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Abstract

We correct and improve a result in [3], giving the structure of finite primitive
linear groups of unbounded base size. This confirm a well-known conjecture of
Pyber on base sizes of primitive permutation groups in the case of affine groups
whose associated linear group is primitive.

1 Introduction

Let V be a finite vector space, and H a subgroup of GL(V ). A base for H is a subset
of V whose pointwise stabilizer in H is trivial. Denote by b(H) the minimal size of
a base for H. Theorem 1 of [3] gives an upper bound for b(H) in the case where H

acts irreducibly and primitively on V , of the form b(H) ≤ 18 log |H|
log |V | + c, where c is an

explicit absolute constant. This confirms part of a well-kown conjecture of Pyber
[4] on base sizes of primitive permutation groups.

The proof of [3, Theorem 1] relied on Theorem 2 of that paper, a result which
gives the structure of primitive linear groups of unbounded base size. Unfortunately
this theorem is not correctly stated: the tensor product in part (i) of the conclusion
is supposed to be defined over the prime field Fp, but this is not possible in general,
as a tensor decomposition of a vector space over an extension of Fp does not yield
a tensor decomposition over Fp. The purpose of this paper is to prove a corrected
and improved version of [3, Theorem 2]. This is done in Theorem 1 and Proposition
2 below: these correspond to parts (i) and (ii) of [3, Theorem 2].

Corollary 3, which is a very slightly amended version of Theorem 1 of [3], can
readily be deduced from these results, and we do this at the end of the paper.

Before stating the results we need a few definitions. If V = Vd(q) is a vector
space of dimension d over the finite field Fq of characteristic p, and Fq0 is a subfield
of Fq, then Cld(q0) denotes the normalizer in GLd(q) of one of the insoluble classical

groups SLd(q0), SUd(q
1/2
0 ), Spd(q0), Ωd(q0) (where in the last case q0 is odd if

d is odd, and both types Ω±d (q0) are included if d is even). For the symmetric
group Sym(m) of degree m, by the natural module over Fq we mean the nontrivial
irreducible constituent of the usual m-dimensional permutation module over Fq; it
has dimension m′ = m − δ(p,m), where δ(p,m) is 2 if p|m and 1 otherwise. We
denote by Alt(m) the alternating group of degree m.

For H ≤ GL(V ), define b∗(H) to be the minimal size of a set B of vectors such
that any element of H which fixes every 1-space 〈v〉 with v ∈ B is necessarily a
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scalar multiple of the identity. By [3, 3.1] we have b(H) ≤ b∗(H) ≤ b(H) + 1. Also
H(∞) denotes the last term in the derived series of H.

Let V = Vd(q) have a tensor decomposition V = V1 ⊗ · · · ⊗ Vt over Fq. For
subgroups Hi ≤ GL(Vi) (1 ≤ i ≤ t), define H1 ⊗ · · · ⊗ Ht =

⊗t
i=1Hi to be the

subgroup of GL(V ) consisting of all elements h1 ⊗ · · · ⊗ ht (hi ∈ Hi), defined by
setting

(v1 ⊗ · · · ⊗ vt) (h1 ⊗ · · · ⊗ ht) = v1h1 ⊗ · · · ⊗ vtht
for vi ∈ Vi.

We define a constant C just as in [3, p.98], as follows. First, it is shown in [3, 3.6]
that if H is a primitive subgroup of GL(V ) such that the Fitting subgroup F (H) is
irreducible on V , then b∗(H) is bounded above by an absolute constant; define C1

to be the maximum value of b∗(H) over all such H,V . Next, [3, 2.2] shows that if
H ≤ GL(V ) with E(H) quasisimple and absolutely irreducible on V (where E(H)
is the group generated by all quasisimple subnormal subgroups of H), and E(H) is
not Alt(m) or Cld(q0) with V the natural module over Fq, then b∗(H) is bounded
above by an absolute constant; define C2 to be the maximum value of b∗(H) over
all such H,V . Finally, set

C = max{C1, C2, 33}.

