whose edge set is an orbit of G on X{2},
the collection of unordered 2-element subsets of X. The criterion of D.G.
Higman [18] states that a transitive permutation group (X,G) is primitive if
and only if all orbital graphs are connected. Thus, an ω-saturated transitive
permutation group (X,G) is primitive if there is d ∈ N such that all orbital
graphs have diameter at most d. We shall write diam(X,G) (or diam(G,H),
where H is a point stabiliser Gx) for the supremum of the diameters of the
orbital graphs of (X,G).

The above discussion shows that the following goals are essentially equiv-
alent:

(i) Describe, for each d, the class of all finite primitive permutation
groups (X,G) such that diam(X,G) ≤ d.

(ii) Describe, for each d, the class of all finite primitive permutation
groups (X,G) such that for each g, h ∈ G \Gx, h can be written as a word
of length at most d in g, g−1 and elements of Gx.

(iii) Describe primitive ω-saturated pseudofinite permutation groups.

(iv) Describe primitive infinite ultraproducts of finite permutation groups.

(v) Describe pseudofinite structures (G,H) (i.e. a group G, with a pred-
icate for a subgroup H) such that H is boundedly maximal in G and is
core-free in G (that is,

⋂
g∈GH

g = {1}).
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In this paper we shall achieve each of these goals, up to some looseness
in the classifications. Mostly, we work with condition (i), and we denote the
class of primitive permutation groups described in (i) by Fd. We do not give
a fully explicit description of Fd, but give tight structural information (see
Theorems 1.1 and 1.2). A description of primitive infinite ultraproducts of
finite permutation groups, as in (iv), follows, and we shall discuss this in
Section 7.

In condition (iii) above, ω-saturation seems essential. However, we do
not currently have an example of a primitive pseudofinite permutation group
such that in any/some ω-saturated model of its theory, the group is not
primitive. ‘Omitting types’ arguments appear not to work. Without pseud-
ofiniteness there are many examples – for example any primitive automor-
phism group of an infinite locally finite graph.

Our treatment relies on the classification of finite simple groups (in a
“weak” sense – we only assume that the number of sporadic groups is finite),
and we use heavily the O’Nan-Scott Theorem and Aschbacher’s description
of subgroups of classical groups [1], together with work of Liebeck and Seitz
[37] on maximal subgroups of exceptional groups. A key starting point is
the bound provided by Lemma 2.1 below. Model-theoretic techniques are
used in Sections 4 and 5 to show that certain families of finite primitive
permutation groups do have bounded diameter.

We see this project partly as an extension of work begun in [25]. Re-
call that a countably infinite first order structure is ω-categorical if it is
determined up to isomorphism, among countably infinite structures, by its
first order theory. By the Ryll-Nardzewski Theorem, a countably infinite
structure is ω-categorical precisely if its automorphism group is oligomor-
phic, that is, has finitely many orbits on k-tuples for all k. If (X,G) is a
finite permutation group, let gk(G) be the number of orbits of G on Xk.
In [25], a structural description was given, for any fixed d, of the class Σd
of all finite primitive permutation groups (X,G) such that g5(G) ≤ d. The
description is tight enough that the bound d on g5(G) implies, for each n,
a bound (depending on d and n) on gn(G). The permutation groups in Σd
fall into families such that, in the ‘limit’, the group is the automorphism
group of an ω-categorical ‘smoothly approximable’ structure. A very rich
theory of smooth approximation (without any primitivity assumption) was
then developed in [12].

It was shown in [40] that the assumption that g5(G) is bounded can be
weakened to an assumption that g4(G) is bounded, with the same general
theory, and the same examples in the limit, arising. However, if we just
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require a bound on g3(G), many more examples arise. For example, the
groups PGL(2, q), acting on the projective line, are triply transitive but the
number of orbits on quadruples grows with q, so these do not approximate
any ω-categorical limit. The point here is essentially that there are no
ω-categorical fields, so if a class of finite permutation groups is to have
oligomorphic limit, one expects an absolute bound on the size of any fields
involved.

It would be entirely feasible to describe all finite primitive permutation
groups with a uniform bound on g2 (hence also on the permutation rank).
The non-abelian socle case was already done in [13], and for the affine case,
the key information should be contained in [17]. However, the families of
permutation groups arising do not seem to have any model-theoretic mean-
ing. For example, for n = 6, 7, 8 and m =

(
n
3

)
, the permutation groups of

affine type Vm(q).GLn(q) (q varying, GLn(q) acting in its natural action on
the exterior cube of Vn(q)) each have a bounded number of orbits on pairs,
but for any fixed n ≥ 9, the number of orbits increases with q; and for any
fixed n, these permutation groups are interpretable uniformly (as q varies)
in the finite field Fq, so there seems to be no model-theoretic distinction
between the cases n = 8 and n = 9.

Every orbital graph of a primitive permutation group (X,G) has diam-
eter at most g2(G) − 1. Thus, the collection of families of finite primitive
permutation groups (X,G) with a uniform finite bound on diam(X,G) con-
tains the collection of families with a uniform bound on g2. So, in a sense,
we are tackling a richer class of finite permutation groups than that given by
bounding g2, and at the same time gaining some model-theoretic meaning.

We now state our main results. The first theorem describes the classes
of finite primitive groups of bounded orbital diameter (see (i) above). In
order to state it we need to define some types of primitive groups. We use
the notation

Cln(q)

to denote a quasisimple classical group with natural module Vn(q) of dimen-
sion n over Fq. Also, we define the L-rank of an almost simple group with
socle G0 to be n if G0 = Altn, and to be the untwisted Lie rank if G0 is of
Lie type. (We use the term L-rank rather than just rank, to avoid possible
confusion with the rank of a permutation group.)

Affine groups

Fix a natural number t. We say that an affine primitive group (X,G) is
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of t-bounded classical type if

(i) G = V H ≤ AΓLn(q), where X = V = Vn(q), H ≤ ΓLn(q),

(ii) H preserves a direct sum decomposition V = V1 ⊕ ∙ ∙ ∙ ⊕ Vk with H

transitive on {V1, . . . , Vk} and k ≤ t,

(iii) there is a tensor decomposition V1 = Vm(q)⊗Fq Y such that H1 :=

HV1V1 , the group induced by H on V1, contains a normal subgroup Clm(q0)⊗1Y
acting naturally on V1, where dimY ≤ t and Fq0 is a subfield of Fq with
|Fq : Fq0 | ≤ t.

Almost simple groups

Fix a natural number t, and let G be a finite almost simple primitive
permutation group on a set X, with socle G0 (a non-abelian simple group).
We say that the primitive group (X,G) has a standard t-action if one of the
following holds:

(a) G0 = Altn and X = I{t}, the set of t-subsets of I = {1, . . . , n} with
the natural action of Altn;

(b) G0 = Cln(q) and X is an orbit of subspaces of dimension or codi-
mension t in the natural module Vn(q); the subspaces are arbitrary if G0 =
PSLn(q), and otherwise are totally singular, non-degenerate, or, if G0 is
orthogonal and q is even, are non-singular 1-spaces (in which case t = 1);

(c) G0 = PSLn(q), G contains a graph automorphism of G0, and X is
an orbit of pairs of subspaces {U,W} of V = Vn(q), where either U ⊆W or
V = U ⊕W , and dimU = t, dimW = n− t;

(d) G0 = Sp2m(q), q is even, and a point stabilizer in G0 is O±2m(q) (here
we take t = 1).

Simple diagonal actions

Let T be a non-abelian simple group, let k ≥ 2 and let T k act in the usual
way on the set X of right cosets of the diagonal subgroup {(t, . . . , t) : t ∈ T}
in T k. If G is a primitive subgroup of Sym(X) having socle T k, we say (X,G)
is a primitive group of simple diagonal type. (A little more detail about these
can be found later in the paper in Section 2.)

Product actions

Let H be a primitive group of almost simple or simple diagonal type on
a set Y , and let k ≥ 2. Then H wr Symk acts naturally on the Cartesian
product X = Y k, and we say that (X,G) has a product action on X if G is
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a primitive subgroup of H wr Symk and G has socle Soc(H)k.

We shall say that a class C of finite primitive permutation groups is
bounded if C ⊂ Fd for some d – that is, all the orbital graphs of members of
C are of diameter at most d.

Our first main result describes bounded (infinite) classes C of finite prim-
itive permutation groups. All bounds implicit in the statement are in terms
of d, where C ⊂ Fd. By passing to an infinite subset, and applying the
O’Nan-Scott Theorem [32] (see Section 2), we may assume that the mem-
bers of C are of one of the following types:

(1) affine;

(2) almost simple of unbounded L-rank;

(3) almost simple of bounded L-rank;

(4) simple diagonal actions;

(5) product actions;

(6) twisted wreath actions.

(The actions in (6) do not arise in the theorem below – for more detail on
them see Section 2 below, or [32].)

Below, and elsewhere in this paper, if G(q) is a Chevalley group, then a
subfield subgroup is a group G(q0) embedded naturally in G(q), where Fq0 is
a subfield of Fq. We also regard as subfield subgroups twisted groups inside
untwisted groups, for example PSUn(q) < PSLn(q

2).

Theorem 1.1 Let C be an infinite class of finite primitive permutation
groups of one of the types (1)− (6) above, and suppose C is bounded.

(1) If C consists of affine groups, then these are all of t-bounded classical
type, for some bounded t.

(2) If C consists of almost simple groups of unbounded L-ranks, then the
socles of groups in C of sufficiently large L-rank are alternating or classical
groups in standard t-actions, where t is bounded.

(3) If C consists of almost simple groups G of bounded L-rank, then point
stabilizers Gx have unbounded orders; moreover, if G has socle G(q), of Lie
type over Fq, and Gx is a subfield subgroup G(q0), then |Fq : Fq0 | is bounded.

(4) If C consists of primitive groups G of simple diagonal type, then these
have socles of the form T k, where T is a simple group of bounded L-rank
and k is bounded.

(5) If C consists of primitive groups (X,G) of product action type, where
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X = Y k and G ≤ H wr Symk for some primitive group (Y,H), then k is
bounded, and (Y,H) has bounded diameter.

(6) No infinite bounded class C consists of primitive groups (X,G) of
twisted wreath type.

There is a partial converse to this theorem. Essentially, if we take a
class C of primitive groups satisfying the conclusions of (1)–(5), then C will
be a bounded class. For affine groups our converse is somewhat weaker –
see Lemma 3.1. For simple diagonal and product actions the converse is
established in Section 5 (again, not quite a full converse). For alternating
and classical groups in standard t-actions the diameter bound is proved in
Proposition 4.1(ii).

Perhaps the most striking part of the converse is for almost simple groups
of bounded L-rank, and we state this next.

Theorem 1.2 Let C be a class consisting of finite primitive almost simple
groups G of bounded L-rank. Assume

(i) point stabilizers Gx (G ∈ C) have unbounded orders, and

(ii) if G ∈ C has socle G(q), of Lie type over Fq, and Gx is a subfield
subgroup G(q0), then |Fq : Fq0 | is bounded.

Then the class C is bounded.

For example, the theorem tells us that if C consists of the groups E8(q) (q
varying) acting on the coset space E8(q)/X(q) for some maximal subgroup
X(q) arising from a maximal connected subgroup X(K) of the simple alge-
braic group E8(K), where K = F̄q (for example X(K) = D8(K) or A1(K)
– see [37]), then the diameters of all the orbital graphs are bounded by an
absolute constant. It is not at all clear (to us) how to prove this fact using
group theory, and indeed our proof has a large element of model theory,
based on Theorem 4.3 in Section 4.

Theorem 1.2 has a consequence concerning distance-transitive graphs.
Recall that a distance-transitive graph is one for which the automorphism
group is transitive on pairs of vertices at any given distance apart. Thus
a finite distance-transitive graph is an orbital graph for the automorphism
group (acting on the vertex set) in which the diameter is equal to one less
than the permutation rank. The following corollary can be deduced fairly
quickly from Theorem 1.2 (it will be proved in Section 6).
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Corollary 1.3 There is a function f : N→ N such that the following holds.
Let G be a finite almost simple group with socle G(q) of Lie type over Fq, and
of L-rank r. Suppose G acts primitively on a set X, with Gx a non-parabolic
subgroup, and suppose there exists a (non-complete) distance-transitive graph
on X with automorphism group G. Then q < f(r).

There is currently a programme under way aimed at classifying all finite
distance-transitive graphs (see [4] for a survey); in particular this classifica-
tion is now reduced to cases where the automorphism group is primitive and
almost simple, and Corollary 1.3 is a contribution to this case, showing that
groups of Lie type in non-parabolic actions can only occur over bounded
fields.

As a by-product of our proof of Theorem 1.2, we shall prove that maxi-
mal subgroups of finite simple groups of a fixed Lie type, apart from subfield
subgroups corresponding to unbounded field extensions, are uniformly defin-
able in the groups (see Corollary 4.11). This generalises [19, Theorem 8.1].
We also prove a uniform definability result for representations of a class of
finite simple groups of given Lie type and highest weight (see 4.12).

As discussed at the start of the paper (see the goals (i)-(v)), Theorem
1.1 translates into a description of primitive non-principal ultraproducts of
finite permutation groups. We shall give this description in Section 7.

We have tried to write the paper for both group theorists and model
theorists, giving background in Section 2 on the O’Nan-Scott Theorem, and
on some of the model theory needed. Most of the paper can be understood
with very little knowledge of model theory. However, as mentioned above,
the proof of Theorem 1.2 does use some substantial model theory: the main
result needed – Theorem 4.3 – can be viewed as a “black box”, but some
knowledge of model-theoretic definability (and interpretability) is needed to
understand its use. The affine case of Theorem 1.1 is handled in Section 3,
and the almost simple case in Section 4, where Theorem 1.2 is also proved.
The remaining cases (simple diagonal, product action, twisted wreath ac-
tion) are handled in Section 5. The last two sections contain the proof of
Corollary 6 and the translation of our results into a description of primitive
non-principal ultraproducts of finite permutation groups.

