
THE DEPTH OF A FINITE SIMPLE GROUP
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Abstract. We introduce the notion of the depth of a finite group G, defined as the
minimal length of an unrefinable chain of subgroups from G to the trivial subgroup. In
this paper we investigate the depth of (non-abelian) finite simple groups. We determine
the simple groups of minimal depth, and show, somewhat surprisingly, that alternating
groups have bounded depth. We also establish general upper bounds on the depth of
simple groups of Lie type, and study the relation between the depth and the much studied
notion of the length of simple groups. The proofs of our main theorems depend (among
other tools) on a deep number-theoretic result, namely, Helfgott’s recent solution of the
ternary Goldbach conjecture.

1. Introduction

An unrefinable chain of length t of a finite group G is a chain of subgroups

G = G0 > G1 > · · · > Gt−1 > Gt = 1, (1)

where each Gi is a maximal subgroup of Gi−1. We define the depth of G, denoted by
λ(G), to be the minimal length of an unrefinable chain. For example, if G is a cyclic
group of order n > 2, then λ(G) = Ω(n), the number of prime divisors of n (counting
multiplicities). In particular, λ(G) = 1 if and only if G has prime order.

In this paper we are interested in the depth of finite simple groups (by which we mean
non-abelian finite simple groups). For such a group G, it is easy to show that λ(G) > 3 (see
Corollary 2.3). In fact, this lower bound is best possible, and our first theorem determines
the simple groups of minimal depth.

Theorem 1. Let G be a finite simple group. Then λ(G) = 3 if and only if G is one of
the groups recorded in Table 1.

G Conditions

Ap p and (p− 1)/2 prime, p 6∈ {7, 11, 23}

L2(q)

{
q + 1 or q − 1 has at most two prime divisors, q 6= 9; or

q prime and q ≡ ±3,±13 (mod 40)

Lεn(q) n and qn−ε
(q−ε) (n,q−ε) both prime, n > 3 and

(n, q, ε) 6= (3, 4,+), (3, 3,−), (3, 5,−), (5, 2,−)
2B2(q) q − 1 prime

M23, B

Table 1. The simple groups G with λ(G) = 3
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By Dirichlet’s theorem, there are infinitely many primes p with p ≡ ±3,±13 (mod 40),
so Theorem 1 shows that there are infinitely many simple groups with depth 3.

Next we turn our attention to upper bounds. Firstly, using Helfgott’s solution of the
ternary Goldbach conjecture (see [17], as well as Vinogradov’s classical result [30] for
sufficiently large numbers), we show that alternating groups have bounded depth.

Theorem 2. We have λ(An) 6 23 for all n.

This is in stark contrast to the situation for groups of Lie type (see Proposition 3.5 for
the exact depth of L2(p

k) for a prime p and odd integer k).

Theorem 3. For any n ∈ N, there exists a prime power q such that λ(L2(q)) > n.

Next, applying Theorem 2 above and other tools, we establish a general upper bound
on the depth of finite simple groups of Lie type.

Theorem 4. Let G = G(q) be a simple group of Lie type, where q = pk for a prime p.
Then either

λ(G) 6 3Ω(k) + 36,

or one of the following holds:

(i) G = L2(2
k) or 2B2(2

k) and

λ(G) 6 Ω(k) + 1 + min{Ω(2r − 1) : r ∈ π(k)},
where π(k) is the set of prime divisors of k.

(ii) G = Un(2k), n is odd, k is even and

λ(G) 6 3Ω(k) + 2Ω(22
a

+ 1) + 35,

where k = 2ab with b odd.

Note that Proposition 3.7 determines the precise depth of the groups in case (i) in The-
orem 4. Also Proposition 3.5 gives the depth of L2(p

k) for k odd. A detailed investigation
of the depth of simple groups of Lie type will be presented in a forthcoming paper.

Define a function f1 : N→ R by

f1(k) = 3 log2 k + 2k/ log2(2k) + 35.

Applying Theorem 4 with some elementary number theory we obtain the following.

Corollary 5. With the above notation we have

λ(G(pk)) < f1(k).

The depths of the sporadic simple groups are routine to compute, and are given in
Lemma 3.3.

The length l(G) of a finite group G is defined to be the maximal length of a strictly
descending chain of subgroups from G to 1. The length of simple groups has been the
subject of numerous papers since the 1960s (see [1, 2, 8, 14, 19, 26, 27, 28], for example).

What are the relations between the depth λ(G) and the length l(G) of a finite (or a
finite simple) group G? Clearly, λ(G) 6 l(G). By a well known theorem of Iwasawa [18],
λ(G) = l(G) (namely, all unrefinable chains in G have the same length) if and only if G
is supersolvable. In particular, λ(G) < l(G) if G is simple. Note that there are families of
finite simple groups G for which λ(G) is bounded while l(G) is unbounded. For example,
l(An) is of the order of 3

2n by [8], whereas λ(An) 6 23 by Theorem 2. We show below that
a similar phenomenon occurs even for simple groups of minimal depth.

Theorem 6. For any n ∈ N, there exists a finite simple group G of minimal depth
λ(G) = 3 such that l(G) > n. In fact, we may take G = L2(p) for a suitable prime p.
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Next, we show that λ(G) is always asymptotically much smaller than l(G). We need
some notation. For integers l > 36 define

h(l) = max

{
log2(l − 2) +

l − 2

log2(l − 2)
+ 1, 3 log2((l − 4)/3) +

2(l − 4)

3 log2(2(l − 4)/3)
+ 35

}
.

