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BASE SIZES FOR SIMPLE GROUPS AND

A CONJECTURE OF CAMERON

TIMOTHY C. BURNESS, MARTIN W. LIEBECK and ANER SHALEV

Abstract

Let G be a permutation group on a finite set Ω. A base for G is a subset B ⊆ Ω whose pointwise stabilizer in

G is trivial; we write b(G) for the smallest size of a base for G. In this paper we prove that b(G) 6 6 if G is

an almost simple group of exceptional Lie type and Ω is a primitive faithful G-set. An important consequence

of this result, when combined with other recent work, is that b(G) 6 7 for any almost simple group G in a

non-standard action, proving a conjecture of Cameron. The proof is probabilistic and uses bounds on fixed

point ratios.

1. Introduction

Let G be a permutation group on a set Ω. A base for G is a subset B ⊆ Ω whose pointwise

stabilizer inG is trivial. We write b(G) = b(G,Ω) for the smallest size of a base forG. Bases have

been of interest since the early days of group theory in the nineteenth century. For example, a

classical result of Bochert [3] states that if G is a primitive permutation group of degree n not

containing An, then b(G) 6 n/2. In more recent years, bases have been used extensively in the

computational study of finite permutation groups. In this respect, small bases are particularly

significant and so it is important to establish accurate bounds on the minimal base size.

In this paper we study base sizes for finite almost simple primitive groups. More precisely,

we are interested in so-called non-standard actions which we define as follows. A primitive

action of a finite almost simple group G is said to be standard if either G has socle An and

the action is on subsets or partitions of {1, . . . , n}, or G is a classical group acting on an

orbit of subspaces (or pairs of subspaces of complementary dimension) of the natural module.

Non-standard actions are defined accordingly.
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A well-known conjecture of Cameron and Kantor [13, 15] asserts that there exists an absolute

constant c such that b(G) 6 c for all finite almost simple groups G in faithful primitive non-

standard actions. In general, it is easy to see that b(G) can be arbitrarily large for standard

actions.

The Cameron-Kantor Conjecture was settled in the affirmative by Liebeck and Shalev in [49].

However, this is strictly an existence result and the proof of [49, 1.3] does not yield an explicit

value for c. Recently, a number of papers have appeared where more explicit base size results

are obtained. For example, in [11] it is shown that if G has socle An and n > 12 then b(G) = 2

for all non-standard actions; it quickly follows that b(G) 6 3 for all n. Minimal base sizes for

standard actions of alternating and symmetric groups are determined by J. James in [30], while

precise results for primitive actions of sporadic groups will appear in the forthcoming paper

[12]. Non-standard actions of finite classical groups are considered in [7] where it is shown

that either b(G) 6 4, or G = U6(2).2, Gω = U4(3).22 and b(G) = 5. Precise base size results

for classical groups have been determined in specific cases, see [28, 31] for example. In [11],

the aim is to determine the exact value of b(G) for all non-standard actions of finite classical

groups.

In [14], referring to the constant c in the statement of the Cameron-Kantor Conjecture,

Cameron writes, “Probably this constant is 7, and the extreme case is the Mathieu group

M24” (see [14, p.122]). In this paper we prove Cameron’s conjecture for groups of exceptional

Lie type. For such groups, this is the first paper to give explicit bounds on the minimal base

size; a concise version of our main result is Theorem 1 below. We refer the reader to Theorems

3 and 4 for more comprehensive results.

Theorem 1. Let G be a finite almost simple group of exceptional Lie type and let Ω be a

primitive faithful G-set. Then b(G) 6 6.

Now, the main theorem in [12] states that if G is an almost simple primitive group with

sporadic socle then b(G) 6 7, with equality if and only if G = M24 acting on 24 points.

Therefore, in view of the results discussed above for alternating and classical groups, we see

that Theorem 1 completes the proof of Cameron’s conjecture in full generality.

Corollary 1. Let G be a finite almost simple group in a primitive faithful non-standard

action. Then b(G) 6 7, with equality if and only if G is the Mathieu group M24 in its natural

action of degree 24.
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Remark 1. The bound in Theorem 1 is best possible. Indeed, with the aid of the computer

package Magma [4] we calculate that b(G) = 6 if G = E6(2) and Gω is the maximal parabolic

subgroup P1 (or P6). It would be interesting to know if there are only finitely many examples

with b(G) = 6, although it is easy to see that there are infinitely many with b(G) = 5. For

example, if G = E8(q) and Gω is the maximal parabolic subgroup P8 then b(G) = 5 for any q

(see Theorem 4).

In [15], Cameron and Kantor formulate a stronger base size conjecture. More precisely, they

assert that there is an absolute constant c′ such that the probability that a random c′-element

subset of Ω forms a base for G tends to 1 as the order of G tends to infinity. Here G is any finite

almost simple group and Ω is a faithful primitive non-standard G-set. Now, if the socle of G

is an alternating group then an elementary argument of Cameron and Kantor [15] establishes

the conjecture with a best possible constant c′ = 2. The general case was finally settled by

Liebeck and Shalev [49, 1.3], although their probabilistic proof does not yield an explicit value

for c′.

From the proof of Theorem 1, it is easy to see that the conjecture holds with the constant

c′ = 6 for groups of exceptional Lie type. If G is a classical group with natural module of

dimension greater than 15 then a theorem of Liebeck and Shalev [50, 1.11] establishes the

conjecture with a best possible constant c′ = 3. By considering the remaining classical groups

of small rank we prove

Theorem 2. Let G be a finite almost simple group and let Ω be a primitive faithful non-

standard G-set. Then the probability that a random 6-tuple in Ω is a base for G tends to 1 as

|G| → ∞.

Our proof of Theorem 1 is probabilistic and uses bounds on fixed point ratios. This is very

similar to the approach taken in [7] for classical groups, originating in [49]. Recall that if G

acts on a set Ω then the fixed point ratio of x, which we denote by fpr(x), is the proportion of

points in Ω which are fixed by x. It is easy to see that if G acts transitively on Ω then

fpr(x) =
|xG ∩H|
|xG|

, (1.1)

where H = Gω for some ω ∈ Ω. As observed in the proof of [49, 1.3], the connection between

fixed point ratios and base sizes arises as follows. Let Q(G, c) be the probability that a randomly

chosen c-tuple of points in Ω is not a base for G, so G admits a base of size c if and only if

Q(G, c) < 1. Of course, a c-tuple in Ω fails to be a base if and only if it is fixed by an element
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x ∈ G of prime order, and we note that the probability that a random c-tuple is fixed by x is

at most fpr(x)c. Let P be the set of elements of prime order in G, and let x1, . . . , xk be a set

of representatives for the G-classes of elements in P. Since G is transitive, fixed point ratios

are constant on conjugacy classes (see (1.1)) and it follows that

Q(G, c) 6
∑
x∈P

fpr(x)c =
k∑

i=1

|xG
i | · fpr(xi)c =: Q̂(G, c). (1.2)

In particular, we can apply upper bounds on fixed point ratios to bound Q̂(G, c) from above.

Detailed information on fixed point ratios for primitive actions of finite exceptional groups of

Lie type can be found in [39] and we make extensive use of the results and methods therein.

Let us now state a more detailed version of Theorem 1. We record our results for parabolic

and non-parabolic actions in Theorems 3 and 4 respectively.

In the statement of Theorem 3, we write PI for the standard parabolic subgroup of G which

corresponds to deleting the nodes in I ⊆ {1, . . . r} from the associated Dynkin diagram of G,

where r is the (untwisted) Lie rank of G. We follow [5, p.250] in labelling Dynkin diagrams.

In addition, γ is an involutory graph automorphism of Eε
6(q), while ψ denotes an involutory

graph-field automorphism of F4(q) (p = 2) and G2(q) (p = 3), where q = pa.

Theorem 3. Let G be a finite almost simple group of exceptional Lie type over Fq with

socle G0, where q = pa with p a prime. Let H be a maximal parabolic subgroup of G and let

Ω be the set of right cosets of H in G. Then b(G) 6 c, where c is defined as follows. Here an

asterisk indicates that b(G) = c for all values of q.

(i) If G0 = 3D4(q), 2F4(q)′, 2G2(q) or 2B2(q) then either c = 3∗, or G0 = 3D4(q), H = P2

and c = 4∗.

(ii) In all other cases, the values of c are as follows:

H = P1 P2 P3 P4 P5 P6 P7 P8

G0 = E8(q) 4∗ 3∗ 3∗ 3∗ 3∗ 3∗ 4 5∗

E7(q) 5 4∗ 4 3∗ 3∗ 4∗ 6

E6(q) 6 5 4 4 4 6

F4(q) 5 4 4 5

G2(q) 4 4

P1,6 P2 P3,5 P4

2E6(q) 4∗ 5 3∗ 4

E6(q).〈γ〉 6 5 4 4
2E6(q).〈γ〉 4∗ 5 3∗ 4

P1,4 P2,3

F4(q).〈ψ〉 5 3∗

P1,2

G2(q).〈ψ〉 4
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Furthermore, the probability that a random c-tuple in Ω forms a base for G tends to 1 as

|G| → ∞.

Remark 2. Several of the non-asterisked bounds on b(G) in Theorem 3 are in fact sharp,

provided we exclude a few values of q. For example, Theorem 3 states that b(G) 6 5 if G0 =

E7(q) and H = P1. In this case, Proposition 2.4 implies that b(G) = 5 for all q > 3. Similarly,

we deduce that b(G) = 4 if G = E6(q), H = P3 (or P5) and q > 2.

The next theorem is our main result on non-parabolic actions.

Theorem 4. Let G be a finite almost simple group of exceptional Lie type over Fq with

socle G0. Let H be a maximal non-parabolic subgroup of G and let Ω be the set of right cosets

of H in G. Then b(G) 6 c, where c is defined as follows.

G0 E8(q) E7(q) Eε
6(q) F4(q) G2(q)

′ 2F4(q)
′ 2G2(q)

2B2(q)
3D4(q)

c 5 6 6 6 5 3 3 2 5

Furthermore, the probability that a random c-tuple in Ω forms a base for G tends to 1 as

|G| → ∞.

It is worth noting that in some specific cases we obtain a better bound on b(G) than the one

presented in the statement of Theorem 4 (see Lemmas 4.15, 4.19 and 4.26, for example).

For some small rank groups defined over small fields we can use Magma to determine b(G).

Proposition 1. Let G be a finite almost simple group of exceptional Lie type over Fq

with socle G0, where

G0 ∈ { 2B2(8), 2B2(32), 2G2(27), G2(3), G2(4), G2(5), 3D4(2), 2F4(2)′}.

Then for each faithful primitive action of G, the precise value of b(G) is recorded in Tables 8

and 9 in Section 6.

Layout. This paper is organized as follows. In Section 2 we record various preliminary

results which we will need in the proof of Theorem 1. In particular, we present some results from

Lawther’s forthcoming paper [36] on the fusion of unipotent classes in maximal subgroups of

exceptional algebraic groups. In Section 3 we consider parabolic actions and we prove Theorem

3; the remaining non-parabolic actions are dealt with in Section 4. In Section 5 we give a short

proof of Theorem 2, and in the final section we present some miscellaneous results which we
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refer to in the proof of Theorem 1. For example, we record some useful information on the

conjugacy classes of semisimple elements of prime order in the groups E6(2), 2E6(2).3 and

F4(2). Here one can also find the precise base size results referred to in the statement of

Proposition 1.

Notation. Our notation for groups of Lie type is standard (see [34], for example). We

write Ti for an i-dimensional torus. In addition, (a, b) denotes the highest common factor of

the integers a and b, while δi,j is the familiar Kronecker delta. If X is a subset of a group then

we write im(X) for the number of elements of order m in X. Also, if H and G are groups then

H.G denotes an extension of H by G, and we write H : G if this extension is split.

Acknowledgements. We would like to thank Alexander Hulpke, Ross Lawther and Frank

Lübeck for their generous assistance. In Section 3 we make extensive use of Lawther’s unpub-

lished tables [38] which record the values χ(x), where χ is the permutation character of G

corresponding to a primitive parabolic action and x ∈ G is a semisimple element. We apply

Lübeck’s Foulkes functions computations [51] to derive analogous results for unipotent elements

and we thank him for making this unpublished work available to us. We also thank Lawther

for providing results from his forthcoming paper [36]. Finally, we would like to thank Hulpke

for his assistance with a specific computer calculation.

2. Preliminaries

We begin with some additional notational remarks which apply for the remainder of the

paper.

Notation. Let G0 be a finite simple group of exceptional Lie type over Fq, where q = pa

for a prime p. Let Ḡ be a simple adjoint exceptional algebraic group over the algebraic closure

K = F̄q which admits a Frobenius morphism σ such that Ḡσ := {x ∈ Ḡ : xσ = x} has socle

G0.

The following result is an easy consequence of the order formulae for exceptional groups.

Proposition 2.1. 1
2q

dim Ḡ < |Ḡσ| < qdim Ḡ.

The next result is a well-known theorem of Steinberg (see [16, 6.6.1], for example).
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Proposition 2.2. Ḡσ contains precisely qdim Ḡ−r unipotent elements, where r is the rank

of Ḡ.

In this paper we adopt the terminology of [29] for describing the various automorphisms of

G0 (see [29, 2.5.13] in particular). Another familiar theorem of Steinberg [70, Theorem 30]

states that Aut(G0) is generated by inner, diagonal, field and graph automorphisms. We refer

the reader to [39, 1.1] for a convenient list of the various possibilities for the centralizer CG0(x)

when x is a graph automorphism of prime order. Also, we note that Ḡσ is the subgroup of

Aut(G0) generated by inner and diagonal automorphisms of G0.

The following elementary result plays an important role in the proof of Theorem 1.

Proposition 2.3. Let G be a transitive permutation group on a finite set Ω and write H =

Gω for some ω ∈ Ω. Suppose x1, . . . , xm represent distinctG-classes such that
∑

i |xG
i ∩H| 6 A

and |xG
i | > B for all 1 6 i 6 m. Then

m∑
i=1

|xG
i | · fpr(xi)c 6 B(A/B)c

for all c ∈ N.

Proof. For 1 6 i 6 m−1 set ai = |xG
i ∩H| and bi = |xG

i |−B. Now fpr(xi) = |xG
i ∩H|/|xG

i |

since G is transitive, hence
m∑

i=1

|xG
i | · fpr(xi)c 6 B

(
A−

∑
i ai

B

)c

+
∑

i

(B + bi)
(

ai

B + bi

)c

6 B1−c

(
(A−

∑
i

ai)c +
∑

i

ac
i

)
and the result quickly follows.

By definition, if B ⊆ Ω is a base for G then the elements of G are uniquely determined by

their action on B. This trivial observation yields the following useful lower bound for b(G).

Proposition 2.4. If G is a permutation group on a finite set Ω then b(G) > log|Ω| |G|.

To conclude this short preliminary section we present some results from Lawther’s forth-

coming paper [36] on the fusion of unipotent classes in maximal non-parabolic subgroups of

exceptional algebraic groups. To obtain these results, one first derives expressions for root

elements of the given maximal subgroup M̄ of Ḡ and then uses them to form representatives
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of the unipotent classes in M̄ . Then one determines their Jordan block structure, typically on

the Lie algebra of Ḡ, and finally concludes by inspecting the relevant tables in [37].

Notation. In Tables 1-5 we denote the class of a unipotent element x in a classical

algebraic group Ḡ by the partition of dimV which encodes the Jordan form of x on the

natural Ḡ-module V . However, if p = 2 and Ḡ is a symplectic or orthogonal group then we

adopt the standard Aschbacher-Seitz [1] notation for involution classes. It is well-known that

if p 6= 2 and Ḡ is classical then either each unipotent class in Ḡ is uniquely determined by

its corresponding Jordan form, or Ḡ is an even-dimensional orthogonal group and two distinct

unipotent classes correspond to the same partition λ if and only if λ has no odd parts. In this

latter case, we use the notation λ and λ′ to denote the two distinct Ḡ-classes corresponding

to λ. For example, in Table 1, a D8-class labelled (82)′ corresponds (via the familiar Bala-

Carter identification) to the pair (L,PL′), where L = A7T1 is a Levi subgroup of D8, PL′ is a

distinguished parabolic subgroup of L′ = A7 and L is not a Levi subgroup of E8. This latter

property distinguishes the D8-class (82)′ from (82), and we adopt the same notation in Table

2. Convenient notation and tables of all unipotent classes in exceptional algebraic groups can

be found in [37], and we use the notation therein. In addition, in Tables 2 and 5, u denotes a

non-trivial unipotent element in A1.



BASE SIZES FOR SIMPLE GROUPS 9

p > 2 p = 2

D8-class E8-class D8-class E8-class

(15, 1) E8(a4) c8 4A1

(13, 3) E8(a5) c6 4A1

(11, 5) E8(a6) a′8 4A1

(11, 22, 1) E7(a3) a′′8 3A1

(9, 7) E8(b6) a6 3A1

(9, 3, 22) E7(a4) c4 3A1

(82)′ E6(a1) a4 2A1

(7, 5, 3, 1) E8(a7) c2 2A1

(7, 42, 1) D6(a2) a2 A1

(7, 24, 1) D5(a1)

(62, 3, 1) E6(a3) + A1

(62, 22)′ E6(a3)

(5, 3, 24) A3 + A2

(44)′ A4

(42, 3, 22, 1) D4(a1) + A1

(3, 26, 1) A2 + A1

(28)′ A2

Table 1. D8 < E8

p > 2 p = 2

D6-class of y E7-class of uy D6-class of y E7-class of y E7-class of uy

(11, 1) E7(a3) c6 4A1 4A1

(9, 3) E7(a4) a′6 3A′′
1 4A1

(7, 5) E7(a5) a′′6 3A′
1 3A′

1

(7, 22, 1) D5(a1) c4 3A′
1 4A1

(62)′ E6(a3) a4 2A1 3A′
1

(5, 3, 22) A3 + A2 c2 2A1 3A′′
1

(42, 3, 1) D4(a1) + A1 a2 A1 2A1

(42, 22)′ D4(a1) 1 1 A1

(3, 24, 1) A2 + A1

(26)′ A2

Table 2. A1D6 < E7

A7-class E7-class

(8) E6(a3)

(6, 2) E6(a3)

(42) A4

(4, 22) D4(a1)

(24)

8<: A2 p > 2

(3A1)′ p = 2

Table 3. A7 < E7
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C4-class E6-class

(8) E6(a1)

(6, 2) E6(a3)

(6, 12) A5

(42) A4

(4, 22) D4(a1)

(4, 2, 12) A3 + A1

(4, 14) A3

(32, 2) 2A2 + A1

(32, 12) 2A2

(24) A2

(23, 12) 3A1

(22, 14) 2A1

(2, 16) A1

Table 4. C4 < E6, p > 2

C3-class of y F4-class of uy

(6) F4(a2)

(4, 2) F4(a3)

(4, 12) C3(a1)

(23) A2

(2, 14) eA1

Table 5. A1C3 < F4, p > 2



BASE SIZES FOR SIMPLE GROUPS 11

3. Parabolic actions

We continue with the notation of the previous section: G is an almost simple group with

socle G0, a simple group of exceptional Lie type over Fq with q = pa for a prime p; Ḡ is a simple

exceptional algebraic group over the algebraic closure F̄q and σ is a Frobenius morphism of Ḡ

such that Ḡσ has socle G0. In addition, H denotes a maximal parabolic subgroup of G and we

write Ω for the set of right cosets of H in G. Observe that H ∩ Ḡσ 6 P̄σ, where P̄ is a σ-stable

parabolic subgroup of Ḡ. In this section we prove Theorem 3.

3.1. Fixed point ratios

Here we explain how it is possible to calculate the exact value of Q̂(G, c) for any c ∈ N (see

(1.2)). The main reference here is [39, §§2-3].

(i) Unipotent elements

Let x ∈ H ∩ Ḡσ be a unipotent element of order p and observe that |CΩ(x)| = χ(x), where

χ = 1Ḡσ

P̄σ
is the corresponding permutation character and CΩ(x) = {ω ∈ Ω : ωx = ω} is the

fixed point set of x on Ω. Assume for now that Ḡσ is untwisted.