Notation Throughout, Fq will denote a finite field of order q. The algebraic
closure of a field K is denoted K̄. If H is a finite group, then H∞ denotes the
last term in its derived series, and Soc(H) denotes the socle of H, that is, the
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direct product of its minimal normal subgroups. We use the term socle also
for infinite groups, but only in situations where its meaning is clear (such as
for the automorphism group of a Chevalley group over a pseudofinite field).
We denote by Zn the finite cyclic group of order n. The symmetric and
alternating groups on {1, . . . , k} are denoted by Symk and Altk respectively,
and we also write Sym(X) and Alt(X) for the symmetric and alternating
groups on a set X. We generally write a power of a Frobenius automorphism
of a field as x 7→ xq, and the corresponding induced field automorphism of
a Chevalley group over the field as x 7→ x(q).

Acknowledgement We thank Sasha Borovik for very helpful conversations
at an early stage in this work, and Bob Guralnick for providing us with an
argument given in the discussion following Lemma 3.2.

2 Preliminaries

In this section we present some results from the literature that we shall need.
They concern the O’Nan-Scott Theorem, and a little background on model
theory.

The O’Nan-Scott Theorem

The following brief discussion is taken from [32]. Suppose (X,G) is a
finite primitive permutation group, and let S = Soc(G). The O’Nan-Scott
theorem states that there is a finite simple group T such that S is a direct
product of copies of T , say S = T k, and G is as in one of the following cases.

Case (1) (Affine case) Here S is elementary abelian and acts regularly on
X. Identifying S with X, we may view X as a vector space V = Vn(p) of
dimension n over Fp (p prime). The stabiliser H of the zero vector, in its
action on S, acts linearly, and G = V H with H ≤ GLn(p) irreducible.

In the remaining cases, T is non-abelian.

Case (2) (Almost simple case) Here the socle S = T is simple, and S ≤
G ≤ Aut(S) (so G is almost simple).

Case (3)(a) (Simple diagonal) Define W to be the following subgroup of
Aut(T ) wr Symk:

W := {(a1, . . . , ak).π : ai ∈ Aut(T ), π ∈ Symk, ai ≡ aj mod InnT for all i, j}.
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Define an action of W on X by identifying X with the right coset space of
the stabiliser

Wx := {(a, . . . , a)π : a ∈ Aut(T ), π ∈ Symk}.

In this case G is a subgroup of W which has socle Inn(T )k ∼= T k and acts
primitively on X (if k > 2 this amounts to saying that G acts primitively
on the set of simple factors of T k).

Case (3)(b) (Product action) Let H be a primitive permutation group on
a finite set Y , of type (2) or (3)(a), and let K := Soc(H). For l > 1, let
W = H wr Syml act on X = Y l in the product action. In this case G is a
primitive subgroup of W with socle S = K l; in particular this means that
G acts transitively on the l factors.

Case (3)(c) (Twisted wreath product) Let P be a transitive permutation
group on {1, . . . , k}, and Q := P1 (the stabiliser of 1). Suppose there is a
homomorphism φ : Q→ Aut(T ) with image containing Inn(T ). Define

B := {f : P → T : f(pq) = f(p)φ(q) for all p ∈ P, q ∈ Q}.

Then B is a group under pointwise multiplication, and B ∼= T k. Let P act
on B by setting fp(x) = f(px) for p, x ∈ P and f ∈ B. In this case G is the
semidirect product BP , with action on X defined by setting Gx = P . Here
|X| = |T |k, Soc(G) = B (the unique minimal normal subgroup of G), and
B acts regularly on X. Note that |T | ≤ (k − 1)!, and |G| ≤ k!((k − 1)!)k.

Some model theory

Next, we give a little model theory background. We assume familiarity
with the notions of first order language and structure, of a formula, of a
first order theory, and with the compactness theorem. Given a complete
theory T , a model M of T , and some set A ⊆ M , an n-type over A is a set
of formulas in variables x1, . . . , xn which is consistent with T ; that is, any
finite subset of them is simultaneously realised in M . A complete n-type
over A is a maximal such set. If p is a type over A, then by compactness
there will be an elementary extension N of M and (b1, . . . , bn) ∈ Nn which
realises p, that is, satisfies all formulas in p; and for any b̄ ∈ Nn, the set
of formulas over A which are true of b̄ is a complete type over A. If λ is
an infinite cardinal and N |= T , we say that N is λ-saturated if, for every
A ⊆ N with |A| < λ, every type over A is realised in N ; and N is saturated
if it is |N |-saturated. By standard compactness arguments, if M |= T is
infinite then, for every infinite cardinal λ, M has a λ-saturated elementary
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extension. However, for existence of saturated models one generally requires
set-theoretic assumptions like the generalised continuum hypothesis.

Ultraproducts give a method of construction, of algebraic flavour, of ω1-
saturated models. Fix a countable language L, and let Mi (for i ∈ ω) be
countable (possible finite) L-structures. Let U be a non-principal ultrafilter
on ω. We say that a property P holds almost everywhere (a.e.) if {i ∈
ω : Mi satisfies P} ∈ U . The ultraproduct N = Πi∈ωMi/U has domain
(Πi∈ωMi)/ ≡, where two sequences in the Cartesian product are equivalent
modulo ≡ if they agree a.e. Let [(ai)] be the ≡-class of the sequence (ai),
where ai ∈ Mi for each i. Put [(ai)]j := [(aij)], where j = 1, . . . , n and
aij ∈ Mi for each i ∈ ω. If R is an n-ary relation symbol of L, then
N |= R[(ai)]1 . . . [(ai)]n if and only if Mi |= Rai1 . . . ain a.e.; this is well-
defined. The interpretation of function and constant symbols of L is defined
similarly. The main theorem about ultraproducts is  Los’s Theorem, which
says the following: if φ(x1, . . . , xn) is any first order formula, and aij ∈ Mi
for i ∈ ω and j = 1, . . . , n, then N |= φ([(ai)]1, . . . [(ai)]n) if and only if
Mi |= φ(ai1 . . . , ain) a.e.. Usually, applications of  Los’s theorem will not
be made explicit. The ultraproduct N will be ω1-saturated. Assuming the
continuum hypothesis, N will be saturated.

A definable set in a structure M is the solution set in M of a first order
formula, possibly with parameters. We assume familiarity with the notion of
one first-order structure M being interpretable in another structure N (pos-
sibly with parameters). This means roughly that the domain of M is a de-
finable subset of Nk for some k, modulo some definable equivalence relation;
and the relations (and functions and constants) of M come from definable
sets in N . In this paper we deal with the notion of a family C of structures be-
ing uniformly interpretable in a family of structures D. By this, we mean that
there is an injection f : C → D, such that, for each M ∈ C, M is interpretable
in f(M), and the interpretation is uniform across C. This means that there
is a fixed k, and fixed formulas φ(x1, . . . , xk, z̄), ψ(x1, . . . , xk, y1, . . . , yk, w̄),
such that for each M ∈ C, there are ā ∈ f(M)l(z̄) and b̄ ∈ f(M)l(w̄) such
that M has domain {x̄ ∈ f(M)k : f(M) |= φ(x1, . . . , xk, ā)}/ ≡, where ≡ is
an equivalence relation on f(M)k defined by ψ(x̄, ȳ, b̄); and there are similar
uniformity requirements for the definitions of the relations, functions, and
constants of M . Slightly more generally, we say that C is uniformly inter-
pretable in D is there are finitely many formulas φi, ψj as above such that
for each M ∈ C, one of the φi and ψj suffices to interpret M in f(M); here,
the formulas which define the relations on C can also range over a finite set.

In Section 4 we use some facts about supersimple theories, and pseud-
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ofinite fields. We shall not define supersimplicity, but refer to [55] for back-
ground. Roughly, a complete first order theory T is supersimple if, for each
M |= T , there is a good notion of independence between subsets of M , and
if it is possible sensibly to assign, to each complete type, an ordinal-valued
rank. There are various such notions of rank (e.g. D-rank, S1-rank, SU -
rank), but if M has finite rank for any of these notions, then all ranks are
finite, and they are equal. Note that any structure interpretable in a su-
persimple theory also has supersimple theory, and finiteness of rank is also
preserved by interpretation. Supersimplicity is used via Theorem 4.3, where
for convenience we work with measurable supersimple theories, in the sense
of [42].

By a pseudofinite group (or field, or permutation group, etc.) we mean
an infinite model of the theory of all finite groups. Any pseudofinite group
will be elementarily equivalent to an ultraproduct of finite groups (and like-
wise for fields, etc.). The common theory of all pseudofinite groups is the
collection of those sentences, in the language of groups, which hold in all
but finitely many finite groups. The study of pseudofinite fields was initi-
ated by Ax [2]. He characterised them algebraically as those fields F which
are perfect, have a unique extension of each finite degree, and are pseudo-
algebraically closed: that is, any absolutely irreducible variety defined over
F has an F -rational point. By results from [9], any pseudofinite field has
supersimple finite rank theory; in fact, the theory is measurable. Pseudofi-
nite groups which are simple (in the sense of group theory) were classified
by Wilson in [56]. They are exactly Chevalley groups, possibly twisted, over
pseudofinite fields. (Wilson proved elementary equivalence, but this can be
strengthened to isomorphism by the uniform bi-interpretability results of
Ryten [46].)

A bound

We conclude this section with an easy bound which will be heavily used
in our proofs. Recall that Fd is the collection of finite primitive permutation
groups (X,G) with diam(X,G) ≤ d.

Lemma 2.1 Let (X,G) ∈ Fd, x ∈ X, and put H := Gx and n := |X| =
|G : Gx|. Let Y be an orbit of H on X \ {x}. Then

(i) 1 + 2|Y |+ . . .+ (2|Y |)d ≥ n.

(ii) |H| ≥ |Y |, so 1 + 2|H| + . . . + (2|H|)d ≥ n. In particular, if |X| is
large enough then |H| ≥ |Y | ≥ n1/(d+1).

(iii) If y ∈ Y , then |H : Hy|d+1 ≥ |G : H| for large enough n. In
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particular, if g ∈ G \ H then (|H : H ∩ g−1Hg|)d+1 ≥ |G : H| for large
enough n.

Proof. (i) Let E be the edge set of the orbital graph for (X,G) which
includes edges {x, y} for y ∈ Y . Then, for each i the number of vertices at
distance at most i from x is at most 1 + 2|Y | + ∙ ∙ ∙ + (2|Y |)i. Since (X,E)
has diameter at most d, it follows that 1 + 2|Y |+ . . .+ (2|Y |)d ≥ n.

(ii) By (i), (d + 1)(2|Y |)d ≥ n, so |Y | ≥ 1
2(
n
d+1)

1/d which is at least

n1/(d+1) for large enough n.

(iii) This is immediate from (ii), as |H : Hy| = |Y |. For the last assertion,
identify y with the coset Hg. �

3 The affine case

Let G = V H ≤ AGLn(p) be a primitive permutation group of affine type
on V = Vn(p), where H ≤ GLn(p) is irreducible. Let K ≤ End(V ) be a
maximal extension field of Fp such that H ≤ NGLn(p)(K) = ΓLd(q), where
|K| = q and n = d |K : Fp|, so that V = Vd(q) and G = V H ≤ AΓLd(q).
Write K∗ for the group of scalar matrices in ΓLd(q).

Observe that if U is an orbit of H on V \{0}, then by the irreducibility of
H, every vector v can be expressed as a sum of vectors in U ∪{−u : u ∈ U}.
Define lU (v) to be the minimum length of such an expression. Then the
diameter of the orbital graph corresponding to U is max{lU (v) : v ∈ V }.
We write diam(V,H) (instead of diam(V, V H)) for the maximum diameter
of an orbital graph of G.

We begin by proving a partial converse to Theorem 1.1 for affine groups.

Lemma 3.1 (i) Assume that G = Vd(q).H ≤ AΓLd(q) as above, and that
H contains the group K∗ of scalar matrices. Then the primitive permutation
group (V,G) lies in the class Fd+1.

(ii) Suppose that H contains a normal classical subgroup Clr(q), where
V ↓ Clr(q) = Vr(q)⊗X, and Clr(q) acts naturally on Vr(q) and trivially on
X. Let dimFq X = t. Suppose also that H contains the scalars K∗. Then
there is a constant c = c(t) depending only on t, such that (V,G) lies in the
class Fc.

(iii) Assume V = V1 ⊕ . . . ⊕ Vr with all dim(Vi) equal, that the affine
primitive permutation group (V1, V1H1) ∈ Fd, and that H = H1 wr T acts
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naturally in the imprimitive linear action on V , with T a transitive subgroup
of Symr. Then (V, V H) ∈ F2dr.

Proof. (i) Let U be an H-orbit not containing {0}. Then U corresponds
to an orbital graph whose edge set E consists of all G-translates of the 2-
sets {0, u} (for u ∈ U). As H acts irreducibly, U does not generate a proper
Fq-subspace of V , so contains a basis u1, . . . , ud of V . It follows that the
orbital graph (X,E) has diameter at most d + 1. Indeed, if a1, . . . ad ∈ F∗q
and ∼ denotes adjacency in this graph, then 0 ∼ a1u1 ∼ a1u1 + a2u2 ∼
∙ ∙ ∙ ∼ a1u1 + . . .+ adud.

(ii) First note that since Clr(q) /H, H normalizes GLr(q)⊗GL(X) (see
for example [29, 4.4.3]). Hence there is an H-orbit U consisting of some of
the nonzero simple tensors v⊗x. As U contains a basis of V = Vr(q)⊗X, it
follows as in (i) that if x′ ∈ X \ {0}, then there is v′ ∈ Vr(q) \ {0} such that
v′⊗x′ is at distance at most t+ 1 from 0 in the orbital graph corresponding
to U . Moreover, any nonzero vector in Vr(q) is a sum of at most 2 vectors
in the Clr(q)-orbit of v′. Thus, as Clr(q) acts trivially on X, v′′ ⊗ x′ is at
most distance 2(t+ 1) from 0 for any non-zero v′′ ∈ Vr(q). Since any vector
in V ⊗X is a sum of at most t simple tensors, the diameter of this orbital
graph is at most 2t(t+ 1).