Define a function f2 : N→ R by f2(l) = l for l < 36 and

f2(l) = min{l, h(l)},

for l > 36.

Theorem 7. Let G be a finite simple group. Then

λ(G) 6 f2(l(G)).

In particular, λ(G) 6 (1 + o(1)) l(G)
log2 l(G) .

We also obtain better upper bounds on λ(G) – see Theorem 3.8.

As for lower bounds, we show the following.

Proposition 8. There exist infinitely many finite simple groups Gj (j > 1) satisfying
l(Gj)→∞ and λ(Gj) > log3 l(Gj) + 1.

It would be nice to close the gap between the upper bound in Theorem 7 and the lower
bound in Proposition 8. However, this depends on formidable open problems in Number
Theory. See the discussion at the end of Section 3.

In [4], the expression l(G)−λ(G) is called the chain difference of G, denoted by cd(G).
It follows from Iwasawa’s theorem mentioned above that cd(G) > 1 for all finite simple
groups G. Using the classification theorem, the simple groups G with cd(G) = 1 were
determined by Brewster et al. [4] – the only examples are A6 and L2(p) for certain primes
p (it is not known whether there are infinitely many examples). In [16], Hartenstein and
Solomon present a more elementary proof of the same result, by means of a reduction to
groups with dihedral or semi-dihedral Sylow 2-subgroups. In particular, the proof in [16]
does not require the classification of finite simple groups.

The finite simple groups of minimal length 4 have depth 3 and chain difference 1, and
so can be read off from Theorem 1 above, together with [4]. The precise list is given in
[25, Theorem 3.2]. On the other hand, our results imply that the chain difference of a
finite simple group is usually large.

In fact, using Theorem 7 it follows immediately that the length l(G) of a finite simple
group G is bounded above in terms of its chain difference cd(G) = l(G)− λ(G), and even
in terms of its chain ratio, defined by cr(G) = l(G)/λ(G).

Corollary 9. We have

l(G) 6 (1 + o(1))cd(G)

and

l(G) 6 2(1+o(1))cr(G),

for all finite simple groups G, where o(1) is ocd(G)(1) and ocr(G)(1) respectively.

In particular, the following statements are equivalent for any collection S of finite simple
groups:

(i) The set {cr(G) : G ∈ S} is bounded.

(ii) The set {cd(G) : G ∈ S} is bounded.

(iii) The set {l(G) : G ∈ S} is bounded.
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Indeed, the first two assertions of Corollary 9 (which imply the third one) follow from
the last statement of Theorem 7. We note that condition (iii) above is equivalent (for
any collection S of finite groups G) to a purely number theoretic condition. Indeed,
it is trivial that l(G) 6 Ω(|G|), and by [1, Proposition 2.2] we have Ω(|G|) 6 l(G)2.
Thus the set {l(G) : G ∈ S} is bounded if and only if the set {Ω(|G|) : G ∈ S} is
bounded. Furthermore, it is known that there are infinitely many finite simple groups of
bounded length; indeed [1, Corollary D] implies that there are infinitely many primes p
with l(L2(p)) 6 20.

Our study of the depth of finite simple groups is partly motivated by our recent work
on the minimal and random generation of so-called t-maximal subgroups of finite simple
groups, where t = 1, 2, 3 (see [6, 7]).

The proofs of results 1–8 are given in Section 3 and we record some relevant preliminary
results in Section 2. In this paper we adopt the notation from [20] for simple groups of Lie
type. In particular we write PSLn(q) = Ln(q) = L+

n (q) and PSUn(q) = Un(q) = L−n (q),
etc. We are grateful to Roger Heath-Brown for helpful correspondence.

2. Preliminaries

We begin with elementary observations.

Lemma 2.1. Let G be a finite group and let M be the set of maximal subgroups of G.

(i) λ(G) = 1 + min{λ(M) : M ∈M}.
(ii) If N is a normal subgroup of G, then

λ(G/N) 6 λ(G) 6 λ(G/N) + λ(N).

Lemma 2.2. Suppose λ(G) = 2 and let M be a maximal subgroup of G of prime order.
Then either M �G, or G is a Frobenius group of the form NM , where N �G and M acts
fixed point freely on N .

Proof. If M is not normal in G, then the action of G on the cosets of M is Frobenius. �

Corollary 2.3. If G is a finite simple group, then λ(G) > 3.

Lemma 2.4. Suppose G is a finite simple group, and M is a nilpotent maximal subgroup
of G. Then M is a non-abelian Sylow 2-subgroup of G.

Proof. Suppose first that M has a nontrivial Sylow p-subgroup P for some odd prime
p. Then M = NG(P ) since M is maximal, and hence also M = NG(Z(J(P ))), where
J(P ) is the Thompson subgroup of P . Therefore G has a normal p-complement by the
Glauberman-Thompson normal p-complement theorem (see [12, Section 8.3], for example).
This is a contradiction.

Hence M is a 2-group. Also M ∈ Syl2(G) since M = NG(M). Finally, if M is abelian
then M = Z(M) = Z(NG(M)), and so G has a normal 2-complement by Burnside’s
normal p-complement theorem. Hence M is non-abelian. �

Remark 2.5. There are genuine examples in Lemma 2.4. For instance, D16 is a maximal
subgroup of L2(17).

