Distinguished unipotent elements and multiplicity-free subgroups of simple algebraic groups

Martin W. Liebeck, Gary M. Seitz and Donna M. Testerman

Abstract

For G a simple algebraic group over an algebraically closed field of characteristic 0 , we determine the irreducible representations $\rho: G \rightarrow I(V)$, where $I(V)$ denotes one of the classical groups $S L(V), S p(V), S O(V)$, such that ρ sends distinguished unipotent elements of G to distinguished elements of $I(V)$. We also settle a base case of the general problem of determining when the restriction of ρ to a simple subgroup of G is multiplicity-free.

1 Introduction

Let G be a simple algebraic group of rank at least 2 defined over an algebraically closed field of characteristic 0 and let $\rho: G \rightarrow I(V)$ be an irreducible representation, where $I(V)$ denotes one of the classical groups $S L(V), S p(V)$, or $S O(V)$. In this paper we consider two closely related problems. We determine those representations for which distinguished unipotent elements of G are sent to distinguished elements of $I(V)$. Also we settle a base case of the general problem of determining when the restriction of ρ to a simple subgroup of G is multiplicity-free.

A unipotent element of a simple algebraic group is said to be distinguished if it is not centralized by a nontrivial torus. Let $u \in G$ be a unipotent element. If $\rho(u)$ is distinguished in $I(V)$ then u must be distinguished in G. The distinguished unipotent elements of $I(V)$ can be decomposed into Jordan blocks of distinct sizes. Indeed they are a single Jordan block, the sum of blocks of distinct even sizes, or the sum of blocks of distinct odd sizes, according as $I(V)=S L(V), S p(V)$ or $S O(V)$ (see [5, 3.5]).

Now u can be embedded in a subgroup A of G of type A_{1} by the JacobsonMorozov theorem; given u, the subgroup A is unique up to conjugacy in G. If $\rho(u)$ is distinguished, then $\rho(A)$ acts on V with irreducible summands of the same dimensions as the Jordan blocks of u, and hence the restriction $V \downarrow \rho(A)$ is multiplicity-free - that is, each irreducible summand appears with multiplicity 1 . Indeed, $V \downarrow \rho(A)$ is either irreducible, or the sum of irreducibles of distinct even dimensions or of distinct odd dimensions.

Our main result determines those situations where $V \downarrow \rho(A)$ is multiplicity-free. In order to state it, we recall that a subgroup of G is said to be G-irreducible if it is contained in no proper parabolic subgoup of G. It follows directly from the definition that an A_{1} subgroup of G is G-irreducible if and only if its non-identity unipotent elements are distinguished in G. If these unipotent elements are regular in G, we call the subgroup a regular A_{1} in G.

[^0]Theorem 1 Let G be a simple algebraic group of rank at least 2 over an algebraically closed field K of characteristic zero, let $A \cong A_{1}$ be a G-irreducible subgroup of G, let $u \in A$ be a non-identity unipotent element, and let V be an irreducible $K G$-module of highest weight λ. Then $V \downarrow A$ is multiplicity-free if and only if λ and u are as in Tables 1 or 2 , where λ is given up to graph automorphisms of G. Table 1 lists the examples where u is regular in G, and Table 2 lists those with u non-regular.

Theorem 1 is the base case of a general project in progress, which aims to determine all irreducible $K G$-modules V and G-irreducible subgroups X of G for which $V \downarrow X$ is multiplicity-free.

The answer to the original question on distinguished unipotent elements is as follows.

Corollary 2 Let G be as in the theorem, and let $\rho: G \rightarrow I(V)$ be an irreducible representation with highest weight λ, where $I(V)$ is $S L(V), S p(V)$ or $S O(V)$. Let $u \in G$ be a non-identity unipotent element, and suppose that $\rho(u)$ is a distinguished element of $I(V)$.
(i) If $I(V)=S L(V)$, then $G=A_{n}, B_{n}, C_{n}$ or G_{2} and $\lambda=\omega_{1}$ (or ω_{n} if $G=A_{n}$), and u is regular in G.
(ii) If $I(V)=S p(V)$ or $S O(V)$ then λ and u are as in one of the cases in Table 1 or 2 for which $V=V_{G}(\lambda)$ is a self-dual module (equivalently, $\lambda=-w_{0}(\lambda)$ where w_{0} is the longest element of the Weyl group of G). Conversely, for each such case in the tables, $\rho(u)$ is distinguished in $I(V)$.