Now let U be an arbitrary H-orbit on non-zero vectors of Vr(q) ⊗ X,
and let w := Σsi=1vi ⊗ xi ∈ U with s ≤ t. We may suppose v1, . . . , vs are
linearly independent. We may also suppose that r > t, as otherwise the
conclusion follows from (i). Choose us linearly independent from v1, . . . , vs
and g ∈ Clr(q) with (v1, . . . , vs)

g = (v1, . . . , vs−1, us). Then U contains
w′ := v1⊗x1+. . .+vs−1⊗xs−1+us⊗xs, and so w,w′ are at distance at most
two in the orbital graph, and hence the simple tensor w−w′ = (vs−us)⊗xs
is at distance at most two from 0. Thus, by the last paragraph, the orbital
graph has diameter at most 4t(t+ 1).

(iii) First, let U be an H-orbit containing a vector v ∈ V1. Then the
graph corresponding to the V H-orbital containing {0, v} has diameter at
most dr. More generally, if U is an arbitary H-orbit, containing say u =
v1 + . . . + vr with vi ∈ Vi and v1 6= 0, choose h ∈ H fixing v2, . . . , vr with
vh1 6= v1. Then v := vh1 − v1 ∈ V1, and a path of length dr of the (V, V H)-
orbital graph with an edge {0, v} yields a path of length 2dr between the
same two points for the orbital graph with edge {0, u}. �

Now we embark on the proof of Theorem 1.1 for the affine case. Let G be
as at the beginning of this section, so that G = V H ≤ AΓLd(q) ≤ AGLn(p),
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where V = Vd(q) = Vn(p), H is an irreducible subgroup of GLn(p) contained
in ΓLd(q), and K = Fq ≤ End(V ) is a maximal extension field of Fp such
that H ≤ NGLn(p)(K) = ΓLd(q).

Assume that (V,G) lies in Fs for some s. In the ensuing argument, all
statements that quantities are “bounded” mean that they are bounded in
terms of s alone.

If d is bounded then the conclusion of Theorem 1.1 holds trivially (taking
the relevant classical group just to be the trivial group). So we assume that
d is unbounded.

Lemma 3.2 Suppose H preserves a direct sum decomposition of V over Fp
as V = V1 ⊕ ∙ ∙ ∙ ⊕ Vk (i.e. H permutes the subspaces Vi). Then

(i) k is bounded

(ii) diam(V1,H1) is bounded, where H1 = H V1V1 is the group induced by
H on V1.

Proof. (i) Let U be a nonzero orbit of H contained in
⋃
Vi. If 0 6= vi ∈ Vi

and v =
∑k
1 vi, then lU (v) ≥ k, so k is bounded.

(ii) Let U1 be a nonzero orbit of H1 on V1, and let U =
⋃
h∈H U1h. Then

U is a union of H-orbits and U ∩ V1 = U1. As diam(V, V H) is bounded,
every vector v1 ∈ V1 is a bounded sum of vectors in U , hence is a bounded
sum of vectors in U ∩ V1 = U1. This proves (ii). �

We shall assume from now on that H is primitive on V = Vn(p) (i.e.
preserves no direct sum decomposition as above with k > 1). At the end of
the proof we shall use the previous lemma to retrieve the general case.

We have H ≤ NGLn(p)(K) = ΓLd(q). Write H0 = CH(K) ≤ GLd(q), so
that H0 / H. We may assume that E := EndH(V ) = Fr ⊆ K, and we write
q = pa = rb (so a = n/d).

We claim that V ↓ H0 is irreducible. Viewing V as Vbd(r), it is an
absolutely irreducible FrH-module. Now view V as an FqH0-module. Then
U := V ⊗Fr Fq, as an FqH0-module, is the sum of b Frobenius twists of V .
However H/H0 is cyclic of order at most b, so if V ↓ H0 were reducible,
then U ↓ H would be reducible. But H is absolutely irreducible, so this
is a contradiction. (We thank Bob Guralnick for providing us with this
argument.)

Hence V ↓ H0 is irreducible, as claimed. As CEnd(V )(H0) is a field
extension of K, the choice of K implies that CEnd(V )(H0) = K, and so V is
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an absolutely irreducible KH0-module.

We now follow the argument given in [25, Section 3] quite closely. Write
Z = Z(H0), let S be the socle of H0/Z, and write S = N1×∙ ∙ ∙×Nt×T with
Ni non-abelian simple and T abelian. The preimages Ri of Ni and W of T
generate a central product R = R1 ◦ ∙ ∙ ∙ ◦Rt ◦W , a normal subgroup of H.
By the primitivity of H and Clifford’s Theorem, V ↓ R is homogeneous, say
V ↓ R =

∑l
1 Vi with all Vi isomorphic. As above we have K = CEnd(V1)(H0),

and as in the proof of [25, 3.3], there are K-spaces V1 and A such that
V = V1 ⊗K A, R ≤ GL(V1)⊗ 1A, H0 ≤ GL(V1)⊗GL(A) and H normalizes
GL(V1)⊗GL(A).

We claim that dimK V1 is unbounded. For suppose otherwise, so that
dimV1 is bounded and dimA is unbounded. Now R = R1 ◦ ∙ ∙ ∙ ◦ Rt ◦W ≤
GL(V1) ⊗ 1A, and V1 is a tensor product of t + 1 irreducible modules, one
for each Ri and one for W . As dimV1 is bounded, it follows that t is
bounded, as is |W/Z| = |T | (see [24, 2.31]). However, modulo Z we have
a projection map πA : H0 → GL(A) with irreducible image, and since
R ≤ ker(πA), this image is a quotient of H0/R, which is isomorphic to
a subgroup of Out(N1 × ∙ ∙ ∙ × Nt × T ). Hence, as dimA is unbounded,
Out(Ni) is unbounded for some i, and H0 must induce an unbounded group
of field automorphisms of Ni acting linearly on V1, which forces dim V1 to
be unbounded, a contradiction.

Hence dimV1 is unbounded. Now H has an orbit Δ consisting of sim-
ple tensors in V1 ⊗ A. By assumption the corresponding orbital graph has
bounded diameter, and hence dimA is bounded: for any vector not express-
ible as a sum of at most e simple tensors is at distance more than e from
0.

At this point we have proved the following.

Lemma 3.3 We have V ∼= V1 ⊗K A with dimK A bounded, dimK V1 un-
bounded, R ≤ GL(V1) ⊗ 1A, H0 ≤ GL(V1) ⊗ GL(A) and H normalizes
GL(V1)⊗GL(A).

Next we prove

Lemma 3.4 Let H as in Lemma 3.3 induce H1 ≤ ΓL(V1). Then diam(V1,K
∗H1)

is bounded.

Proof. Let Δ1 be an orbit of H1 on V1. Then Δ = Δ1 ⊗A is a union of
H-orbits on V , so every v ∈ V is a sum of a bounded number of elements
of Δ.
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Let a1, . . . , ak be a K-basis of A, and let v1 ∈ V1. Then v1 ⊗ a1 is a
bounded sum of vectors in Δ, say

v1 ⊗ a1 = δ1 ⊗ α1 + ∙ ∙ ∙+ δr ⊗ αr

with δi ∈ Δ1, αi ∈ A. For each i write

αi =
k∑

j=1

λijaj (λij ∈ K).

Then

v1 ⊗ a1 =
∑r
i=1 δi ⊗

∑k
j=1 λijaj

= (
∑r
i=1 λi1δi)⊗ a1 + ∙ ∙ ∙+ (

∑r
i=1 λikδi)⊗ ak.

Since every vector in V1 ⊗ A has a unique expression as
∑k
1 vi ⊗ ai where

vi ∈ V1, it follows that

v1 =
r∑

i=1

λi1δi.

Since K∗ ≤ K∗H1, it follows that v1 is a sum of a bounded number of
elements of Δ1, as required. �

Assume now that V = V1; at the end of the proof we will retrieve the
general result from this case using 3.4. Thus we have H ≤ ΓL(V ) and
R ≤ GL(V ) absolutely irreducible.

As in [25] (preamble to Lemma 3.4), write R = P1 ◦ ∙ ∙ ∙ ◦ Pm, where
each Pi/Z is either a non-abelian minimal normal subgroup of H/Z, or
is an abelian Sylow subgroup of T . As in the proof of [25, 3.4], we have
V = W1 ⊗ ∙ ∙ ∙ ⊗Wm with each Pi ≤ GL(Wi) absolutely irreducible, and H

normalizes GL(W1)⊗ ∙ ∙ ∙ ⊗ GL(Wm). Considering an orbit of H consisting
of simple tensors, the boundedness of diam(V,H) shows that m is bounded,
that some Wi, say W1, has unbounded dimension, and that dim(W2 ⊗ ∙ ∙ ∙ ⊗
Wm) is bounded. As in Lemma 3.4, diam(W1,K

∗H1) is bounded, where
H1 ≤ ΓL(W1) is the group induced by H.

The argument of [25, 3.5], together with Lemma 2.1, shows that P1/Z
is non-abelian, so it is a direct product N1 × ∙ ∙ ∙ × Nt where the Ni are
isomorphic simple groups. As in the proof of [25, 3.6] we have W1 = X1 ⊗
∙ ∙ ∙⊗Xt with dimW1 = (dimX1)

t constant and H1 ≤ L wr Symt where L ≤
ΓL(X1). Then t is bounded by 2.1. This implies that dimX1 is unbounded.
If t > 1 then the orbital graph corresponding to an orbit of H1 on simple
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tensors has unbounded diameter, which is a contradiction. Hence t = 1, and
(writing Y = W2 ⊗ ∙ ∙ ∙ ⊗Wm), we have proved

Lemma 3.5 We have V = W1 ⊗ Y , where dimY is bounded, dimW1
is unbounded, R1 ≤ GL(W1) ⊗ 1Y is absolutely irreducible on W1, R1 /
H, H normalizes GL(W1) ⊗ GL(Y ), and R∞1 is quasisimple. Moreover
diam(W1,K

∗H1) is bounded, where H1 ≤ ΓL(W1) is the group induced by
H on W1.

At this point we assume that V = W1 and retrieve the general case later
using 3.5. Thus H ≤ ΓL(V ) with E(H) = R∞ quasisimple and absolutely
irreducible on V . The next proposition pins down the possibilities for the
quasisimple group R∞.

Proposition 3.6 There is a function f : N → N such that the following
holds. Fix d ∈ N. Let n ∈ N, and let G = V H ≤ AΓLn(q) be a primitive
affine group on V , where V = Vn(q) and H is subgroup of ΓLn(q) such that
H∞ is quasisimple and absolutely irreducible on V . Suppose that all orbital
graphs of G have diameter less than d. Then one of the following holds:

(i) n < f(d)

(ii) H∞ = Cln(q0), a classical group of dimension n over a subfield Fq0
of Fq, where |Fq : Fq0 | ≤ d.

Proof. Assume first that H∞ is a group of Lie type. Then Lemma 2.1(ii),
together with [30], shows that provided |H∞| is sufficiently large in terms
of d, we have H∞ ∈ Lie(p), where p = char(Fq) (i.e. H∞ is of Lie type in
characteristic p). Say H∞ = Hr(q0), a group of rank r over Fq0 . Now [29,
5.4.6-7] shows that one of the following holds:

(a) Fq0 is a subfield of Fq;

(b) Fq is a subfield of Fq0 with [Fq0 : Fq] = t > 1, and there is an irreducible

Fq0H
∞-module W such that V = W ⊗W (q) ⊗ ∙ ∙ ∙ ⊗W (qt−1), realised over

Fq (for some cases where H∞ is a twisted group, we need to replace q by
q1/2 or q1/3 in this description, but this makes no difference to the ensuing
argument).

Suppose (b) holds. Writing w = dimW we have n = wt and q0 = qt.
Then H has an orbit on V consisting of simple tensors, of which there are
qwt − 1 in total. This contradicts Lemma 2.1(ii) for large n.
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Hence (a) holds. Then we have

|H| ≤ (q − 1)|Aut(Hr(q0))| < (q − 1)q4r
2−1

0 < q4r
2

and so Lemma 2.1(ii) implies that

n = dimV < 4(d+ 1)r2.

Now [39, 5.1] implies that for sufficiently large n, H∞ is a classical group,
and, up to field and graph automorphisms, V is an H∞-module of high
weight λ1, 2λ1, λ2, λ1+piλ1, λ1+λr or λ1+piλr (the last two cases only for
H of type PSLεr+1(q0)). In the first case we have H∞ = Cln(q0); moreover
H has an orbit on vectors of size at most qqn0 , so |Fq : Fq0 | ≤ d by 2.1.
Hence conclusion (ii) of the proposition holds in this case. In the other
cases, if W denotes the natural module for H∞, then V is a section of S2W ,
∧2W , W ⊗W (pi), W ⊗W ∗ or W ⊗W ∗(pi), of small codimension: precise
descriptions of the possibilities for V can be found in [38, p.102-3]. In all
cases n ≥ r2/2, and it is easy to see that H has an orbit on V of size at
most q4r. Hence Lemma 2.1 yields n ≤ 4(d+1)r. This is a contradiction for
large n since n ≥ r2/2. This completes the proof of the proposition when
H∞ is a group of Lie type.

Now supposeH∞/Z(H∞) ∼= Altr, an alternating group. Then Lemma 2.1(ii)
implies that n/(d + 1) < r log r. If H∞ = 2.Altr then [54] gives n ≥
2(r−log2 r−2)/2, hence

2(r−log2 r−2)/2 ≤ n < (d+ 1)r log r,

which implies that n is bounded in terms of d. And if H∞ = Altr, then the
bound n < (d + 1)r log r, together with [22, Theorem 5], shows that V ↓
H∞ must be the nontrivial irreducible constituent of the usual permutation
module, of dimension n = r− δ, where δ = 1 or 2. But then H has an orbit
on V of size at most (q−1) ∙ r(r−1)/2 (containing the vector corresponding
to (1,−1, 0, . . . , 0) in the permutation module), and so Lemma 2.1 yields

(q − 1) ∙ r(r − 1)/2 ≥ q(r−δ)/(d+1),

implying that r, hence n, is bounded in terms of d. �

At this point we can complete the proof of Theorem 1.1 for affine groups.
Let C be an infinite class of finite primitive permutation groups of affine
type, and suppose C is bounded. Let G be a group in C. As remarked at
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the beginning of the proof (after the proof of Lemma 3.1), we have G =
V H ≤ AΓLd(q) ≤ AGLn(p), where V = Vd(q) = Vn(p), H is an irreducible
subgroup of ΓLd(q) and K = Fq ≤ End(V ) is a maximal extension of Fp
such that H ≤ NGLn(p)(K) = ΓLd(q). Moreover we may assume that d is
unbounded.