Our final result in this section concerns the existence of alternating (or symmetric)
maximal subgroups of certain simple classical groups. For the proof, we need to recall a
standard construction.
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Let p be a prime, let d > 5 be an integer and consider the permutation module Fdp for
the symmetric group Sd. Define subspaces

U = {(a1, . . . , ad) :
∑
i

ai = 0}, W = {(a, . . . , a) : a ∈ Fp} (2)

of Fdp, and observe that U and W are the only nonzero proper Ad-invariant submodules

of Fdp. Then V = U/(U ∩W ) is the fully deleted permutation module for Ad, which is an
absolutely irreducible Ad-module over Fp. Set n = dimV and note that n = d − 2 if p
divides d, otherwise n = d− 1.

If p is odd, then the corresponding representation embeds Ad into an orthogonal group
Ωε
n(p). If p = 2 then n is even and either d ≡ 2 (mod 4) and Ad embeds in Spn(2), or d 6≡ 2

(mod 4) and we obtain an embedding Ad 6 Ωε
n(2) (see [20, p.187] for further details).

Lemma 2.6. Let G = Ωε
n(p), where n > 5, p is a prime and one of the following holds:

(i) np is odd, n 6= 7 and (n+ 1, p) = 1;

(ii) (p, ε) = (2,+) and n ≡ 0, 6 (mod 8);

(iii) (p, ε) = (2,−) and n ≡ 2, 4 (mod 8).

Then G has a maximal alternating or symmetric subgroup. The same conclusion holds if
G = Spn(2), n > 8 and n ≡ 0 (mod 4).

Proof. For n 6 12, we refer the reader to the relevant tables in [3]. Now assume n > 12.
Let V be the natural module for G.

Suppose (i) holds and define δ ∈ {1, 2} to be 2 if p divides n + 2, and 1 otherwise.
Consider the embedding of An+δ in G = Ωn(p) = Ω(V ) afforded by the fully deleted
permutation module for An+δ over Fp. Set H = NG(An+δ) = An+δ or Sn+δ.

We claim that H is a maximal subgroup of G. To see this, suppose there is a subgroup
K of G such that H < K < G. Since K is irreducible and the (−1)-eigenspace of
(1, 2)(3, 4) ∈ H on V is 2-dimensional, the possibilities for K are given in [13, Theorem
7.1]. However, by inspection we see that no examples arise with n > 12, whence H
is maximal. (Note that H is clearly primitive and tensor-indecomposable on V , so [13]
applies.)

A very similar argument applies in cases (ii) and (iii). For example, consider (iii). Here
G = Ω−n (2) and n ≡ 2, 4 (mod 8). Set H = An+δ, where δ = 2 if n ≡ 2 (mod 8) and δ = 1
if n ≡ 4 (mod 8). As before, the fully deleted permutation module V = Vn(2) embeds
H in G (note that transpositions in Sn+δ act as transvections on V , so Sn+δ 66 G). As
before, we can establish the maximality of H by applying [13, Theorem 7.1], noting that
(1, 2)(3, 4) ∈ H has Jordan form [J2

2 , J
n−4
1 ] on V . An entirely similar argument shows that

G = Spn(2) (with n > 8 and n ≡ 0 (mod 4)) has a maximal subgroup Sn+2. �

3. Proofs

Let G be a finite group. Define a t-chain of G to be an unrefinable chain of subgroups
of length t as in (1).

Lemma 3.1. If p is prime, then λ(L2(p)) 6 4.

Proof. The result is clear for p 6 3. And for p > 5, L2(p) has a maximal subgroup
isomorphic to A4, S4 or A5 (see [11]), and it is easy to check that all of these groups have
depth at most 3. �

Corollary 3.2. If p is prime, then λ(Ap+1) 6 5.
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Proof. Again, the claim is clear if p 6 3, so assume p > 5. If p 6∈ {7, 11, 23} then L2(p)
is a maximal subgroup of Ap+1 (see [21]), so in these cases the result follows immediately
from Lemma 3.1. For p ∈ {7, 11, 23} it is easy to check that λ(Ap+1) = 5. For example,

A24 > M24 > M23 > 23:11 > 11 > 1

is a 5-chain. �

Lemma 3.3. The depth of each sporadic simple group G is given in Table 2. In particular,
λ(G) 6 6, with equality if and only if G = He.

Proof. This is easily checked by inspecting the list of maximal subgroups in [10]. �

G M11 M12 M22 M23 M24 J1 J2 J3 J4 HS Suz McL Ru

λ(G) 4 4 4 3 4 4 4 5 4 5 4 5 5

He Ly O′N Co1 Co2 Co3 Fi22 Fi23 Fi′24 HN Th B M
6 4 5 5 4 4 5 4 4 5 4 3 4

Table 2. The depth of sporadic simple groups

We are now in a position to prove our main theorems.

3.1. Proof of Theorem 1. Let G = G0 > G1 > G2 > G3 = 1 be a 3-chain, so each
Gi is maximal in Gi−1. Then G2 has prime order r, say, and by Lemma 2.2, either G1 is
Frobenius or G2 �G1.

If G1 has odd order, then it is given by [22, Theorem 1] and the relevant cases are
recorded in Table 1. Now assume |G1| is even.

Suppose G1 = NG2 = N.r is Frobenius. As G2 is maximal in G1, N is elementary
abelian and thus one of the following holds:

(a) N = 2k and G2 = r acts fixed point freely on N ;

(b) |N | = s is prime, r = 2 and G1 is dihedral.

The finite simple groups G with a maximal subgroup G1 of the form 2k.r or D2s can be
determined by inspection of [20] (for classical groups), [9] (for exceptional groups of Lie
type), [10] (for sporadic groups), and is elementary for alternating groups. The examples
are listed in Table 3 and they also appear in Table 1.