Let W denote the Weyl group of Ḡ and let WP̄ be the Weyl group of P̄ , so WP̄ is a standard

parabolic subgroup of W . Write Ŵ for the set of (ordinary) irreducible characters of W . Then

[39, 2.4] gives

χ(x) =
∑
φ∈Ŵ

nφRφ(x), (3.1)

where

nφ = 〈1W
WP̄

, φ〉 = 〈1WP̄
, φ|WP̄

〉WP̄
=

1
|WP̄ |

∑
w∈WP̄

φ(w) (3.2)

and the Rφ(x) are the so-called Foulkes functions of Ḡσ. The integers nφ are listed in [39,

pp.413-415] when P̄ is a maximal parabolic subgroup of Ḡ. The values of the nφ in the remaining

cases of interest are easily derived via (3.2). For example, if Ḡ = E6 and P̄ = P1,6 then

χ = Rφ1,0 + 2Rφ6,1 + 3Rφ20,2 +Rφ15,5 +Rφ30,3 + 2Rφ64,4 +Rφ24,6

with respect to the labelling in [16] of the irreducible characters of W . Therefore, it remains to

determine the Foulkes functions of Ḡσ. In fact, since each Foulkes function is a known linear

combination of Green functions, it suffices to determine the Green functions of Ḡσ.

In [52], Lusztig presents an algorithm to compute certain class functions associated to

intersection cohomology complexes on the unipotent variety of Ḡ. In later work, he proved
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that these functions are the desired Green functions of Ḡσ if p and q are sufficiently large (see

[53, 1.14]), and this result was extended by Shoji to all values of p and q. Indeed, [66, 2.2]

deals with the case where p is ‘almost good’ for Ḡ, while the remaining cases are covered by

[66, 7.4] and [67, 5.5].

The Green functions computed via Lusztig’s algorithm are given as linear combinations

of other functions, called characteristic functions of irreducible local systems on geometric

unipotent classes. However, the values of these latter functions are in general known only up

to a complex scalar of absolute value 1; the problem of determining these unknown scalars in

full generality remains open.

If Ḡ = G2 then the scalar problem is easy to solve because the full character table of G2(q)

is available in all characteristics - see [18], [23] and [24]. Next suppose Ḡ = F4, p is good for

Ḡ and x ∈ Ḡσ is unipotent. In [64], Shoji specifies a unique so-called ‘split’ Ḡσ-class in (xḠ)σ.

This split class allows one to ‘normalize’ the aforementioned characteristic functions so that

the relevant scalars appearing in the decomposition of the corresponding Green functions are

all equal to 1 (for any value of q). These methods were extended to Ḡ = E6, E7 and E8 by

Beynon and Spaltenstein [2], again under the hypothesis that p is good for Ḡ. For more details

on these calculations, we refer the reader to Shoji’s survey article [65] on the computation of

Green functions.

It follows that if p is good for Ḡ then it is possible to determine the aforementioned scalars

and thus compute the precise Green (or Foulkes) functions of Ḡσ. Indeed, using Lusztig’s

algorithm, Frank Lübeck [51] has explicitly computed the Foulkes functions of Ḡσ when p is

good for Ḡ (any p if Ḡ = G2). His results are presented in two-dimensional arrays; rows indexed

by the unipotent classes in Ḡσ and columns by the irreducible characters of W . The entries are

polynomials in q with integer coefficients. In this way, using [51], we can compute the precise

unipotent contribution to Q̂(G, c) when p is good or Ḡ = G2.

Now assume p is a bad prime for Ḡ. In view of [55] and [60], the problem of scalars is solved

if (Ḡ, p) = (E6, 2), (E6, 3) or (F4, 2). (The methods employed in the unpublished diploma thesis

of Porsch [60] are very similar to those in [55].) Here Lübeck [51] has computed the explicit

Foulkes functions and so the unipotent contribution to Q̂(G, c) can be computed precisely in

each of these cases.

Next set A(x) = CḠ(x)/CḠ(x)0. If |A(x)| = 1 then (xG)σ = xḠσ and x is split in the sense of

Shoji [65] and Beynon-Spaltenstein [2]. As before, it is possible to normalize the characteristic

functions so that the scalars involved are all equal to 1 (see [2, §3] for a general discussion of

split elements).
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Now assume |A(x)| = 2. Here (xḠ)σ is a union of two Ḡσ-classes, with representatives x

and y say, precisely one of which is split. The relevant characteristic functions corresponding

to the Ḡσ-class of x are parameterised by the irreducible characters of the component group

A(x); the corresponding scalar for the trivial character is 1, and it is either 1 or − 1 for the

non-trivial character, depending on whether or not xḠσ is split. If |xḠσ | 6= |yḠσ | then we can

determine if x is split and thus the problem of scalars is solved in this case. Indeed, the class

length of the split class in (xG)σ can be computed as a by-product of Lusztig’s algorithm and

so we can immediately determine if the given element x is split or not. On the other hand, if

|xḠσ | = |yḠσ | then for the purpose of computing Q̂(G, c) we may as well assume xḠσ is the

split class since the contribution to Q̂(G, c) from the Ḡσ-classes of x and y is the same if xḠσ

is split or not.

In this way, Lübeck [51] gives the explicit Foulkes functions Rφ(x) for all unipotent ele-

ments x ∈ Ḡσ with |A(x)| 6 2, unless |A(x)| = 2 and (xḠ)σ = xḠσ ∪ yḠσ , with |xḠσ | =

|yḠσ |. In the latter situation, Lübeck has computed polynomials fφ(q), gφ(q) ∈ Z[q] such that

{Rφ(x), Rφ(y)} = {fφ(q), gφ(q)} for all φ ∈ Ŵ , where Rφ(x) = fφ(q) if and only if xḠσ is split.

As previously remarked, for the purpose of computing Q̂(G, c), there is no harm in assuming

xḠσ is split. It follows that we can calculate the precise contribution to Q̂(G, c) from the set

of unipotent elements x ∈ G with |A(x)| 6 2.

Finally, suppose Ḡ = E8 or E7, with p bad for Ḡ, or (Ḡ, p) = (F4, 3). Now, if x ∈ Ḡσ has

order p and |A(x)| > 2 then we claim that G = E8, p = 5 and x belongs to one of the Ḡ-classes

labelled D4(a1) or D4(a1) + A1. To see this, we first inspect the relevant tables in [37] to

determine the unipotent Ḡ-classes containing elements of order p. Here we use the fact that

if x ∈ Ḡ has order p then there can be no Jordan blocks of size greater than p in the Jordan

form of x on any Ḡ-module. Finally we read off the |A(x)| values from [57] (for Ḡ = E8 and

E7) and [63] (for (Ḡ, p) = (F4, 3)), and the claim follows.

Suppose G = E8, p = 5 and x is in D4(a1) or D4(a1) + A1. Here A(x) ∼= S3 and (xḠ)σ is

a union of precisely 3 distinct Ḡσ-classes. In these cases one can check that the argument of

Beynon-Spaltenstein, labelled Case III in [2, §3], still applies when p = 5 (the only unipotent

class in E8 which behaves differently when p = 5, compared with p > 5, is the regular class).

In particular, it is possible to determine the precise scalars involved and the corresponding

explicit Foulkes functions are given in [51].

We conclude that it is possible to compute the precise unipotent contribution to Q̂(G, c)

whenever Ḡσ is untwisted.
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Now assume Ḡσ is twisted. For Ḡσ = 2E6(q) we proceed as before: the precise values of

the functions Rφ at unipotent elements of order p have been computed by Lübeck [51], while

the numbers nφ in (3.1) can be determined from the formula on [39, p.416]. For the reader’s

convenience, we record the relevant decompositions of χ.

P1,6 Rφ1,0 +Rφ15,5 +Rφ20,2 +Rφ24,6 +Rφ30,3

P2 Rφ1,0 +Rφ6,1 −Rφ15,4 +Rφ20,2 +Rφ30,3

P3,5 Rφ1,0 +Rφ10,9 +Rφ15,5 −Rφ15,4 +Rφ20,2 + 2Rφ24,6 + 2Rφ30,3 −Rφ60,8 +Rφ80,7

+Rφ60,11 +Rφ81,10

P4 Rφ1,0 +Rφ10,9 +Rφ6,1 − 2Rφ15,4 +Rφ20,2 +Rφ24,6 + 2Rφ30,3 −Rφ60,8 +Rφ80,7

+Rφ60,5 +Rφ81,6

The remaining twisted groups are easy to deal with because the irreducible unipotent characters

have been determined. We refer the reader to [39, p.416] for further details and relevant

references.

We conclude that the contribution to Q̂(G, c) from unipotent elements can be calculated

precisely, as claimed. Lübeck’s tables of Foulkes functions [51] are currently unpublished and

we thank him for making them available to us in GAP-readable form.

(ii) Semisimple elements

Next let x ∈ H ∩ Ḡσ be a semisimple element of prime order and note that |CΩ(x)| = χ(x)

as in (i). First assume Ḡσ is untwisted. Let Φ be the root system of Ḡ with respect to a

fixed maximal torus, let Π be a simple system of roots for Ḡ and write α0 for the highest

root of Φ with respect to Π. Then the possible centralizer types of semisimple elements in Ḡσ

are parameterised by pairs (J, [w]), where J is a proper subset of Π ∪ {α0} (determined up

to W -conjugacy), WJ is the subgroup of W generated by reflections in the roots in J , and

[w] = WJw is a conjugacy class representative of NW (WJ)/WJ .

An explicit formula for χ(x) is given in [39, 3.2]. With the aid of a computer, Lawther

has used this formula to calculate χ(x) for all semisimple elements x ∈ Ḡσ. The results are

presented in tables [38]; rows are indexed by the pairs (J, [w]) and columns by the maximal

parabolic subgroups. The entries in each table are polynomials in q with non-negative integer

coefficients. Further, the polynomials are independent of the characteristic p. We are grateful

to Lawther for making his unpublished tables available to us.

If Ḡσ = 2E6(q) then Lawther’s calculations apply, while the remaining cases are very easy

because the irreducible unipotent characters of Ḡσ are known (see [39, p.423] for further

details).
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(iii) Field and graph-field automorphisms

Let x ∈ G be a field or graph-field automorphism of prime order r and write Ḡσ = G(q), P̄σ =

P (q) and CḠσ
(x) = Gε(q1/r). Then according to the proof of [39, 6.1] we have xḠσ∩P̄σx = xP̄σ

and CP̄σ
(x) = P ε(q1/r) is the corresponding parabolic subgroup of the group CḠσ

(x). In

particular, we deduce that

fpr(x) =
|Gε(q1/r) : P ε(q1/r)|

|G(q) : P (q)|
.

(iv) Graph automorphisms

First assume Ḡσ = Eε
6(q) and x ∈ G is an involutory graph automorphism. If p 6= 2 then the

precise value of fpr(x) can be determined from the proof of [39, 6.4]. Now assume p = 2, so

by [1, Section 19] we have CḠ(x) = F4 or CF4(t), where t ∈ F4 is a long root element. Now,

if CḠ(x) = F4 then fpr(x) 6 kP̄ (q)−1, where the values of kP̄ (q) are given in [39, 2.6] and

recorded in Table 6. As described in [39, p.418], it is possible to compute |CΩ(x)| precisely

when CḠ(x) = CF4(t). Here we thank R. Lawther for performing the necessary calculations

which yield the relevant bounds listed in Table 6.

Ḡσ P̄ CḠ(x) = F4 CḠ(x) = CF4 (t)

E6(q) P1,6 q9 q13

P2 q9 q13

P3,5
1
3
q11 q15(q − 1)2

P4 q9 q15(q − 1)

2E6(q) P1,6 q8(q − 1) q12(q − 1)

P2 q6 − q3 + 1 q10(q − 1)

P3,5 q10(q − 1) q15(q − 1)2

P4 q6(q2 − 1)(q − 1) q14(q − 1)2

Table 6. The values of kP̄ (q)

Finally if Ḡσ = 3D4(q) and x is a triality graph automorphism then precise fixed point

ratios can be found in the proof of [39, 6.3]. We note that if H = (P̄1,3,4)σ and CG0(x) = G2(q)

then the proof of [39, 6.3] indicates that fpr(x) is independent of p, hence fpr(x) = (q2 + q +

1)/(q8 + q4 + 1) for all values of q.

3.2. Proof of Theorem 3

Recall that in order to establish the bound b(G) 6 c it suffices to show that Q̂(G, c) < 1

(see (1.2)). As explained in §3.1, we can compute the exact value of Q̂(G, c) for any c ∈ N, so

it is possible to determine the smallest integer c such that Q̂(G, c) < 1. In this way, with the
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exception of the case G = E6(2) with H = P1 (or P6), we obtain the upper bounds on b(G)

stated in Theorem 3. In the exceptional case we find that Q̂(G, 6) > 1 and we use the computer

package Magma to establish the bound b(G) 6 6. We thank A. Hulpke for constructing the

relevant permutation representation of degree 139503 which facilitates this calculation. (In fact,

it is easy to check that b(G) = 6 in this example - see Remark 1.)

In practice, it is very laborious to calculate Q̂(G, c) precisely; in general, we aim to derive

an upper bound of the form Q̂(G, c) < F (q) with the property that F (q) < 1 for all possible

values of q. We illustrate our approach with a couple of specific examples. This is essentially

careful book-keeping; the other cases are very similar and we omit the details.

Proposition 3.1. If G0 = E8(q) and H is of type P1 then b(G) = 4. Furthermore, the

probability that a random 4-tuple in Ω forms a base for G tends to 1 as |G| → ∞.

Proof. First observe that |Ω| = f(q), where

f(q) = (q15 + 1)(q12 + q6 + 1)(q12 + 1)(q10 + q5 + 1)(q10 + 1)(q8 + q4 + 1)(q7 + 1)(q4 + q3 + q2 + q+ 1),

so |Ω| > q78 and Proposition 2.4 yields b(G) > 4. To establish equality, it suffices to show that

Q̂(G, 4) < 1. We do this by estimating the contribution to Q̂(G, 4) from the various elements

of prime order.

Let x ∈ H be a unipotent element of order p. As described in §3.1, the Foulkes functions

of Ḡσ are labelled by the irreducible characters of the corresponding Weyl group W , and [39,

p.414] gives

|CΩ(x)| = Rφ1,0(x) +Rφ8,1(x) +Rφ35,2(x) +Rφ560,5(x) +Rφ112,3(x) +Rφ84,4(x)

+Rφ210,4(x) +Rφ50,8(x) +Rφ700,6(x) +Rφ400,7(x)

(see (3.1)). The polynomials Rφi,j (x) can be read off from [51] and fpr(x) quickly follows. In

this way, we calculate that fpr(x) < q−61 = b1 if dimxḠ > 198, while Proposition 2.2 implies

that there are fewer than q240 = a1 such elements. Similarly, if 166 6 dimxḠ 6 196 then

fpr(x) < q−51 = b2 and by inspecting [57] we find that there are no more than q198 = a2 of

these elements in G. Now, if 146 6 dimxḠ 6 164 then fpr(x) < q−43 = b3 and there are fewer

than q166 = a3 such elements; similarly, the contribution to Q̂(G, 4) from unipotent elements

x with 128 6 dimxḠ 6 144 is less than a4b
4
4, where a4 = q137 and b4 = q−35. It remains to

consider the Ḡ-classes labelled A2, 3A1, 2A1 and A1. Using precise values for |xG| and fpr(x)

it quickly follows that the combined contribution from these unipotent elements is less than

q−8 = c1.
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Next let x ∈ H be a semisimple element of prime order. Here we use Lawther’s calcula-

tions [38], together with the information on semisimple conjugacy classes recorded in [26]. If

dimxḠ > 216 then [38] implies that fpr(x) < q−66 = b5 and of course there are fewer than

q248 = a5 such elements in G. Now, if 190 6 dimxḠ 6 214 then fpr(x) < q−59 = b6 and

using [26] we calculate that there are no more than q219 = a6 of these elements. Similarly, if

158 6 dimxḠ 6 188 then fpr(x) < q−50 = b7 and there are fewer than q190 = a7 such elements.

If dimxḠ < 158 then CḠ(x) = D7T1, D8, E7T1 or E7A1, and careful calculation reveals that

the combined contribution here to Q̂(G, 4) is less than q−6 = c2.

Finally, suppose x ∈ H is a field automorphism of prime order r. Then q = qr
0 and the

proof of [39, 6.1] gives fpr(x) = f(q0)/f(q) = h(r, q), where |Ω| = f(q) as above. Now |xG| <

2q248(1−r−1) = g(r, q) and if we set j(r, q) = g(r, q)h(r, q)4 then the contribution to Q̂(G, 4)

from field automorphisms is less than∑
r∈π

(r − 1).j(r, q) < j(2, q) + 2j(3, q) + 4j(5, q) + log2 q.q
248h(7, q)4 < q−10 = c3,

where π is the set of distinct prime divisors of logp q. We conclude that b(G) 6 4 since

Q̂(G, 4) <
7∑

i=1

aib
4
i +

3∑
i=1

ci = F (q) < q−1

for all q > 2. The probabilistic statement follows at once because F (q) → 0 as q →∞.

Proposition 3.2. If G0 = 2E6(q) and H is of type P2 then b(G) ∈ {4, 5} and the

probability that a random 5-tuple in Ω forms a base for G tends to 1 as |G| → ∞.

Proof. First observe that |Ω| = f(q), where

f(q) = (q9 + 1)(q6 + 1)(q4 + 1)(q2 + q + 1).

In view of Proposition 2.4, it suffices to show that Q̂(G, 5) < 1, with Q̂(G, 5) → 0 as q → ∞.

We proceed as in the proof of the previous proposition. First let x ∈ H be a unipotent element

of order p. As remarked in §3.1, we have

|CΩ(x)| = Rφ1,0(x) +Rφ6,1(x)−Rφ15,4(x) +Rφ20,2(x) +Rφ30,3(x)

and thus fpr(x) can be calculated via [51]. If dimxḠ > 58 then we find that fpr(x) < q−15 = b1,

while there are fewer than q72 = a1 such elements in G (see Proposition 2.2). Similarly, if

50 6 dimxḠ 6 56 then fpr(x) < q−13 = b2 and G contains no more than q56 = a2 of

these elements (see [56]). The contribution to Q̂(G, 5) from unipotent elements x ∈ H with

46 6 dimxḠ 6 48 is less than a3b
5
3, where a3 = 2q48 and b3 = q−11. Now, if dimxḠ < 46 then

x lies in one of the Ḡ-classes labelled A2, 3A1, 2A1 or A1. Here a precise calculation reveals
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that the contribution from these elements is less than c1 = q−4. Arguing as in the proof of the

previous proposition, using [38] and [25], the reader can check that the total contribution to

Q̂(G, 5) from semisimple elements is less than c2 = 3/2q.

Next suppose x ∈ H is a field automorphism of prime order r. Then r is odd, q = qr
0,

|xG| < 2q78(1−r−1) = g(r, q) and fpr(x) = f(q1/r)/f(q) = h(r, q), where |Ω| = f(q) as before.

If we set j(r, q) = g(r, q)h(r, q)5 then the contribution to Q̂(G, 5) from field automorphisms is

less than∑
r∈π

(r − 1).j(r, q) < 2j(3, q) + 4j(5, q) + 6j(7, q) + log2 q.q
78h(11, q)5 < q−12 = c3,

where π is the set of distinct odd primes which divide logp q. Finally, let x ∈ H be an involutory

graph automorphism. If CḠ(x) = F4 then |xG| < 2q26 = a4 and [39, Thm. 2] states that

fpr(x) 6 (q6 − q3 + 1)−1 = b4. Similarly, if CḠ(x) 6= F4 then |xG| < 2q42 = a5 and fpr(x) 6

q−10(q − 1)−1 = b5 (see Table 6 and the proof of [39, 6.4]). If q > 3 then we conclude that

b(G) 6 5 since

Q̂(G, 5) <
5∑

i=1

aib
5
i +

3∑
i=1

ci < 2q−1

for all q > 3. By direct calculation, it is easy to check that Q̂(G, 5) < 1 when q = 2.

4. Non-parabolic actions

In this section we prove Theorem 4 and this completes the proof of Theorems 1 and 1. We

partition the proof into a number of subsections, according to the various possibilities for G0. In

each case, we first deal with the primitive actions of ‘large’ degree. More precisely, we establish

Theorem 4 for actions with |Gω| 6 qf(G0) for some fixed integer f(G0). For example, we set

f(E8(q)) = 88 and f(E7(q)) = 46. By applying known facts about maximal subgroups, it is easy

to determine a short list of possibilities for Gω with |Gω| > qf(G0); the non-parabolic subgroups

which arise here are mainly subgroups of maximal rank, or subfield subgroups corresponding

to a subfield of index two. We then consider each of these cases in turn.

We continue with our earlier notation. In particular, H is a maximal non-parabolic subgroup

of G and b(G) denotes the smallest size of a base for G with respect to the natural action of

G on the set Ω of right cosets of H in G.