The layout of the paper is as follows. Section 2 consists of notation and preliminary lemmas. This is followed by Sections 3,4 and 5 where we prove Theorem 1 in the special case where A is a regular A_{1} subgroup of G. Then in Section 6 we consider the remaining cases where A is non-regular. There are far fewer examples in that situation. Finally Section 7 contains the proof of the corollary.

For many of the proofs we need to calculate dimensions of weight spaces in various G-modules. When the rank of G is small, such dimensions can be computed using Magma [1], and we make occasional use of this facility.

2 Preliminary Lemmas

Continue to let G be a simple algebraic group over an algebraically closed field K of characteristic zero. Let $A \cong A_{1}$ be a G-irreducible subgroup of G, let u be a nonidentity unipotent element of A, and let $T<A$ be a 1-dimensional torus such that the conjugates of u under T form the non-identity elements of a maximal unipotent group of A.

We fix some notation that will be used throughout the paper. Let $T \leq T_{G}$, where T_{G} is a maximal torus of G and let $\Pi_{G}=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ denote a fundamental system of roots. We label the nodes of the Dynkin diagram of G with these roots as in [2, p.250]. Write s_{i} for the reflection in α_{i}, an element of the Weyl group $W(G)$. When $G=D_{n}$ we assume that $n \geq 4$ (and regard D_{3} as the group A_{3}).

The torus T determines a labelling of the Dynkin diagram by 0 's and 2's (see 3.18 and Table 13.2 of [5]) which gives the weights of T on fundamental roots. When u is regular in G these labels are all 2 's.

Table 1: $V \downarrow A$ multiplicity-free, $u \in G$ regular in G

G	λ
A_{n}	$\omega_{1}, \omega_{2}, 2 \omega_{1}, \omega_{1}+\omega_{n}$,
	$\omega_{3}(5 \leq n \leq 7)$,
A_{3}	$3 \omega_{1}(n \leq 5), 4 \omega_{1}(n \leq 3), 5 \omega_{1}(n \leq 3)$
A_{2}	110
B_{n}	$c 1, c 0$
	$\omega_{1}, \omega_{2}, 2 \omega_{1}$
B_{3}	$\omega_{n}(n \leq 8)$
B_{2}	$101,002,300$
C_{n}	$\omega_{1}, 0 b(1 \leq b \leq 5), 11,12,21$
	$\omega_{3}(3 \leq n \leq 5)$
C_{3}	$\omega_{n}(n=4,5)$
C_{2}	300
$D_{n}(n \geq 4)$	$\omega_{1}, 0 b(1 \leq b \leq 5), 11,12,21$
$\omega_{2}(n=2 k+1), 2 \omega_{1}(n=2 k)$	
$\omega_{n}(n \leq 9)$	
E_{7}	ω_{1}, ω_{2}
E_{8}	ω_{1}, ω_{7}
F_{4}	ω_{1}, ω_{4}
G_{2}	$10,01,11,20,02,30$

Denote by $\omega_{1}, \cdots, \omega_{n}$ the fundamental dominant weights of G. For a dominant weight $\lambda=\sum c_{i} \omega_{i}$, let $V_{G}(\lambda)$ be the irreducible $K G$-module of highest weight λ. For $A \cong A_{1}$ and a non-negative integer r, we abbreviate the irreducible module $V_{A}(r)$ by V_{r} or just r. More generally we frequently denote the module $V_{G}(\lambda)$ by just the weight λ, or the string $c_{1} \cdots c_{l}$ (where l is the rank).

Let $V=V_{G}(\lambda)$ and let λ afford weight r when restricted to T. Since all weights of V can be obtained by subtracting roots from the highest weight, the restriction of each weight to T has the form $r-2 k$ for some non-negative integer k. If $V \downarrow A$ is multiplicity-free, then $V \downarrow A=V_{r_{1}}+V_{r_{2}}+V_{r_{3}}+\cdots$, where $r=r_{1}>r_{2}>r_{3}>\cdots$. Then the T-weights on V are $\left(r_{1}, r_{1}-2, \ldots,-r_{1}\right),\left(r_{2}, r_{2}-2, \ldots,-r_{2}\right),\left(r_{3}, r_{3}-\right.$ $\left.2, \ldots,-r_{3}\right), \ldots$. Noting that all the r_{i} have the same parity, it follows that the weight r_{i} appears with multiplicity i for all $i \geq 1$. Note that weight $r-2$ arises as the restriction of $\lambda-\alpha_{i}$ for those i with $c_{i}>0$. Therefore, there can be at most 2 such values of i.

We often use the following short hand notation. Rather than writing $\lambda-x \alpha_{i}-$ $y \alpha_{j}-z \alpha_{k}-\cdots$, we simply write $\lambda-i^{x} j^{y} k^{z} \cdots$.