Suppose first that H is primitive on V . Then by 3.3 - 3.6, we have V =
V1⊗KY with dimY bounded, dimV1 = m unbounded, and H.Clm(q0)⊗1Y ,
where Fq0 is a subfield of Fq with |Fq : Fq0 | bounded. Hence the conclusion
of Theorem 1.1(1) holds.

Now consider the case where H is imprimitive on V . Then by Lemma
3.2, H preserves a decomposition V = V1 ⊕ ∙ ∙ ∙ ⊕ Vk with k bounded and
diam(V1, V1H1) bounded, where H1 = HV1V1 . Taking k maximal, H1 is prim-
itive on V1, and so by the previous paragraph the conclusion of Theorem
1.1(1) again holds.

This completes the proof of Theorem 1.1 for affine groups.

4 The almost simple case

Recall that Fd denotes the collection of all finite primitive permutation
groups (X,G) such that diam(X,G) ≤ d. In this section we consider
bounded classes C (i.e. classes C ⊂ Fd for some d) consisting of (X,G) such
that Soc(G) is a non-abelian simple group G0, with G0 ≤ G ≤ Aut(G0). We
aim to prove Theorem 1.1(2),(3) and Theorem 1.2.

In our arguments, we work with fixed (X,G) ∈ C, assumed to be suf-
ficiently large. We make one observation, used repeatedly. Suppose G0 ≤
G1 ≤ G, H := Gx, and H1 := H ∩ G1. Then we may identify the coset
space G1/H1 with G/H in such a way that G1 embeds into G in the action
on cosets. Thus, diam(G1,H1) ≥ diam(G,H).

The unbounded rank case

Our result here is the following, which implies Theorem 1.1(2) and its
converse.

Proposition 4.1 (i) Let C be a bounded class consisting of almost simple
finite primitive permutation groups (X,G) of unbounded L-ranks. Then the
socles of groups in C of sufficiently large L-rank are alternating or classical
groups in standard t-actions, where t is bounded.
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(ii) Conversely, for any t, the class consisting of all alternating or clas-
sical groups in standard t-actions is bounded.

Proof. (i) We may suppose that all groups in C are of the same type –
that is, all are alternating groups, or of type PSL, PSp, PSU or PΩ. Let
(X,G) be a group of large L-rank in C, and write H = Gx (x ∈ X), a
maximal subgroup of G.

Case (1): G0 is alternating

In this case (as we may assume |G0| > |Alt6 |), we have Altn ≤ G ≤
Symn. We claim that (for |G0| large enough) there exists a bounded t such
that X may be identified with the collection of t-subsets of {1, . . . , n}, with
G acting in the natural way.

First, if H is intransitive on {1, . . . , n}, then by maximality, H is the
stabiliser of a t-subset of {1, . . . , n}, and the action of G on X is its induced
action on t-sets. The action on t-sets is equivalent to the action on (n− t)-
sets, so we may suppose that t ≤ n/2. Form a graph on X, where two t-sets
are adjacent if they intersect in a (t− 1)-set (this is an orbital graph). It is
easily seen that this graph has diameter t, and hence t is bounded.

Next, suppose that H is transitive but imprimitive on {1, . . . , n}. Then
n = k` for some k, ` > 1, and H is the stabiliser of a partition of {1, . . . , n}
into ` k-sets. Consider the orbital graph in which two partitions U1∪ . . .∪U`
and V1 ∪ . . . ∪ V` are joined if (after re-indexing) Ui = Vi for i = 1, . . . , `− 2
and |U`−14V`−1| = 2. It is easily checked that the diameter of this graph
tends to infinity with n, so this case does not arise.

Finally, suppose that H is primitive on {1, . . . , n}. We have H 6= Altn,
Symn. Thus, by the main theorem of [45], |H| ≤ 4n. Hence |X| ≥ n!

2.4n . By
Lemma 2.1, 1 + d(2|H|)d ≥ |X| (where C ⊂ Fd). This forces 1 + d4dn ≥
n!/2d+14n, which is impossible for fixed d and large n.

Case (2): G0 = PSLn(q)

In this case, we claim that there exists a bounded t such that X may be
identified with the set of t-subspaces of V = Vn(q), or (if G contains a graph
automorphism of G0) on an orbit of pairs (U,W ) where U is a t-dimensional
subspace of V , and W is an (n − t)-dimensional subspace of d such that
U ⊆W or V = U ⊕W .

To see this, we use the result of Aschbacher [1] on the maximal subgroups
of classical groups. According to this result, either H lies in one of the classes
C1−C8 of subgroups of G defined in [1], or H is almost simple, and its socle
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acts absolutely irreducibly on V .

If H ∈ C1 then H∩PGLn(q) is reducible on Vn(q), and it is the stabiliser
of a t-subspace or pair (U,W ) as above; moreover it is easy to see that
there is an orbital graph of diameter at least t for these actions, so this is a
standard t-action with t bounded, as required.

If H ∈ C2 then it is an imprimitive linear group on V = Vn(q), so it is the
stabiliser of a direct sum decomposition V = V1⊕ . . .⊕V` into k-dimensional
subspaces Vi, and an argument as in Case (1) (the partition case) eliminates
this (remember that the dimension n is unbounded). A similar argument
shows that H is not the stabiliser of a tensor decomposition of V (even up
to permutation of the tensor components), which eliminates H ∈ C4 ∪ C7.

Next suppose H ∈ C5, so that H∞ = PSLn(q0) where qr0 = q for some
prime r. By Lemma 2.1, r is bounded. Let g ∈ G be the image of a diagonal
matrix with entries (a, a−1, 1, . . . , 1) with a ∈ Fq \ Fq0 . Then H ∩ g−1Hg ≥
PSLn−2(q0), so Lemma 2.1(iii) eliminates this case. Similar reasoning deals
with the case where H ∈ C3 (where H∞ = PSLn/r(q

r)).

If H ∈ C6 then there is a prime r|q−1 such that n = rm, the preimage of
H is the normalizer of an extraspecial r-group of order r1+2m, and |H∩G0| ≤
(q − 1) ∙ r2m ∙ | Sp2m(r)|. An application of Lemma 2.1 eliminates this.

Suppose next that H ∈ C8, so that H∞ is a classical group PSpn(q),
PSUn(q

1/2) or PΩn(q). Consider the first case (the others are entirely simi-
lar). Here we may view G as acting on the set of all symplectic forms on V =
Vn(q) (viewed up to scalar multiplication). Put n = 2m, and take H to be
the stabilizer of a symplectic form with standard basis e1, . . . , em, f1, . . . , fm.
There exists g ∈ G such that g−1Hg stabilizes the symplectic form with stan-
dard basis f1, f2, e3, . . . , en, e1, e2, f3, . . . , fn. ThenH∩g−1Hg ≥ PSp2(m−2)(q),
and Lemma 2.1(iii) eliminates this.

It remains to consider the case where H is almost simple, with socle
acting absolutely irreducibly on V ; we may suppose moreover that H is
contained in no member of any Ci. Then by the main theorem of [31], either
|H| ≤ q3n or Soc(G) = Altn+δ with δ = 1 or 2. Now |G| ≥ |PSLn(q)| ≥
cqn

2−2 for some constant c > 0. This contradicts Lemma 2.1.

Case (3): G0 a symplectic, orthogonal, or unitary group

These cases are handled in the same way as Case (2). Again, the case
where H ∈ C1 leads to standard actions on t-subspaces. Note that in even
characteristic, the case where G = Spn(q) and H = O±n (q) ∈ C8 also arises;
this is again a standard action.
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(ii) Now we prove the converse, that any class consisting of alternating
or classical groups in standard t-actions is bounded. We will here (perhaps
unnecessarily) be using Proposition 4.2(ii), which is the main result in the
bounded rank case below (so its proof comes later). We remarked in Section
1 that any class of finite primitive permutation groups of bounded permu-
tation rank is bounded. This takes care of alternating groups in standard
t-actions and also classical groups in parabolic actions, i.e. acting on totally
singular t-spaces.

It remains to consider four cases:

(a) classical groups Cln(q) acting on an orbit X of non-degenerate t-
subspaces of the natural module Vn(q),

(b) G0 = PSLn(q) acting on pairs (U,W ) with dimU = t and Vn(q) =
U ⊕W ,

(c) G0 is an orthogonal group, q is even, and G0 acts on an orbit of
non-singular 1-spaces,

(d) G0 = Spn(q) (q even) and H = O±n (q).

Consider case (a). First observe that the subclass of classical groups Cln(q)
acting on an orbit of non-degenerate t-spaces, where n ≤ 6t, is a bounded
class, with diameter at most r = r(t), say: this follows from Proposition
4.2(ii) below.

Now consider (a) in general, with n ≥ 6t. Let Δ be an arbitrary orbital
of pairs from X, let (U,W ) ∈ Δ and let U ′ ∈ X. There is a non-degenerate
subspace V0 of Vn(q) of dimension at most 6t containing U , W and U ′. Let
H be the group induced by Cln(q) on V0 by its setwise stabiliser. By the last
paragraph, there is a path of length at most r from U to U ′ in the orbital
graph of H acting on non-degenerate t-subspaces of V0 containing the edge
{U,W}. This is also a path from U to U ′ in the orbital graph of Δ (with
the action of Cln(q) on X). Thus, the orbital graph of Δ has diameter at
most r.

Cases (b) and (c) can be handled in similar fashion to case (a), and we
leave them to the reader.

Finally, in case (d) all orbital graphs have diameter at most 2, by [23,
Theorem 2]. �

The bounded rank case

Our result here is the following, which implies Theorems 1.1(3) and 1.2.
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Proposition 4.2 Let C be a class consisting of almost simple primitive per-
mutation groups (X,G) with G of bounded L-rank.

(i) Suppose that C is bounded. Then |Gx| → ∞ as |G| → ∞, and there
is an integer t such that if G has socle G(q) of Lie type over Fq, and Gx is
a subfield subgroup G(q0), then the degree [Fq : Fq0 ] ≤ t.

(ii) Conversely, any class C satisfying the conclusions of (i) is bounded.

Part (i) of the proposition is immediate from Lemma 2.1. The main
issue is (ii) (which is Theorem 1.2). We prove this using some recent model-
theoretic results, together with some substantial information about maximal
subgroups of almost simple groups of Lie type. We present all these results
in 4.3 – 4.10. The proof of 4.2 can be found after 4.10.

We work in the context of measurable first order theories; see [42] or
[14]. In a measurable theory, every definable set has an assigned ‘dimension’
and ‘measure’, satisfying various properties. Measurable theories are in
particular supersimple and of finite rank (i.e. S1 rank or SU -rank, which
will be equal). The dimension of a definable set may not equal its S1-rank,
but is an upper bound for the S1-rank. If M has measurable theory, then
any structure obtained by adjoining to M finitely many sorts from M eq also
has measurable theory, so there is no distinction between the hypotheses
‘definable in a measurable theory’ and ‘interpretable in a measurable theory’.

We say the permutation group (X,G) is definably primitive if there is
no proper non-trivial definable G-congruence on X, or equivalently, if, for
x ∈ X, there is no definable H with Gx < H < G; here definability is in the
structure (X,G).

First, we state the following result of Elwes and Ryten (Theorem 6.2 of
[15]).

Theorem 4.3 [15, Theorem 6.2] Let (X,G) be a definably primitive per-
mutation group definable in a structure with measurable theory, and assume
that Gx is infinite for x ∈ X. Then (X,G) is primitive.

Corollary 4.4 Let C be a class of finite primitive permutation groups such
that every non-principal ultraproduct of members of C is definable in a struc-
ture with measurable theory. Assume that for (X,G) ∈ C and x ∈ X,
|Gx| → ∞ as |X| → ∞. Then C is a bounded class.

Proof. Let (X∗, G∗) be a non-principal ultraproduct of groups (X,G) ∈
C, and let x ∈ X∗. Then Gx is infinite. Furthermore, (X∗, G∗) is definably
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primitive: for a definable group H∗ with G∗x < H∗ < G∗ would yield,
by  Los’s Theorem, uniformly definable groups H with Gx < H < G for
infinitely many (X,G) ∈ C, contrary to primitivity. Thus, by Theorem 4.3,
(X∗, G∗) is primitive.

It follows, as discussed in the introduction, that C is a bounded class.
Indeed, otherwise, one could find an infinite subclass C′ of C containing, for
each d ∈ N, just finitely many (X,G) of diameter at most d. Let U be a
non-principal ultrafilter on the set C such that C′ ∈ U (so C′ is ‘large’). Then
by  Los’s theorem, if (X∗, G∗) is an ultraproduct of C with respect to U then
for each d ∈ N, (X∗, G∗) has an orbital graph of diameter at least d. It
follows, by compactness and ω1-saturation of ultraproducts, that (X∗, G∗)
has a disconnected orbital graph, contrary to primitivity. �

Note that these saturation arguments in the above proof actually just
require ω-saturation of ultraproducts.

In our proof of Proposition 4.2, we shall actually be using Theorem 4.7
below, which is a slight adaptation of Corollary 4.4. Thus we shall require
that ultraproducts of certain classes C of permutation groups (X,G), where
G is almost simple of bounded L-rank, are definable in a structure with
measurable theory; this amounts to showing that the permutation groups
(X,G) are uniformly definable in finite fields or difference fields. Here, a
difference field is a structure (F, σ), where F is a field and σ ∈ Aut(F ). The
automorphism is required for definability when G or the point stabiliser is
a Suzuki or Ree group.

Before addressing the permutation groups, we need some results on ul-
traproducts of the almost simple groups G (as abstract groups, ignoring the
permutation group setting).

Lemma 4.5 Let C be a family of finite simple groups Y (q) of fixed Chevalley
type (possibly twisted).