Remark 3. In general, we show that b(G) 6 c by defining a function F such that Q̂(G, c) <

F (q) for all sufficiently large q. In each case it is easy to check that F (q) → 0 as q → ∞ and
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this justifies the probabilistic statement in Theorem 4. We leave the reader to verify these

asymptotic results.

4.1. G0 = E8(q)

Lemma 4.1. If |H| > q88 then H is of type E8(q1/2), A1(q)E7(q) or D8(q).

Proof. According to [42, Theorem 2], the possibilities for H are as follows:

(i) H = NG(M̄σ), where M̄ is a σ-stable closed subgroup of Ḡ of positive dimension;

(ii) H is an exotic local subgroup (see [19, Table 1]);

(iii) F ∗(H) = A5 ×A6;

(iv) H is of the same type as G over a subfield of Fq of prime index;

(v) H is almost simple, and not of type (i) or (iv).

Suppose |H| > q88. The subgroups of type (i) are determined in [41, 46] and the hypothesis

on |H| implies that H must be of type A1(q)E7(q) or D8(q). Evidently, E8(q1/2) is the only

possible subfield subgroup, H is not an exotic local subgroup by [19, Thm. 1(II)] and is clearly

not of type (iii). Finally, suppose H is almost simple, with socle H0. If H0 lies in Lie(p), where

Lie(p) is the set of simple groups of Lie type in characteristic p, then the untwisted Lie rank of

H0 is at most 4 (see [47, Thm. 1.1]) and [48, 1.2] states that the subgroups which arise here

have order less than q56.12 logp q. The possibilities with H0 6∈ Lie(p) are listed in [45, Tables

10.1-4] and by inspection it is easy to see that there are no examples with |H| > q88.

Lemma 4.2. If |H| 6 q88 then b(G) 6 5.

Proof. It suffices to show that there exists a function F (q) such that Q̂(G, 5) 6 F (q) < 1

(see (1.2)). If x ∈ G0 and dimxḠ > 112 then |xG| > 1
2q

112 = b (see [26] and [57]) and it

is clear that this bound also holds if x is a field automorphism. Conversely, if dimxḠ < 112

then x is unipotent and belongs to the Ḡ-class A1 or 2A1. There are fewer than 2q92 = c such

elements in G and by [39, Thm. 2] we have fpr(x) 6 2q−24 = d. Applying Proposition 2.3 we

conclude that

Q̂(G, 5) < b(a/b)5 + cd5 = F (q),

where a = q88. It is straightforward to check that F (q) < 1 for all q > 2.

Lemma 4.3. If H is of type A1(q)E7(q) then b(G) 6 5.



20 TIMOTHY C. BURNESS, MARTIN W. LIEBECK AND ANER SHALEV

Proof. Here H = NG(M̄σ), where M̄ = A1E7 is a σ-stable subgroup of Ḡ. As before, it

suffices to show that Q̂(G, 5) < 1. Let x ∈ H be a semisimple element of prime order. Then

[39, 4.5] implies that

fpr(x) <
|W (E8) : W (A1E7)|.2(q + 1)z

qδ(x)+z−8(q − 1)8
=

240(q + 1)z

qδ(x)+z−8(q − 1)8
, (4.1)

where W (X) is the Weyl group of the reductive algebraic group X, δ(x) = dimxḠ−dim(xḠ ∩

M̄) and z = dimZ(D̄) for D̄ = CḠ(x). If D̄ has no E7 or D8 factor then [40, Thm. 2] gives

δ(x) > 70 and thus (4.1) implies that fpr(x) < q−51 = b1 if z 6 5; the same bound holds if

z > 6 since |Φ+(D̄)| 6 3 and thus

δ(x) = 2
(
|Φ+(Ḡ)| − |Φ+(M̄)| − |Φ+(D̄)|+ |Φ+(D̄ ∩ M̄)|

)
> 2(120− 64− 3) = 106,

where |Φ+(X)| is the number of positive roots in the root system Φ(X) of X (see [40, §5]).

Of course, there are fewer than q248 = a1 semisimple elements in G. If D̄ does have an E7 or

D8 factor then [39, Thm. 2] gives fpr(x) 6 q−37 = b2 and we calculate that there are less than

q130 = a2 such elements.

Next let x ∈ H be a unipotent element of order p. According to [43, 2.1] we have

L (E8) ↓ A1E7 = L (A1E7)⊕ (V (λ1)⊗ V (λ7)), (4.2)

where L (X) denotes the Lie algebra of the reductive algebraic group X, V (λ1) is the natural

A1-module and V (λ7) is the 56-dimensional irreducible E7-module with highest weight λ7 (we

label weights as in Bourbaki [5]). Therefore we can determine the Jordan form of x on L (E8)

via [37, Tables 7,8], and then identify the Ḡ-class of x by inspecting [37, Table 9]. For example,

suppose x = u0u1 ∈ A1E7, where u0 6= 1 and u1 has E7-label D4(a1) + A1. For convenience,

let us assume p > 7. Now, according to [37, Tables 7,8], the Jordan form of u1 on L (E7)

and V (λ7) is [J2
7 , J

4
6 , J

5
5 , J

8
4 , J

8
3 , J

4
2 , J

6
1 ] and [J6, J

4
5 , J

2
4 , J

4
3 , J

5
2 ] respectively, where Ji denotes a

standard Jordan block of size i. From (4.2) we deduce that the Jordan form of x on L (E8) is

[J2
7 , J

4
6 , J

5
5 , J

8
4 , J

8
3 , J

4
2 , J

6
1 ]⊕ [J3]⊕

(
[J2]⊗ [J6, J

4
5 , J

2
4 , J

4
3 , J

5
2 ]
)

= [J3
7 , J

8
6 , J

8
5 , J

16
4 , J16

3 , J8
2 , J

11
1 ]

and inspecting [37, Table 9] we conclude that x lies in the Ḡ-class labelled A3 + A2. Now,

following the proof of [39, 4.5] we deduce that

fpr(x) <
α.2(q + 1).β
qδ(x)−7(q − 1)8

, (4.3)

where δ(x) = dimxḠ − dim(xḠ ∩ M̄), α is the number of distinct M̄ -classes in xḠ ∩ M̄ and

β = |C : C0|, where C = CḠ(x) (note that dimZ(C0/Ru(C0)) 6 1, see [57] for example).

If dimxḠ > 146 then the prime order hypothesis implies that p is odd and we calculate that

α 6 3 and δ(x) > 64. Therefore (4.3) yields fpr(x) < q−54 = b3 since β 6 120, and we note
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that there are fewer than q240 = a3 of these elements (see Proposition 2.2). If dimxḠ 6 112

then [39, Thm. 2] gives fpr(x) 6 2q−24 = b4 and there are less than 2q112 = a4 such elements.

Similarly, if p > 2 and 112 < dimxḠ < 146 then (4.3) implies that fpr(x) < q−42 = b5 since

α 6 3, β 6 2 and δ(x) > 48. Also, there are fewer than 2q136 = a5 of these elements. Finally,

if p = 2 and dimxḠ > 112 then x lies in the Ḡ-class 4A1 and (4.3) yields fpr(x) < q−44 since

α = 3, β = 1 and δ(x) = 56. In addition, there are no more than 2q128 of these elements.

Finally, suppose x ∈ G is a field automorphism of prime order r. Then q = qr
0,

fpr(x) 6
|A1(q)E7(q) : A1(q1/r)E7(q1/r)|

|E8(q) : E8(q1/r)|
< 8q−112(1− 1

r ) 6 8q−56 = b6

and we set a6 = log2 q.q
248. We conclude that b(G) 6 5 since Q̂(G, 5) <

∑6
i=1 aib

5
i < 1 for all

q > 2.

Lemma 4.4. If H is of type D8(q) then b(G) 6 5.

Proof. Here H = NG(M̄σ), where M̄ = D8 is a σ-stable subgroup of Ḡ. If x ∈ H is

semisimple then

fpr(x) <
|W (E8) : W (D8)|.2(q + 1)8

qδ(x)(q − 1)8
=

270(q + 1)8

qδ(x)(q − 1)8
,

where δ(x) = dimxḠ − dim(xḠ ∩ M̄). Therefore, fpr(x) < q−59 = b1 if CḠ(x) has no E7 or D8

factor since [40, Thm. 2] states that δ(x) > 80. As in the proof of Lemma 4.3, the contribution

to Q̂(G, 5) from the remaining semisimple elements is less than a2b
5
2, where a2 = q130 and

b2 = q−37.

Next suppose x ∈ H is a unipotent element of prime order p. As in the proof of Lemma 4.3,

the contribution from unipotent elements x ∈ G with dimxḠ 6 112 is less than a3b
5
3, where

a3 = 2q112 and b3 = 2q−24. Now assume dimxḠ > 112 and observe that (4.3) holds. First

suppose p > 2. By the familiar Bala-Carter theory (see [16, 5.9.6]; the extension to all good

primes is due to Pommerening [58], [59]) we can label the M̄ -class of x by a pair (L,PL′),

where L is a Levi subgroup of M̄ and PL′ is a distinguished parabolic subgroup of L′. If L is

also a Levi subgroup of Ḡ then the Ḡ-class of x has the same label and we can compute dimxM̄

and dimxḠ via [40, 1.10] and [16, pp.405-407], respectively. In the few cases where L is not

a Levi of Ḡ we use [36] to determine the Ḡ-class of x. The relevant results here are recorded

in Section 2 (see Table 1). In this way, we deduce that δ(x) > 64 and α 6 3 if dimxḠ > 146,

and thus (4.3) yields fpr(x) < q−54 = b4 since β 6 120. Similarly, if 112 < dimxḠ < 146 then

δ(x) > 64 and α, β 6 2, so (4.3) gives fpr(x) < q−58 and we note that there are less than 2q136

such elements in G. Now, if p = 2 then the Ḡ-class of each involution in M̄ is determined in
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[36] and again we reproduce these results in Table 1. In particular, if dimxḠ > 112 then x lies

in the Ḡ-class 4A1, so |xG| < 2q128 = a5 and (4.3) yields fpr(x) < q−52 = b5 since δ(x) = 64,

α = 3 and β = 1.

Finally, suppose x ∈ G is a field automorphism of prime order r. Then q = qr
0 and

fpr(x) 6
|D8(q) : D8(q1/r)|
|E8(q) : E8(q1/r)|

< 4q−128(1− 1
r ) 6 4q−64 = b6.

We conclude that Q̂(G, 5) <
∑6

i=1 aib
5
i = F (q), where a1 = q248, a4 = q240 and a6 = log2 q.q

248.

The reader can check that F (q) < 1 for all q > 2.

Proposition 4.5. If G0 = E8(q) and H is a maximal non-parabolic subgroup of G then

b(G) 6 5.

Proof. In view of Lemmas 4.1-4.4 we may assume H is of type E8(q1/2). We claim that

b(G) 6 4. To see this, first let x ∈ G be a semisimple element of prime order. Then CḠ(x) is

connected (since Ḡ is simply connected) and so a well-known corollary to the Lang-Steinberg

Theorem [69, I, 2.7] implies that xG0 ∩H0 = xH0 , where H0 = H ∩G0 = E8(q1/2). Therefore

[39, 1.6] yields

fpr(x) <
2(q + 1)8

q
1
2 dim xḠ+4(q1/2 − 1)8

and thus fpr(x) < q−72 = b1 if dimxḠ > 156. Similarly, if dimxḠ < 156 then fpr(x) <

q−51 = b2 and there are fewer than 3q128 = a2 such elements. Next let x ∈ G be a unipotent

element of order p. Then the class of x in both H0 and G0 is determined by the labelling of

its class in Ḡ and we deduce that xG0 ∩H0 = xH0 . First assume p > 2. Then considering the

centralizer orders |CH0(x)| and |CG0(x)| (see [57]) we calculate that |(xḠ)σ| < 4qdim xḠ

and

fpr(x) < 8(q + 1)q−(1/2) dim xḠ−1, hence the contribution to Q̂(G, 4) from unipotent elements

of order p is less than∑
4qdim xḠ

.
(
8(q + 1)q−

1
2 dim xḠ−1

)4

= 4.84(q + 1)4
∑

q− dim xḠ−4 < q−53,

where we sum over a set of representatives for the distinct Ḡ-classes of unipotent elements

x ∈ H of order p. Similarly, one can check that the contribution from unipotent elements is

also less than q−53 when p = 2.

Finally, suppose x ∈ G is a field automorphism of prime order r. If r is odd then x induces

a field automorphism on H0 and therefore fpr(x) < 4q−248/3 = b3. On the other hand, if r = 2

then we may assume x centralizes H0, so |xG ∩H| = i2(H0) + 1 < 2q64, |xG| < 2q124 = a4 and

thus fpr(x) < 4q−60 = b4. We conclude that Q̂(G, 4) < q−53 +
∑4

i=1 aib
4
i < 1, where a1 = q248

and a3 = log2 q.q
248.
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4.2. G0 = E7(q)

Lemma 4.6. If |H| > q46 then either H is of type E7(q1/2), or H = NG(M̄σ), where

M̄ = T1E6.2, A1D6, A7.2 or A1F4.

Proof. This is very similar to the proof of Lemma 4.1 and we omit the details.

Lemma 4.7. If |H| 6 q46 then b(G) 6 6.

Proof. If x ∈ G0 has prime order and dimxḠ > 64 then |xG| > 1
2 (q+ 1)−1q65 = b and it is

clear that this bound also holds if x is a field automorphism. By inspecting [25] and [57] we see

that there are fewer than 3q55 = c elements x ∈ G with dimxḠ < 64, while [39, Thm. 2] gives

fpr(x) 6 2q−12 = d. Applying Proposition 2.3 we conclude that Q̂(G, 6) < b(a/b)6 + cd6 < 1,

where a = q46.

Lemma 4.8. If H = NG(M̄σ), where M̄ = T1E6.2, then b(G) 6 6.

Proof. To begin with, let us assume q > 3. Let x ∈ G be a semisimple element of prime

order. Then [39, 4.5] gives

fpr(x) <
|W (E7) : W (E6).2|.22(q + 1)z.2

qδ(x)+z−6(q − 1)6
=

224(q + 1)z

qδ(x)+z−6(q − 1)6
, (4.4)

where z = dimZ(D̄0), D̄ = CḠ(x) and δ(x) = dimxḠ−dim(xḠ∩M̄). If D̄ does not have an E6,

D6 or A7 factor then [40, Thm. 2] gives δ(x) > 34 and thus (4.4) implies that fpr(x) < q−24 = b1

since z 6 7. There are fewer than q71 = a2 remaining semisimple elements x ∈ G and [39,

Thm. 2] states that fpr(x) 6 q−19 = b2.

Next let x ∈ H be a unipotent element of order p, and assume for now that p is odd.

Then x ∈ M̄0 and using [37] we can determine the Ḡ-class of x by considering the restriction

V56 ↓ E6 = V27 ⊕ (V27)∗ ⊕ 02, where V56 (resp. V27) denotes the minimal module for E7 (resp.

E6), (V27)∗ is the dual of V27 and 0 is the trivial 1-dimensional E6-module. In this way we

deduce that xḠ ∩ M̄ = xM̄0
and so the proof of [39, 4.5] yields

fpr(x) <
22(q + 1)7.6
qδ(x)+1(q − 1)6

, (4.5)

where δ(x) = dimxḠ − dim(xḠ ∩ M̄). In addition, we calculate that δ(x) > 30 if dimxḠ > 66,

hence (4.5) gives fpr(x) < q−22 = b3 and Proposition 2.2 implies that there are fewer than

q126 = a3 such elements. If dimxḠ 6 66 then [39, Thm. 2] states that fpr(x) 6 2q−12 = b4

and we note that there are less than 2q66 = a4 of these elements (see [57]).
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Now assume p = 2 and x ∈ G0 is an involution. If x ∈ M̄ − M̄0 then x induces a graph

automorphism on E6; the proof of [40, 4.1] reveals that x lies in the Ḡ-class 3A′′
1 if CE6(x) = F4,

otherwise x is in the class 4A1. If x ∈ M̄0 then the Ḡ-class of x can be determined as before

and the bounds |xG| < ci and fpr(x) < di in the following table are easily verified. Here

τ1 is an F4-type graph automorphism of E6, while τ2 represents the other E6-class of graph

automorphisms in Aut(E6).

i E6-class of x E7-class of x ci di

1 A1 A1 2q34 2q−12

2 2A1 2A1 2q52 6q−20

3 3A1 3A′
1 2q64 4q−24

4 τ1 4A1 2q54 4q−28

5 τ2 3A′′
1 2q70 4q−28

It follows that the contribution to Q̂(G, 6) from unipotent involutions is less than
∑5

i=1 cid
6
i <

q−30. (Note that this bound is valid if q = 2, while
∑5

i=1 cid
6
i <

∑4
i=3 aib

6
i for any q.) Finally,

suppose x ∈ G is a field automorphism of prime order r, so q = qr
0. If r is odd then

fpr(x) 6 2
(

q + 1
q1/r + 1

)
· |E

ε
6(q) : Eε

6(q
1/r)|

|E7(q) : E7(q1/r)|
< 16q−54(1− 1

r ) 6 16q−36 = b5,

while |xG| < 2q133/2 = a6 and [39, Thm. 2] gives fpr(x) 6 q−22 = b6 if r = 2. We conclude

that Q̂(G, 6) <
∑6

i=1 aib
6
i < 1 if q > 3, where a1 = q133 and a5 = log2 q.q

133.

To complete the proof, let us assume q = 2. As previously noted, the contribution from

involutions is less than 2−30, so let x ∈ G be an element of odd prime order. As before, set

δ(x) = dimxḠ − dim(xḠ ∩ M̄). First observe that there are fewer than 269 = e1 elements

x ∈ G of odd prime order such that D̄ = CḠ(x) has an E6 or D6 factor, and the proof of [39,

4.7] gives fpr(x) < 3.2−22 = f1. If D̄0 = A6T1, D5A1T1 or A5A1T1 then [40, Thm. 2] states

that δ(x) > 34 and therefore (4.4) yields fpr(x) < 2−19 = f2 since z = dimZ(D̄0) = 1. In

addition, we calculate that there are fewer than 286 = e2 such elements (note that there are

no semisimple elements x ∈ G with D̄0 = A5A1T1, see [25] for example).

Next we claim that fpr(x) < 2−24 = f3 if z > 3 and D̄0 6= D4T3. This follows at once from

(4.4) if z > 4 since the relation

δ(x) = 2
(
|Φ+(Ḡ)| − |Φ+(M̄)| − |Φ+(D̄)|+ |Φ+(D̄ ∩ M̄)|

)
(4.6)

(see [40, §5]) implies that δ(x) > 2(63 − 36 − 6) = 42 as |Φ+(D̄)| 6 |Φ+(A3)| = 6. The case

z = 3 is entirely similar if |Φ+(D̄)| 6 7. It remains to deal with the case D̄0 = A4T3. Now, if Ψ

is a subsystem of the root system Φ and X is a type of root system then we say Ψ is X-dense
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in Φ if every subsystem of Φ of type X meets Ψ (see [40, §5]). The A2-dense subsystems of

the simple root systems are listed in [40, 5.1]. Evidently, Φ(M̄) is A2-dense in Φ(Ḡ), and thus

Φ(D̄ ∩ M̄) is A2-dense in Φ(D̄). In particular, a further application of [40, 5.1] implies that

Φ(D̄ ∩ M̄) = A3 or A2A1, so δ(x) > 2(63− 36− 10 + 4) = 42 and the claim follows via (4.4).

Now, if D̄0 = D4T3 then arguing as above we deduce that Φ(D̄ ∩ M̄) = A3 or A4
1, so

δ(x) > 2(63− 36− 12 + 4) = 38 and thus (4.4) implies that fpr(x) < 2−22 = f4. By inspecting

[25] we calculate that G contains fewer than 2106 = e4 such elements. Next suppose z = 0

and D̄ has no E6 or D6 factor. Then the hypothesis q = 2 implies that D̄0 = A5A2 (see [25])

and (4.4) implies that fpr(x) < 2−20 = f5 since [40, Thm. 2] gives δ(x) > 34. Further, an easy

calculation reveals that there are less than 291 = e5 such elements in G.