G G1 Conditions

L2(2
k) 2k.(2k − 1) 2k − 1 prime

D2(2k±1) 2k ± 1 prime

L2(q) Dq±1 (q ± 1)/2 prime, q 6= 9

A4 q prime and either q = 5 or q ≡ ±3,±13 (mod 40)
2B2(q) D2(q−1) q − 1 prime

Table 3. The simple groups G with a maximal subgroup G1 of the form
2k.r or D2r, with r prime

Finally, let us assume G2�G1, so G1/G2 has prime order t, say. Then G1 is non-abelian
by Lemma 2.4. Since |G1| is even, it follows that t = 2 and G1 = D2r is dihedral. This
case was dealt with in (b) above. 2



THE DEPTH OF A FINITE SIMPLE GROUP 7

By combining Theorem 1 and Lemma 3.1, we obtain the following corollary.

Corollary 3.4. If p is an odd prime, then

λ(L2(p)) =

{
3 (p− 1)/2 prime, or (p+ 1)/2 prime, or p ≡ ±3,±13 (mod 40)
4 otherwise.

This can be extended as follows.

Proposition 3.5. Let p be a prime and let k > 1 be an odd integer. Suppose (p, k) 6= (2, 1)
and let π(k) be the set of prime divisors of k. Then

λ(L2(p
k)) =

{
Ω(k) + 1 + min{Ω(2r ± 1) : r ∈ π(k)} if p = 2
Ω(k) + λ(L2(p)) if p > 3.

Proof. First assume that p is odd. The proof goes by induction on k, the case k = 1 being
trivial. Now suppose k > 1 and let G = L2(p

k). By [11], the maximal subgroups of G are
as follows:

pk.((pk − 1)/2), Dpk±1, L2(p
k/s), (3)

where s is a prime divisor of k, and it is easy to see that

λ(pk.((pk − 1)/2)) = λ(Dpk−1) = Ω(pk − 1), λ(Dpk+1) = Ω(pk + 1).

By induction, λ(L2(p
k/s)) = Ω(k) − 1 + λ(L2(p)). Since Ω(pk ± 1) > Ω(p ± 1) + Ω(k), it

follows from Corollary 3.4 that among the maximal subgroups in (3), L2(p
k/s) has minimal

depth. Hence

λ(L2(p
k)) = 1 + λ(L2(p

k/s)) = Ω(k) + λ(L2(p)),

and the proof is complete.

Now assume p = 2. This time we induct on Ω(k). For the base case Ω(k) = 1, k is
prime and the maximal subgroups of L2(2

k) are

2k.(2k − 1), D2(2k±1). (4)

We have λ(2k.(2k − 1)) = λ(D2(2k−1)) = Ω(2k − 1) + 1 and λ(D2(2k+1)) = Ω(2k + 1) + 1,

and the conclusion follows for k prime. For k non-prime (i.e. Ω(k) > 1), the maximal

subgroups of L2(p
k) are as in (4), together with L2(2

k/s) for s ∈ π(k), and an induction
argument very similar to the one for p odd gives the conclusion. �

Remark 3.6. A similar result can be established for λ(L2(p
k)) when k is even, but the

details are more complicated (see Proposition 3.7 for the case p = 2).

3.2. Proof of Proposition 8. The proof combines Proposition 3.5 above with [26, The-
orem A]. The latter result shows that, for a finite simple Lie type group Gr(p

k) of rank r
with a Borel subgroup B we have l(Gr(p

k)) = r + l(B) provided k > F (p, r).

For i > 1 let Hi = L2(3
3i) and let Bi < Hi be a Borel subgroup. It follows from the

above mentioned result that, for some constant c > 0 we have

l(Hi) = 1 + l(Bi)

for all i > c. Now, let Pi < Bi be a Sylow 3-subgroup of Hi. Since Bi is solvable we have

l(Bi) = Ω(|Bi|) = Ω((33
i − 1)/2) + Ω(|Pi|) = Ω((33

i − 1)/2) + 3i.

Note that (33
i − 1)/2 =

∏i−1
j=1(3

2j + 3j + 1) which is not divisible by primes less than 7.

Hence Ω((33
i − 1)/2) 6 log7((3

3i − 1)/2) < 3i log7 3. This yields

l(Gi) < 1 + 3i(1 + log7 3) = 3i log7 21,

for all i > c.
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Next, Proposition 3.5 shows that

λ(Hi) = Ω(3i) + 3 = i+ 3.

Hence, for i > c, we have

λ(Hi) > i+ 3 > log3 l(Gi) + 1.

Setting Gj = Hj+c for j > 1, we complete the proof. 2

3.3. Proof of Theorem 2. Let G = An. If n 6 10 then it is easy to check that λ(G) 6 5,
so let us assume n > 11. By Vinogradov’s Theorem [30], every sufficiently large odd integer
n is the sum of three primes, and this has recently been extended to all odd n > 7 by
Helfgott [17]. Set δ = 1 or 0 according as n is odd or even, and choose primes p1, p2, p3
such that

n− 3− δ = p1 + p2 + p3,

so
A := Ap1+1 ×Ap2+1 ×Ap3+1 < Ap1+p2+p3+3 = An−δ 6 G.