Lemma 2.1 If $V \downarrow A$ is multiplicity-free, then $\operatorname{dim} V \leq\left(\frac{r}{2}+1\right)^{2}$ or $\left(\frac{r+1}{2}\right)\left(\frac{r+3}{2}\right)$, according as r is even or odd, respectively.

Proof If $V \downarrow A$ is multiplicity-free, then $V \downarrow A$ is a direct summand of the module $r+(r-2)+(r-4)+\cdots$. The assertion follows by taking dimensions.

Table 2: $V \downarrow A$ multiplicity-free, $u \in G$ distinguished but not regular

G	λ	class of u in G
B_{n}, C_{n}, D_{n}	ω_{1}	any
$D_{n}(5 \leq n \leq 7)$	ω_{n}	regular in $B_{n-2} B_{1}$
F_{4}	ω_{4}	$F_{4}\left(a_{1}\right)$
E_{6}	ω_{1}	$E_{6}\left(a_{1}\right)$
E_{7}	ω_{7}	$E_{7}\left(a_{1}\right)$ or $E_{7}\left(a_{2}\right)$
E_{8}	ω_{8}	$E_{8}\left(a_{1}\right)$

Lemma 2.2 Assume $V \downarrow A$ is multiplicity-free.
(i) If $c \geq 1$ then the T-weight $r-2 c$ occurs with multiplicity at most one more than the multiplicity of T-weight $r-2(c-1)$.
(ii) For $c \geq 1$, the T-weight $r-2 c$ occurs with multiplicity at most $c+1$.
(iii) If T-weight $r-2$ occurs with multiplicity 1 (e.g. if all labels are 2 and $\lambda=b \omega_{i}$) and if $c \geq 1$, then T-weight $r-2 c$ occurs with multiplicity at most c.

Proof Suppose i is maximal with $r-2 c$ in the weight string $r_{i}, \cdots,-r_{i}$. Then T-weight $r-2 c$ occurs with the same multiplicity as does T-weight r_{i}. And weight r_{i} occurs with multiplicity at most one more than weight r_{i-1} as otherwise there would be two direct summands of highest weight r_{i}. Now (i) follows as does (ii). Part (iii) also follows, since the assumption rules out a summand of highest weight $r-2$.

Lemma 2.3 Assume $V \downarrow A$ is multiplicity-free and that $\lambda=b \omega_{i}$ with $b>1$.
(i) Then α_{i} is an end-node of the Dynkin diagram.
(ii) If G has rank at least 3 , then the node adjacent to α_{i} has label 2 .

Proof (i) Suppose that $\alpha_{j} \neq \alpha_{k}$ both adjoin α_{i} in the Dynkin diagram. If both these roots have label 0 , then T-weight $r-2$ is afforded by each of $\lambda-i, \lambda-i j, \lambda-$ $i k, \lambda-i j k$, contradicting 2.2(ii). Next assume α_{j} has label 2 and α_{k} has label 0 . Here we consider $r-4$ which is afforded by $\lambda-i^{2}, \lambda-i^{2} k, \lambda-i^{2} k^{2}, \lambda-i j$, again contradicting 2.2 (ii). If both labels are 2 , then $r-4$ is afforded by $\lambda-i^{2}, \lambda-i j, \lambda-i k$. But here $r-2$ only occurs from $\lambda-\alpha_{i}$, so this contradicts 2.2(iii).
(ii) Assume G has rank at least 3. By (i) α_{i} is an end-node. Let α_{j} be the adjoining node. We must show α_{j} has label 2. Suppose the label is 0 and let α_{k} be another node adjoining α_{j}. If α_{k} has label 0 , then $r-2$ is afforded by each of $\lambda-i, \lambda-i j, \lambda-i j k$, a contradiction. Therefore α_{k} has label 2 . But then $r-4$ is afforded by each of $\lambda-i^{2}, \lambda-i^{2} j, \lambda-i^{2} j^{2}, \lambda-i j k$, a contradiction.

The next lemma will be frequently used, often implicitly, in what follows.
Lemma 2.4 If $c \geq d$ are nonnegative integers, then the tensor product of A_{1-} modules $c \otimes d=(c+d) \oplus(c+d-2) \oplus \cdots \oplus(c-d)$.

Proof This follows from a consideration of weights in the tensor product.
Lemma 2.5 Suppose that $\lambda=\omega_{i}+\omega_{j}$ with $j>i$ and that the subdiagram with base $\left\{\alpha_{i}, \cdots, \alpha_{j}\right\}$ is of type A, or is of rank at most 3 , or is of type F_{4}. Then the T_{G}-weight $\lambda-i(i+1) \cdots j$ occurs with multiplicity $j-i+1$.