Finally, suppose z = 1 or 2. Excluding the cases considered above we see that D̄0 = A3
2T1,

A2A
3
1T2, A5T2 or D4A1T2. Using [25] we calculate that there are fewer than 2116 = e6 such

elements in G and we claim that fpr(x) < 2−21 = f6. In view of (4.4), it suffices to show that

δ(x) > 36. This is clear in the first two cases since |Φ+(D̄)| = 9 and thus (4.6) implies that

δ(x) > 2(63 − 36 − 9) = 36. For the remaining possibilities we use the fact that Φ(D̄ ∩ M̄) is

A2-dense in Φ(D̄). For example, if D̄0 = A5T2 then [40, 5.1] implies that Φ(D̄ ∩ M̄) = A3A1

or A2
2 and thus |Φ+(D̄∩ M̄)| > 6 and (4.6) gives δ(x) > 2(63− 36− 15 + 6) = 36. We conclude

that Q̂(G, 6) < 2−30 +
∑6

i=1 eif
6
i < 1 if q = 2, where e3 = 2133.

Lemma 4.9. If H = NG(M̄σ), where M̄ = A1D6, A7.2 or A1F4, then b(G) 6 6.

Proof. First consider the case M̄ = A1D6 and assume that q > 3 for now. If x ∈ G is a

semisimple element of odd prime order then [39, 4.5] gives

fpr(x) <
|W (E7) : W (A1D6)|.2(q + 1)z.2

qδ(x)+z−7(q − 1)7
=

252(q + 1)z

qδ(x)+z−7(q − 1)7
, (4.7)

where z and δ(x) are defined in the usual manner. If D̄ = CḠ(x) does not have an E6, D6 or

A7 factor then [40, Thm. 2] gives δ(x) > 40 and thus (4.7) implies that fpr(x) < q−30 = b1

since z 6 7. As in the proof of Lemma 4.8, the contribution to Q̂(G, 6) from the remaining

semisimple elements is less than a2b
6
2, where a2 = q71 and b2 = q−19.

Now suppose x ∈ G is a unipotent element of order p and first assume p > 2. By Bala-Carter,

the M̄ -class of x is labelled by a pair (L,PL′), where L is a Levi subgroup of M̄ and PL′ is a

distinguished parabolic subgroup of L′. If L is also a Levi subgroup of Ḡ then the Ḡ-class of x

has the same label and thus dimxM̄ and dimxḠ are easily determined. Now, if x ∈ D6 < M̄

then L is always a Levi subgroup of Ḡ. However, if x = uy, where y ∈ D6 and 1 6= u ∈ A1,

then there are a few cases for which L is not a Levi subgroup of Ḡ. In each of these cases, the
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corresponding Ḡ-class is determined in [36] and these results are listed in Section 2 (see Table

2). In this way, we deduce that xḠ ∩ M̄ is a union of at most three distinct M̄ -classes and so

the proof of [39, 4.5] yields

fpr(x) <
6(q + 1)7.6
qδ(x)(q − 1)7

,

where δ(x) = dimxḠ − dim(xG ∩ M̄). Now, if dimxḠ > 66 then our previous calculations

imply that δ(x) > 34 and thus fpr(x) < q−26 = b3. As in the proof of Lemma 4.8, the

contribution from the other unipotent elements is less than a4b
6
4, where a4 = 2q66 and b4 =

2q−12. Now assume p = 2. There are 15 distinct conjugacy classes of involutions in M̄ and the

corresponding Ḡ-classes are listed in Table 2, using results taken from [36]. It quickly follows

that the unipotent involutions in G contribute less than q−44 to Q̂(G, 6). (This upper bound

is still valid when q = 2.)

Finally, if x ∈ G is a field automorphism of prime order r then

fpr(x) 6
|A1(q)D6(q) : A1(q1/r)D6(q1/r)|

|E7(q) : E7(q1/r)|
< 8q−64(1− 1

r ) 6 8q−32 = b5

and we conclude that Q̂(G, 6) <
∑5

i=1 aib
6
i < 1 if q > 3, where a1 = q133, a3 = q126 and

a5 = log2 q.q
133.

Now assume q = 2. As before, the contribution from involutions is less than 2−44. There

are fewer than 269 = c1 semisimple elements x in G such that D̄ = CḠ(x) has an E6 or

D6 factor; for such elements, [39, Thm. 2] states that fpr(x) 6 2−12 = d1. We claim that

fpr(x) < 2−23 = d2 if D̄ has no E6 or D6 factor. First note that D̄0 6= A7 since p = 2, so [40,

Thm. 2] implies that δ(x) > 40 and thus (4.7) yields fpr(x) < 2−23 if z 6 3. Now, if z > 4

then |Φ+(D̄)| 6 6 and (4.7) gives fpr(x) < 2−32 since δ(x) > 52 (see (4.6)). We conclude that

Q̂(G, 6) < 2−44 + c1d
6
1 + c2d

6
2 < 1, where c2 = 2133.

The case M̄ = A7.2 is very similar and we omit the details. (Note that if x ∈ A7 has order p

and the A7-class of x corresponds to the pair (L,PL′), where L is a Levi subgroup of A7 which

is not a Levi of Ḡ, then the Ḡ-class of x is listed in Table 3; the relevant results originating in

[36].)

Next we claim that b(G) 6 5 if M̄ = A1F4. To see this, first let x ∈ G be a semisimple

element of prime order and write D̄ = CḠ(x). If D̄ does not have an E6, D6 or A7 factor then

|xG| > 1
3q

84 = f and we observe that |H ∩ Ḡσ| < q55 = e. There are fewer than q71 = g1

remaining semisimple elements and [39, Thm. 2] gives fpr(x) 6 q−22 = h1. Next let x ∈ H be
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a unipotent element of order p. Now [43, 2.4] gives

L (E7) ↓ A1F4 = L (A1F4)⊕ (V (2λ1)⊗ V (λ4))

and so we can determine the Ḡ-class of x by inspecting the relevant tables in [37]. It turns out

that xḠ ∩ M̄ is a union of at most two distinct M̄ -classes and therefore the proof of [39, 4.5]

yields

fpr(x) <
22(q + 1)7.6
qδ(x)+2(q − 1)5

,

where δ(x) = dimxḠ − dim(xḠ ∩ M̄). One can check that δ(x) > 36 + 10δ2,p if dimxḠ > 64,

hence fpr(x) < q−28 = h2. There are fewer than 2q54 = g3 remaining unipotent elements and

we note that [39, Thm. 2] gives fpr(x) 6 q−12 = h3. Finally, if x ∈ G is a field automorphism

of prime order r then

fpr(x) 6
|A1(q)F4(q) : A1(q1/r)F4(q1/r)|

|E7(q) : E7(q1/r)|
< 8q−78(1− 1

r ) 6 8q−39 = h4

and applying Proposition 2.3 we deduce that Q̂(G, 5) < f(e/f)5 +
∑4

i=1 gih
5
i < 1, where

g2 = q126 and g4 = log2 q.q
133.

Proposition 4.10. If G0 = E7(q) and H is a maximal non-parabolic subgroup of G then

b(G) 6 6.

Proof. In view of Lemmas 4.6-4.9, we may assume H is of type E7(q1/2). Here it is easy to

establish b(G) 6 4 by arguing as in the proof of Proposition 4.5. We leave the details to the

reader.

4.3. G0 = Eε
6(q)

We begin with two techinical lemmas on fixed point ratios for involutory graph automor-

phisms.

Lemma 4.11. Suppose G = Aut(E6(2)) = E6(2).2, H is a maximal subgroup of G with

|H| 6 232 and x ∈ G is an involutory graph automorphism. Then fpr(x) < 2−7.

Proof. Let G0 = E6(2). If CG0(x) 6= F4(2) then

|xG| = |E6(2) : CF4(2)(t)| = 212(24 + 1)(25 − 1)(29 − 1)(212 − 1) > 242,

where t ∈ F4(2) is a long root element, and thus fpr(x) < 2−10 since |xG ∩ H| 6 |H| 6 232.

Now assume CG0(x) = F4(2), so

|xG| = |E6(2) : F4(2)| = 212(25 − 1)(29 − 1).
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The maximal subgroups of G are determined in [35] and the possibilities for H are as follows:

(i) 3.(U3(2)× L3(4)).D12, (ii) (L3(2)× L3(2)× L3(2)) : D12, (iii) L3(8) : 6,

(iv) L3(2) : 2×G2(2), (v) 73 : 31+2 : 2S4.

For (v) we have |H|/|xG| < 2−7 and the claim follows at once. In the other cases we require

more accurate calculations. First consider case (iii). Here H ∩ G0 = L3(8) : 3 and thus |xG ∩

H| 6 |L3(8) : Ω3(8)| = 32704 since x induces a graph automorphism on L3(8). This gives

fpr(x) < 2−10. Similarly, in (iv) we calculate that fpr(x) < 2−12 since |xG ∩ H| 6 |L3(2) :

Ω3(2)|.(i2(G2(2)) + 1) = 8848, while in (ii) we get fpr(x) < 2−10 since

|xG ∩H| 6 |L3(2) : Ω3(2)|3 + 3|L3(2)|.|L3(2) : Ω3(2)| = 36064.

Finally, in (i) we have

|xG ∩H| 6 |SU3(2) : Ω3(2)| (|SL3(4) : Ω3(4)|+ |SL3(4) : SU3(2)|+ |SL3(4) : SL3(2)|) = 59328

and thus fpr(x) < 2−10.

Lemma 4.12. Let G be an almost simple group with socle G0 = E6(q), where q > 3, and

let H be a maximal subgroup of G with |H| 6 q32. Then fpr(x) < q−5 if x ∈ G is an involutory

graph automorphism and CḠ(x) = F4.

Proof. By [42, Theorem 2], the possibilities for H are as follows:

(i) H = NG(M̄σ), where M̄ is a σ-stable closed subgroup of Ḡ of positive dimension;

(ii) H is an exotic local subgroup (see [19, Table 1]);

(iii) H is of type E6(q0), where Fq0 is a subfield of Fq of odd prime index;

(iv) H is almost simple, and not of type (i) or (iii).

Now, if |H| 6 q19 then fpr(x) < 6q−7 < q−5 since |xG| = |G0 : F4(q)| > 1
6q

26. Therefore

we can assume |H| > q19. Arguing as in the proof of Lemma 4.1, we deduce that if H is a

subgroup of type (i), (ii) or (iii) then either H = NG(M̄σ) with M̄ ∈ {T2D4.S3, A
3
2.S3, A2G2},

or H is of type E6(q0) and q = q30 . In each case we can estimate i2(H) via [39, 1.3] and the

desired result quickly follows. For example, suppose H = NG(M̄σ), where M̄ = T2D4.S3. Then

inspecting [41, Table 5.1] we deduce that

|xG ∩H| 6 i2(H) 6 2(q + 1)2.max
(
i2(Aut(PΩ+

8 (q))), i2(Aut( 3D4(q)))
)
< 4(q + 1)3q15 (4.8)

and thus fpr(x) < 24(q+1)3q−11 < q−5 for all q > 3. Similarly, if H = NG(M̄σ) and M̄ = A3
2.S3

then

|xG ∩H| 6 i2(H) 6 4.(i2(Aut(Lε′

3 (q))))3 < 32(q + 1)3q12
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and we conclude that fpr(x) < 6.32(q + 1)3q−14 < q−5 as required. The other cases are very

similar.

To complete the proof, supposeH is almost simple and is not of type (i) or (iii). LetH0 denote

the socle of H. The possibilities for H0 are listed in [45, Tables 10.1-10.4] when H0 is not in

Lie(p), where Lie(p) is the set of finite simple groups of Lie type in characteristic p. Inspecting

these tables we find that the only case with |H| > q19 occurs when H0 = Fi22 and q = 4. Here

|xG ∩H| 6 i2(Aut(H0)) = 79466751 < q14 and thus fpr(x) < 6q−12. Now assume H0 ∈ Lie(p),

with H0 a simple group of Lie type over Fq0 . According to [44], we may assume that the

untwisted Lie rank of H0 (i.e. the rank of the ambient simple algebraic group corresponding to

H0) is at most 3 and that either q0 6 9, H0 = Lε′

3 (16), or H0 ∈ {L2(q0), 2B2(q0), 2G2(q0)} and

q0 6 (2, p− 1).124. In each case, the desired result follows from the obvious bound |xG ∩H| 6

i2(H). For example, suppose H0 = 2G2(q0), where q0 = 3l and l is odd (note that l 6 5

since we may assume q0 6 248). Now, if l = 5 then the hypothesis |H| 6 q32 implies that

q > 9 and applying [39, 1.3] we calculate that i2(H) < 2(q0 + 1)q30 < q11. Similarly, if l < 5

then i2(H) < 313 and the desired conclusion quickly follows. If H0 = PSp6(q0) then we may

assume q0 6 9 and that q = 9 if q0 = 9 since |H| > q32 if (q0, q) = (9, 3). Then [39, 1.3] gives

i2(H) < 2(1 + q0)q110 < q19 and the result follows. The other cases are just as easy.

The proof of the next result follows that of Lemma 4.1.

Lemma 4.13. If |H| > q32 then one of the following holds:

(i) H = NG(M̄σ), where M̄ = T1D5, A1A5, F4, T2D4.S3 or C4 (p 6= 2);

(ii) ε = + and H is of type Eδ
6(q1/2);

(iii) G0 = 2E6(2) and H has socle Fi22;

(iv) G = 2E6(2).2 and H = SO7(3).

Lemma 4.14. If |H| 6 q32 then b(G) 6 6.

Proof. For now let us assume q > 3. Suppose x ∈ Ḡσ has prime order and note that

|xG| > 1
2q

40 = b if dimxḠ > 40 (see [25] and [56]). There are fewer than 2q32 = c1 semisimple

elements x with dimxḠ < 40 and [39, Thm. 2] gives fpr(x) 6 2q−12 = d1 since we are assuming

q > 3. If x is unipotent and dimxḠ < 40 then x belongs to one of the Ḡ-classes labelled A1 and

2A1 (see [40, Table 2], for example). Now, if x is in the class A1 then |xG| < 2q22 = c2 and [39,

Thm. 2] gives fpr(x) 6 2q−6 = d2. Similarly, if x is in 2A1 then |xG| < 2q32 = c3 and we claim

that fpr(x) 6 q−6 = d3. If H is not of maximal rank then this follows from [39, Thm. 2], so
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assume H = NG(M̄σ), where M̄ is a maximal closed σ-stable subgroup of Ḡ of maximal rank.

According to [46, Table 10.3], the hypothesis |H| 6 q32 implies that M̄0 ∈ {D4T2, A
3
2, T6}.

Now, if M̄0 = D4T2 then the proof of Lemma 4.17 gives fpr(x) < q−12 (see (4.14) below); in

the other two cases it is clear that |H ∩ Ḡσ| < 2
3q

26 and thus fpr(x) < q−6 since |xG| > 2
3q

32.

Next we observe that G contains fewer than 4q39 = c4 involutory field and graph-field

automorphisms and [39, Thm. 2] gives fpr(x) 6 q−12 = d4. If x is a field automorphism of odd

prime order then |xG| > 1
6q

52 > b. Now, if x ∈ G is an involutory graph automorphism and

CḠ(x) 6= F4 then |xG| > 1
6q

42 > b; there are fewer than 2q26 = c5 graph automorphisms x with

CḠ(x) = F4 and a combination of Lemma 4.12 and [39, Thm. 2] implies that fpr(x) < q−5 = d5

since we are assuming q > 3. In view of Proposition 2.3 we conclude that Q̂(G, 6) < b(a/b)6 +∑5
i=1 cid

6
i < 1 for all q > 3, where a = q32.

To complete the proof let us assume q = 2. If x ∈ G is a semisimple element of prime order

and dimxḠ > 42 then |xG| > 241. In addition, there are fewer than 233 = g1 such elements with

dimxḠ < 42 and [39, Thm. 2] states that fpr(x) 6 2−6 = h1. Next assume x is a unipotent

involution, so x lies in one of the classes A1, 2A1 and 3A1. If x is in 3A1 then |xG| > 240, while

we have |xG| < 222 = g2 and fpr(x) 6 2−5 = h2 if x belongs to the class A1 (see [39, Thm.

2]). If x is in 2A1 then |xG| < 234 = g3 and we claim that fpr(x) 6 2−6 = h3. This follows

from [39, Thm. 2] if H is not of maximal rank, while the proof of Lemma 4.17 below yields

fpr(x) < 6.2−20 if H = NG(M̄σ) with M̄0 = D4T2. If H is a different subgroup of maximal

rank then the hypothesis |H| 6 232 implies that

|xG ∩H| 6 i2(H ∩ Ḡσ) 6 i2(L3(2)3.S3) = (i2(L3(2)) + 1)3 + 3|L3(2)| = 11151

(see [41, Table 5.1]) and the claim follows since |xG| > 231. Finally, if x is an involutory graph

automorphism and CḠ(x) 6= F4 then |xG| > 1
6242 = f ; if CḠ(x) = F4 then a combination of

Lemma 4.11 and [39, Thm. 2] implies that fpr(x) 6 (26 − 23 + 1)−1 = h4, while it is easy to

see that there are fewer than 227 = g4 such elements. Applying Proposition 2.3 we deduce that

Q̂(G, 6) < f(e/f)6 +
∑4

i=1 gih
6
i < 1, where e = 232.

Lemma 4.15. If H is of type SL2(q)× SLε
6(q) then b(G) 6 5.

Proof. Here H = NG(M̄σ) where M̄ = A1A5 is a σ-stable subgroup of Ḡ. For now we will

assume q > 3. Let x ∈ G be a semisimple element of prime order and set δ(x) = dimxḠ −

dim(xḠ ∩ M̄). Then [39, 4.5] gives

fpr(x) <
|W (E6) : W (A1A5)|.2(q + 1)z.3

qδ(x)+z−6(q − 1)6
=

216(q + 1)z

qδ(x)+z−6(q − 1)6
, (4.9)
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where z = dimZ(D̄0) and D̄ = CḠ(x). Now, Φ(M̄) is A2-dense in Φ(Ḡ), so Φ(D̄ ∩ M̄) is

A2-dense in Φ(D̄) and using [40, 5.1] we calculate that δ(x) > 26 if D̄ has no D5 or A5

factor and D̄0 6= D4T2 (see (4.6)). In this case, (4.9) yields fpr(x) < q−17 = b1 and clearly

there are less than q78 = a1 semisimple elements in G. If D̄0 = D4T2 then [40, Thm. 2] gives

δ(x) > 24, hence (4.9) implies that fpr(x) < q−16 = b2 and we calculate that G contains fewer

than 4q50 = a2 such elements. Similarly, if D̄ has an A5 factor then fpr(x) < q−12 = b3 since

δ(x) > 20 (see [40, Thm. 2]) and we note that there are less than q45 = a3 of these elements.

Finally, if D̄0 = D5T1 then fpr(x) < q−8 = b4 since δ(x) > 16 and there are fewer than q34 = a4

such elements.

Now suppose x ∈ G is a unipotent element of order p. By Bala-Carter, the M̄ -class of x

corresponds to a pair (L,PL′), where L is a Levi subgroup of M̄ and PL′ is a distinguished

parabolic subgroup of L′. As before, if L is also a Levi subgroup of Ḡ then we find that the

Ḡ-class of x has the same label; this is indeed the case unless L = A4
1, A3A

2
1 or A5A1. In these

cases we can determine the Ḡ-class of x via [37, Table 5], by first calculating the Jordan form

of x on the 27-dimensional module V27 for E6. This is very straightforward since we have

V27 ↓ A1A5 = (V (λ1)⊗ V (λ1))⊕ (0⊗ V (λ4)).

It follows that we can calculate δ(x) = dimxḠ−dim(xḠ∩M̄) for all unipotent elements x ∈ G

of order p. First assume p > 2. Then xḠ ∩ M̄ is a union of at most two distinct M̄ -classes and

so the proof of [39, 4.5] implies that

fpr(x) <
22(q + 1)2.6
qδ(x)−4(q − 1)6

(4.10)

since dimZ(C0/Ru(C0)) 6 2, where C = CḠ(x) (see [56], for example). If dimxḠ > 40 then

δ(x) > 22, so fpr(x) < q−16 = b5 and there are fewer than q72 = a5 such elements in G (see

Proposition 2.2). If dimxḠ < 40 then x belongs to one of the classes A1 or 2A1. If x is in A1

then |xG| < 2q22 = a6 and [39, Thm. 2] gives fpr(x) 6 2q−6 = b6. Similarly, if x ∈ 2A1 then

|xG| < 2q32 = a7 and fpr(x) < q−9 = b7 since δ(x) = 16. The case p = 2 is very similar. Here

we calculate that fpr(x) < 4q−δ(x) and it is straightforward to check that unipotent involutions

contribute less than 2q−27 (this upper bound is still valid when q = 2).