We claim that there is an unrefinable chain of length at most 8 from G to A. To see this,
first observe that the stabilizer in Ad of a k-element subset of {1, . . . , d} (with 2 6 k 6 d/2)
is a subgroup of the form (Ak × Ad−k).2. Moreover, if k 6= d/2 then this is a maximal
subgroup by [21], so there is an unrefinable chain of length 2 from Ad to Ak × Ad−k. If
k = d/2, then there is one of length 3, namely

Ad > (Ad/2 ×Ad/2).22 > (Ad/2 ×Ad/2).2 > Ad/2 ×Ad/2.
Now, if n− δ 6= 2(p1 + 1) and p2 6= p3, then

An−δ > (Ap1+1 ×An−δ−p1−1).2 > Ap1+1 ×An−δ−p1−1 > Ap1+1 × (Ap2+1 ×Ap3+1).2 > A

is an unrefinable chain of length 4. Since An > Sn−1 > An−1 is unrefinable, it follows
that there is an unrefinable chain of length at most 6 from G to A. Similarly, if either
n− δ = 2(p1 + 1) or p2 = p3, then we can find a chain of length at most 8. This justifies
the claim.

Finally, since λ(Api+1) 6 5 by Corollary 3.2, we conclude that

λ(G) 6 8 + 3 · 5 = 23

and the proof of Theorem 2 is complete. 2

3.4. Proof of Theorem 3. Let n be a positive integer and let p1, . . . , pn be distinct odd
primes. Set k = p1 · · · pn. Then Proposition 3.5 gives λ(L2(2

k)) > Ω(k) + 2 = n + 2 and
the result follows. 2

3.5. Proof of Theorem 4. Let G = G(q) be a finite simple group of Lie type over Fq,
where q = pk for a prime p. To begin with, let us assume that G is not one of the following:

(a) L2(2
k) with k > 2;

(b) 2B2(2
k) with k > 3 odd;

(c) Un(2k) with n odd and k even.

We will handle these special cases at the end of the proof.

In the following, unless stated otherwise, the assertions concerning the unrefinability
of chains follow from the maximality results in [3, 20] for classical groups and [23] for
exceptional groups. Our goal is to verify the bound

λ(G) 6 3Ω(k) + 36. (5)

Case 1. Untwisted groups.
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First assume G = G(q) is of untwisted type (excluding (a) above). For any prime divisor

r of k, G(q) has a maximal subfield subgroup of the form G(qk/r).[δ], where δ ∈ {1, r, 2r}
(see [5, Theorem 1]). We deduce that there is an unrefinable chain of length at most 3Ω(k)
from G to G(p), and hence

λ(G) 6 3Ω(k) + λ(G(p)). (6)

We now consider the possibilities for G(p). First assume G(p) = Ωn(p), with np odd
and n > 7. If n 6= 7 and (n+ 1, p) = 1 then Lemma 2.6 implies that G(p) has a maximal
alternating or symmetric subgroup, in which case λ(G) 6 3Ω(k) + 25 by Theorem 2. Now
assume p divides n+ 1. Then

Ωn(p) > Ω+
n−1(p).2 > Ω+

n−1(p) > Ωn−2(p).2 > Ωn−2(p)

is an unrefinable chain of length 4. Moreover, (n − 1, p) = 1 so Ωn−2(p) has a maximal
alternating or symmetric subgroup. This gives λ(G) 6 3Ω(k)+4+25 as required. Finally,
for n = 7 there is an unrefinable chain Ω7(p) > Sp6(2) > S8, and the conclusion follows
easily.

Next assume G(p) = PΩ+
2n(p), where n > 4 and p is odd. Then G(p) has a maximal

subgroup of the form Ωn−1(p).r with r ∈ {1, 2}, so by applying the bound in the previous
paragraph we get λ(G) 6 3Ω(k) + 29 + 2.

Now suppose G(p) = Sp2n(2)′. It is easy to check that the groups Sp4(2)′ ∼= A6 and
Sp6(2) have depth 4 and 5, respectively, so we may assume n > 4. If n is even then Lemma
2.6 implies that G(p) has a maximal symmetric subgroup. On the other hand, if n is odd
then

Sp2n(2) > Sp2n−2(2)× Sp2(2) > Sp2n−2(2)× 3 > Sp2n−2(2)

is an unrefinable chain and Sp2n−2(2) has a maximal symmetric subgroup (again, by
Lemma 2.6). In both cases, we conclude that λ(G) 6 3Ω(k) + 3 + 25, so (5) holds.
Moreover, for G(p) = Ω+

2n(2) we get λ(G) 6 3Ω(k) + 29 because Sp2n−2(2) is a maximal
subgroup of G(p).

Next consider G(p) = PSp2n(p) with p odd and n > 2. Here G(p) has a maximal
imprimitive subgroup M = (Sp2(p) o Sn)/Z, where Z = Z(Sp2n(p)) = {±I2n}.

First we claim that there is an unrefinable chain

Sp2(p) o Sn = M0 > M1 > · · · > Ms = C6 o Sn (7)

of length s 6 3. If p ≡ ±1 (mod 10), then 2.A5 is a maximal subgroup of Sp2(p) and we
can take

Sp2(p) o Sn > (2.A5) o Sn > (2.A4) o Sn > C6 o Sn. (8)

To see that this is unrefinable, consider a subgroup K such that

H = C6 o Sn < K 6 L = (2.A4) o Sn.