(i) Any non-principal ultraproduct of the finite fields Fq has measurable
theory.

(ii) Any non-principal ultraproduct of difference fields (F22k+1 , x 7→ x2
k
)

or (F32k+1 , x 7→ x3
k
) has measurable theory.

(iii) Any class of finite simple groups of fixed Lie type (possibly twisted)
is uniformly interpretable in the class of finite fields, or in the difference
fields (F22k+1 , x 7→ x2

k
) or (F32k+1 , x 7→ x3

k
).

(iv) Any non-principal ultraproduct of members of C is simple (as a
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group), and has measurable theory.

(v) If D is a class of finite groups such that Soc(G) ∈ C for all G ∈ D,
then Soc(G) is uniformly definable in G (for G ∈ D).

Proof. (i) This follows from the main theorem of [9]. See also [42,
Example 3.2, Lemma 5.4]; Example 3.2 asserts that finite fields form a
1-dimensional asymptotic class, and Lemma 5.4 that any non-principal ul-
traproduct of a 1-dimensional aymptotic class has measurable theory.

(ii) See Chapter 3 of [46]. In particular, [46, Theorem 3.5.8] yields that
the finite difference fields form an asymptotic class, and the result then
follows from [42, Lemma 5.4].

(iii) For all cases other than the Suzuki and Ree groups, the Chevalley
groups Y (q) are uniformly interpretable in the finite fields Fq. This was
folklore, but is explicitly proved by Ryten in [46] (Theorem 5.2.4 in the
untwisted case, and Theorem 5.3.3 in the twisted case). Note there that the
subgroup PSUn(q) of PSLn(q

2) is uniformly (as q varies) interpretable in Fq,
but not in Fq2 . In the field Fq one can interpret Fq2 , define the automorphism
x 7→ xq by specifying it on a basis, and then interpret PSUn(q). But in Fq2
one cannot interpret PSUn(q), for otherwise it would be possible to define
the subfield Fq, contrary to the asymptotic results of [9].

The groups 2F4(2
2k+1) and 2B2(2

2k+1) are uniformly interpretable in

the difference fields (F22k+1 , x 7→ x2
k
), and 2G2(3

2k+1) are uniformly inter-

pretable in the difference fields (F32k+1 , x 7→ x3
k
). Again, this has been

known for some time, but made explicit in [46, Corollary 5.4.3].

(iv) Let Y ∗ be such an ultraproduct. By Propositions 1 and 2 of [44],
Y ∗ is the Chevalley group Y (F ) (possibly twisted) over a pseudofinite field
F , and by [44, Corollary 1], Y ∗ is a simple group. The measurability follows
from [46, Theorem 1.1.1] and the proof of [42, Lemma 5.4] (which, formally,
is for one-dimensional asymptotic classes).

(v) By the simplicity of the ultraproducts Y ∗ in (iv), there is a bound
d = d(C) such that for any Y = Y (q) ∈ C and g, h ∈ Y \ {1}, h is a product
of at most d conjugates of g and g−1. Indeed, otherwise, we could choose
an ultrafilter to obtain an ultraproduct Y ∗ so that, by compactness and
ω1-saturation of ultraproducts, there are g, h ∈ Y ∗ \ {1} such that h is not
a product of finitely many conjugates of g and g−1; then the normal closure
of 〈g〉 in Y ∗ is a proper non-trivial normal subgroup of Y ∗, contrary to
simplicity. Hence, for any G ∈ D and g ∈ Soc(G) \ {1}, Soc(G) is definable
in G as the set of elements of G expressible as a product of at most d
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G-conjugates of g and g−1. �

Because the groups considered in Proposition 4.2 are almost simple
rather than simple, we need to go beyond the previous result and address
the uniform definability of various families of almost simple groups. We
do this in the next result. In the statement, by a graph automorphism of
a finite Chevalley group we mean one of the automorphisms defined in [7,
12.2.3, 12.3.3, 12.4.1].

Lemma 4.6 Let C be a family of finite simple groups of fixed Chevalley type
(possibly twisted).

(i) Graph automorphisms of G ∈ C are uniformly definable in G; that
is, there are finitely many formulas φ1(x1, x2, y), . . . , φr(x1, x2, y) such that
for any G ∈ C and graph automorphism α of G, there is a tuple a in G
and some i such that {(x1, x2) ∈ G2 : α(x1) = x2} = {(x1, x2) ∈ G2 :
φi(x1, x2, a) holds}.

(ii) If t ∈ N then the class D of almost simple groups G such that
Soc(G) ∈ C and |G : Soc(G)| ≤ t is uniformly interpretable in the class

of finite fields or difference fields (F22k+1 , x 7→ x2
k
) or (F32k+1 , x 7→ x3

k
).

Proof. (i) This is proved by Ryten in the proofs of 5.3.3 and 5.4.1(2) of
[46], though it is implicit. For example, in the proof of 5.3.3, Ryten shows
that the graph automorphisms are uniformly definable in the corresponding
finite fields. Since (and this is the main content of [46, Ch. 5]) the finite
fields are uniformly bi-interpretable (over parameters) with the correspond-
ing finite simple groups, it follows that the graph automorphisms are also
uniformly definable in the simple groups. Discussion 5.4.1(2) gives the cor-
responding definability (in the field) of graph automorphisms for types B2,
G2 and F4.

(ii) First, by Lemma 4.5(iv), the members of C are uniformly inter-
pretable in finite fields or difference fields. Every element of G ∈ D is a
product idgf of inner, diagonal, graph, and field automorphisms of Soc(G).
By (i), graph automorphisms of G are uniformly definable in G, and hence
interpretable in (difference) fields; and diagonal and field automorphisms of
bounded order are also uniformly interpretable in (difference) fields. Note
here that for a > 1 the automorphism x 7→ x(q) of PSLn(q

a) is definable in
Fq, but not in Fqa . Since these automorphisms are given as permutations of
the structure G, we may now reconstruct the group multiplication on pairs
(i, d, g, f), (i′, d, g′, f ′) to define the almost simple group. �
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Despite the previous results, it is certainly not the case that ultraprod-
ucts of arbitrary classes of almost simple Chevalley groups with socles of
fixed type Y (q) always have measurable (or just supersimple) theory. Indeed,
groups in such classes may contain arbitrary field automorphisms, and the
theory of all pairs (F, σ) (F a finite field, σ ∈ Aut(F )) is model-theoretically
very wild; it interprets the theory of pairs of finite fields (F,Fix(σ)), which
is known to be undecidable (see for example [8, Section 4]).

In the situation of Proposition 4.2, we have a class of primitive permu-
tation groups (X,G) with G almost simple of bounded rank, and by passing
to an infinite subclass we may suppose that the groups G have socles of
fixed type Y (q). If the socle Y (q) is also primitive on X, then in our proof
of 4.2 we shall replace G by Y (q), in order to ensure that the ultraproduct
is definable in a measurable theory. However, it is not always the case that
the socle is primitive on X. We shall show in Theorem 4.8, at least in the
key case (i)(d), that a point stabilizer in the socle, while not being maximal,
is second-maximal in the socle; here we say that a proper subgroup H of a
group K is second-maximal in K if there is a maximal subgroup W of K
such that H is a maximal subgroup of W .

The next result shows how we can exploit this second-maximal property.

Theorem 4.7 Let C be a class of finite transitive permutation groups (X,G)
such that any non-principal ultraproduct of members of C is definable in a
measurable theory. Assume that there is a Chevalley type Y (q) (possibly
twisted) such that for each (X,G) ∈ C and x ∈ X, G is a simple group of type
Y (q), Gx is either maximal or second-maximal in G, and that |Gx| → ∞ as
|X| → ∞. Then there is d ∈ N such that if (X,G) ∈ C and G1 is a primitive
subgroup of Sym(X) normalising G, then diam(X,G1) ≤ d.

Proof. If Gx is maximal in G for all (X,G) ∈ C, the result is immediate
from Corollary 4.4. This does not use simplicity of G.

Thus, we may suppose that Gx is second-maximal in G for all (X,G) ∈ C,
and that this is witnessed by W ; that is, Gx is maximal in W which is
maximal in G. Then in any non-principal ultraproduct (X∗, G∗) of C, there
is W ∗ (the ultraproduct of the groups W ) with G∗x < W ∗ < G∗. Let E∗

denote the congruence corresponding to W ∗ – that is, the G∗-congruence
on X∗ with {xg : g ∈ W ∗} as a block. For y ∈ X∗, let yE∗ denote its
E∗-class, and put B := xE∗ . Let G∗1 be the ultraproduct of the groups G1.
As the groups G are simple of fixed Lie type, G∗ is simple by 4.5(iv), and
G∗1 ≤ NSym(X∗)(G

∗).

28



Consider the relation ∼ onX∗, where x ∼ y if and only if |G∗x : G∗xy| <∞.
By [15, Proposition 6.1], ∼ is a definable G∗-congruence on X∗.

Recall that two subgroups H,K of a group are called commensurable if
|H : H ∩K| and |K : H ∩K| are both finite.

Claim 1. The G∗-congruence ∼ is trivial.

Proof of Claim. As G∗1 ≤ NSym(X∗)(G
∗), by its definition ∼ is preserved

by G∗1. Hence, as G∗1 is primitive, if ∼ is not trivial it is universal on X∗. In
the latter case, for every x ∈ X∗ and g ∈ G∗1, we have |G∗x : G∗x ∩ (G∗x)

g| < r

– that is, G∗x is uniformly commensurable with all its G∗1-conjugates. Then,
by Schlichting’s Theorem [48] (independently due to Bergman and Lenstra
[3]) there is N /G∗ normalised by G∗1 and commensurable with G∗x. As X∗ is
infinite, N 6= G∗, so as G∗ is simple, N = 1, so G∗x is finite, a contradiction.

Claim 2.

(i) W ∗ is definable in (X∗, G∗),

(ii) W is uniformly definable in (X,G).

Proof of Claim. (i) Choose H such that

(a) H is a definable subgroup of W ∗ containing G∗x,

(b) |G∗x : G∗x ∩H| is finite, and

(c) H has maximal rank (meaning SU -rank, as mentioned briefly in
Section 2 above) subject to (a) and (b). Note that H = G∗x already satisfies
(a) and (b).

Now Claims 6.2.2 and 6.2.3 of the proof of [15, Theorem 6.2] go through
with only small changes. We find

(d) if g ∈ G∗x then H and Hg are commensurable.

Indeed, suppose not. Then by Remark 3.5 of [15] there is a definable
subgroup K of Πg∈G∗xH

g, normalised by G∗x, and such that Hg/K is finite
for each g ∈ G∗x. The SU-rank of K is greater than that of H; otherwise,
H and Hg are commensurable. Hence KG∗x is a definable subgroup of W ∗

containing G∗x and of SU-rank greater than that of H, a contradiction.

Using the fact that ∼ is trivial on X∗, it then follows as in [15] that H
has greater SU -rank than G∗x. Thus, G∗x < H ≤ W ∗. Then H = W ∗, for
otherwise, by definability of H in (X∗, G∗), for almost all (X,G) ∈ C, Gx is
not maximal in W . It follows that W ∗ is definable.

(ii) This follows immediately from (i). For suppose that the above ul-
traproduct is with respect to the non-principal ultrafilter U on C, and that
φ(x, ā) defines W ∗ in (X∗, G∗). Then there is a set U ∈ U such that for all
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(X,G) ∈ U , there are parameters āi in (X,G) such that φ(x, āi) defines W
in (X,G). Since this holds for any non-principal ultrafilter U on C, there is
a finite set of formulas which uniformly define W across C.

Given the claim, there is a uniformly (across (X,G) ∈ C) definable
equivalence relation E on X such that if xE denotes the E-class of x, then
W = G{xE}. We use the notation G,X,W, x where (X,G) ∈ C is sufficiently
large, so sometimes omit the phrase ‘for (X,G) ∈ C’.

In the following claim, we allow the possibility that |W : Gx| is bounded
above as (X,G) ranges through C.

Claim 3. For (X,G) ∈ C, |Gx :
⋂
g∈W G

g
x| → ∞ as |W : Gx| → ∞.

Proof. If not, then by appropriate choice of the ultraproduct, we may
suppose |W ∗ : G∗x| is infinite and |G∗x :

⋂
g∈W ∗(G

∗
x)
g| is finite. This says

that the block xE∗ is infinite but G∗ induces a group on it with finite point
stabiliser. It follows that if y ∈ xE∗ then |G∗x : G∗xy| <∞, contrary to Claim
1.

We now return to finite permutation groups (X,G) ∈ C. By the max-
imality assumptions, W acts primitively on xE . As G is simple, G acts
faithfully on Y := X/E. The point stabiliser in this action is W , which
contains Gx so by faithfulness, and as |G| is unbounded, the permutation
groups (Y,G) have unbounded degree. By Claim 2, all E and hence Y are
uniformly definable in the (X,G), so all non-principal ultraproducts of the
(Y,G) have S1-theory. Hence, by the primitive case at the start of the proof,
there is t1 ∈ N such that diam(Y,G) ≤ t1. Also, by Claim 3 and the uniform
definability of W (and the primitive case above) there is t2 ∈ N such that
diam(xE , W̄ ) ≤ t2, where W̄ is the permutation group induced on xE by W .
Put t := max{t1, t2}.

Let Γ be a G1-orbital containing some (u, v) ∈ x2E . By primitivity of G1,
there is g ∈ G1 such that ug, vg are E-inequivalent. Now let v′ ∈ X \ xE .
Then as diam(Y,G) ≤ t, there is a sequence u = u0, u1, . . . , us = v′′, with
s ≤ t, such that Ev′v′′ and for each i, (ui, ui+1) ∈ Γ ∪ Γ∗; here Γ∗ denotes
the orbital paired with Γ, that is, Γ∗ := {(z, y) : (y, z) ∈ Γ}. Now as G
induces a t-bounded group on vE , there is a path in Γ∪Γ∗ of length at most
t from v′′ to v′, so a path of length at most 2t from u to v′.

Now consider an orbital Δ of (X,G1) which contains no E-equivalent
pair. Write dΔ for the distance function in the corresponding orbital graph.