Next suppose x is an involutory field or graph-field automorphism. There are fewer than

4q39 = a8 such elements and [39, Thm. 2] gives fpr(x) 6 q−12 = b8. If x is a field automorphism

of odd prime order r then

fpr(x) 6
|A1(q)Aε

5(q) : A1(q1/r)Aε
5(q

1/r)|
|Eε

6(q) : Eε
6(q1/r)|

< 8q−40(1− 1
r ) 6 8q−

80
3 = b9
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and of course there are less than log2 q.q
78 = a9 such elements. Finally, suppose x ∈ G is an

involutory graph automorphism. At the level of algebraic groups, the action of x on M̄ induces

an involutory graph automorphism on the A5-factor; according to the proof of [39, 6.4] we

have CḠ(x) = F4 if and only if CA5(x) = C3 and x centralizes the A1 factor of M̄ . Therefore,

if CG0(x) = F4(q), we have

fpr(x) =
|SLε

6(q) : Sp6(q)|
|Eε

6(q) : F4(q)|
< 12q−12 = b10

and there are less than 2q26 = a10 of these graph automorphisms. On the other hand, if p is

odd and CḠ(x) 6= F4 then fpr(x) < 24q−16 = b11 since |xG| > 1
6q

42 and

|xG ∩H| 6 (i2(SL2(q)) + 1).
(
|SLε

6(q)|
|SO+

6 (q)|
+

|SLε
6(q)|

|SO−
6 (q)|

+ 1
)
< 4q26.

One can check that this bound is also valid when p = 2 and we note that there are fewer than

2q42 = a11 of these elements in G. In particular, we conclude that Q̂(G, 5) <
∑11

i=1 aib
5
i < 1 if

q > 3.

Now assume q = 2. Write H̃ = H∩Ḡσ = SLε
6(2)×SL2(2) and note that |H̃| < 238. As before,

the contribution to Q̂(G, 5) from involutions is less than 2−26 + a10b
5
10 + a11b

5
11 < 2−13, while

Proposition 2.3 implies that the semisimple elements x ∈ G with |xG| > 248 = d contribute

less than d(c/d)5, where c = 238. Now let x ∈ G be a semisimple element of odd prime order r

such that |xG| 6 248, so D̄0 = T1D5, T1A5, T2D4 or A4A1T1, where D̄ = CḠ(x) (see Table 7

in §6). We claim that fpr(x) < 2−14 = f1 if D̄0 6= T1D5. If D̄0 = A4A1T1 or T1A5 then r = 3

(see Table 7) and the claim holds since |xG| > 241 and

|xG ∩H| 6 i3(H̃) = (i3(SLε
6(2)) + 1).(i3(SL2(2)) + 1)− 1 < 226.

Similarly, if D̄0 = T2D4 then fpr(x) < 2−14 since |xG| > 245 and |xG ∩H| 6 i7(H̃) < 231 since

r = 3 or 7. In addition, we note that there are fewer than 253 = e1 semisimple elements x ∈ G

with D̄0 = T1A5, T2D4 or A4A1T1.

It remains to consider the case D̄0 = T1D5. Here (ε, r) = (−, 3) and |xG| > 231 (see Table 7).

Now, it is easy to see that |y eH | < 21+dim yM̄

for any element y ∈ H̃ of order 3, while there are

precisely 19 distinct H̃-classes of such elements. Arguing as in the proof of [39, 4.5], it follows

that fpr(x) < 19.4.2−δ(x), where δ(x) is defined as before. By [40, Thm. 2] we have δ(x) > 16,

hence fpr(x) < 2−10 = f2 and we note that there are fewer than 233 = e2 such elements. We

conclude that b(G) 6 5 since Q̂(G, 5) < 2−13 + d(c/d)5 +
∑2

i=1 eif
5
i < 1.

Lemma 4.16. If H is of type SOε
10(q)× (q − ε) then b(G) 6 6.
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Proof. Here H = NG(M̄σ), where M̄ = D5T1 is a σ-stable subgroup of Ḡ. To begin with

we will assume q > 3. Let x ∈ G be a semisimple element of prime order, so [39, 4.5] gives

fpr(x) <
|W (E6) : W (D5)|.2(q + 1)z.3

qδ(x)+z−6(q − 1)6
=

162(q + 1)z

qδ(x)+z−6(q − 1)6
, (4.11)

where z = dimZ(D̄0), D̄ = CḠ(x) and δ(x) = dimxḠ−dim(xḠ∩ M̄). Now, Φ(M̄) is A2-dense

in Φ(Ḡ), so Φ(D̄ ∩ M̄) is A2-dense in Φ(D̄). By considering the possibilities for D̄ and using

[40, 5.1] we deduce that δ(x) > 24 if dimxḠ > 60, so (4.11) yields fpr(x) < q−15 = b1. There

are fewer than q64 = a2 semisimple elements x with dimxḠ < 60 and [39, Thm. 2] gives

fpr(x) 6 2q−12 = b2.

Next, let x ∈ G be a unipotent element of order p. First assume p > 2. By Bala-Carter,

unipotent classes in M̄ are parameterised by pairs (L,PL′), where L is a Levi subgroup of M̄

and PL′ is a distinguished parabolic subgroup of L′. Evidently, every Levi subgroup of M̄ is

also a Levi of Ḡ and so the Ḡ-class of x has the same label. In this way we deduce that either

xḠ ∩ M̄ = xM̄ , or x belongs to one of the Ḡ-classes 2A1 and A3, and xḠ ∩ M̄ is a union of two

distinct M̄ -classes. In particular, we see that (4.10) holds. Now, if dimxḠ > 50 then δ(x) > 20

and thus fpr(x) < q−14 = b3. If x is in one of the Ḡ-classes labelled A2 + A1, A2 or 3A1 then

fpr(x) < q−10 = b4 since δ(x) > 16. We also note that there are fewer than 3q46 = a4 such

elements. If x lies in the class 2A1 then |xG| < 3q32 = a5 and xḠ ∩ M̄ = yM̄ ∪ zM̄ , where y

and z have respective Jordan forms [J3, I7] and [J4
2 , I2] on the natural D5-module. Therefore

fpr(x) < q−9 = b5 since

|xG ∩H| < 2(q − 1)−1(q17 + q21), |xG| > 1
2
(q + 1)−1q33.

Similarly, if x is in the class A1 then |xG| < 2q22 = a6 and [39, Thm. 2] gives fpr(x) 6 2q−6 =

b6.

Now assume x is unipotent and p = 2. Let V27 denote the 27-dimensional minimal module for

Ḡ. Then according to [43, Table 8.7] we have V27 ↓ D5 = V (λ1)⊕V (λ4)⊕0, where V (λ4) = V16

is a 16-dimensional spin module for D5 and 0 denotes the trivial 1-dimensional D5-module.

Since V16 ↓ D4 is a sum of two non-equivalent spin modules for D4, it follows that

V27 ↓ D4 = V (λ1)⊕ V (λ3)⊕ V (λ4)⊕ 03. (4.12)

Now, every unipotent involution x ∈ M̄ has a representative in a subgroup D4 and therefore

we can easily compute the Jordan form of x on V27 and then determine the Ḡ-class of x via

[37, Table 5]. In the notation of [1], we find that a2 ∈ A1; c2 and a4 are in 2A1, while c4 is in

the Ḡ-class 3A1. It quickly follows that the contribution to Q̂(G, 6) from unipotent involutions
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is less than q−13 and we note that this bound is valid for all q > 2. Furthermore, we observe

that q−13 <
∑6

i=3 aib
6
i , where a3 = q72.

As in the proof of Lemma 4.15, the contribution from involutory field and graph-field

automorphisms is less than a7b
6
7, where a7 = 4q39 and b7 = q−12. If x is a field automorphism

of odd prime order r then x induces a field automorphism on the SOε
10(q)-factor and we deduce

that fpr(x) < q−19 = b8 since

|xG ∩H| 6 (q − ε)
|SOε

10(q)|
|SOε

10(q1/r)|
< 2(q + 1)q45(1−

1
r ), |xG| > 1

6
q78(1−

1
r ).

Finally, suppose x ∈ G is an involutory graph automorphism. If CḠ(x) 6= F4 then |xG| <

2q42 = a9 and we calculate that fpr(x) < q−11 = b9 since |xG| > 1
6q

42 and [39, 1.3] implies

that

|xG ∩H| 6 (q + 1).i2(Aut(PΩε
10(q))) < 2(q + 1)2q24.

Conversely, if CḠ(x) = F4 then |xG| < 2q26 = a10 and the proof of [39, 6.4] gives

fpr(x) 6 (q + 1)
|Dε

5(q) : B4(q)|
|Ḡσ : F4(q)|

< 4(q + 1)q−17 = b10.

We conclude that Q̂(G, 6) <
∑10

i=1 aib
6
i < 1 if q > 3, where a1 = q78, a3 = q72 and a8 =

log2 q.q
78.

To complete the proof, let us assume q = 2. As above, the contribution to Q̂(G, 6) from

involutions is less than 2−13 + a9b
6
9 + a10b

6
10 < 2−12 so suppose x ∈ G is a semisimple element

of odd prime order r, hence xG ∩H ⊆ H̃ where H̃ = Ωε
10(2)× (2− ε). We claim that fpr(x) <

2−17 = d1 if dimxḠ > 48. This is trivial if dimxḠ > 60 since |xG| > 264 (see Table 7) and

|H̃| < 247. If 48 < dimxḠ 6 60 then D̄0 = A3
2, A3T3 or A2

2T2, where D̄ = CḠ(x). If D̄0 = A3
2

then r = 3 and thus fpr(x) < 2−19 since i3(H̃) < 3.231 and |xG| > 252. Similarly, if D̄0 = A3T3

or A2
2T2 then r = 5 or 7 respectively and the claim follows since |xG| > 258 and ir(H̃) < 237.

This justifies the claim.

Now assume dimxḠ 6 48, so D̄0 = T1D5, T1A5 or T2D4 (see Table 7). If D̄0 = T1D5

then ε = −, |xG| < 232 = c2 and [39, Thm. 2] gives fpr(x) 6 2−6 = d2. If D̄0 = T1A5 then

r = 3, |xG| < 242 = c3 and we have fpr(x) < 2−8 = d3 since |xG| > 241 and i3(H̃) < 3.231.

Finally, suppose D̄0 = T2D4, so |xG| < 248 = c4. If ε = − then r = 3 and thus fpr(x) < 2−12

since i3(H̃) < 3.231 and |xG| > 245. On the other hand, if ε = + then r = 3 or 7 and thus

fpr(x) < 2−10 = d4 since |xG ∩H| 6 i7(H̃) < 237 and |xG| > 247. We conclude that b(G) 6 6

since Q̂(G, 6) < 2−12 +
∑4

i=1 cid
6
i < 1, where c1 = 278.
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Lemma 4.17. If H = NG(M̄σ), where M̄ = T2D4.S3 is a σ-stable subgroup of Ḡ, then

b(G) 6 6.

Proof. We start with the case q > 3. Let x ∈ G be a semisimple element of prime order

and define δ(x) as before. Then [39, 4.5] gives

fpr(x) <
(|W (E6) : W (D4).6|+ 3) .12(q + 1)z.3

qδ(x)+z−6(q − 1)6
=

1728(q + 1)z

qδ(x)+z−6(q − 1)6
, (4.13)

where z = dimZ(D̄0) and D̄ = CḠ(x). If D̄ has no D5 or A5 factor then δ(x) > 26 by [40,

Thm. 2], hence (4.13) gives fpr(x) < q−14 = b1. In fact, the same bound holds if D̄ has an

A5 factor since z 6 1 and δ(x) > 24. There are fewer than 2q34 = a2 elements x ∈ G with

D̄0 = T1D5 and [39, Thm. 2] states that fpr(x) 6 2q−12 = b2.

Now suppose x ∈ G is a unipotent element of order p. First assume p > 2. If x ∈ M̄0

then we can determine the Jordan form of x on V27 via (4.12) and then identify the Ḡ-class

of x by inspecting [37, Table 5]. If p = 3 and x ∈ M̄ − M̄0 then x induces a triality graph

automorphism on D4. Now x permutes the D4-modules V (λ1), V (λ3) and V (λ4) and therefore

(4.12) implies that x has Jordan form [J9
3 ] on V27, hence [37, Table 5] indicates that x belongs

to either 2A2 or 2A2 +A1. If CD4(x) = G2 then it is clear that x belongs to 2A2 since |CH(x)|

divides |CG(x)|. It quickly follows that if x ∈ M̄ has order p then xḠ ∩ M̄ is a union of at most

three distinct M̄ -classes and thus [39, 4.5] implies that

fpr(x) <
36(q + 1)2.6
qδ(x)−4(q − 1)6

, (4.14)

where δ(x) = dimxḠ − dim(xḠ ∩ M̄). Now, if dimxḠ > 40 then one can check that δ(x) > 24

and thus (4.14) gives fpr(x) < q−16 = b3. If x belongs to the Ḡ-class 2A1 then |xG| < 2q32 = a4

and (4.14) implies that fpr(x) < q−12 = b4 since δ(x) = 20. Finally, if x is a long root element

then |xG| < 2q22 = a5 and we have fpr(x) 6 2q−6 = b5 by [39, Thm. 2].

Now assume p = 2 and x ∈ G is a unipotent involution. If x ∈ M̄ − M̄0 then x acts as

an involutory graph automorphism on D4; in the notation of [1], x is D4-conjugate to b1 or

b3. Now x = bl swaps the D4-modules V (λ3) and V (λ4) and acts on V (λ1) with Jordan form

[J l
2, I8−2l], so (4.12) implies that x has Jordan form [J9+l

2 , I9−2l] on V27. Inspecting [37, Table

5], we conclude that b1 lies in the Ḡ-class 2A1, while b3 is in 3A1. Now, according to [41, Table

5.1] we have xG ∩ H ⊆ H̃, where H̃ = O+
8 (q) or 3D4(q). First assume H̃ = 3D4(q). There

are two classes of involutions in H̃, labelled A1 and 3A1 in [68], and it is easy to see that the

corresponding classes in Ḡ have the same labels. For example, if x lies in the H̃-class 3A1 then

x is a c4-involution in the overgroup Ω+
8 (q3) and thus (4.12) implies that x has Jordan form

[J12
2 , I3] on V27, so x lies in the Ḡ-class 3A1 (see [37, Table 5]). In this case, the contribution
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to Q̂(G, 6) from unipotent involutions is less than

2q22.(2q−12)6 + 2q40.(4q−24)6 < q−42.

If H̃ = O+
8 (q) then there are precisely six distinct classes of involutions, with representatives

labelled b1, a2, c2, b3, a4 and c4 in [1]. One can check that b1, a2 ∈ A1; c2, a4 ∈ 2A1 and

b3, c4 ∈ 3A1. It quickly follows that the contribution here is less than q−32. In addition, we

note that q−32 <
∑5

i=3 bi(ai/bi)6 for all q > 3, where a3 = q72.

Next suppose x ∈ G is a field or graph-field automorphism of prime order r. Then q = qr
0

and the proof of [39, 6.1] gives

fpr(x) 6
6(q + 1)2q28

(q1/r − 1)6q24/r|xG0 |
<

36(q + 1)2q28

(q1/r − 1)6q24/rq78(1−1/r)
< q12−48(1− 1

r ). (4.15)

In particular, if r = 2 then fpr(x) < q−12 = b6 and we note that G contains fewer than

4q39 = a6 such elements. If r > 3 then (4.15) gives fpr(x) < q−20 = b7. Now, if x ∈ G is an

involutory graph automorphism and CḠ(x) 6= F4 then |xG| < 2q42 = a8 and fpr(x) < q−17 = b8

since |xG| > 1
6q

42 and (4.8) holds. Similarly, if CḠ(x) = F4 then |xG| < 2q26 = a9 and (4.8)

implies that fpr(x) < q−5 = b9 since we are assuming q > 3. We conclude that b(G) 6 6 if

q > 3 since Q̂(G, 6) <
∑9

i=1 aib
6
i < 1, where a1 = q78, a3 = q72 and a7 = log2 q.q

78.

Now let us assume q = 2. As above, the contribution to Q̂(G, 6) from unipotent involutions

and non-F4 type graph automorphisms is less than 2−32 + a9b
6
9 < 2−31. Now, if x is a graph

automorphism with CḠ(x) = F4 then |xG| < 227 = c1 and we claim that fpr(x) 6 (26 − 23 +

1)−1 = d1. This follows from [39, Thm. 2] if ε = −. On the other hand, if ε = + then we may

assume H 6 (D14 × 3D4(2)).3 = J (see [35]) and the claim holds since |xG ∩ H| 6 i2(J) =

556927 and |xG| = 212(25 − 1)(29 − 1). Next let x ∈ G be a semisimple element of odd prime

order r with D̄ = CḠ(x), and note that |H ∩ Ḡσ| 6 32|Ω+
8 (2)|.6 < 234 = e (see [41, Table 5.1]).

By Proposition 2.3, such elements x with |xG| > 241 = f contribute less than f(e/f)6 = 2−1.

If |xG| 6 241 then (r, ε) = (3,−) and D̄0 = T1D5 (see Table 7). Moreover, there are fewer

than 233 = c2 such elements and [39, Thm. 2] gives fpr(x) 6 2−6 = d2. This implies that

Q̂(G, 6) < 2−31 +
∑2

i=1 cid
6
i + f(e/f)6 < 1 as required.

Lemma 4.18. If H is of type F4(q) then b(G) 6 6.

Proof. Here H = NG(M̄σ), where M̄ = F4 is a σ-stable subgroup of Ḡ. For now we will

assume q > 3. Let x ∈ G be a semisimple element of prime order and note that |xG| >
1
2 (q + 1)−4q70 = b if dimxḠ > 66. Now there are fewer than q68 = c1 semisimple elements x

with dimxḠ < 66 and [39, Thm. 2] gives fpr(x) 6 q−12 = d1. Next suppose x is a unipotent
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element of order p and assume for now that p is odd. Inspecting [37, Table A] we deduce that

xḠ ∩ M̄ = xM̄ and so the proof of [39, 4.5] implies that

fpr(x) <
2(q + 1)2.|C : C0|
qδ(x)−4(q − 1)6

, (4.16)

where δ(x) = dimxḠ − dim(xḠ ∩ M̄) and C = CḠ(x). We note that |C : C0| 6 6 (see [56],

for example). If dimxḠ > 54 then δ(x) > 18 (see [37, Table A]) and thus fpr(x) < q−13 = d2.

There are fewer than 2q52 = c3 unipotent elements x ∈ G such that 48 6 dimxḠ < 54 and

(4.16) yields fpr(x) < q−14 = d3 since δ(x) > 16. Similarly, there are less than 2q42 = c4 such

elements x with 40 6 dimxḠ < 48 and this time (4.16) gives fpr(x) < q−8 = d4 since δ(x) > 12

and |C : C0| 6 2. There are no more than 3q32 = c5 remaining unipotent elements and [39,

Thm. 2] states that fpr(x) 6 q−6 = d5. Now assume p = 2, so x lies in one of the Ḡ-classes

A1 and 2A1 (see [37, Table A]). Applying [39, Thm. 2] we deduce that the contribution to

Q̂(G, 6) from unipotent involutions is less than 3q32.q−6.6 = 3q−4.

Next suppose x ∈ G is a field or graph-field automorphism of prime order r. As in the proof of

Lemma 4.14, the contribution to Q̂(G, 6) from involutory field and graph-field automorphisms

is less than c6d6
6, where c6 = 4q39 and d6 = q−12. On the other hand, if r is odd then

fpr(x) 6
|F4(q) : F4(q1/r)|
|Eε

6(q) : Eδ
6(q1/r)|

< 12q−26(1− 1
r ) < 12q−17 = d7

and of course there are fewer than log2 q.q
78 = c7 such elements. Finally, suppose x ∈ G is an

involutory graph automorphism. If CḠ(x) 6= F4 then |xG| < 2q42 = c8 and applying [39, 1.3]

we deduce that |xG ∩ H| 6 i2(Aut(F4(q))) < 2(q + 1)q27 and thus fpr(x) < q−11 = d8 since

|xG| > 1
6q

42. If CḠ(x) = F4 then |xG| < 2q26 = c9 and the proof of [39, 5.4] implies that

fpr(x) 6
|F4(q) : B4(q)|
|Eε

6(q) : F4(q)|
< 12q−10 = d9

(note that this bound is valid for all p). Applying Proposition 2.3 we conclude that Q̂(G, 6) <

b(a/b)6 +
∑9

i=1 di(ci/di)6 < 1, where a = q52 and c2 = q72.

Finally, suppose q = 2 and note that G 6 G0.2. Using Magma we can compute precise fixed

point ratios for all elements x ∈ G0, while fpr(x) is given in the proof of [39, 5.4] when x is an

involutory graph automorphism. It follows that b(G) 6 4 since Q̂(G, 4) < 1. (By Proposition

2.4, this implies that b(G) = 4 if G = Eε
6(2).2.)