Then K ∩ (2.A4)
n 6 (2.A4)

n is a subdirect product containing (C6)
n, so C6 6 K ∩Li�Li,

where Li is the i-th copy of 2.A4 in the direct product (2.A4)
n. Therefore K ∩Li = Li, so

K contains (2.A4)
n and thus K = L. A similar argument establishes the maximality of

the other inclusions in (8) and we omit the details. If p 6≡ ±1 (mod 10) then either 2.S4
or 2.A4 is maximal in Sp2(p) and the details are very similar. This establishes the claim
(7).

Finally, we claim that there is an unrefinable chain

C6 o Sn = H0 > H1 > · · · > Ht = 2.Sn = Z.Sn

of length t 6 5. For example, if n ≡ 0 (mod 6) then

C6 o Sn > 3n−1.2n.Sn > 3.2n.Sn > C2 o Sn > 2n−1.Sn > 2.Sn
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is an unrefinable chain of length 5. Here we are using the fact that the only proper
nontrivial Sn-invariant subgroups of rn (r prime) are U ∼= rn−1 and W ∼= Cr (note that
U and W are the subspaces in (2), setting p = r). Similarly, there is a chain of length 5
if n ≡ ±2, 3 (mod 6), and one of length 4 if n ≡ ±1 (mod 6). We deduce that there is an
unrefinable chain of length at most 8 from G(p) to Sn, whence λ(G) 6 3Ω(k) + 8 + 24 by
Theorem 2.

To complete the proof for untwisted classical groups, suppose G(p) = Ln(p). The case
n = 2 follows from Lemma 3.1, so assume n > 3. If n is even then G(p) has a maximal
subgroup M = PSpn(p).r with r ∈ {1, 2} and our earlier work shows that λ(M) 6 33. Now
assume n is odd. If p is odd then G(p) has a maximal subgroup M = PSOn(p) = Ωn(p).2
and the result follows since λ(M) 6 30 as above. Finally, suppose n is odd and p = 2. In
this case, there is an unrefinable chain

G(2) = SLn(2) > 2n−1.SLn−1(2) > SLn−1(2)

and so the previous argument gives λ(G) 6 3Ω(k) + 36.

Now suppose G(p) is of exceptional Lie type. In each case, we can choose a maximal
subgroup M as follows (see [23]):

G(p) E8(p) E7(p) E6(p) F4(p) G2(p)

M d.PΩ+
16(p).d L2(p

7).[7d] F4(p) d.Ω9(p) SL3(p).2

where d = (2, p − 1). In each case, the desired bound quickly follows from our above
analysis of untwisted classical groups. For example, if G(p) = E8(p) then

λ(G(p)) 6 3 + λ(PΩ+
16(p)) 6 3 + 31.

Similarly, suppose G(p) = E7(p) and M = L2(p
7).[7d]. If p = 2 then

E7(2) > L2(2
7).7 > L2(2

7) > D2(27−1) > C27−1 > 1

is an unrefinable chain. For odd p, there is an unrefinable chain from E7(p) to L2(p) of
length 4, and Lemma 3.1 implies that λ(L2(p)) 6 4. The other cases are similar and we
omit the details.

Case 2. Twisted groups.

Now let us consider the twisted groups of Lie type, excluding the cases labelled (b) and
(c) above. First assume G = 2G2(3

k) with k odd. Taking a chain of subfield subgroups
of length Ω(k), we can get down to 2G2(3) ∼= L2(8).3. The latter has depth 4, so λ(G) 6
Ω(k) + 4. Similarly, λ(2F4(2

k)′) 6 Ω(k) + 5.

In each of the remaining cases, the goal is to find a short unrefinable chain from G to
a simple untwisted group of Lie type H, and then apply the bounds in Case 1.

Suppose G = Un(q) is a unitary group. If n > 4 is even then there is an unrefinable
chain of length at most 2 from G to H = PSpn(q), so λ(G) 6 2 + 3Ω(k) + 32. Similarly,
if nq is odd then H = Ωn(q) and the same bound holds. If n is odd and q = 2k with k
odd then we can use maximal subfield subgroups to find an unrefinable chain of length
at most 3Ω(k) from G to H = Un(2). If n = 3 then λ(H) = 4, so we can assume n > 5.
Now H has a maximal subgroup a.Un−1(2).b, where a = 3/(3, n) and b = (3, n − 1), so
λ(H) 6 λ(Un−1(2)) + 2 6 36 as above and thus λ(G) 6 3Ω(k) + 36.

For G = PΩ−2n(q) with q odd, there is an unrefinable chain of length at most 2 from G
to Ωn−1(q) and the result quickly follows. The case G = Ω−2n(q) with q even is also easy
since Sp2n−2(q) is a maximal subgroup.

Finally, if G = 2E6(q) or 3D4(q), then G has a maximal subgroup F4(q) or G2(q),
respectively, and the result follows from the bounds on λ(F4(q)) and λ(G2(q)) in Case 1.
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Case 3. The remaining cases.

To complete the proof, we may assume that one of the following holds:

(a) G = L2(2
k) with k > 2;

(b) G = 2B2(2
k) with k > 3 odd;

(c) G = Un(2k) with n odd and k even.

First suppose G = G(2k) is of type L2(2
k) or 2B2(2

k). Let π(k) be the set of prime
divisors of k. For any r ∈ π(k), there is an unrefinable chain of subfield subgroups of
length Ω(k)− 1 from G to G(2r). Now G(2r) has a maximal subgroup H = D2(2r−1) and
λ(H) 6 1 + Ω(2r − 1), so

λ(G) 6 Ω(k) + 1 + min{Ω(2r − 1) : r ∈ π(k)}
as required (see Proposition 3.7 below for the exact depth of G in these two cases).