Proof Since the weight space lies entirely within the corresponding irreducible for the Levi factor with base $\left\{\alpha_{i}, \cdots, \alpha_{j}\right\}$, we may assume that G is equal to this Levi factor; that is, $i=1$ and $j=n$. Then the hypothesis of the lemma implies that G is $A_{n}, B_{2}, B_{3}, C_{2}, C_{3}, G_{2}$ or F_{4}. For all but the first case the conclusion follows by computation using Magma.

Now suppose $G=A_{n}$. Then $\omega_{1} \otimes \omega_{n}=\lambda \oplus 0$. In the tensor product we see precisely $n+1$ times the weight $\lambda-\alpha_{1}-\cdots-\alpha_{n}$ by taking weights of the form $\left(\omega_{1}-1 \cdots j\right) \otimes\left(\omega_{n}-(j+1) \cdots n\right)$ for $1 \leq j \leq n-1$, together with the weights $\omega_{1} \otimes\left(\omega_{n}-1 \cdots n\right)$ and $\left(\omega_{1}-1 \cdots n\right) \otimes \omega_{n}$. Each occurs with multiplicity 1 , so the conclusion follows, as $\lambda-\alpha_{1}-\cdots-\alpha_{n}=0$.

Lemma 2.6 Assume that there exist $i<j$ with $c_{i} \neq 0 \neq c_{j}$ and that $V \downarrow A$ is multiplicity-free.
(i) Then $c_{k}=0$ for $k \neq i, j$.
(ii) Nodes adjoining α_{i} and α_{j} have label 2.
(iii) Either $c_{i}=1$ or $c_{j}=1$. Moreover $c_{i}=c_{j}=1$ unless α_{i} and α_{j} are adjacent.
(iv) Either α_{i} or α_{j} is an end-node.
(v) If either $c_{i}>1$ or $c_{j}>1$, then G has rank 2.
(vi) If α_{i}, α_{j} are non-adjacent and if all nodes have label 2 , then both α_{i} and α_{j} are end-nodes.

Proof (i) This is immediate, as otherwise $\lambda-i, \lambda-j, \lambda-k$ all afford T-weight $r-2$, contradicting 2.2(ii).
(ii) Suppose (ii) is false. By symmetry we can assume α_{k} adjoins α_{i} and has label 0 . Then $\lambda-i, \lambda-j, \lambda-i k$ all afford $r-2$, a contradiction.
(iii) By (ii), nodes adjacent to α_{i} and α_{j} have label 2 . Consider T-weight $r-4$ which has multiplicity at most 3 by 2.2 . Suppose $c_{k}>1$ for $k=i$ or j. Then $\lambda-k^{2}$ and $\lambda-i j$ both afford weight $r-4$. Assume α_{i} and α_{j} are not adjacent. We give the argument when the diagram has no triality node. The other cases require only a slight change of notation. With this assumption we also get $r-4$ from $\lambda-i(i+1)$ and $\lambda-(j-1) j$, a contradiction. So $c_{k}>1$ implies that α_{i}, α_{j} are adjacent. If both $c_{i}>1$ and $c_{j}>1$, then we again have a contradiction, since $r-4$ is afforded by $\lambda-i^{2}, \lambda-j^{2}$ and $\lambda-i j$, and the latter appears with multiplicity 2 by [8, 1.35].
(iv) Suppose neither α_{i} nor α_{j} is an end-node. We give details assuming there is no triality node. The remaining cases just require a slight change of notation. Consider weight $r-4$. This is afforded by $\lambda-i j, \lambda-(i-1) i$ and $\lambda-j(j+1)$. If $c_{i}>1$ then $\lambda-i^{2}$ also affords $r-4$. This forces $c_{i}=1$, and similarly $c_{j}=1$. If $j=i+1$, then $\lambda-i j$ has multiplicity 2 by 2.5 , again a contradiction. And if
$j>i+1$, then $\lambda-i(i+1)$ and $\lambda-(j-1) j$ afford weight $r-4$. In either case $r-4$ appears with multiplicity at least 4 , contradicting 2.2.
(v) Suppose $c_{k}>1$ for $k=i$ or j. By (iv) we can assume α_{i} is an end-node. If G has rank at least 3 , let α_{l} adjoin α_{j}, where $l \neq i$. Then (ii) implies that $r-4$ is afforded by $\lambda-i j, \lambda-k^{2}, \lambda-j l$. If α_{j} is adjacent to α_{i} then the first weight occurs with multiplicity 2 by [8, 1.35]. Otherwise there is another node α_{m} adjacent to α_{i} and $\lambda-i m$ affords $r-4$. In either case we contradict 2.2.
(vi) As above we treat the case where the Dynkin diagram has no triality node. By (iv) and symmetry we can assume α_{i} is an end-node. Suppose $j<n$. Then $r-4$ is afforded by each of $\lambda-i(i+1), \lambda-(j-1) j, \lambda-j(j+1), \lambda-i j$, contradicting 2.2. Therefore, $j=n$.