Lemma 4.19. If H is of type C4(q) then b(G) 6 5.

Proof. Here p is odd andH = NG(M̄σ), where M̄ = C4 is a σ-stable subgroup of Ḡ. If x ∈ G

is semisimple and dimxḠ > 48 then |xG| > 1
2 (q + 1)−2q50 = b; there are fewer than q46 = c1

remaining semisimple elements and [39, Thm. 2] gives fpr(x) 6 q−12 = d1. Now assume x ∈ H
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is a unipotent element of order p. Then the Ḡ-class of x is determined in [36] (see Table 4 in

§2) and we deduce that (4.16) holds since xḠ ∩ M̄ = xM̄ . Now, if dimxḠ > 40 then δ(x) > 22

and thus (4.16) yields fpr(x) < q−17 = d2; there are less than 3q32 = c3 remaining unipotent

elements and (4.16) gives fpr(x) < q−9 = d3 since δ(x) > 14.

Now if x is a field or graph-field automorphism of prime order r then

fpr(x) 6
|Sp8(q) : Sp8(q1/r)|
|Eε

6(q) : Eδ
6(q1/r)|

< 12q−42(1− 1
r ) 6 12q−21 = d4.

Finally, suppose x ∈ G is an involutory graph automorphism. If CḠ(x) = C4 then |xG| <

2q42 = c5 and we may assume x centralizes M̄ . Therefore [39, 1.3] implies that |xG ∩ H| 6

i2(Aut(PSp8(q))) < 2(q + 1)q19 and thus fpr(x) < q−19 = d5 since |xG| > 1
6q

42. Conversely, if

CḠ(x) = F4 then |xG| < 2q26 = c6 and the proof of [39, 5.4] gives

fpr(x) 6
|Sp8(q) : Sp2(q)Sp6(q)|

|Eε
6(q) : F4(q)|

< 12q−14 = d6.

Applying Proposition 2.3 we conclude that Q̂(G, 5) < b(a/b)5 +
∑6

i=1 cid
5
i < 1, where a = q36,

c2 = q72 and c4 = 2 log2 q.q
78.

Proposition 4.20. If H is a maximal non-parabolic subgroup of G then b(G) 6 6.

Proof. In view of Lemmas 4.14-4.19 we may assume that H is one of the cases (ii)-(iv) in

the statement of Lemma 4.13. Now if H has socle Fi22 then using Magma one can check that

Q̂(G, 3) < 1 and thus b(G) = 3 since log |G|/ log |Ω| > 2 (see Proposition 2.4). In a similar

fashion, we deduce that b(G) = 2 if G = 2E6(2).2 and H = SO7(3).

Now assume ε = + and H is of type Eδ
6(q1/2). Then H0 = H ∩G0 = CG0(τ), where τ is an

involutory field (resp. graph-field) automorphism of G0 if δ = + (resp. δ = −). We claim that

b(G) 6 5. To see this, first let x ∈ G be a semisimple element of prime order. Then xG0 ∩H0

is a union of at most (3, q − 1) distinct H0-classes and thus

fpr(x) <
6(q + 1)6

q
1
2 dim xḠ+3(q1/2 − 1)6

.

In particular, if dimxḠ > 48 then fpr(x) < q−18 = b1. There are fewer than q46 = a2 remaining

semisimple elements and [39, Thm. 2] states that fpr(x) 6 q−12 = b2. Next let x ∈ G be a

unipotent element of order p. If p > 2 then fpr(x) < 8(q + 1)2q−(1/2) dim xḠ−2 and so the

contribution to Q̂(G, 5) from unipotent elements is less than

∑
4qdim xḠ

.
(
8(q + 1)2q−

1
2 dim xḠ−2

)5

< q−22 = c,
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where we sum over a set of representatives for the distinct Ḡ-classes of unipotent elements

x ∈ H of order p. Similarly, if p = 2 then xG0 ∩ H0 = xH0 and we quickly deduce that the

contribution from unipotent involutions is less than q−27.

Next let x ∈ G be a field or graph-field automorphism of prime order r. If r is odd then x

induces a field automorphism on H0 and thus fpr(x) < 12q−26 = b3. As before, the contribution

to Q̂(G, 5) from involutory field and graph-field automorphisms is less than a4b
5
4, where a4 =

4q39 and b4 = q−12. Now, if x ∈ G is an involutory graph automorphism then x induces a graph

automorphism on H0 such that the centralizers CH0(x) and CG0(x) are of the same type. It

follows that fpr(x) < 12q−39+(1/2) dim xḠ

, so we have |xG| < 2q26 = a5 and fpr(x) < 12q−13 = b5

if CḠ(x) = F4, otherwise |xG| < 2q42 = a6 and fpr(x) < 12q−21 = b6. We conclude that

b(G) 6 5 since Q̂(G, 5) < c+
∑6

i=1 aib
5
i < 1, where a1 = q78 and a3 = log2 q.q

78.

4.4. G0 = F4(q)

The conjugacy classes of G are determined in [61] for even q and in [63] for odd q. If q is odd

then there are precisely two classes of semisimple involutions, with representatives labelled t1

and t2 in [63, Table 9], where CḠ(t1) = A1C3 and CḠ(t2) = B4. If p = 2 then there are exactly

four classes of unipotent involutions, with representatives labelled x1, x2, x3 and x4 in [61,

2.1]; these correspond to the four Ḡ-classes labelled A1, Ã1, Ã
(2)
1 and A1 + Ã1 in [40, Table 2].

Lemma 4.21. If |H| 6 q22 then b(G) 6 6.

Proof. First assume q > 3. If x ∈ Ḡσ has prime order and dimxḠ > 28 then |xG| > q28 = b

(see [61] and [63]). If dimxḠ < 28 then [39, Thm. 2] gives fpr(x) 6 (q4 − q2 + 1)−1 = d1 and

we note that there are fewer than 2q22 = c1 such elements. If x ∈ G is an involutory field or

graph-field automorphism then |xG| < 2q26 = c2 and [39, Thm. 2] gives fpr(x) 6 q−6 = d2.

(Note that G cannot simultaneously contain automorphisms of both types.) Finally, if x is a

field automorphism of odd prime order then |xG| > b and applying Proposition 2.3 we conclude

that b(G) 6 6 since Q̂(G, 6) < b(a/b)6 +
∑2

i=1 cid
6
i < 1, where a = q22.

Now assume q = 2. As above, the combined contribution to Q̂(G, 6) from graph-field

automorphisms and elements x ∈ G with |xG| > 228 is less than b(a/b)6+c2d6
2 < 2−5 so assume

x ∈ G0 and |xG| 6 228. Then x is an involution which belongs to one of the Ḡ-classes labelled

A1, Ã1 and Ã
(2)
1 in [40, Table 2]. Together, there are fewer than 3.216 = e1 elements in the

G-classes A1 and Ã1 (see [61]) and [39, Thm. 2] states that fpr(x) 6 (24−22 +1)−1 = f1. Now

there are less than 223 = e2 elements in the class Ã(2)
1 and we claim that fpr(x) 6 2−4 = f2. This

is trivial if |H| 6 218 since |xG| > 222, and it follows from [39, Thm. 2] if H is not a subgroup
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of maximal rank. According to [41], if H is a maximal rank subgroup and 218 < |H| 6 222 then

H ∩G0 = Sp4(2) o S2 or Sp4(4).2, hence i2(H ∩G0) < 218 and the claim follows. For instance,

i2(Sp4(2) o S2) = (i2(Sp4(2)) + 1)2 − 1 + |Sp4(2)| = 6495 < 218.

We conclude that Q̂(G, 6) < 2−5 +
∑2

i=1 eif
6
i < 1.

Lemma 4.22. If |H| > q22 then one of the following holds:

(i) H = NG(M̄σ), where M̄0 = B4, D4, A1C3 or C4 (p = 2);

(ii) H is of type F4(q1/2) or 2F4(q);

(iii) q = 2 and H has socle L4(3).

Lemma 4.23. If G0 = F4(2) and H has socle H0 = L4(3) then b(G) 6 6.

Proof. Let x ∈ G be a semisimple element of prime order. If dimxḠ > 36 then |xG| > 236

and thus fpr(x) < |Aut(H0)|.2−36 < 2−11 = b1. There are less than 231 = a2 semisimple

elements x ∈ G with dimxḠ < 36, while [39, Thm. 2] states that fpr(x) 6 2−6 = b2. Next

let x ∈ G be a unipotent involution. As in the proof of Lemma 4.21, if x ∈ A1 or Ã1 then

[39, Thm. 2] gives fpr(x) 6 2−4 = b3 and we note that there are fewer than 3.216 = a3 such

elements. The remaining class of involutions contains fewer than 230 = a4 elements and we

have fpr(x) < 2−7 = b4 since i2(Aut(H0)) = 27639 and |xG| > 222. Finally, if x is an involutory

graph-field automorphism then |xG| < 227 = a5 and [39, Thm. 2] gives fpr(x) 6 2−6 = b5. We

conclude that b(G) 6 6 since Q̂(G, 6) <
∑5

i=1 aib
6
i < 1, where a1 = 252.

Lemma 4.24. If H is of type B4(q) then b(G) 6 6.

Proof. Here H = NG(M̄σ), where M̄ = B4 is a σ-stable subgroup of Ḡ and H ∩ G0 =

H0 = B4(q). If q = 2 then generators for H and G are given in the Web Atlas [73] and an easy

Magma calculation yields b(G) = 4. Now assume q > 3. Let x ∈ G be a semisimple element

of prime order. Then [39, 4.5] implies that

fpr(x) <
|W (F4) : W (B4)|.2(q + 1)z

qδ(x)+z−4(q − 1)4
=

6(q + 1)z

qδ(x)+z−4(q − 1)4
, (4.17)

where z = dimZ(D̄), D̄ = CḠ(x) and

δ(x) := dimxḠ − dim(xḠ ∩ M̄) = 2
(
|Φ+(Ḡ)| − |Φ+(M̄)| − |Φ+(D̄)|+ |Φ+(D̄ ∩ M̄)|

)
= 16− 2

(
|Φ+(D̄)| − |Φ+(D̄ ∩ M̄)|

)
.

If z > 2 then |Φ+(D̄)| 6 1, so δ(x) > 14 and (4.17) implies that fpr(x) < q−9 = b1. We also

observe that δ(x) > 14 (and thus fpr(x) < b1) if D̄′ = A3, A2Ã1, A2
1Ã1, A2, A2

1 or A1Ã1
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because Φ(D̄ ∩ M̄) contains all the long roots of Φ(D̄). Next suppose D̄′ = A2Ã2, A1Ã2,

Ã2 or B2. Inspecting [61] and [63] we calculate that there are fewer than q46 = a2 such

elements and thus (4.17) gives fpr(x) < 2q−9 = b2 since z 6 2 and δ(x) > 12 by [40, Thm.

2]. Similarly, there are fewer than 2q31 = a3 semisimple elements in G with D̄′ = B3 or C3

and we claim that fpr(x) < q−6 = b3. If D̄′ = B3 then [40, Thm. 2] gives δ(x) > 10 and

the claim follows since the proof of [39, 4.5] yields fpr(x) < 3(q + 1).(q − 1)−4q−7 because

|xG| > (q + 1)−1q31. Now, if D̄′ = C3 then Φ(D̄ ∩ M̄) = A1C2 since Φ(D̄ ∩ M̄) is A2-

dense in Φ(D̄) and must contain all the long roots of Φ(D̄) (see [40, 5.1]). In particular, we

have |CH0(x)| = |SO5(q)||GLε
2(q)| > (q − 1)2q12 and arguing as in the proof of [39, 4.5] we

deduce that fpr(x) < 3(q + 1).(q − 1)−2q−7 6 q−6 since |xG| > (q + 1)−1q31 and δ(x) = 8.

This justifies the claim. For semisimple elements, it remains to consider involutions. Now

there are fewer than 2q16 = a4 involutions x ∈ G with D̄ = B4, while [39, Thm. 2] gives

fpr(x) 6 2q−5 = b4. Similarly, there are less than 2q28 = a5 involutions x with D̄ = A1C3 and

the proof of [39, 4.5] implies that fpr(x) < 3(q − 1)−2q−6 < q−6 = b5 since |xG| > q28 and

|CH0(x)| > (q − 1)2qdim CM̄ (x)−2.

Next suppose x ∈ G has order p and assume for now that p is odd. If the M̄ -class of x

is labelled by the pair (L,PL′) and the Levi subgroup L < M̄ is also a Levi subgroup of Ḡ

then the Ḡ-class of x inherits the same label. In the few remaining cases we use the fact that

V26 ↓ B4 = V (λ1)⊕V (λ4)⊕0 to calculate the Jordan form of x on the 26-dimensional Ḡ-module

V26 and we can then identify the Ḡ-class of x by inspecting [37, Table 3] (note that the Jordan

form of x on V (λ4) is listed in [8, Table 5] if dimxM̄ > 24, ortherwise we refer the reader to

the proof of [6, 2.8]). In this way, using [63, Tables 4-6], we deduce that fpr(x) < 3q−10 = d1

if dimxḠ > 34. For example, if x lies in the Ḡ-class labelled B2 then

fpr(x) 6
2
(
|B4(q) : q9A1(q)|+ |B4(q) : q7A1(q)|

)
|F4(q) : q10A1(q2)|

=
2(q2 + 1)2(q4 − 1)

q6(q12 − 1)
< 3q−10.

Similarly, if dimxḠ < 34 then we derive the following bounds |(xḠ)σ| < ci and fpr(x) < di:

i Ḡ-class of x ci di

2 A1 2q16 (q4 − q2 + 1)−1

3 eA1 2q22 3q−6

4 A1 + eA1 2q28 q−8

5 A2 q30 3q−8

We conclude that if p > 2 then the contribution to Q̂(G, 6) from unipotent elements is less than∑5
i=1 cid

6
i < 2q−6, where c1 = q48 (see Proposition 2.2). Now assume p = 2. As described in [1],

there are six distinct classes of involutions in B4; the corresponding Ḡ-classes are listed in the
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proof of [40, 4.6] and thus δ(x) := dimxḠ − dim(xḠ ∩ M̄) is easily determined. From [61, 2.1]

we deduce that qdim xḠ

< |xG| < 2qdim xḠ

and thus fpr(x) < 2q−δ(x) since |xG ∩H| < 2qdim xM̄

(see [10, 3.22], for example). In this way we calculate that unipotent involutions contribute

less than 2q−3 = c.

As in the proof of Lemma 4.21, the contribution to Q̂(G, 6) from involutory field and graph-

field automorphisms is less than a6b
6
6, where a6 = 2q26 and b6 = q−6. If x ∈ G is a field

automorphism of odd prime order r then

fpr(x) =
|B4(q) : B4(q1/r)|
|F4(q) : F4(q1/r)|

< 4q−16(1− 1
r ) 6 4q−

32
3 = b7

and we conclude that b(G) 6 6 since Q̂(G, 6) < c +
∑7

i=1 aib
6
i < 1, where a1 = q52 and

a7 = log2 q.q
52.

Lemma 4.25. If H is of type D4(q) or 3D4(q) then b(G) 6 6.

Proof. Here H = NG(M̄σ), where M̄ = D4.S3 is a σ-stable closed subgroup of Ḡ and H has

socle H0 = PΩ+
8 (q) or 3D4(q) (see [41, Table 5.1]). We note that if p = 2 then the maximality

of H implies that G does not contain an involutory graph-field automorphism. The case q = 2

can be handled using Magma: we calculate that Q̂(G, 4) < 1 and thus b(G) 6 4. (In fact,

if H = O+
8 (2).3 then Q̂(G, 3) < 1 and thus Proposition 2.4 implies that b(G) = 3 in this

particular case.) For the remainder we will assume q > 3.

Let x ∈ G be a semisimple element of prime order. Then [39, 4.5] gives

fpr(x) <
(|W (F4) : W (D4).6|+ 3) .12(q + 1)z

qδ(x)+z−4(q − 1)4
=

48(q + 1)z

qδ(x)+z−4(q − 1)4
, (4.18)

where z and δ(x) are defined as before. If D̄ = CḠ(x) does not have a B4, C3 or B3 factor

then (4.18) yields fpr(x) < q−9 = b1 since [40, Thm. 2] states that δ(x) > 16. Similarly, we

deduce that fpr(x) < q−6 = b2 if D̄ has a C3 or B3 factor and we note that there are fewer

than 2q31 = a2 such elements in G. Finally, if D̄ = B4 then |xG| < 2q16 = a3 and [39, Thm. 2]

gives fpr(x) 6 2q−5 = b3.

Next let x ∈ G be a unipotent element of order p and first assume p > 2. Now, if p = 3 and

x ∈ M̄ − M̄0 then x induces a triality graph automorphism on D4 and we can determine the

Ḡ-class of x by considering the restriction

V26 ↓ D4 = V (λ1)⊕ V (λ3)⊕ V (λ4)⊕ 02. (4.19)

Indeed, we see that x has Jordan form [J8
3 , J2] on V26 because x permutes the 8-dimensional

modules V (λ1), V (λ3) and V (λ4), while interchanging the two trivial modules. Then [37, Table

3] indicates that x lies in either Ã2 or Ã2 +A1. By considering centralizer orders, it is easy to
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see that x ∈ Ã2 if CD4(x) = G2, otherwise x ∈ Ã2 + A1 (see [63, Table 6]). In the same way

we can determine the Ḡ-class of each unipotent element x ∈ M̄0.

Now, there are fewer than 3q22 = a4 unipotent elements x ∈ G with dimxḠ < 28 and we

calculate that fpr(x) < 2q−6 = b4. Similarly, if dimxḠ > 28 then fpr(x) < 8q−12 = b5. Now

assume p = 2 and x ∈ G is a unipotent involution. If x ∈ M̄−M̄0 then x induces an involutory

graph automorphism on D4, so in the notation of [1], x is either a b1 or b3 involution. If x = bl,

where l = 1 or 3, then (4.19) implies that the Jordan form of x on V26 has precisely 9 + l

Jordan 2-blocks and thus [37, Table 3] reveals that x lies in the Ḡ-class Ã1 if l = 1, otherwise

x is in the class A1 + Ã1. The Ḡ-class of each involution in D4 can be determined in a similar

fashion. For any p, the reader can check that the total contribution to Q̂(G, 6) from unipotent

elements is less than a4b
6
4 + a5b

6
5, where a5 = q48.

Finally, suppose x ∈ G is a field automorphism of prime order r. As in the proof of Lemma

4.21, the contribution to Q̂(G, 6) from involutory field automorphisms is less than a6b
6
6, where

a6 = 2q26 and b6 = q−6. If r = 3 then |xG ∩ H| 6 i3(Aut(H0)) < 3q16 (see [39, 1.3]) and

thus fpr(x) < 6q−56/3 = b7 since |xG| > 1
2q

104/3. We also observe that there are fewer than

4q104/3 = a7 such elements. Finally, if r > 5 and H0 = D4(q) then

fpr(x) 6 6
|D4(q) : D4(q1/r)|
|F4(q) : F4(q1/r)|

< 24q−24(1− 1
r ) 6 24q−

96
5 = b8

and it is easy to see that the same bound fpr(x) < b8 holds if H0 = 3D4(q). We conclude that

b(G) 6 6 since Q̂(G, 6) <
∑8

i=1 aib
6
i < 1, where a1 = q52, a5 = q48 and a8 = log2 q.q

52.

Lemma 4.26. If H is of type A1(q)C3(q) then b(G) 6 5.

Proof. Here H = NG(M̄σ), where M̄ = A1C3 is a σ-stable subgroup of Ḡ. According to

[41, Table 5.1] we may assume q is odd. If x ∈ G is a semisimple element of prime order then

[39, 4.5] implies that

fpr(x) <
|W (F4) : W (A1C3)|.2(q + 1)z

qδ(x)+z−4(q − 1)4
=

192(q + 1)z

qδ(x)+z−4(q − 1)4
, (4.20)

where z and δ(x) are defined in the usual way. Now, if D̄ = CḠ(x) does not have a B4, C3 or B3

factor then (4.20) yields fpr(x) < 3
2q

−11 = b1 since δ(x) > 18 by [40, Thm. 2]. Combined, there

are fewer than 2q31 = a2 semisimple elements x such that D̄ has a C3 or B3 factor, and (4.20)

gives fpr(x) < q−7 = b2 since z 6 1 and δ(x) > 14. Finally, if D̄ = B4 then |xG| < 2q16 = a3

and [39, Thm. 2] states that fpr(x) 6 2q−5 = b3.