Finally, let us turn to case (c), so G = G(2k) = Un(2k) with n odd and k even. Write
k = 2ab, where a > 1 and b is odd, so Ω(k) = a+ Ω(b). By considering subfield subgroups,
there is an unrefinable chain of length at most 3Ω(b) from G to G(22

a
). Now G(22

a
) has

a maximal reducible subgroup H = c.PGUn−1(2
2a) where c divides 22

a
+ 1, so

λ(H) 6 2Ω(22
a

+ 1) + λ(Un−1(2
2a)) 6 2Ω(22

a
+ 1) + 34 + 3Ω(2a)

and thus

λ(G) 6 3Ω(b) + 2Ω(22
a

+ 1) + 35 + 3a 6 3Ω(k) + 2Ω(22
a

+ 1) + 35.

This completes the proof of Theorem 4. 2

In fact, we can determine the exact depth of G in cases (a) and (b) above.

Proposition 3.7. We have

λ(L2(2
k)) =

{
Ω(k) + 1 + min{Ω(2r ± 1) : r ∈ π(k)} k > 3 odd
Ω(k) + 2 + min{Ω(22

c ± 1)− c : 1 6 c 6 a} k = 2ab even, b odd

and

λ(2B2(2
k)) = Ω(k) + 1 + min{Ω(2r − 1),Ω(2r ±

√
2r+1 + 1) + 1 : r ∈ π(k)},

where π(k) is the set of prime divisors of k.

Proof. First assume G = L2(2
k). In view of Proposition 3.5, we may assume k = 2ab is

even and b > 1 is odd. By arguing as in the proof of Proposition 3.5, we deduce that
λ(G) = Ω(b) + λ(H), where H = L2(2

2a). Consider a t-chain

H = H0 > H1 > H2 > · · · > Ht = 1

and let s > 0 be maximal so that Hs = L2(2
2c) is a subfield subgroup of H. Then c > 1

and λ(H) = s + λ(Hs). Moreover, s = Ω(2a−c) = a − c and the maximality of s implies
that λ(Hs) = 2 + min{Ω(22

c ± 1)}, so

λ(H) = a− c+ 2 + min{Ω(22
c ± 1)}.

The result now follows since Ω(k) = a+ Ω(b).

Now assume G = 2B2(2
k), where k > 3 is odd. Set q = 2k and let H be a maximal

subgroup of G. By [29], H is one of

q1+1:(q − 1), D2(q−1), (q ±
√

2q + 1):4, 2B2(q0),

where q0 = 2k/s for a proper prime divisor s of k. We have

λ(q1+1:(q − 1)) = Ω(q − 1) + 2, λ(D2(q−1)) = Ω(q − 1) + 1
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and

λ((q ±
√

2q + 1):4) = λ(D2(q±
√
2q+1)) + 1 = Ω(q ±

√
2q + 1) + 2.

Similarly,

λ(2B2(q0)) 6 λ(D2(q0−1)) + 1 = Ω(q0 − 1) + 2 6 Ω(q − 1) + 1

and

λ(2B2(q0)) 6 Ω(q0 ±
√

2q0 + 1) + 3 6 Ω(q ∓
√

2q + 1) + 2

(note that q0±
√

2q0 + 1 divides q∓
√

2q+ 1). Therefore, we can construct an unrefinable
chain for G of minimal length by descending via a sequence of Ω(k)−1 subfield subgroups
to 2B2(2

r) for some prime divisor r of k. It follows that

λ(G) = Ω(k)− 1 + min{Ω(2r − 1) + 2, λ(2r ±
√

2r+1 + 1) + 3 : r ∈ π(k)}

as required. �

3.6. Proof of Corollary 5. We apply Theorem 4. Trivially, we have Ω(k) 6 log2 k. So
λ(G) 6 3Ω(k) + 36 implies λ(G) 6 3 log2 k + 36 6 f1(k), as required.

Next, suppose conclusion (i) of Theorem 4 holds, namely

λ(G) 6 Ω(k) + 1 + min{Ω(2r − 1) : r ∈ π(k)}.

For each prime divisor r of k, each prime s dividing 2r − 1 satisfies s ≡ 1 (mod r), so
s > r + 1. Hence

Ω(2r − 1) 6 log2(2
r − 1)/ log2(r + 1) < r/ log2 r 6 k/ log2 k.

This yields

λ(G) 6 log2 k + k/ log2 k + 1

and the result follows.

Finally, suppose conclusion (ii) of Theorem 4 holds, namely

λ(G) 6 3Ω(k) + 2Ω(22
a

+ 1) + 35,

where k = 2ab with a > 1 and b odd.

Let s be a prime divisor of 22
a

+ 1. We claim that s ≡ 1 (mod 2a+1). Indeed, let m

be the multiplicative order of 2 modulo s. Since 22
a ≡ −1 (mod s) we have 22

a+1 ≡ 1
(mod s), so m divides 2a+1. But m does not divide 2a, hence m = 2a+1, so 2a+1 divides
s− 1, as claimed. Therefore, s > 2a+1 + 1 and thus

Ω(22
a+1 + 1) 6 log2(2

2a + 1)/ log2(2
a+1 + 1) < 2a/(a+ 1).