Lemma 2.7 Suppose $\lambda=\omega_{i}$ and the Dynkin diagram has a string $\alpha_{i-3}, \ldots, \alpha_{i+3}$ for which each node has T-label 2. Then $r-8$ occurs with multiplicity at least 5. In particular $V \downarrow A$ is not multiplicity-free.

Proof The T-weight $r-8$ arises from each of the following weights:

$$
\begin{aligned}
& \lambda-i(i+1)(i+2)(i+3), \lambda-(i-1) i(i+1)(i+2), \lambda-(i-2)(i-1) i(i+1), \\
& \lambda-(i-3)(i-2)(i-1) i, \lambda-(i-1) i^{2}(i+1)
\end{aligned}
$$

(the last is a weight as it is equal to $(\lambda-(i-1) i(i+1))^{s_{i}}$). This proves the first assertion and the second assertion follows from 2.2(iii).

The final lemma is an inductive tool. Let L be a Levi subgroup of G in our fixed system of roots, and let μ be the corresponding highest weight of L^{\prime}. Namely, $\mu=\sum c_{j} \omega_{j}$, where the sum runs just over those fundamental weights corresponding to simple roots in the subsystem determined by L.

Lemma 2.8 Fix $c \geq 1$ and and let s denote the sum of the dimensions of all weight spaces of $V_{L^{\prime}}(\mu)$ for all weights of form $\mu-\sum d_{j} \alpha_{j}$ such that $\sum d_{j}=c$ and each α_{j} with nonzero coefficient has label 2.
(i) If $s>c+1$, then $V \downarrow A$ is not multiplicity-free.
(ii) If T-weight $r-2$ occurs with multiplicity 1 (e.g. if all labels are 2 and $\lambda=b \omega_{i}$) and $s>c$, then $V \downarrow A$ is not multiplicity-free.

Proof This is immediate from 2.2, since $T \leq L$ and the weight $\mu-\sum d_{j} \alpha_{j}$ corresponds to a weight $\lambda-\sum d_{j} \alpha_{j}$ which affords T-weight $r-2 c$.

3 The case where A is regular and $\lambda \neq c \omega_{i}$

As in the hypothesis of Theorem 1 , let G be a simple algebraic group of rank at least 2 , let $A \cong A_{1}$ be a G-irreducible subgroup, and let $V=V_{G}(\lambda)$, where $\lambda=\sum c_{i} \lambda_{i}$. This section and the next two concern the case of Theorem 1 where A is a regular A_{1} of G (recall that this means that unipotent elements of A are regular in G). In this case all the T-labels of the Dynkin diagram of G are equal to 2. In this section we handle situations where $c_{i}>0$ for at least two values of i.

If $V \downarrow A$ is multiplicity-free, $\lambda \neq c \omega_{i}$ and G has rank at least 3 , then Lemma 2.6 implies that $\lambda=\omega_{i}+\omega_{j}$, where either α_{i}, α_{j} are both end-nodes, or one is an end-node and the other is adjacent to it.

Proposition 3.1 Assume $V \downarrow A$ is multiplicity-free. Then there exist at least two values of i for which $c_{i}>0$ if and only G and λ are in the following table, up to graph automorphisms.

G	λ
A_{2}	$c 1$
A_{3}	110
B_{2}, C_{2}	$11,12,21$
G_{2}	11
B_{3}	101
A_{n}	$10 \cdots 01$

The proof will be in a series of lemmas.
Lemma 3.2 Suppose $G=A_{2}$ and $\lambda=c 1$ for $c \geq 1$. Then $V \downarrow A$ is multiplicity-free.
Proof Assume $G=A_{2}$. The weight $c 1-\alpha_{1}-\alpha_{2}=(c-1) 0$ occurs with multiplicity 2 in the module $c 1$ and multiplicity 3 in $c 0 \otimes 01$. A dimension comparison shows that $c 0 \otimes 01=c 1+(c-1) 0$.