Now assume x = u1u2 ∈ M̄ is a unipotent element of order p, where u1 ∈ A1 and u2 ∈ C3.

Since p is odd, the M̄ -class of x is labelled by a pair (L,PL′), where L is a Levi subgroup of
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M̄ and PL′ is a distinguished parabolic subgroup of L′. Now, if L is also a Levi subgroup of

Ḡ then the Ḡ-class of x has the same label. This always holds if u1 = 1, but there are a few

cases where it fails when u1 = u is non-trivial. In all cases the Ḡ-class of x is given in [36] and

the relevant results can be found in §2 (see Table 5). In this way we deduce that xḠ ∩ M̄ is a

union of at most two distinct M̄ -classes for any x ∈ M̄ of order p. Therefore the proof of [39,

4.5] implies that

fpr(x) <
2.2(q + 1)y|C : C0|
qδ(x)+y−4(q − 1)4

6
96

qδ(x)−4(q − 1)4
, (4.21)

where C = CḠ(x), y = dimZ(C0/Ru(C0)) = 0 (see [63]) and δ(x) = dimxḠ − dim(xḠ ∩ M̄).

Now, if dimxḠ > 28 then δ(x) > 16 and thus (4.21) yields fpr(x) 6 2q−11 = b4. Similarly,

if x belongs to the Ḡ-class Ã1 then |xG| < 2q22 = a5 and fpr(x) < 2q−7 = b5, while we have

|xG| < 2q16 = a6 and fpr(x) < 2q−5 = b6 if x is in A1.

As observed in the proof of Lemma 4.21, the contribution to Q̂(G, 5) from involutory field

automorphisms is less than a7b
5
7, where a7 = 2q26 and b7 = q−6. If x is a field automorphism

of odd prime order r then

fpr(x) =
|A1(q)C3(q) : A1(q1/r)C3(q1/r)|

|F4(q) : F4(q1/r)|
< 8q−28(1− 1

r ) 6 8q−
56
3 = b8

and we conclude that Q̂(G, 5) <
∑8

i=1 aib
5
i < 1, where a1 = q52, a4 = q48 and a8 = log2 q.q

52.

Proposition 4.27. If H is a maximal non-parabolic subgroup of G then b(G) 6 6.

Proof. We may assume H is of type F4(q1/2) or 2F4(q). If q = 2 then G = F4(2), H =
2F4(2)′.2 and a Magma calculation yields Q̂(G, 3) < 1, hence b(G) 6 3. For the remainder, we

will assume q > 3. We claim that b(G) 6 5.

We will assume H0 = H ∩ G0 = 2F4(q) since a very similar argument applies when H is

of type F4(q1/2). Here q = 22m+1 for some m > 1 and we note that H0 = CG0(τ) for an

involutory graph-field automorphism τ of G0. Let x ∈ H be a semisimple element of prime

order and observe that xG0 ∩H0 = xH0 since D̄ = CḠ(x) is connected. Since τ swaps long and

short roots, D̄ must contain an equal number of long and short roots, so |xG| > q36 = b because

D̄ = A2Ã2, B2T2, A1Ã1T2 or T4. Similarly, if x ∈ H is a unipotent involution then x belongs

to one of the Ḡ-classes labelled Ã(2)
1 and A1 + Ã1. According to [62], if p = 2 then H0 contains

precisely two classes of involutions, represented by t2 and t′2, where |CH0(t2)| = q10(q2−1) and

|CH0(t
′
2)| = q12(q2 + 1)(q − 1). Further, Lagrange’s Theorem implies that t2 ∈ A1 + Ã1 and

t′2 ∈ Ã
(2)
1 , so fpr(x) < q−11 = d1 and we note that G contains fewer than 2q22 = c1 unipotent
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involutions. If x is a field automorphism of prime order r then r must be odd and

fpr(x) 6
| 2F4(q) : 2F4(q1/r)|
|F4(q) : F4(q1/r)|

< 4q−26(1− 1
r ) 6 4q−

52
3 = d2.

Finally, if x ∈ G is an involutory graph-field automorphism then |xG| < 2q26 = c3 and we may

assume x centralizes H0. Therefore |xG∩H| = i2(H0)+1 < 2q14 and thus fpr(x) < 2q−12 = d3.

We conclude that b(G) 6 5 since Q̂(G, 5) < b(a/b)5 +
∑3

i=1 cid
5
i < 1, where a = q26 and

c2 = log2 q.q
52.

4.5. G0 = G2(q)′

The maximal subgroups of G are determined in [20] for even q, and in [32] for odd q. In

addition, detailed information on the conjugacy classes in G can be found in [17] when p > 5,

and in [22] for p < 5. The following lemma is an easy consequence of [20] and [32].

Lemma 4.28. If q > 7 and |H ∩G0| > q6 then H is of type G2(q1/2), 2G2(q) or SLε
3(q).

Lemma 4.29. If |H ∩G0| 6 q6 then b(G) 6 5.

Proof. If q 6 5 then the lemma is easily checked using Magma (see Tables 8 and 9 in §6)

so we will assume q > 7. Let x ∈ G0 be an element of prime order. If dimxḠ > 8 then [17] and

[22] imply that |xG| > (q2− 1)(q6− 1) = b1. There are fewer than 3q6 = c1 elements x ∈ G0 of

prime order with dimxḠ < 8 and [39, Thm. 2] gives fpr(x) 6 (q2− q+ 1)−1 = d1. Similarly, if

x is an involutory field or graph-field automorphism then |xG| < 2q7 = c2 and again we have

fpr(x) 6 (q2−q+1)−1 = d2. (Note that G cannot contain both involutory field and graph-field

automorphisms.) Finally, if x is a field automorphism of odd prime order then |xG| > 1
2q

28/3 =

b2 and applying Proposition 2.3 we conclude that Q̂(G, 5) <
∑2

i=1 bi(ai/bi)5 +
∑2

i=1 cid
5
i < 1,

where a1 = q6 and a2 = log2 q.q
6.

Lemma 4.30. If H is of type SLε
3(q) then b(G) 6 5.

Proof. Here H = NG(M̄σ), where M̄ = A2.2 is a σ-stable subgroup of Ḡ. Using Magma

we calculate that b(G) = 3 when q 6 5 (see Tables 8 and 9) so we will assume q > 7. Note that

the maximality of H in G implies that G does not contain a graph-field automorphism when

p = 3 (see [32]).

Let x ∈ G be a semisimple element of odd prime order, so xḠ ∩ M̄ ⊆ M̄0. Evidently, Φ(M̄)

is the set of long roots in the root system of G2, hence Φ(D̄ ∩ M̄) consists of the long roots in

Φ(D̄), where D̄ = CḠ(x). Therefore (4.6) implies that δ(x) := dimxḠ − dim(xḠ ∩ M̄) > 4 and
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thus [39, 4.5] yields

fpr(x) <
|W (G2) : W (A2).2|.4(q + 1)2

qδ(x)(q − 1)2
6

64
9
q−4 = b1.

If p is odd then G0 contains precisely q4(q4 + q2 + 1) = a2 involutions and [39, Thm. 2] gives

fpr(x) 6 (q2 − q + 1)−1 = b2. Next let x ∈ H be a unipotent element of order p. To determine

the Ḡ-class of x we first calculate the Jordan form of x on the 7-dimensional module for G2.

This is easy since V7 ↓ A2 = V3 ⊕ (V3)∗ ⊕ 0, and we can then identify the Ḡ-class of x by

inspecting [37, Table 1]. In particular, if p = 2 and x ∈ M̄0 then x is in the Ḡ-class A1, whence

|xG| < q6 = a3 and fpr(x) < 2q−2 = b3. Similarly, if p = 2 and x ∈ M̄ − M̄0 then x is in Ã1,

so |xG| < q8 = a4 and fpr(x) < 2q−3 = b4. Now if p > 2 then each regular unipotent element

in A2 lies in the Ḡ-class G2(a1) (since x has Jordan form [J2
3 , I1] on V7), while the non-regular

unipotent elements belong to the Ḡ-class A1. It is easy to check that the contribution to Q̂(G, 5)

from unipotent elements is less than a3b
5
3 + a4b

5
4 for any q.

Finally, let x be a field automorphism of prime order r. If r = 2 then |xG| < 2q7 = a5 and

[39, Thm. 2] gives fpr(x) 6 (q2 − q + 1)−1 = b5, whereas

fpr(x) 6 2
|SLε

3(q) : SLε
3(q

1/r)|
|G2(q) : G2(q1/r)|

< 8q−6(1− 1
r ) 6 8q−4 = b6

if r is odd. We conclude that Q̂(G, 5) <
∑6

i=1 aib
5
i < 1, where a1 = q14 and a6 = log2 q.q

14.

Proposition 4.31. If H is a maximal non-parabolic subgroup of G then b(G) 6 5.

Proof. We may assume H is of type G2(q1/2) or 2G2(q). For brevity, we only give details

for H of type 2G2(q) since the other case is very similar. Here H0 = H ∩G0 = CG0(τ), where

τ is an involutory graph-field automorphism of G0 and q = 32m+1 for some integer m > 0. If

m = 0 then H0
∼= L2(8).3 and b(G) 6 3 (see Table 8) so we will assume m > 1. Let x ∈ H be

a semisimple element of prime order r and note that xG0 ∩H0 = xH0 since CḠ(x) is connected.

If r > 2 then CḠ(x) = T2 is the only possibility since τ swaps long and short roots, whence

|xG| > 1
2 (q + 1)−2q14 = b. If r = 2 then |xG| < 2q8 = c1 and fpr(x) < q−4 = d1 since both H0

and G0 contain a unique class of involutions (see [72]).

Next suppose x ∈ H is a unipotent element of order three. Since H0 = CG0(τ) and τ swaps

long and short roots it follows that x lies in one of the Ḡ-classes labelled Ã(3)
1 and G2(a1). As

described in [72], there are three classes of elements of order three in H0, with representatives

ti where |CH0(t1)| = |CH0(t2)| = 2q2 and |CH0(t3)| = q3. By Lagrange’s Theorem, we have

t1, t2 ∈ G2(a1) and t3 ∈ Ã(3)
1 . In particular, if x is in the Ḡ-class G2(a1) then |xG| < q10 = c2

and fpr(x) < 4q−5 = d2, otherwise we have |xG| < q8 = c3 and fpr(x) < 2q−4 = d3. If x is a
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field automorphism of prime order r then

fpr(x) 6
| 2G2(q) : 2G2(q1/r)|
|G2(q) : G2(q1/r)|

< 4q−7(1− 1
r ) 6 4q−

14
3 = d4.

Finally, if x ∈ G is an involutory graph-field automorphism then |xG| < 2q7 = c5 and we may

assume x centralizes H0. Therefore fpr(x) < 2q−3 = d5 since |xG ∩H| = i2(H0) + 1 < 2q4 and

|xG| > q7. We conclude that b(G) 6 5 since Q̂(G, 5) < b(a/b)5 +
∑5

i=1 cid
5
i < 1, where a = q7

and c4 = log3 q.q
14.

4.6. G0 = 2F4(q)′

Here q = 22m+1 for an integer m > 0. We refer the reader to Table 9 for the precise values

of b(G) when q = 2. For the remainder of this section we will assume q > 8. The conjugacy

classes in G0 are described by Shinoda in [62]. In particular, we note that G has two classes

of involutions and a unique class of elements or order three, with respective representatives t2,

t′2 and t3, where

(q − 1)q13 < |tG2 | < q14, (q − 1)q10 < |t′G2 | < q11, (q − 1)q17 < |tG3 | < q18.

Furthermore, if x ∈ G0 has order at least 5 then |xG| > 1
3q

20.

The maximal subgroups of G are determined in [54] and the following result quickly follows.

Lemma 4.32. If q > 8 and |H| > q9 then H is of type 2B2(q) o S2 or B2(q).2.

Lemma 4.33. If |H| 6 q9 then b(G) 6 3.

Proof. As previously remarked, we may assume q > 8. Suppose x ∈ G0 has prime order r

and note that |xG| > 1
3q

20 = b if r > 5 (see [62]). If r = 3 then |xG| < q18 = c1 and fpr(x) <

2q−9 = d1 since |xG ∩H| < |H| and |xG| > 1
2q

18. Similarly, if r = 2 and x is G-conjugate to

t2 (see above) then |xG| < q14 = c2 and fpr(x) < (q − 1)−1q−4 = d2 since |xG ∩ H| < |H|

and |xG| > (q − 1)q13. If x is conjugate to t′2 then |xG| < q11 = c3 and [39, Thm. 2] gives

fpr(x) 6 q−4 = d3. Finally, suppose x ∈ G is a field automorphism of prime order r. If r > 5

then |xG| > 1
2q

104/5 > b. On the other hand, if r = 3 then |xG ∩H| < |H| and |xG| > 1
2q

52/3,

so fpr(x) < 2q−25/3 = d4 and we note that G contains fewer than 4q52/3 = c4 such elements.

Applying Proposition 2.3 we conclude that b(G) 6 3 since Q̂(G, 3) < b(a/b)3 +
∑3

i=1 cid
3
i < 1,

where a = q9.

Proposition 4.34. If H is a maximal non-parabolic subgroup of G then b(G) 6 3.
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Proof. In view of Lemmas 4.32 and 4.33 we may assume H is of type 2B2(q) oS2 or B2(q).2.

As before, we may also assume q > 8. Write H0 = H ∩ G0 and let x ∈ H0 be an element of

prime order r. If r > 5 then fpr(x) < 6q−10 = b1 since |xG| > 1
3q

20 and |H0| < 2q10. Similarly,

if r = 3 then |xG| < q18 = a2 and fpr(x) < 2(q−1)−1q−7 = b2. Now, if r = 2 and x is conjugate

to t2 then |xG| < q14 = a3,

i2(H0) 6 i2(B2(q).2) = (q2 − 1)
[
2(q2 + 1) + q4 − 1 + q2(q + 1)

]
< 2q6

and it follows that fpr(x) < 2(q − 1)−1q−7 = b3. Similarly, if x is conjugate to t′2 then |xG| <

q11 = a4 and fpr(x) < 2(q − 1)−1q−4 = b4. Finally, if x ∈ G is a field automorphism of prime

order r then

fpr(x) 6
|2B2(q)2 : 2B2(q1/r)2|
|2F4(q) : 2F4(q1/r)|

< 8q−16(1− 1
r ).

In particular, if r = 3 then fpr(x) < 8q−32/3 = b5 and we note that G contains fewer than

4q52/3 = a5 such elements. If r > 5 then fpr(x) < 8q−64/5 = b6 and we conclude that b(G) 6 3

since Q̂(G, 3) <
∑6

i=1 aib
3
i < 1, where a1 = q26 and a6 = log2 q.q

26.

4.7. G0 = 2G2(q)′

Here q = 32m+1, where m is a non-negative integer. We may assume m > 1 since 2G2(3)′ ∼=

SL2(8). Further, we refer the reader to Table 8 for the precise b(G) values when m = 1 so in

fact we will assume m > 2. The maximal subgroups of G are determined in [32] and detailed

information on the conjugacy classes of G0 can be found in [72]. In particular, we note that

CG0(x) = 2 × L2(q) if x ∈ G0 is an involution and that any two involutions are conjugate.

In addition, there are precisely three conjugacy classes containing elements of order three; the

G0-centralizers of class representatives are of size 2q2, 2q2 and q3. The possibilities for |CG0(x)|

when x ∈ G0 is a semisimple element of odd order are as follows:

|CG0(x)| Number of G0-classes

q − 1 1
2
(q − 3)

q + 1 1
6
(q − 3)

q ±
√

3q + 1 1
6
(q ±

√
3q)

Lemma 4.35. If H is of type 2× L2(q) then b(G) 6 3.

Proof. Here H = CG(z) and H ∩G0 = 2× L2(q), where z is an involution. If q = 33 then

b(G) = 2 (see Table 8) so we can assume q > 35. Let x ∈ H0 be an element of prime order r.

From the proof of [39, 6.2] we see that the combined contribution to Q̂(G, 3) from elements

of order two and three in G0 is less than a1b
3
1 + a2b

3
2, where a1 = q2(q2 − q + 1), b1 = q−2,
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a2 = q(q3 + 1)(q − 1) and b2 = 2q−1(q2 − q + 1)−1. Now assume r > 5, so Lagrange implies

that |CG0(x)| = q − δ for some δ = ±1. If δ = 1 then

|xG0 ∩H| 6 1
2
(q − 2).|GL2(q) : GL1(q)2| =

1
2
q(q − 2)(q + 1) = c1, |xG| = q3(q3 + 1) = d1

and there are precisely 1
2 (q − 3) = n1 distinct G0-classes of this type (see the above table).

Similarly, if δ = −1 then x belongs to one of 1
6 (q − 3) = n2 distinct G0-classes and we have

|xG0 ∩H| 6 1
2
q.|GL2(q) : GL1(q2)| =

1
2
q2(q − 1) = c2, |xG| = q3(q2 − q + 1)(q − 1) = d2.

Finally, if x is a field automorphism of prime order r then |xG0 ∩H| < 2q3(1−r−1) and |xG| >
1
2q

7(1−r−1) = f(r, q), so fpr(x) < 4q−4(1−r−1) = g(r, q). In particular, if we set h(r, q) =

f(r, q)g(r, q)3 then the contribution to Q̂(G, 3) from field automorphisms is less than∑
r∈π

(r − 1).h(r, q) < 2h(3, q) + log3 q.q
7g(5, q)3,

where π is the set of distinct prime divisors of log3 q. We conclude that

Q̂(G, 3) <
2∑

i=1

aib
3
i +

2∑
i=1

nidi(ci/di)3 + 2h(3, q) + log3 q.q
7g(5, q)3 = F (q)

and the reader can check that F (q) < 1 for all q > 35.

Lemma 4.36. If H is the normalizer of a torus then b(G) = 2.

Proof. As before, we may assume q > 35. According to [32] we have |H| 6 log3 q.6(q +
√

3q + 1) = a and we note that |xG| > (q3 + 1)(q − 1) = b for all x ∈ G (minimal if x ∈ G0

has order 3 and |CG0(x)| = q3). We conclude that b(G) = 2 since Proposition 2.3 implies that

Q̂(G, 2) < b(a/b)2 < 1 for all q > 35.

Proposition 4.37. If H is a maximal non-parabolic subgroup of G then b(G) 6 3.

Proof. According to [32] we may assume H is a subfield subgroup of type 2G2(q0), where

q = qk
0 and k is an odd prime. We claim that b(G) = 2. First assume k > 5. Then H0 =

H ∩ G0 = 2G2(q0), so |H| < log3 q.q
7/5 = a and the claim follows as in the proof of Lemma

4.36 since Q̂(G, 2) < b(a/b)2 < 1, where b = (q3 + 1)(q− 1). Now assume k = 3. If q = 33 then

a Magma calculation yields b(G) = 2 (see Table 8) so we may assume q > 39. Let x ∈ H0

be an element of prime order r. If r = 2 then |xG ∩ H| = q2/3(q2/3 − q1/3 + 1) = a1 and

|xG| = q2(q2 − q+ 1) = b1, while the contribution to Q̂(G, 2) from unipotent elements of order

3 is precisely
∑3

i=2 bi(ai/bi)2, where

a2 = (q + 1)(q1/3 − 1), b2 = (q3 + 1)(q − 1), a3 = q1/3(q + 1)(q1/3 − 1), b3 = q(q3 + 1)(q − 1).



50 TIMOTHY C. BURNESS, MARTIN W. LIEBECK AND ANER SHALEV

Now assume r > 5. Then xG0 ∩H0 = xH0 since CḠ(x) is connected (see the proof of [39, 5.7]),

and we observe that either |CG0(x)| = q+1, or |CH0(x)| = q0−1 and |CG0(x)| = q−1. It follows

that the contribution here is at most
∑5

i=4 nibi(ai/bi)2, where n4 = 1
2 (q − 3), n5 = 1

6 (q − 3)

and

a4 = q(q + 1), b4 = q3(q3 + 1), a5 = q(q1/3 − 1)(q2/3 − q1/3 + 1), b5 = q(q3 + 1)(q − 1).

Finally, suppose x ∈ G is a field automorphism of prime order r. If r = 3 then we may assume

x centralizes H0, whence |xG ∩H| = i3(H0)+1 = (q+1)(q2/3− 1)+1 = a6, |xG| > 1
2q

7/3 = b6

and we set n6 = 2. If r > 5 then |xG| > 1
2q

28/5 = d and we note that |H| < log3 q.q
7/3 = c.