This implies that

λ(G) < 3Ω(k) + 2a+1/(a+ 1) + 35 6 3 log2 k + (2k/b)/(log2(2k/b)) + 35

6 3 log2 k + 2k/ log2(2k) + 35,

completing the proof. 2

3.7. Proof of Theorem 6. Fix n > 2 and let p1, . . . , pn−1 be the first n−1 primes which
are greater than 5. Let S be the set of primes p satisfying p ≡ ±3,±13 (mod 40) and
p ≡ 1 (mod pi) for i = 1, . . . , n − 1. By the Chinese Remainder theorem and Dirichlet’s
theorem, S is infinite.

Let G = L2(p) with p ∈ S. Then λ(G) = 3 by Theorem 1. On the other hand, the
dihedral group Dp−1 is a subgroup of G, so we have

l(G) > l(Dp−1) = Ω(p− 1) > n.

This completes the proof. 2
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3.8. Proof of Theorem 7. We always have λ(G) < l(G) and h(l) > 36, so it suffices to
show that if l(G) > 36 then λ(G) < h(l).

If G is sporadic then λ(G) 6 6 by Lemma 3.3, and if G is alternating then by Theorem
2 we have λ(G) 6 23. Hence Theorem 7 holds for these groups.

It remains to deal with groups of Lie type G = Gr(p
k), where r is the Lie rank of

G. Let B be a Borel subgroup of G and let P < B be a Sylow p-subgroup of G. Note
that any unrefinable chain for G passing through B has length r + l(B). Also note that

l(B) = Ω(|B|) since B is solvable. Define u(G) by |P | = (pk)u(G). Then

l(G) > r + l(B) = r + Ω(|B|) = r + Ω(|B|/|P |) + Ω(|P |) > 2r + Ω(|P |) = 2r + ku(G)

and thus

k 6 (l(G)− 2r)/u(G). (9)

We now use Corollary 5, its notation and its proof.

In the generic case of Theorem 4 we have

λ(G) < 3 log2 k + 36 6 3 log2(l(G)− 2) + 36 6 h(l(G)), (10)

where the last inequality is easily checked numerically, using our assumption that l(G) >
36.

In case (i) of Theorem 4 we have

λ(G) 6 log2 k + k/ log2 k + 1 6 log2(l(G)− 2) +
l(G)− 2

log2(l(G)− 2)
+ 1 6 h(l(G)).

Finally, in case (ii) we have G = Un(2k) for odd n > 3 and for even k, say k = 2m. We
claim that k 6 (l(G)− 4)/3 unless k = 2 and G = U3(4).

Indeed, if the rank r is at least 2 then this follows from (9). So suppose r = 1. Then
n = 3 and |B| = ((2k)2 − 1)(2k)3. If k > 2 then Ω((2k)2 − 1) = Ω(24m − 1) > 3 (since
m > 2), which yields l(G) > 1 + Ω(|B|) > 1 + 3 + 3k, proving the claim. Note that, by
[27, Theorem 1] we have l(G) = 1 + Ω(|B|) in this case.

Combining the above claim with Corollary 5, we conclude that, if k > 2, then

λ(G) < 3 log2 k + 2k/ log2(2k) + 35 = f1(k) 6 f1((l(G)− 4)/3) 6 h(l(G)).

Finally, if k = 2 then G = U3(4) and l(G) = 9 < 36, so the result holds trivially in this
case.

This completes the proof of Theorem 7. 2

In fact similar arguments give rise to better bounds. In the theorem below we adopt
the above notation, and let o(1) denote a number tending to zero as l(G)→∞.

Theorem 3.8. Let G = Gr(p
k). Then

(i) λ(G) < f1((l(G)− 2r)/u(G)).

(ii) If r > 1, then λ(G) 6 1+o(1)
r(r+1/2) ·

l(G)
log2 l(G) .

(iii) If G is not as in case (i) or (ii) of Theorem 4, then λ(G) 6 (3 + o(1)) log2 l(G).

Proof. Part (i) follows immediately from the proof of Theorem 7, combined with inequality
(9) above.

Part (iii) follows from inequality (10) above.

Finally, part (ii) follows from part (iii) unless G = Un(2k), with odd n and even k. In
the latter case we have n = 2r+1 and u(G) = n(n−1)/2 = r(2r+1), so the result follows
from part (i). �
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In fact it may well be that λ(G) = O(log2 l(G)) for all finite simple groups G. In view
of Theorems 2 and 3.8 it suffices to prove it for G as in case (i) or (ii) of Theorem 4. This
depends on better upper bounds on Ω(2r − 1) for r prime, and on Ω(22

a
+ 1).

It is known that for most natural numbers n we have Ω(n) ∼ log logn (see, for instance,
[15, Theorem 431]). It is reasonable to assume – though impossible to prove using present
methods of Number Theory – that 2r − 1 (r prime) and 22

a
+ 1 are less composite than

most numbers. In particular we therefore expect that Ω(2r − 1) 6 log log(2r − 1) 6 log r
for r � 0, and that Ω(22

a
+ 1) 6 log log(22

a
+ 1) 6 a for a � 0. Note that this

implies that, for primes r � 0, the largest prime divisor of 2r − 1 is at least (2r −
1)1/ log r, a bound far stronger than all known bounds, even assuming the ABC conjecture
or the Generalized Riemann Hypothesis (see, for instance, [24]). Anyway, plugging our
two heuristic assumptions into the proof of Corollary 5 it would follow that λ(G(pk)) =
O(log2 k) in all cases, and this in turn would yield λ(G) = O(log2 l(G)).

Finally, note that, in view of the lower bound given in Proposition 8, our above conjec-
tured upper bound on λ(G) in terms of l(G) would be best possible.
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