Claim 4. There are distinct E-equivalent v, v′ ∈ X with dΔ(v, v′) ≤ 3t.

This claim proves the theorem, for it then follows (by the above argument
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for Γ), that the orbital graph of Δ has diameter at most 6t2. Hence, 6t2

is an upper bound of the diameter of all orbital graphs of (X,G1). As t is
independent of G1, we may put d := 6t2.

Proof of Claim 4. Suppose that the claim is false, and consider the
relation ≡ on X: u1 ≡ u2 if and only if dΔ(u1, u2) ≤ t. Clearly ≡ is reflexive
and symmetric, and we will show it is also transitive. If u ∈ X and B is
an E-class not containing u, then there is some v ∈ B with dΔ(u, v) ≤ t

(as diam(Y,G) ≤ t) and for any v′ ∈ B \ {v}, dΔ(u, v′) > 2t (as otherwise
dΔ(v, v′) ≤ 3t). Thus, if u ≡ v and v ≡ w, then dΔ(u,w) ≤ 2t, so either
u = w or u and w are in distinct E-classes, in which case dΔ(u,w) ≤ t and
u ≡ w.

Thus, ≡ is a proper non-trivial G1-congruence, each ≡ -class meeting
each E-class in a singleton. This contradicts the primitivity of (X,G1). �

The next theorem is our main source of information on the possible
point stabilizers in the primitive groups in 4.2, which are of course maximal
subgroups of almost simple groups of Lie type. In the statement, recall that
a Frobenius morphism of a simple algebraic group G is an endomorphism σ

whose fixed point group Gσ is finite; it can be written as a product of field
and graph morphisms of G.

Theorem 4.8 Let p be a prime, K = Fp, and let G be a simple algebraic
group of adjoint type over K of L-rank n. Let σ be a Frobenius morphism
such that (Gσ)

′ = G0 = G(q) is a finite simple group of Lie type over Fq.
Let G1 be an almost simple group with socle G0, and let M1 be a maximal
subgroup of G1. Write M0 = M1 ∩G0.

(i) There is a constant c = c(n) such that one of the following holds.

(a) |M0| < c;

(b) M0 = G(q0), a subgroup of the same type as G (possibly twisted) over
a subfield Fq0 of Fq with [Fq : Fq0 ] prime; the number of conjugacy classes of
such maximal subgroups is at most c log log q;

(c) M0 is a parabolic subgroup of G0;

(d) M0 = NG0(Hσ ∩G0), where H is a σ-stable reductive subgroup of G
of positive dimension. The number of G-conjugacy classes of such H, and
of Gσ-classes of Hσ, is at most c.

(ii) IfM0 is as in (d) of part (i), then it is either maximal or second-maximal
in G0; and if M0 is as in (b) of (i), it is maximal in G0.
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(iii) Assume M0 is as in (d) of part (i), and the characteristic p is suffi-
ciently large. Then there is a (possibly trivial) graph automorphism ρ of G
stabilizing the subgroup H in (i)(d), such that H〈ρ〉 is maximal of positive
dimension in G〈ρ〉. Moreover, in all cases where ρ 6= 1 and H is non-
maximal in G, the derived group of H〈ρ〉 contains the connected component
H0, and has bounded index in H.

Proof. (i) For G of exceptional type, this follows from [37, Corollary 4]
and the discussion following this result.

Now suppose that G is of classical type with Gσ a finite classical group.
If G′σ = D4(q) or C2(q) (q even) and G1 contains a graph automorphism,
the conclusion follows from [26] or [1] respectively, so assume neither of
these cases hold. Then it follows from [34, Theorem 2] that either one of
(a)-(d) holds, or M0 is almost simple with socle M∗

0 , say, acting absolutely
irreducibly on the natural module for G0. Suppose the latter occurs. By
[30], if M∗

0 is not in Lie(p), where p = char(Fq), then (a) holds, so assume
M∗
0 ∈ Lie(p). Say M∗

0 = M(q1). Assuming that q1 is large compared to the
rank n (as we may, since otherwise (a) holds), [36, Corollary 3] now shows
that (d) holds.

Finally, for G classical and Gσ an exceptional group 3D4(q) or 2B2(q),
the conclusion follows from the known lists of maximal subgroups of these
groups in [28, 53].

(ii) First observe that subfield subgroups M0 as in (b) of part (i) are
maximal in G0, by [6].

Now let M0 be as in (i)(d).

Assume first that G0 is of exceptional Lie type. By [37, Theorem 1],
the reductive subgroup H is either of maximal rank in G, or it is as in
[37, Theorem 1(b,c,d)]. In the latter case M0 = NG0(Hσ ∩ G0) is maximal
in G0, so assume H is reductive of maximal rank. Then M0 is as in [33,
Tables 5.1,5.2]. For large q, the only cases where M0 fails to be maximal in
G0 occur when G0 = F4(q) (p = 2) or G2(q) (p = 3), G1 contains a graph
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automorphism of G0, and M0 is as follows:

G0 M0 K

F4(q) B2(q)
2.2 B4(q)

B2(q
2).2 B4(q)

(q ± 1)4.W (F4) D4(q).S3
(q2 + 1)2.(4 ◦GL2(3)) D4(q).S3
(q2 + q + 1)2.(3× SL2(3) 3D4(q).3
(q4 − q2 + 1).12 3D4(q).3

G2(q) (q ± 1)2.W (G2) A2(q).2
(q2 + εq + 1).6 (ε = ±) Aε2(q).2

E6(q) NG0(D5(q)) P1

In each case we have indicated a maximal subgroup K of G0 in the table,
such that M0 < K < G0 and M0 is maximal in K (as can be seen using
[26, 28] for the F4(q), G2(q) cases). For the E6(q) case, P1 is a D5-parabolic
subgroup and M0 is a Levi subgroup of P1; here P1 = QM0 with Q = q16 an
irreducible module for M0, and so M0 is maximal in P1. Hence in all cases
M0 is second-maximal in G0, as required.

Now suppose that G0 is a classical group, with natural module V = Vn(q)
of dimension n over Fq. Assume that M0 is non-maximal in G0.

First, the case where G0 = PΩ+8 (q) can be dealt with using [26]: this
shows that the possibilities for M0 non-maximal in G0 are G2(q), N1, N2
or N3 (notation of [26]), all occurring only when G1 contains an element
inducing a triality automorphism on G0. Each of these is second-maximal
as witnessed by containments M0 < K < G0 with K = Ω7(q), R−2, R+2 or
I−4, respectively (notation of [26]). Likewise the case where G0 = Sp4(q)
with q even is handled using [1, Section 14]: the non-maximal possibilities
for M0 occur when G1 contains a graph automorphism, and are (q ± 1)2.[8]
and (q2+ 1).4; these are second-maximal in G0, as witnessed by a subgroup
K = O±4 (q). So we suppose from now on that G0 6= PΩ+8 (q) or Sp4(q) (q
even).

According to [1], the subgroup M0 lies in either one of the Aschbacher
families Ci (or C′1 if G0 = Ln(q) and G1 contains a graph automorphism),
or M0 is almost simple and its socle is absolutely irreducible on the natural
module for G0; in the latter case we write M0 ∈ S, as in [29]. Write C for
the union of the Ci (and C′1).

Suppose now that M0 ∈ C. If the dimension n ≥ 13, Tables 3.5H,I in
[29] list all triples M0 < K < G0 where M0 ∈ C and K ∈ C ∪ S; the same
can be gleaned from [27] when n ≤ 12. In our situation the maximality of

33



M1 means that NG1(M0) 6≤ NG1(K), so that in the language of [29, p.66],
M0 is a G1-novelty with respect to K. From the lists we see that for q large,
the possibilities are as follows:

(1) G0 = Ln(q), M0 = stabG0(U,W ) (where V = U ⊕ W ), K =
stabG0(U) or stabG0(W );

(2) G0 = PΩ+n (q) (n even, n/2 odd), M0 of type GLn/2(q).2, K parabolic
of type Pn/2

(3) G0 = PΩ+n (q) (4|n, q odd), M0 of type O+4 (q) ⊗ On/4(q), K of type
Sp2(q)⊗ Spn/2(q).

In case (1) it is easy to see that M0 is maximal in K and K is maximal in G0.
In case (2), M0 is a Levi subgroup of K, and K = QM0 where the unipotent
radical Q is abelian and has the structure of an irreducible M0-module (the
alternating square of the natural module); hence again M0 is maximal in K
and K is maximal in G0. And in case (3) the precise structures of M0 and K
are given by [29, 4.4.12, 4.4.14], from which we deduce the same conclusion.
Hence M0 is second-maximal, as required.

Finally, suppose that M0 ∈ S. As we are assuming that M0 is non-
maximal in G0, we have M0 < K < G0 for some K ∈ C∪S. Let V̄ = V ⊗Fp.
Then F ∗(M0) is irreducible on V̄ , hence so is the reductive group H0, the
connected component of the group H of (i)(d). Hence H0 is semisimple. If
H0 is not simple, it preserves a tensor decomposition of V̄ , and we deduce
that M0 lies in the family C′′σ4 of [34, Theorem 2]: so F ∗(M0) = Clm(qr)
and G0 = Clmr(q) for some r > 1. Such embeddings are analysed in full in
[47], and in all cases M0 is maximal in G0, contrary to assumption.

Hence H0 is simple (and also tensor-indecomposable). Also M0 does not
lie in any member of C, so K ∈ S, and so as before, F ∗(K) ∈ Lie(p). As q is
large, [36, Theorem 11] shows that the embedding F ∗(M0) < F ∗(K) < G0
lifts to an embedding H0 < K̄ < G, where K̄ is a simple algebraic group
of the same type as F ∗(K). All such triples (H0, K̄, G) are listed in [50,
Table 1,p.282]. As observed in [50, Corollary 4], with one exception H0 is
maximal connected in K̄ and K̄ is maximal connected in G (the exception
is H0 = A2 < G2 < B3 < SO27 = G). The same observation applies to the
triple M0 < K < G0, noting that M0 = NG0(F

∗(M0)), K = NG0(F
∗(K))

(the exceptional case does not occur since A2.2 < G2 so there is no novelty).
Thus M0 is second-maximal in G0, as required.

(iii) This is immediate if M0 is maximal in G0 (since then we take ρ

to be trivial). So suppose now that the characteristic p is large and M0
is non-maximal in G0. Then from the proof of (ii), either G0 = E6(q)
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and M0 = NG0(D5(q)), or G0 is classical and M0 < K < G0, where the
triple M0,K,G0 is either as in (1), (2) or (3) above, or arises from one of
the triples of algebraic groups H0 < K̄ < G given in [50, Table 1, p.282];
moreover M0 is a G1-novelty with respect to K. This novelty must arise
from a graph automorphism of G normalizing H0 but not K̄, and hence (iii)
holds. The last sentence of (iii) follows also, as in all the cases above, the
connected reductive group H0 is either semisimple, or has centre a rank 1
torus inverted by the graph automorphism ρ, whence (H〈ρ〉)′ contains H0.
�

We shall also use the following theorem.

Theorem 4.9 (i) For any Lie type Y of simple algebraic groups, there exist
t, n ∈ N such that if K is an algebraically closed field of characteristic 0 or
p > n, and G = Y (K) has adjoint type, then G has exactly t conjugacy
classes of maximal subgroups of positive dimension.

(ii) For the groups G〈ρ〉 in Theorem 4.8(iii), the assertion of (i) also
holds, for maximal subgroups H〈ρ〉 of positive dimension.

Proof. (i) For X of exceptional type this is a consequence of [37, Theorem
1]. And for X = Cl(V ) of classical type, [34, Theorem 1] implies that every
maximal subgroup H of positive dimension either lies in a collection C,
which fall into a constant number of conjugacy classes, or is simple, and acts
irreducibly and tensor-indecomposably on the natural module V . Say V =
VH(λ), where λ is a restricted dominant weight. By [52, 4.3], for sufficiently
large p the possibilities for λ are the same as they are for characteristic 0.
Moreover, [50] shows that the weights λ for which H < Cl(VH(λ)) is non-
maximal are also independent of the (large) prime p. The result follows.

(ii) This follows using the proof of Theorem 4.8(iii). �

As a corollary, we obtain the following uniform definability result (parts
(ii), (iii) below) for maximal subgroups of positive dimension. This may
have independent interest. Of course, as K is uniformly bi-interpretable
with Y (K), we can also view the result as giving uniform interpretability of
the subgroups in the group.

Corollary 4.10 (i) For any Lie type Y , there are finitely many formulas
ψ1(x̄, ȳ1), . . . , ψl(x̄, ȳl) such that if K is an algebraically closed field then
there is ā ∈ K l(ȳ) and i ∈ {1, . . . , l} such that G = Y (K) (the simple
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algebraic group of adjoint type of Lie type Y ) is definable in K by the formula
ψi(x̄, ā)).

(ii) For any Lie type Y , there are finitely many formulas
φ1(x̄, ȳ1), . . . , φk(x̄, ȳk) such that if K is an algebraically closed field and H is
a maximal subgroup of G = Y (K) of positive dimension, and G is identified
with an affine variety in Kn, then for some i = 1, . . . , k and ā ∈ K l(ȳi),
H = {x̄ ∈ Kn : K |= φi(x̄, ā}.

(iii) The assertion of (ii) holds for maximal subgroups H〈ρ〉 < G〈ρ〉 as
in Theorem 4.8(iii).

Proof. (i) For each characteristic, Y (K) is definable in K by some for-
mula. In particular, it is definable in characteristic 0. By standard model-
theoretic transfer arguments (together with facts about existence of simple
algebraic groups of appropriate dimension in each field), the same formula
defines Y (K) over algebraically closed fields of sufficiently large prime char-
acteristic; these transfer arguments are given in more detail in (ii) (1), (2)
below. The remaining characteristics are handled case by case.

(ii) This follows from the following well-known and elementary model-
theoretic facts (see Sections 2.2 and 3.2 of [43]):

(1) any two algebraically closed fields of the same characteristic satisfy
the same first order sentences;

(2) for any sentence σ in the language of rings, if σ is true in the complex
field then for all but finitely many primes p, σ is true in every algebraically
closed field of characteristic p.