Now $c 0=S^{c}(10)$, so weight considerations show that for c even, $S^{c}(10) \downarrow A=$ $2 c \oplus(2 c-4) \oplus(2 c-8) \oplus \cdots \oplus 0$ and $S^{c-1}(10)=(2 c-2) \oplus(2 c-6) \oplus \cdots \oplus 2$. Therefore 2.4 implies that
$(c 0 \otimes 01) \downarrow A=((2 c+2)+2 c+(2 c-2))+((2 c-2)+(2 c-4)+(2 c-6))+\cdots+(6+4+2)+2$, and it follows from the first paragraph that $V \downarrow A$ is multiplicity free. A similar argument applies for c odd.

Lemma 3.3 (i) If $G=C_{2}$ and $V=V_{G}(\lambda)$ with $\lambda=c 1$ or $1 c$ for $c \geq 1$, then $V \downarrow A$ is multiplicity-free if and only if $\lambda=11,21$, or 12 .
(ii) If $G=G_{2}$ and $V=V_{G}(\lambda)$ with $\lambda=c 1$ or $1 c$ for $c \geq 1$, then $V \downarrow A$ is multiplicity-free if and only if $\lambda=11$.

Proof (i) Let $G=C_{2}$. We first settle the cases which are multiplicity-free. A Magma computation shows that $10 \otimes 01=11+10$, and hence $11 \downarrow A=7+5+1$, which is multiplicity-free. Next consider $\lambda=12$. First note that $10 \otimes 02=12+11$ and $02=S^{2}(01)-00$. It follows that $12 \downarrow A=3 \otimes\left(S^{2}(4)-0\right)-(7+5+1)=$ $3 \otimes(8+4)-(7+5+1)=(11+9+7+5)+(7+5+3+1)-(7+5+1)=$ $11+9+7+5+3$ and $V \downarrow A$ is multiplicity-free. Finally, consider $\lambda=21$. In this case $20 \otimes 01=21+20+01$. Now $20 \downarrow A=S^{2}(3)=6+2$, so that $(20 \otimes 01) \downarrow A=$ $(6+2) \otimes 4=(10+8+6+4+2)+(6+4+2)$. It follows that $21 \downarrow A=10+8+6+4+2$ and $V \downarrow A$ is multiplicity-free.

If $\lambda=1 b$ or $b 1$ for $b \geq 3$, then $r=3+4 b$ or $3 b+4$, and $\operatorname{dim} V=\frac{1}{3}(b+1)(b+$ $3)(2 b+4)$ or $\frac{1}{3}(b+1)(b+3)(b+5)$, respectively. Now Lemma 2.1 shows that $V \downarrow A$ cannot be multiplicity-free.
(ii) Let $G=G_{2}$. First consider $\lambda=11$. A Magma computation yields $10 \otimes$ $01=11+20+10$. Also, $10 \downarrow A=6$ and $01 \downarrow A=10+2$. Using the fact that
$S^{2}(10)=20+00$, we find that $V \downarrow A=16+14+10+8+6+4$, which is multiplicityfree.

Now consider $\lambda=c 1$ or $1 c$ with $c>1$. Then $r=6 c+10$ or $10 c+6$ and $\operatorname{dim} V=\frac{1}{60}(c+1)(c+3)(c+5)(c+7)(2 c+8)$ or $\frac{1}{60}(c+1)(c+3)(2 c+4)(3 c+5)(3 c+7)$, respectively. In either case, 2.1 shows that $V \downarrow A$ is not multiplicity-free.

Lemma 3.4 Suppose G has rank at least 3 and $\lambda=\omega_{i}+\omega_{j}$, where α_{i}, α_{j} are adjacent and one of them is an end-node. Then $V \downarrow A$ is multiplicity-free if and only if $G=A_{3}$.

Proof First assume that $G=A_{n}, B_{n}, C_{n}$ or D_{n} and $\lambda=\omega_{1}+\omega_{2}$. If $n \geq 4$, then the weights $\lambda-123=(\lambda-12)^{s_{3}}, \lambda-234, \lambda-1^{2} 2=(\lambda-2)^{s_{1}}, \lambda-12^{2}=(\lambda-1)^{s_{2}}$ occur with multiplicities $2,1,1,1$ and all afford T weight $r-6$. Hence this weight occurs with multiplicity at least 5 , and 2.2 shows that $V \downarrow A$ is not multiplicity-free. If $G=B_{3}$ or C_{3}, then of the above weights only $\lambda-234$ does not occur; however the weight $\lambda-23^{2}=(\lambda-2)^{s_{3}}$ or $\lambda-2^{2} 3=(\lambda-23)^{s_{2}}$ occurs, respectively, affording T weight $r-6$, which again gives the conclusion by 2.2 . And if $G=A_{3}$, then $100 \otimes 010=110+001$, and restricting to A we have $3 \otimes(4+0)=(7+5+3+1)+3$. Therefore, $110 \downarrow A=7+5+3+1$ which is multiplicity-free, as in the conclusion.