Applying Proposition 2.3 we conclude that Q̂(G, 2) <
∑6

i=1 nibi(ai/bi)2 + d(c/d)2 = F (q),

where ni = 1 for i < 4. The reader can check that F (q) < 1 for all q > 39.

4.8. G0 = 2B2(q)

In this case, we have q = 22m+1 for an integerm > 1. We refer the reader to Table 8 for precise

results when m 6 2, so we can assume m > 3. The conjugacy classes and maximal subgroups

of G0 are determined in [71]. In particular, if x ∈ G is an involution then |CG0(x)| = q2 and

any two involutions are G0-conjugate. The possibilities for |CG0(x)| when x is semisimple are

listed in the following table. In addition, we remind the reader that G0 does not contain any

elements of order three.

|CG0(x)| Number of G0-classes

q − 1 1
2
(q − 2)

q ±
√

2q + 1 1
4
(q ±

√
2q)

According to [71], a maximal non-parabolic subgroup of G is either a subfield subgroup or the

normalizer of a maximal torus.

Lemma 4.38. If H is the normalizer of a maximal torus then b(G) = 2.

Proof. By [71, §15] we have |H ∩ G0| 6 4(q +
√

2q + 1) = a1 and we note that |xG| >

(q2 + 1)(q − 1) = b1 for all x ∈ G0 of prime order (minimal if x is an involution). Now assume

x is a field automorphism of prime order r. If r > 5 then |xG| > 1
2q

4 = b2 and we have

|H| < log2 q.4(q +
√

2q + 1) = a2. On the other hand, the contribution to Q̂(G, 2) from field

automorphisms of order 3 is at most n3b3(a3/b3)2, where n3 = 2, a3 = a1, b3 = g(q)/g(q1/3)

and g(t) = t2(t2 +1)(t− 1). We conclude that b(G) = 2 since Q̂(G, 2) <
∑3

i=1 nibi(ai/bi)2 < 1,

where n1 = n2 = 1.
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Proposition 4.39. If H is a maximal non-parabolic subgroup of G then b(G) = 2.

Proof. We may assume H is a subfield subgroup of type 2B2(q0), where q = qk
0 for a

prime k which divides log2 q. If k > 5 then |H| < log2 q.q = a, |xG| > (q2 + 1)(q − 1) = b

and thus b(G) = 2 since Q̂(G, 2) < b(a/b)2 < 1. Now assume k = 3. Let x ∈ H ∩ G0

be an element of prime order r. If r = 2 then |xG ∩ H| = (q2/3 + 1)(q1/3 − 1) = a1 and

|xG| = (q2 + 1)(q − 1) = b1. Next suppose r > 2 and observe that xG0 ∩ H = xH0 since

CḠ(x) is connected. By Lagrange we see that |CG0(x)| = q − 1 if |CH0(x)| = q0 − 1, while

|CG0(x)| = q− ε
√

2q+1 if |CH0(x)| = q0 + ε
√

2q0 +1. In particular, the contribution to Q̂(G, 2)

from these elements is at most
∑4

i=2 nibi(ai/bi)2, where n2 = 1
2 (q − 2), n3 = 1

4 (q −
√

2q),

n4 = 1
4 (q +

√
2q) and

a2 = q2/3(q2/3+1), a3 = q2/3(q1/3+
√

2q1/6+1)(q1/3−1), a4 = q2/3(q1/3−
√

2q1/6+1)(q1/3−1),

b2 = q2(q2 + 1), b3 = q2(q −
√

2q + 1)(q − 1), b4 = q2(q +
√

2q + 1)(q − 1).

Finally, let us assume x is a field automorphism of prime order r. If r = 3 then we may

assume x centralizes H0, whence |xG ∩ H| = 1 = a5 and |xG| = g(q)/g(q1/3) = b5, where

g(t) = t2(t2 + 1)(t − 1). If r > 5 then |xG| > g(q)/g(q1/5) = d and we note that |H| 6

log2 q.g(q1/3) = c. Set α = 1 if log2 q is divisible by 15, otherwise α = 0. Then applying

Proposition 2.3 we conclude that Q̂(G, 2) 6
∑5

i=1 nibi(ai/bi)2 + αd(c/d)2 < 1, where n1 = 1

and n5 = 2.

4.9. G0 = 3D4(q)

The maximal subgroups of G are determined in [33], while the G-conjugacy classes are

described in [21] and [68]. If q is odd and x ∈ G0 is an involution then |CG0(x)| = q8(q8+q4+1)

and any two involutions are G0-conjugate. If q is even then there are two classes of unipotent

involutions, labelled A1 and 3A1 in [68]. We note that dimxḠ > 18 for all semisimple elements

x ∈ G0 of odd order (see [21, Table 4.4]).

Lemma 4.40. If |H| 6 q12 then b(G) 6 5.

Proof. The case q = 2 can be handled using Magma (see Table 9) so assume q > 3. Let

x ∈ H be an element of prime order. If |xG| 6 q16 = b then x is either a long root element, an

involutory field automorphism, or a G2-type triality graph automorphism. Further, [39, Thm.

1] gives fpr(x) 6 (q4 − q2 + 1)−1 = d and we note that there are fewer than 4q14 = c of these
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elements in G. In view of Proposition 2.3 we conclude that Q̂(G, 5) < b(a/b)5 + cd5 < 1, where

a = q12.

Lemma 4.41. If H is of type G2(q) then b(G) 6 5.

Proof. If q = 2 then a Magma calculation yields b(G) = 3 so assume q > 3. Write H0 =

H ∩ G0 = G2(q) and note that |H0| < q14 = a. Let x ∈ H0 be an element of prime order r.

If |xG| 6 1
4q

18 = b then either x is a semisimple involution, or r = p and x lies in one of the

Ḡ-classes labelled A1 and 3A1. In particular, there are precisely (2q8 − 1)(q8 + q4 + 1) = c1

such elements and [39, Thm. 1] gives fpr(x) 6 (q4 − q2 + 1)−1 = d1. Next let x ∈ G be a field

automorphism of prime order r and observe that

fpr(x) =
|G2(q) : G2(q1/r)|

| 3D4(q) : 3D4(q1/r)|
< 4q−14(1− 1

r ).

In particular, if r = 2 then |xG| < 2q14 = c2 and fpr(x) < 4q−7 = d2, while fpr(x) < 4q−56/5 =

d3 if r > 5. Finally suppose x ∈ G is a triality graph automorphism. If CḠ(x) 6= G2 then

fpr(x) < 2q−6 = d4 since |xG| > 1
2q

20, while G contains fewer than 4q20 = c4 such elements.

On the other hand, if CḠ(x) = G2 then the proof of [39, 6.3] gives |xG∩H| 6 q3(q3 +1)+1, so

fpr(x) < 2q−8 = d5 and we note that there are no more than 4q14 = c5 of these automorphisms

in G.

We conclude that b(G) 6 5 since Q̂(G, 5) < b(a/b)5 +
∑5

i=1 cid
5
i < 1, where c3 = log2 q.q

28.

Proposition 4.42. If H is a maximal non-parabolic subgroup of G then b(G) 6 5.

Proof. In view of [33] and Lemmas 4.40 and 4.41 we may assumeH0 = H∩G0 = 3D4(q1/2).

Let x ∈ H be a semisimple element of odd prime order and observe that xG0 ∩H0 = xH0 since

CḠ(x) is connected. Then fpr(x) < 4q−(1/2) dim xḠ

6 4q−9 = b1 since dimxḠ > 18 (see [21,

Table 4.4]). If q is odd then both H0 and G0 contain a unique class of involutions and thus

|xG| < 2q16 = a2 and fpr(x) < 2q−8 = b2. Next let x ∈ H be a unipotent element of order p.

Then xG0 ∩H0 = xH0 since the class of x in both H0 and G0 is determined by the labelling

of the class of x in Ḡ. In particular, if x belongs to the class labelled A1 then |xG| < q10 = a3

and fpr(x) < 2q−5 = b3, otherwise fpr(x) < 4q−8 = b4.

Next suppose x ∈ G is a field automorphism of prime order r. If r > 5 then x induces a

field automorphism on H0 and thus fpr(x) < 4q−56/5 = b5; if r = 2 then |xG| < 2q14 = a6 and

we may assume x centralizes H0, so fpr(x) < 4q−6 = b6 since |xG ∩ H| = i2(H0) + 1 < 2q8.

Finally, let x ∈ G be a triality graph automorphism. Then x induces a triality automorphism
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on H0 and we note that the centralizers CH0(x) and CG0(x) are of the same type. It follows

that fpr(x) < 4q−7 = b7 if CḠ(x) = G2, otherwise fpr(x) < 4q−10 = b8. We conclude that

b(G) 6 5 since Q̂(G, 5) <
∑7

i=1 aib
5
i < 1, where a1 = q28, a4 = q24, a5 = log2 q.q

28, a7 = 4q14

and a8 = 4q20.

This completes the proof of Theorem 4.

5. Proof of Theorem 2

Let G be a finite almost simple group and let Ω be a faithful primitive non-standard G-set.

Recall that the strong form of the Cameron-Kantor Conjecture asserts that there exists an

absolute constant c′ such that the probability that a random c′-tuple in Ω forms a base for G

tends to 1 as the order of G tends to infinity. Although this conjecture has now been established

(see [15, 27, 49]), it is strictly an existence result and until this paper, no explicit value for

c′ was known. In view of Theorem 3, it follows that c′ > 5. In this section we prove that the

result holds with a constant c′ = 6. It would be interesting to know if c′ = 5 is in fact sufficient

(cf. Remark 1).

As explained in the Introduction, we may assume G is a classical group over Fq, with socle

G0 and natural module of dimension n 6 15. As before, it is convenient to write Q(G, 6) for

the probability that a random 6-tuple in Ω is not a base for G. Then in order to prove the

theorem we need to show that Q(G, 6) tends to zero as q tends to infinity.

First suppose 8 6 n 6 15 and assume (as we may) that q is large. For t ∈ R set

ηG̃(t) =
∑

C∈C(G̃)

|C|−t,

where C(G̃) is the set of conjugacy classes in G̃ := G∩ Inndiag(G0). Then proceeding as in the

proof of [50, 1.11], using the bound on fixed point ratios in [9, Thm. 1], we deduce that

Q(G, 6) < ηG̃

(
1
4

)
− 1 + o(1),

where o(1) is a term which tends to zero as q tends to infinity. Let Ḡ be the corresponding simple

algebraic group and write h for the Coxeter number of Ḡ. Then the hypothesis n > 8 implies

that h > 6, hence ηG̃(1/4) → 1 as q → ∞ by [50, 1.10(i)]. We conclude that Q(G, 6) → 0 as

q →∞.

Next assume n = 7 and q is large. Then [9, Thm. 1] gives fpr(x) < |xG|−31/126 for all x ∈ G

of prime order. Therefore Q(G, 6) < ηG̃(10/21) − 1 + o(1) and once again the desired result

follows via [50, 1.10(i)] since h > 6. Similarly, when n = 6 we quickly reduce to the case
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G0 = PSLε
6(q), with H of type Sp6(q). Here we argue as in the proof of [7, 3.7]. More precisely,

we use the proof of [10, 8.1] to show that Q(G, 6) 6 Q̂(G, 6) 6 F (q) (see (1.2)) for a function

F such that F (q) → 0 as q →∞. We leave the details to the reader.

Finally, let us assume n 6 5. If n = 4 or 5 then the fact that Ω is non-standard implies

that fpr(x) < |xG|−1/2+1/n for all x ∈ G of prime order (see [9, Thm. 1] and Remark 5.1).

Therefore, Q(G, 6) < ηG̃(1/2) − 1 + o(1) and we are done. To deal with the remaining cases

n ∈ {2, 3} we argue as in [7, 4.1], using (1.2) and fixed point ratio bounds. Here [7, Table 6]

provides a convenient list of the cases which need to be considered; in each case it is easy to

derive a bound Q̂(G, 6) 6 F (q) with F (q) → 0 as q →∞.

This completes the proof of Theorem 2.

Remark 5.1. For classical groups, the notion of a non-standard action in the statement

of Theorem 2 differs slightly from the notion of a non-subspace action adopted in [9]. Here

we follow [7, Defn. 1]. For example, if G0 = PΩ+
8 (q) and H is an irreducible almost simple

subgroup with socle Ω7(q) then the corresponding action of G is non-subspace in the sense

of [9, Defn. 1]. However, this action is clearly equivalent to the action of G on the set of 1-

dimensional non-singular subspaces of the natural G0-module, so in accordance with [7, Defn.

1] we say that the original action is standard. A list of these standard, non-subspace actions

can be found in [7, Table 1].

6. The tables

In this final section we record some miscellaneous results which are relevant to the proof of

Theorem 1. First, in Table 7, we provide some useful information on semisimple elements of

prime order in the groups E6(2), 2E6(2).3 and F4(2). Here the relevant character tables are

available in the GAP Character Table Library and we use a combination of [56] and [61] to

determine the structure of the centralizers in Ḡ. In the second column we list all the G-classes

which contain semisimple elements of prime order.

Next, in Tables 8 and 9, we present the precise base size results referred to in Proposition

1. Here we list b(G) for each faithful primitive action of an almost simple group G with socle

G0, where

G0 ∈ {2B2(8), 2B2(32), 2G2(27), G2(3), G2(4), G2(5), 3D4(2), 2F4(2)′}.

To obtain these results we use the computer package Magma. Here we provide a brief sketch

of the methods involved.
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Suppose G = G0. First, with the aid of the Web Atlas [73], we construct G as a permutation

group on two generators, a and b say. Now, generators for each maximal subgroup of G are

also presented in the Web Atlas as words in a and b, hence we can construct H as a subgroup

of G. In order to show that b(G) = c we use random search to find c− 1 elements x2, . . . , xc in

G such that
⋂c

i=1H
xi = 1, where x1 = 1. Of course, this only implies that b(G) 6 c, but with

three exceptions the desired conclusion b(G) = c follows from Proposition 2.4. The exceptions

are the cases

(G,H) ∈ {(G2(3), 23.L3(2)), (G2(4),U3(3) : 2), (3D4(2), 21+8 : L2(8))}.

Here the previous approach yields b(G) 6 3, but log |G|/ log |Ω| < 2 so Proposition 2.4 does not

imply equality. To settle these cases we use the Magma command CosetAction to explicitly

construct G as a permutation group on the cosets of H. It is then easy to calculate the size of

each two-point stabilizer in G and check that b(G) > 2.

Now assume G 6= G0. As before, we can construct G as a permutation group and then obtain

G0 as the socle of G. In general, generators for the maximal subgroups of G are not listed in

the Web Atlas so we need to work a little harder to construct H. First we use the Classes

command to obtain a representative of each conjugacy class in G0. Using these representatives,

it is easy to find so-called standard generators for G0 by random search.

Let H be a maximal subgroup of G and suppose (G,H) 6∈ A , where

A = {(G2(3) : 2, 32.[34] : D8), (2F4(2), 31+2 : SD16), (2F4(2), 13 : 12)}.

Then H = NG(H0) for some maximal subgroup H0 of G0. As previously remarked, generators

for H0 are given in the Web Atlas in terms of the standard generators for G0, hence we can

easily construct H as a subgroup of G and compute b(G) as before. Finally, the cases in A are

easy to deal with because H = NG(S), where S is a Sylow 3-subgroup of G in the first two

cases, while S is a Sylow 13-subgroup of G in the latter case.

Notation. In Table 7 we use the notation of the GAP Character Table Library for labelling

conjugacy classes; in particular, classes labeled ra, rb, etc., contain elements of order r. In Tables

8 and 9 we write [n] for an unspecified group of order n.
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G x CḠ(x)0 |xG| |xG| >

E6(2) 3a T1A5 221.3.5.7.13.17.73 241

3b T2D4 224.3.5.72.13.31.73 247

3c A3
2 227.5.72.13.17.31.73 253

5a A3T3 230.32.73.13.17.31.73 260

7a, 7b T2D4 224.32.52.17.31.73 247

7c T2A2
2 230.34.52.13.17.31.73 259

7d A2T4 233.35.52.13.17.31.73 264

13a T6 236.36.52.72.17.31.73 270

17a, 17b T6 236.35.52.73.13.31.73 271

31a− f A1T5 235.35.52.73.13.17.73 269

73a− h T6 236.36.52.73.13.17.31 271

2E6(2).3 3a T1A5 221.32.5.7.13.17.19 241

3b T2D4 224.32.7.11.13.17.19 245

3c A3
2 227.52.72.11.13.17.19 252

3d, 3e T1D5 216.33.7.13.19 231

3f, 3g T2D4 224.34.52.11.17.19 246

3h, 3i A4A1T1 225.33.5.13.17.19 244

3j, 3k A3
2 227.34.52.7.11.13.17 252

5a A3T3 230.37.7.11.13.17.19 259

7a T2A2
2 230.37.5.11.13.17.19 258

7b T4A2 233.38.52.11.13.17.19 265

11a, 11b A1T5 235.38.52.72.13.17.19 269

13a T6 236.39.52.72.11.17.19 272

17a, 17b T6 236.39.52.72.11.13.19 271

19a, 19b T6 236.39.52.72.11.13.17 271

F4(2) 3a C3T1 215.3.5.7.13.17 229

3b B3T1 215.3.5.7.13.17 229

3c A2
eA2 218.52.72.13.17 236

5a B2T2 220.34.72.13.17 239

7a A2T2 221.35.52.13.17 241

7b eA2T2 221.35.52.13.17 241

13a T4 224.36.52.72.17 247

17a, 17b T4 224.36.52.72.13 247

Table 7. Elements of odd prime order in E6(2), 2E6(2).3 and F4(2)
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G H b(G) G H b(G)

2B2(8) 23+3 : 7 3 G2(3) U3(3) : 2 3

13 : 4 2 (32 × 31+2) : 2S4 3

5 : 4 2 L3(3) : 2 3

D14 2 L2(8) : 3 2

23.L3(2) 3

2B2(8) : 3 23+3 : 7 : 3 3 L2(13) 2

13 : 12 2 21+4 : 32 : 2 2

5 : 4× 3 2

7 : 6 2 G2(3) : 2 32.[34] : D8 3

L2(8) : 3× 2 3

2B2(32) 25+5 : 31 3 23.L3(2) : 2 3

41 : 4 2 L2(13) : 2 3

25 : 4 2 21+4 : (S3 × S3) 2

D62 2

G2(4) J2 4

2B2(32) : 5 25+5 : 31 : 5 3 22+8 : (A5 × 3) 3

41 : 20 2 24+6 : (A5 × 3) 3

25 : 20 2 U3(4) : 2 3

31 : 10 2 3.L3(4) : 2 3

U3(3) : 2 3

2G2(27) 33+3+3 : 26 3 A5 ×A5 2

2× L2(27) 2 L2(13) 2

3× L2(8) 2

37 : 6 2 G2(4) : 2 J2 : 2 4

(22 ×D14) : 3 2 22+8 : (A5 × 3) : 2 3

19 : 6 2 24+6 : (A5 × 3) : 2 3

U3(4) : 4 3

2G2(27) : 3 33+3+3 : 26 : 3 3 3.L3(4).2.2 3

2× L2(27) : 3 2 U3(3) : 2× 2 3

3× L2(8) : 3 2 (A5 ×A5) : 2 2

37 : 18 2 L2(13) : 2 2

A4 × 7 : 6 2

19 : 18 2

Table 8. Some precise base size results, I
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G H b(G) G H b(G)

G2(5) 51+4 : GL2(5) 3 2F4(2)′ L3(3) : 2 3

52+1+2 : GL2(5) 3 2.[28].5.4 3

3.U3(5) : 2 3 L2(25) 3

L3(5) : 2 3 22.[28].S3 3

2.(A5 ×A5).2 2 A6.22 2

U3(3) : 2 2 52 : 4A4 2

23.L3(2) 2

2F4(2) 2.[29].5.4 3

3D4(2) 21+8 : L2(8) 4 L2(25).23 3

[211] : (7× S3) 3 22.[29].S3 3

U3(3) : 2 3 52 : 4S4 2

S3 × L2(8) 2 31+2 : SD16 2

(7× L2(7)) : 2 2 13 : 12 2

31+2.2S4 2

72 : 2A4 2

32 : 2A4 2

13 : 4 2

3D4(2) : 3 21+8 : L2(8) : 3 4

[211] : (7 : 3× S3) 3

3×U3(3) : 2 3

S3 × L2(8) : 3 2

(7 : 3× L2(7)) : 2 2

31+2.2S4.3 2

72 : (2A4 × 3) 2

32 : 2A4 × 3 2

13 : 12 2

Table 9. Some precise base size results, II
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