Theorem 1 Let V = Vd(q), and let H be a subgroup of ΓL(V ) such that H acts
primitively on V and H0 := H ∩GL(V ) is absolutely irreducible on V . Suppose that
b∗(H0) > C. Then

H0 ≤ H0 ⊗
s⊗

i=1

Sym(mi)⊗
t⊗

i=1

Cldi(qi),

where s+ t ≥ 1 and the following hold:

(i) H0 ≤ GLd0(q) with b∗(H0) ≤ C

(ii) each factor Sym(mi) < GLm′i
(q), where m′i = mi − δ(p,mi) as above

(iii) each factor Cldi(qi) ≤ GLdi(q) as above

(iv) d = d0 ·
∏s

1m
′
i ·

∏t
1 di

(v) the integers m′1, . . . ,m
′
s, d1, . . . , dt are all distinct

(vi) F ∗(H0) contains
∏s

1 Alt(mi) ·
∏t

1 Cldi(qi)
(∞).

Note that any irreducible primitive linear group H ≤ GLn(p) (p prime) satsifies
the hypotheses of the first sentence of this theorem: for if we choose q = pr maximal
such that H ≤ ΓLd(q) ≤ GLn(p), where n = dr, then H0 := H∩GLd(q) is absolutely
irreducible on Vd(q) by [2, 12.1].

Proposition 2 Let H,H0 be as in Theorem 1, with b∗(H0) > C. Take m′s =
max(m′i : 1 ≤ i ≤ s) and dt = max(di : 1 ≤ i ≤ t) (define these to be 0 if s = 0 or
t = 0, respectively).

(i) Suppose t ≥ 1 and m′s ≤ dt, and let q = qrt . Then d < d2
t , and

b∗(H0) ≤ b∗(GLd/dt(q)⊗GLdt(qt)) ≤
9d2

t

dr
+ 22.
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(ii) Suppose s ≥ 1 and m′s > dt, and let q = pr. Then d < (m′s)
2, and

b∗(H0) ≤ b∗(GLd/m′s
(q)⊗ Sym(ms)) ≤

3ms logpms

dr
+ 22.

Corollary 3 Suppose H ≤ GL(V ) is an irreducible, primitive linear group on a
finite vector space V .Then either

(i) b(H) ≤ C + 1, or

(ii) b(H) < 18 log |H|
log |V | + 30.

2 Proofs

Proof of Theorem 1

The proof goes by induction on dimV . Assume first that there is a tensor
decomposition V = V1⊗V2 over Fq with dimVi > 1 such that H ≤ NΓL(V )(GL(V1)⊗
GL(V2)) := N . For i = 1, 2 let φi be the natural map N → PΓL(Vi), define H i

to be the full preimage in ΓL(Vi) of Hφi, and let H0,i := H i ∩ GL(Vi), so that
H0 ≤ H0,1 ⊗H0,2.

We claim that H i is primitive on Vi, and that H0,i is absolutely irreducible on
Vi, for i = 1, 2. The first assertion is straightforward, since if, say, H1 preserves a
direct sum decomposition V1 =

⊕r
1Xj , then H preserves the decomposition V =⊕r

1Xj ⊗ V2, and so r = 1 as H is primitive. For the second assertion, observe that
if K = CGL(Vi)(H

0,i), then K ⊗ 1 centralizes H0,1 ⊗ H0,2, hence centralizes H0;
since H0 is absolutely irreducible this implies that K = F∗q , hence H0,i is absolutely
irreducible.

By the claim, we can apply induction to the groups H0,i ≤ GL(Vi) for i = 1, 2.
This gives

H0,1 ≤ H(1)
0 ⊗

⊗
Sym(mi)⊗

⊗
Cldi(qi),

H0,2 ≤ H(2)
0 ⊗

⊗
Sym(m′i)⊗

⊗
Cld′i(q

′
i),

where b∗(H
(i)
0 ) ≤ C for i = 1, 2. As argued on p.110 of [3], we can assume that all

the numbers mi,m
′
i, di, d

′
i are distinct; also b∗(H

(1)
0 ⊗H

(2)
0 ) ≤ C by [3, 3.3(ii)]. Since

H0 ≤ H0,1 ⊗H0,2, the conclusion of Theorem 1 therefore holds.

Hence we may assume from now on that there is no nontrivial tensor decompo-
sition of V over Fq preserved by H. By [2, 12.2], it follows that if N is a normal
subgroup of H such that N ≤ H0 and N 6≤ Z(H0), then V ↓ N is absolutely
irreducible.

Now H is insoluble, since otherwise b(H) ≤ 4 by [5]. Let Z = Z(H0) and let S
be the socle of H/Z. Write S = M1 × · · · ×Mk where each Mi is a minimal normal
subgroup of H/Z. Let R be the full preimage of S in H, and Pi the preimage of Mi,
so that R = P1 . . . Pk, a commuting product. Clearly R ∩H0 6= 1, so we may take
P1 ≤ H0. By the previous paragraph, V ↓ P1 is absolutely irreducible.