Next consider $G=B_{n}$ or C_{n} with $\lambda=\omega_{n-1}+\omega_{n}$. For B_{n}, the weight $r-6$ is afforded by $\lambda-(n-2)(n-1) n, \lambda-(n-1) n^{2}=(\lambda-(n-1) n)^{s_{n}}$ and $(\lambda-(n-$ $\left.1)^{2} n\right)=(\lambda-n)^{s_{n-1}}$. Moreover the first two weights occur with multiplicity 2 , and so $r-6$ appears with multiplicity 5 , so that $V \downarrow A$ is not multiplicity-free. A similar argument applies for C_{n}.

For $G=F_{4}$, the conclusion follows by using Lemma 2.8, applied to a Levi subgroup B_{3} or C_{3}. Likewise, for $D_{n}(n \geq 5)$ with $\lambda=\omega_{n}+\omega_{n-2}$ or $\omega_{n-1}+\omega_{n-2}$, or for $G=E_{n}$, we use a Levi subgroup A_{r} with $r \geq 4$. Finally, for D_{4} the result follows from the first paragraph using a triality automorphism.

Lemma 3.5 Assume $n \geq 3$ and $G=A_{n}, B_{n}, C_{n}$, or D_{n} and $\lambda=\omega_{i}+\omega_{j}$, where α_{i}, α_{j} are end-nodes. Then $V \downarrow A$ is multiplicity-free if and only if $\lambda=\omega_{1}+\omega_{n}$ and $G=A_{n}$ or B_{3}.

Proof First consider $G=A_{n}, B_{n}, C_{n}$. By 2.6(vi) we have $\lambda=\omega_{1}+\omega_{n}$. If $G=$ B_{n} with $n \geq 4$, then $\lambda-123, \lambda-(n-2)(n-1) n, \lambda-1(n-1) n, \lambda-12 n$ and $\lambda-(n-1) n^{2}=(\lambda-(n-1) n)^{s_{n}}$ all restrict to $r-6$ on T, so $V \downarrow A$ is not multiplicity-free by 2.2 . We argue similarly for $G=C_{n}$ with $n \geq 4$, replacing the last weight by $\lambda-(n-1)^{2} n=(\lambda-(n-1) n)^{s_{n-1}}$. And if $G=A_{n}$, then $V \downarrow A$ is just $(n \otimes n)-0$ and hence is multiplicity-free.

Now suppose $n=3$ and $\lambda=101$. If $G=B_{3}$, then Magma gives $100 \otimes 001=$ $101+001$. Restricting to A the left side is $6 \otimes(6+0)$ and we find that $101 \downarrow A=12+$ $10+8+6+4+2$, multiplicity-free. For $G=C_{3}$, Magma yields $100 \otimes 001=101+010$, $\wedge^{2}(100)=010+000$ and $\wedge^{3}(100)=001+100$. Restricting to A and considering weights we have $101 \downarrow A=14+12+10+8+6^{2}+4+2$ which is not multiplicity-free.

Finally, consider $G=D_{n}$ with $n \geq 4$. First consider $\lambda=\omega_{1}+\omega_{n-1}$. The T-weight $r-2(n-1)$ is afforded by $\lambda-1 \cdots(n-1), \lambda-2 \cdots n, \lambda-1 \cdots(n-2) n$, which, using 2.5 , occur with multiplicities $n-1,1,1$ respectively, giving the conclusion by 2.2. A similar argument applies if $\lambda=\omega_{1}+\omega_{n}$. Finally assume $\lambda=\omega_{n-1}+\omega_{n}$. Here, T weight $r-6$ is afforded by $\lambda-(n-2)(n-1) n, \lambda-(n-3)(n-2)(n-1), \lambda-(n-3)(n-2) n$ with multiplicities $3,1,1$ so again 2.2 applies.

Lemma 3.6 Assume $G=E_{6}, E_{7}, E_{8}$ or F_{4} and $\lambda=\omega_{i}+\omega_{j}$, where α_{i}, α_{j} are end-nodes. Then $V \downarrow A$ is not multiplicity-free.

Proof First assume $G=F_{4}$. Then $\lambda=1001$ and we consider T-weight $r-8$ which is afforded by weights $\lambda-1234, \lambda-123^{2}=(\lambda-12)^{s_{3}}, \lambda-23^{2} 4=(\lambda-234)^{s_{3}}$, occurring with multiplicities $4,1,1$, respectively, giving the result by 2.2 .