Also, we note

(3) if G is an algebraic group, and H is infinite, core-free in G, and
maximal subject to being a closed subgroup of G, then H is maximal in
G; this follows from Proposition 2.7 of [41], where it is shown that any
definably primitive permutation group of finite Morley rank with infinite
point stabiliser is primitive.

Hence we obtain

(4) if G is an algebraic group and H is an infinite maximal subgroup of G
which is closed, then H is boundedly maximal; indeed, otherwise, by moving
to a saturated elementary extension of the structure (G,H), we would find
an algebraic group G1 with a subgroup H1 which is maximal subject to
being closed, but not maximal, contrary to (3).

Assume, using Theorem 4.9, that Y (C) has exactly t pairwise non-
conjugate maximal subgroups of positive dimension. Then there is a sen-
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tence σ true of C which expresses that there are b̄1, . . . , b̄t such that the
formulas ψ1(x̄, b̄1), . . . , ψt(x̄, b̄t) define pairwise non-conjugate maximal sub-
groups of Y (C) of positive dimension; note here that maximality is express-
ible, by (4). The sentence is then true in all algebraically closed fields K
of sufficiently large prime characteristics; and by Theorem 4.9 (i), if the
characteristic is large enough then up to conjugacy all maximal subgroups
of Y (K) of positive dimension are defined by one of the ψi. The remaining
characteristics can be handled case by case using (1) and the fact that there
are finitely many conjugacy classes of maximal closed subgroups of positive
dimension (which is true in any characteristic – see [37, Corollary 3]).

(iii) This is as in (ii). �

Now we can at last prove 4.2.

Proof of Proposition 4.2

We have already noted that part (i) of 4.2 is an easy consequence of
Lemma 2.1.

We now prove part (ii) (which is Theorem 1.2). Let C1 be a class of
finite almost simple primitive permutation groups with socles of bounded
L-rank, satisfying the conditions of 4.2 (namely, that point stabilizers are
unbounded, and point stabilizers which are subfield subgroups correspond
to extensions of bounded degree). By passing to an infinite subclass we
may assume that all the groups in C1 are of the same Lie type, of L-rank n,
say. Let G1 be a member of C1, and M1 a point stabilizer in G1. Define C0
to be the class obtained from C1 by replacing each pair (G1,M1) in C1 by
(G0,M0), where G0 = Soc(G1) and M0 = M1 ∩G0.

Our goal is, roughly speaking, to show that the groups in C0 are uniformly
interpretable in finite fields or difference fields, using Theorem 4.8. The
interpretability yields that corresponding non-principal ultraproducts have
S1-theories. We then use Theorem 4.7 and Corollary 4.4 to deduce that
the class C1 is bounded. The maximality or second-maximality required in
Theorem 4.7 is explicit in cases (i)(b) and (i)(d) of Theorem 4.8, by (ii). For
case (i)(c), (second)-maximality does not have to be checked – see the end
of the proof below.

Let c = c(n) be as in Theorem 4.8(i). Groups (G1,M1) of type (i)(a) in
4.8 are excluded as M1 is unbounded by assumption, and we postpone types
(i)(b) and (c) to the end.

So suppose (G1,M1) has type (i)(d) of 4.8. Define G, σ as in 4.8, over a
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field K = F̄p. The simplest case is that in which σ is just a field morphism
x 7→ x(q); that is, the case where G0 is untwisted. We emphasise that this
field automorphism of G is induced by the field automorphism x 7→ xq of K,
where G is viewed as a structure definable in K. Now the algebraic groups
G and H are definable in the algebraically closed field K by quantifier-free
formulas, say φ(x̄, b̄) and ψ(x̄, c̄), by quantifier-elimination for algebraically
closed fields ([43, Theorem 3.2.2]). By Corollary 4.10(i), the group G is
uniformly defined, by one of finitely many formulas, as the characteristic
varies. Working over any given algebraically closed field K, we claim that the
set of G-conjugates of such definable H is uniformly definable in K. Indeed,
H is definable in K, and hence definable in G as K is G-definable. Thus,
all the conjugates of H are uniformly definable in G, and hence uniformly
definable in K, using the bi-interpretability (over parameters) of K and G.
Since, in Theorem 4.8(i)(d), there are finitely many such subgroups H up to
G-conjugacy, this proves the claim. We claim furthermore that the possible
H are uniformly definable in the field K (by finitely many formulas ψ) as the
characteristic of K varies. This follows from Corollary 4.10(ii), (iii), since
by the above claim, we may exclude finitely many characteristics. Note
that, in cases where a graph automorphism is involved, G〈ρ〉 is uniformly
definable from K, the graph automorphism ρ has the form gτ for some
g ∈ G and fixed graph automorphism τ , so H〈ρ〉 is uniformly definable by
Corollary 4.10(iii). Finally, H is uniformly definable in H〈ρ〉 (and hence in
K),

In addition, the family of conjugates of H is uniformly definable in K

(i.e. there are finitely many possibilities for ψ) as the characteristic varies,
by .

Since the theory of algebraically closed fields has elimination of imagi-
naries (see [43]), we may choose the defining parameters c̄ for H canonically,
so c̄ is fixed by σ (as H is σ-stable) and hence lies in Fq. Again, this holds
for all σ-invariant G-conjugates of H. If G, an affine algebraic group, is
identified with a subset of Kr, then, as it is quantifier-free, φ(x̄, b̄) defines
in Fq the set (Fq)r ∩G, which is exactly Gσ; likewise for ψ(x̄, c̄). Thus, the
same formulas φ and ψ define Gσ and Hσ in Fq. Furthermore, the above
uniformity ensures that for each σ-stable conjugate Hg (g ∈ G), (Hg)σ is
defined by a formula from this finite family. (Note here that σ may not act
on Hg as a field morphism – in general it will act as wσ0 where w ∈ H/H0

and σ0 is a field morphism – see [35, Example 1.13] for a discussion of this.
But this is not relevant to the uniform definability of the (Hg)σ.)

Now, G0 is uniformly definable in Gσ, and hence in Fq, by Lemma 4.5(iii),
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(v), and M0 is uniformly definable in Fq as it has form M0 = NG0(Hσ ∩
G0). By Theorem 4.8(ii), M0 is maximal or second maximal in G0. By 4.5
every ultraproduct of Fq has measurable theory, and the same is true for
ultraproducts of the groups (G0,M0). Since G1 ≤ NSym(X)(G0), where X is
the space of cosets of M0 in G0, we finish by applying Theorem 4.7.

Next, consider the case where G0 is twisted, but not a Suzuki or Ree
group. Suppose the Dynkin diagram symmetry involved in σ has order a,
so a ∈ {2, 3}. Now σa is just the field morphism x 7→ x(q

a) of G. As
in the untwisted case, the pair (Gσa ,Hσa) is uniformly definable in the
field Fqa , by quantifier-free formulas. Furthermore, as Fqa is an extension
of Fq of fixed degree a, it is uniformly definable in Fq (this is standard);
likewise, the automorphism x 7→ xq of Fqa is uniformly definable in Fq,
as it suffices to specify its action on a basis of Fqa over Fq. Hence the field
automorphism σ0 : x 7→ x(q) ofGσa is uniformly definable in Fq. Again, using
Corollary 4.10, all the definability so far is uniform across characteristics.
Likewise, by Lemma 4.6(i), the graph automorphism τ of Gσa is uniformly
definable in Fq, and hence so is Gσ = (Gσa)τσ0 . Also Hσ = (Hσa)τσ0 . As
before, the definition of Hσ is uniform as H varies through a conjugacy class
in G. As in the untwisted case, we now define (G0,M0) uniformly in Fq and
finish as before.

The remaining case is where G0 is a Ree or Suzuki group. We consider the
case where G0 = 2F4(2

2k+1), the other cases being similar. Here, one does
not drop in two steps to a field Fq0 . Rather, let σ1 be the field automorphism

x 7→ x(2
2k+1), and σ0 be x 7→ x(2

k). We shall freely identify σ or σ1 with its
restriction to a substructure. Put G = F4(K), where K = F̄2. A maximal
subgroup in 4.8(i)(d) arises from some maximal subgroup H of G of positive
dimension. Now (Gσ1 ,Hσ1) is uniformly definable in F22k+1 , by the same
quantifier-free formulas which defines (G,H) in K; again, only finitely many
formulas are needed as H ranges through a conjugacy class.

Now work in the difference field (F22k+1 , σ0) where we identify σ0 with
its restriction. The Frobenius morphism σ of (d) has the form τσ0, where
τ is a graph automorphism. By Lemma 4.6(i), σ is definable in (F22k+1 , σ0),
and hence so is (Gσ,Hσ) = ((Gσ1)σ, (Hσ1)σ). We then finish as above, using
Lemma 4.5(ii).

The cases where (G0,M0) is of type 4.8(i)(b) or (c) are easier than the
above. For (b), the above arguments show that the finite simple groups
G(q) of fixed Lie type are uniformly definable in Fq, as q varies. It follows
that a pair (G(q), NG(q)(G(q0))) is uniformly definable in Fq0 (or in the
corresponding difference field if G(q) is a Suzuki or Ree group). We require
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here that the field extension Fq0 < Fq has bounded degree, so that Fq is
uniformly definable in Fq0 . The same applies if G(q) is untwisted but G(q0)
is twisted. Here, if G(q0) is a Suzuki or Ree group, we obtain definability
in the appropriate difference field (Fq, σ). Since M0 is maximal in G0 by
4.8(ii), Theorem 4.7 applies.

Finally, in case 4.8(c), the permutation groups (G0, P0), where P0 is a
parabolic subgroup, have bounded permutation rank. Hence, the diameters
of the corresponding primitive groups (G1,M1) are bounded.

This completes the proof of Proposition 4.2. �

Finally, we give two other uniform definability results for finite simple
groups, which follow easily from the above arguments. The first generalises
Proposition 8.1 of [19], which is stated only for simple groups over prime
fields.

Corollary 4.11 Let C be a class of finite simple groups G(q) of fixed Lie
type, and let e ∈ N. Then there are finitely many formulas φ1(x, ȳ1), . . . , φt(x, ȳt)
such that if G ∈ C and M is a maximal subgroup of G which is not a subfield
subgroup G(q0) with |Fq : Fq0 | > e, then there is i ∈ {1, . . . , t} and b̄ ∈ Gl(yi)

such that in G, M is defined by the formula φi(x, b̄).

Proof. First, observe that maximal subgroups of bounded finite size,
though they do not yield bounded classes of primitive groups, will automat-
ically be uniformly definable in the groups: simply name the elements of the
maximal subgroup using parameters.

For the other cases, we have above shown that the class of pairs (G,M)
(G simple of fixed Lie rank, M maximal and not a subfield subgroup with
respect to unbounded field extensions) is uniformly definable in (difference)
fields. By work of Ryten (Chapter 5 of [46]), the difference fields are uni-
formly definable in the groups G, and hence M is definable in G, uniformly
across the class. �

In the next result, when we say that an FG-module M is F -definable,
we mean that the F -vector space M , the group G, and the action of G on M
are all definable. Equivalently, the triple (G,M, ρ) is definable, where G has
the structure of a group, M that of a F -vector space, and ρ : G → GL(M)
is the representation. We sometimes omit the symbol for ρ.

In the statement, we refer to some of the basic representation theory
of groups of Lie type in the natural characteristic, which can be found, for

40



example, in [21]. Let G(q) be a quasisimple group of simply connected Lie
type over Fq, and λ be a restricted dominant weight for G(q), meaning that
λ =

∑
ciλi where the λi are the fundamental dominant weights and the

coefficients ci are integers with 0 ≤ ci ≤ p− 1, where p = char(Fq). For such
λ, there is a Weyl module Wλ for G(q) over F̄q of highest weight λ; Wλ has
a quotient Vλ of highest weight λ which is an irreducible F̄qG(q)-module.
This module is realised over Fqa (a ≤ 3), since this is a splitting field for
G(q), and we let Vλ(q) be the corresponding irreducible FqaG(q)-module of
highest weight λ.

Proposition 4.12 Let C be a class of structures (G(q), Vλ(q))) where G(q)
is quasisimple and simply connected of fixed Lie type (possibly twisted) and
λ is a restricted weight. Then the members of C are uniformly definable in
Fq (or in the corresponding difference fields in the cases of Suzuki and Ree
groups).

Proof. Let G be the Chevalley group over F̄q corresponding to G(q), and
let σ be a Frobenius morphism such that Gσ = G(q). The construction on
pp.192-193 of [21] makes clear that the triple (G,Wλ, ρλ) is definable in F̄q.
The module Vλ is an irreducible quotient of Wλ, so is also definable in F̄q
(it suffices to specify by parameters an F̄q-basis for the submodule factored
out). Furthermore, the definition is uniform in q: there are finitely many
formulas, such that in each characteristic, one of these formulas suffices to
define the module. Indeed, the corresponding representation is definable in
characteristic 0; by standard model-theoretic transfer arguments the same
definition applies in all but finitely many finite characteristics, and the rest
can be handled independently. Also, for example by working with sufficiently
large q, any parameters in the definition can be chosen to be fixed by x 7→ xq.

If G(q) is untwisted, then the quadruple Zλ(q) := (Fq, Vλ(q), G(q), ρλ(q))
(where ρλ(q) is the corresponding representation) is obtained from Zλ :=
(F̄q, Vλ, G, ρλ) by taking the fixed point set of the Frobenius morphism
σ : x 7→ xq. By quantifier elimination in algebraically closed fields, Zλ is
definable in F̄q by a quantifier-free formula. The same formula then defines
Zλ(q) in Fq.