If P1/Z is abelian then b∗(H0) is bounded, by [3, 3.6] – indeed, b∗(H0) ≤ C by
definition of C, which is a contradiction.

Hence P1/Z ∼= T t, where T is a non-abelian simple group. If t > 1, then [1, 3.16,
3.17] implies that P1 preserves a tensor decomposition V = V1⊗· · ·⊗Vt with dimVi
independent of i, and H0 ≤ NGL(V )(

⊗
GL(Vi)); but then b(H0) ≤ 4 by [3, 3.5].
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Hence t = 1. Now [3, 2.2], together with the definition of C, implies that E(H0) is
either Alt(m) (with d = m− δ(p,m)) or Cld(q0), as in the conclusion of Theorem 1.
This completes the proof.

Proof of Proposition 2

The proof runs along similar lines to that of [3, Theorem 2(ii)], but there are
a few differences, so we give it in full here. Let H,H0 be as in Theorem 1, with
b∗(H0) > C. The proof goes by induction on s+ t.

Consider the base case s+ t = 1 we have H0 ≤ H0 ⊗M where M = Cld1(q1) or
Sym(m1). Write m = d1 or m′1, respectively, so that d = d0m. By [3, 3.7], we have

b(M) ≤ 3m
r + 5 (where q = qr1) or

logp m

r + 5 (where q = pr), respectively.

Assume d0 > m. If b∗(H0) > m then by [3, 3.3(ii)],

b∗(H0) ≤ max{b∗(H0), b∗(M)} ≤ max{b∗(H0),m+ 1} = b∗(H0) ≤ C,

which is a contradiction. And if b∗(H0) ≤ m then [3, 3.3(iv)] implies that b(H0) ≤ 3,
also a contradiction.

Therefore d0 ≤ m. Also b∗(M) > d0, again by [3, 3.3(iv)]. Hence [3, 3.3(iii)]

gives b(H0) ≤ 3(1 + b∗(M)
d0

). If M = Cld1(q1), then b∗(M) ≤ b(M) + 1 ≤ 3m
r + 6, so

this gives

b(H0) ≤ 3(1 +
3m+ 6r

rd0
) ≤ 9m2

rd
+ 21,

which yields part (i) of the proposition. Similarly part (ii) holds when M =
Sym(m1).

Now assume s + t ≥ 2. Let m be the maximum of dt and m′s, and write M for
the corresponding group Cldt(qt) or Sym(ms). Let N be the tensor product of H0

and the other factors Cldi(qi), Sym(mi), so that H0 ≤ N ⊗M . If b∗(N) ≤ C the
conlcusion follows as in the s+ t = 1 case, so assume b∗(N) > C.

Let m′ be the largest among the dimensions di,m
′
i omitting m, and write N1 for

the corresponding group Cldi(qi) or Sym(mi).

Consider the case where N1 = Cldi(qi). Let q = qui . By induction we have

b∗(N) ≤ 9
d2
im

du
+ 22 ≤ 9

di
u

+ 22.

Suppose d ≥ m2. Then b∗(N) ≥ m by [3, 3.3(iv)], so [3, 3.3(iii)] implies that

b∗(H0) ≤ 3(1 +
9di + 22u

um
).

Since m ≥ di and m > 22 (otherwise [3, 3.3] can easily be used to deduce that
b∗(H0) < C), this yields b∗(H0) < 33 ≤ C, a contradiction. Hence d < m2 in this
case. Now the conclusion of the proposition follows by the argument given for the
s+ t = 1 case.

Finally, consider the case where N1 = Sym(mi). Let q = pr. By induction,

b∗(N) ≤
(3mi logpmi) ·m

dr
+ 22 ≤

3 logpmi

r
+ 22.

Now the argument of the previous paragraph gives the conclusion.
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This completes the proof of Proposition 2.

Proof of Corollary 3

Let V = Vn(q0), and suppose H ≤ GL(V ) acts primitively and irreducibly on V .
Choose q = qr0 maximal such that H ≤ ΓLd(q) ≤ GLn(q0), where n = dr. Write
H0 = H ∩GLd(q) and V = Vd(q). By [2, 12.1], H0 is absolutely irreducible on V .

If b∗(H0) ≤ C then b(H) ≤ C + 1, as in part (i) of the corollary. So assume that
b∗(H0) > C. Then H0 is given by Theorem 1 of this paper. Now the proof that H
satisfies (ii) proceeds just as in [3, p.112].
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