Suppose now that G(q) is twisted, say G(q) < G∗(qa), where G∗ is
untwisted and a ≤ 3. Thus, G(q) is the fixed point set of an automorphism (a
product of field and graph automorphisms) of G∗(qa). The module Vλ(q) is
the restriction of the irreducible module Vλ(q

a) of G∗(qa), and the structure
Zλ(q

a) := (Fqa , Vλ(q
a), G∗(qa), ρλ(q

a)) is uniformly definable in Fqa , by the
last paragraph. In the case when G(q) = PSUn(q) < PSLn(q

2), the field Fq2
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is (uniformly) definable in Fq, as is the graph automorphism τ and the field
automorphism x 7→ x(q) of G∗(qa), and it follows that Zλ(q) is uniformly
definable in Fq (just take fixed point sets). The same argument applies in
all cases except for the Suzuki and Ree groups. So consider for example
the case G(q) = 2G2(3

2k+1) < G∗(q) = G2(3
2k+1). Here, the irreducible

module of highest weight λ of G2(3
2k+1) is (uniformly) definable in F32k+1 ,

as is the corresponding structure Zλ(3
2k+1) which codes the representation

of G2(3
2k+1) of weight λ. Hence the twisted group G(q), and indeed Zλ(q)

is definable in (F32k+1 , x 7→ x3
k
) (take fixed points of the product of a field

automorphism x 7→ x(3
k) and a graph automorphism). The same argument

applies for the groups 2F4(2
2k+1) and 2B2(2

2k+1). �

5 The remaining cases

In this section we complete the proof of Theorem 1.1 and its converse. First,
we consider primitive permutation groups (X,G) of simple diagonal type.
The following result proves Theorem 1.1(4) and its partial converse.

Lemma 5.1 (i) If C is a bounded class consisting of primitive groups G of
simple diagonal type, then these all have socles of the form T k, where T is
a simple group of bounded L-rank and k is bounded.

(ii) Conversely, suppose C consists of primitive groups (X,G) of simple
diagonal type satisfying the conditions in (i). Suppose further that there is
t ∈ N, and for all (X,G) ∈ C there are primitive L ≤ Symk and P ≤ G

such that P is primitive on X and satisfies T k ≤ P ≤ H wr L, where
Soc(H) = T and |H : T | ≤ t. Then C is bounded.

Proof. (i) Suppose that C is a bounded class of finite primitive permu-
tation groups (X,G) of simple diagonal type. For a typical member of C we
adopt the notation of Section 2, case (3)(a). Thus G has socle T k for some
non-abelian simple group T .

First, we show k is bounded. For ease of notation, we consider primitive
groups of simple diagonal type of the form G = T wr Symk acting on the
right cosets of D × Symk, where D is a diagonal subgroup of T k. Write
H = D × Symk. We may identify x ∈ X with H, pick g ∈ T \ {1}, and
consider the orbital graph which has an edge between H and H(1, . . . , 1, g).
A vertex at distance i from x is a coset of the form H(g1, . . . , gk), where
the gj can be chosen so that at most i of them are non-identity. Thus, if
C ⊂ Fd, then k ≤ d.
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We claim next that the groups T are uniformly simple, that is, all ultra-
products of the groups T are simple. Indeed, pick any g ∈ T \ {1}, and as
above consider the orbital graph whose edge set E on X has an edge between
H and H(1, . . . , 1, g). Any coset of H in G has the form H(g1, . . . , gk) for
some g1, . . . , gk ∈ T .

We claim that if a coset H(g1, . . . , gk) is at distance at most j from H

in the graph (X,E), then the representative (g1, . . . , gk) can be chosen so
that each gi is a product of at most j T -conjugates of g and g−1. To see
this, observe that the neighbours of vertex H have the form H(1, . . . , 1, g)h
where h ∈ H, so have the form H(h1, . . . , hk) where at most one of the hi
is non-identity, and that element is a conjugate of g. Hence, the neighbours
of H(g1, . . . , gk) have the form H(h1, . . . , hk)(g1, . . . , gk), with (h1, . . . , hk)
as above. The claim follows by induction. It follows that there is bounded
e such that if g, h ∈ T \ {1} then h is a product of at most e conjugates of
g and g−1; that is, the groups T are uniformly simple. From this, it follows
easily that the L-rank of T is bounded. For example, if the groups T are
of the form PSLn(q), and Z is the conjugacy class of transvections, and t is
least such that Zt = PSLn(q), then t→∞ as n→∞.

(ii) The groups T are uniformly definable in finite fields (or possibly
difference fields). Hence, using Lemma 4.6(ii), the group H wr L is uni-
formly so definable, as is its stabiliser in the action on X. Now P is a union
of a bounded number of cosets of T k in H wr L, so P , and its action on
X, are uniformly definable. It follows from Corollary 4.4 that there is a
uniform bound on the diameter of the permutation groups (X,P ), and as
P ≤ G ≤ Sym(X), this bound holds also for C. �

Next we prove Theorem 1.1(5) and its partial converse.

Lemma 5.2 Let C be a class of finite primitive permutation groups (X,G)
of product action type, with G ≤ H wr Sym` (product action on Y

`) where
(Y,H) is of almost simple or simple diagonal type and Soc(G) = Soc(H)l.

(i) If C ⊂ Fm for some m, then there is a bound on the values of ` which
occur. Also, diam(Y,H) ≤ m.

(ii) If C is a class of groups of almost simple or simple diagonal type with
C ⊂ Fm, and ` ∈ N, then

{(Y `,H wr Sym`) (product action) : (Y,H) ∈ C} ⊂ F`m.

Proof. (i) Any orbital graph for (X,G) whose edges are translates of the
pair (y1, y2, . . . , y`), (y

′
1, y2, . . . , y`) (with y1 6= y′1) will have diameter at least
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`. For the second assertion, note that if Δ is an orbital of (Y,H) with graph
having diameter e > m, and (y1, y

′
1) ∈ Δ, then any orbital graph containing

an edge {(y1, y2. . . . , yl), (y′1, y2, . . . , yl)} has diameter at least e.

(ii) We leave this to the reader. �

Finally we complete the proof of Theorem 1.1(6).

Lemma 5.3 There is no infinite subset of Fm consisting entirely of permu-
tation groups of twisted wreath type.

Proof. A group (X,G) of twisted wreath type has socle of form B = T k

acting regularly on X, so identifiable with X. It can be checked (e.g. from
the description in Section 2) that if x, y ∈ T k differ in one coordinate, then
the orbital graph for (X,G) with {x, y} as an edge has diameter at least k.
Also, as noted in Section 2, |G| ≤ k!((k − 1)!)k. Thus, a bounded class of
primitive groups of twisted wreath type contains just finitely many groups.
�

6 Proof of Corollary 1.3

To prove Corollary 1.3, we must show that for any given Lie type Y , there are
only finitely many values of q such that there exists an almost simple group
with socle Y (q) which has a primitive, distance-transitive, non-parabolic
action on the vertex set of a (non-complete) graph Γq.

So assume this is false for some Lie type Y , and let C be the infinite class
of such primitive distance-transitive permutation groups. Let (X,G) ∈ C
with Soc(G) = Y (q) and let H = Gx be a point stabilizer, so that H is
a maximal non-parabolic subgroup of G. As shown in [5, 7.7.2], distance-
transitivity implies that |H| ≥ (|G|/k(G))1/2, where k(G) is the number of
irreducible characters of G. Since k(G) is of the order of qr where r is the Lie
rank of Y (q), it follows that if H is a subfield subgroup G(q0), then [Fq : Fq0 ]
is bounded. Hence Theorem 1.2 shows that C is a bounded class, and so
diam(Γq) < c, where c is a constant (depending only on the Lie type Y ).
Since Γq is distance-transitive, the permutation rank of G on X is equal to
1+diam(Γq), hence is also bounded. However, the main result of [49] shows
that the rank of any non-parabolic permutation representation of Y (q) is
unbounded as q → ∞, so this is a contradiction. This completes the proof
of Corollary 6.
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7 Infinite primitive ultraproducts of finite permu-
tation groups

As discussed in the Introduction (see the goals (i)-(v)), Theorem 1.1 trans-
lates into a description of primitive non-principal ultraproducts of finite
permutation groups. We sketch the description here. See Section 2 for more
background on the ultraproduct construction.

By a ‘large’ set, we always mean a set in the ultrafilter. In arguments be-
low, we may always replace a class of finite primitive permutation groups by
a large subclass, and restrict the ultrafilter to this subclass. So, let (X∗, G∗)
be a primitive ultraproduct of a class C of finite permutation groups, with
respect to some non-principal ultrafilter. We may suppose the members of
C are all primitive, since an ultraproduct of non-trivial congruences will give
a G∗-congruence on X∗. For any d, if the subset of C lying in Fd is not
large, then some orbital graph of (X∗, G∗) has diameter at least d. Thus,
by primitivity, after replacing C be a large subset, we may suppose that
C ⊆ Fd. By the O’Nan-Scott Theorem, each group in C belongs to one of
the classes (1)-(6) of primitive permutation groups listed in the Introduc-
tion before Theorem 1.1, and there will be a large subclass of groups all of
fixed type; for example, if the groups in C are of almost simple type, and
there is no large subclass of type (3), then C itself has type (2), and in any
non-principal ultraproduct, the group will resemble an infinite dimensional
classical group. Hence we may assume C consists of groups of one of the
types (1)-(6), so Theorem 1.1 applies.

The exact description of the ultraproducts is hard to state. However,
the following should indicate the rough structure, and more information can
be extracted as needed.

(a) A primitive non-principal ultraproduct of affine primitive permuta-
tion groups of the form (Vd(q), Vd(q)H), where d is fixed, q increasing, and
H ≤ GLd(q) is irreducible, will have the form (V, V H), where V = Vd(K),
H ≤ GLd(K) is irreducible, and K is a pseudofinite field. To see that irre-
ducibility is preserved, observe that we can view the fields Fq as part of the
structures, so express irreducibility by a first order sentence. It then holds
in the ultraproduct, by  Los’s Theorem (see Section 2).

(b) A non-principal ultraproduct of affine groups (Vn(q), Vn(q) Cln(q0)),
where n → ∞ as |Vn(q)| → ∞ and |Fq : Fq0 | = t, has the form (V, V H),
where V = V2ℵ0 (K), K is a finite or pseudofinite field, and H is a subgroup
of Cl2ℵ0 (L) where |K : L| = t and H is an ultraproduct of the corresponding
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finite classical groups, with the corresponding action.

(c) An arbitrary non-principal ultraproduct (X,G) of groups of type (1)
has the following form. There is a finite or pseudofinite field L with a finite
extension K, a K-vector space U1 of dimension 2ℵ0 , a t-dimensional K-
vector space U2, such that V = V1⊕ . . .⊕Vr, and V1 = U1⊗U2 ∼= V2, . . . , Vr.
There is a group H ≤ GL(V1) wr Symr preserving the above direct sum
decomposition, inducing a transitive group on {V1, . . . , Vr}, and inducing on
V1 a group H1 which contains a normal subgroup with the same orbits on
finite tuples as Cl2ℵ0 (L) ⊗ 1U2 acting naturally. The group (X,G) has the
form (V, V H).

(d) Let (X,G) be a non-principal ultraproduct of groups of type (2), that
is almost simple groups with alternating or classical socle of unbounded L-
rank, in a standard t-action. We have no clear description in this case,
beyond the above. For example, X could be the collection of t-dimensional
subspaces of a 2ℵ0-dimensional vector space over a finite or pseudofinite field,
and G an ultraproduct of groups PSLn(q) with n→∞.

(e) If C consist of permutation groups (X,G) of type (3), then, by cutting
down to a large subclass of C, we may suppose that G is always of the
same Lie type. Now there is a subgroup H∗ of G∗ such that (X∗,H∗) is
definable in a pseudofinite field K∗ or difference field (K∗, σ). The group
G∗ has a unique minimal normal subgroup, which is equal to the unique
minimal normal subgroup of H∗ and is a simple pseudofinite group. The
difference fields which arise are those associated with Suzuki and Ree groups
– ultraproducts of difference fields (F22k+1 , x 7→ x2

k
) or (F32k+1 , x 7→ x3

k
). In

the notation of [46] these infinite difference fields satisfy the theories PSF1,2,2
and PSF1,2,3 respectively.

(f) If C consists of groups of simple diagonal type, then, essentially,
(X∗, G∗) is of simple diagonal type, with Soc(G∗) having form T k for some
k ∈ N and pseudofinite simple group T .

(g) An ultraproduct of groups (X,G) of type (5), where X = Y k and
G ≤ H wr Symk will embed in a group of form H∗ wr Symk in product
action on a set (Y ∗)k. More information can be extracted; for example,
(Y ∗,H∗) will be of one of the types (d)-(f).

Likewise, the partial converses to Theorem 1.1 yield that, when the above
descriptions are made more precise (and with extra assumptions in the affine
case and cases (f) and (g)), the corresponding groups are primitive. In case
(e), it is important that, given a bound on the Lie rank and a bound on field
extensions for subfield subgroups, finitely many formulas suffice to define
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the possible finite permutation groups. This last point was central to the
proof of Proposition 4.2.

The description of primitive pseudofinite ω-saturated permutation groups
is somewhat looser. For example, for the fields involved, we can only assert
that they are pseudofinite if, in the ultraproduct case, they are definable.
This definability issue is delicate. As an illustration, in Lemma 3.1(i) we
assumed that K∗ ≤ H. This suffices to ensure definability of the field in
the ultraproduct, but there may be bounded classes without K∗ ≤ H, and
without this definability.

Initially, we hoped for a close connection between primitive ultraprod-
ucts (X∗, G∗) of finite permutation groups and simple theories, analogous
to the smoothly approximable structures ([25], [12]). We cannot hope in
general for the ultraproducts of the permutation groups to have simple the-
ory, as the unbounded L-rank case is completely wild. One might have
hoped that there is a supersimple structure M∗ with domain X∗ such that
G∗ = Aut(M∗), or, better (to avoid problems with field automorphisms), so
that Aut(M∗) ≤ G∗ ≤ NSym(X∗)(Aut(M∗)). The latter seems correct, with
the exception of cases where ultraproducts of unbounded L-rank symplec-
tic, orthogonal or unitary groups, over unbounded fields, are involved. It
was shown by Grainger [16, Proposition 7.4.1] that the theories of infinite
dimensional vector spaces carrying a non-degenerate sesquilinear form, over
an infinite field, parsed in a two-sorted language, do not have simple the-
ory. In Grainger’s thesis some independence theory is developed for such
structures (over an algebraically closed field), so there may be a reasonable
model theory for all such structures M∗.
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