So now assume $G=E_{n}$. If $\lambda=\omega_{1}+\omega_{n}$ then the weights $\lambda-134 \cdots n, \lambda-$ $1234 \cdots(n-1), \lambda-23 \cdots n$ all afford T-weight $r-2(n-1)$ and (by 2.5) occur with multiplicities $n-1,1,1$ respectively, and now we apply 2.2 . If $\lambda=\omega_{1}+\omega_{2}$, we argue similarly using weights $\lambda-1234, \lambda-1345, \lambda-2345$. And if $\lambda=\omega_{2}+\omega_{n}$, use weights $\lambda-245 \cdots n, \lambda-345 \cdots n, \lambda-23 \cdots(n-1)$.

This completes the proof of Proposition 3.1.

4 The case where A is regular and $\lambda=b \omega_{i}, b \geq 2$

Continue to assume that G is a simple algebraic group, A is a regular A_{1} in G, and $V=V_{G}(\lambda)$. In this section we prove Theorem 1 in the case where $\lambda=b \omega_{i}$ for some i and some $b \geq 2$. In this case, the T-weight $r-2$ appears in V with multiplicity 1 and 2.2(iii) applies. Also 2.3 implies that if $V \downarrow A$ is multiplicity-free then α_{i} is an end-node.

Proposition 4.1 Assume $\lambda=b \omega_{i}$ with $b>1$. Then $V \downarrow A$ is multiplicity-free if and only if G and λ are as in the following table, up up to graph automorphisms of A_{n} or D_{4}.

λ	G
$2 \omega_{1}$	$A_{n}, B_{n}, C_{n}, D_{n}(n=2 k), G_{2}$
$3 \omega_{1}$	$A_{n}(n \leq 5), B_{n}(n=2,3), C_{n}(n=2,3), G_{2}$
$4 \omega_{1}, 5 \omega_{1}$	$A_{n}(n=2,3), B_{2}, C_{2}$
$b \omega_{1}(b \geq 6)$	A_{2}
$b \omega_{1}(b \leq 5)$	C_{2}
$2 \omega_{3}$	B_{3}
$2 \omega_{2}$	G_{2}

The proof is carried out in a series of lemmas.
Lemma 4.2 Assume that $\lambda=2 \omega_{1}$. If $G=A_{n}, B_{n}$, or C_{n}, then $V \downarrow A$ is multiplicityfree. If $G=D_{n}$, then $V \downarrow A$ is multiplicity-free if and only if n is even.

Proof If $G=A_{n}$, then $V \downarrow A$ is just $S^{2}(n)$ and a consideration of weights shows that this is $2 n+(2 n-4)+(2 n-8)+\cdots$, hence is multiplicity-free. If $G=B_{n}$ or C_{n} we can embed G in $A_{2 n}$ or $A_{2 n-1}$, respectively. In each case A acts irreducibly on the natural module with highest weight $2 n$ or $2 n-1$, respectively, and the conclusion follows from the first sentence.

Now consider $G=D_{n}$. In this case A acts on the natural module ω_{1} for G, as $(2 n-2)+0$. Now $S^{2}\left(\omega_{1}\right)=V+0$ and hence $V \downarrow A=S^{2}(2 n-2)+(2 n-2)=$ $((4 n-4)+(4 n-8)+\cdots)+(2 n-2)$. If n is odd, we find that $2 n-2$ appears with multiplicity 2 , while if n is even, $V \downarrow A$ is multiplicity-free.

Lemma 4.3 Assume that $G=B_{n}(n \geq 3), C_{n}(n \geq 3)$ or $D_{n}(n \geq 4)$ and that $\lambda=b \omega_{i}$ with $b>1$ and $i>1$. Then $V \downarrow A$ is multiplicity-free if and only if $G=B_{3}$ and $\lambda=2 \omega_{3}$ or $G=D_{4}$ and $\lambda=2 \omega_{i}$ for $i=3$ or 4 .

Proof By 2.3 we can assume that α_{i} is an end-node, so we may take $i=n$. First consider C_{n}. If $b \geq 3$, then the weight $r-6$ occurs with multiplicity at least $4\left(\right.$ from $\left.\lambda-(n-2)(n-1) n, \lambda-(n-1) n^{2}, \lambda-n^{3}, \lambda-(n-1)^{2} n=(\lambda-n)^{s_{n-1}}\right)$ and so $V \downarrow A$ is not multiplicity-free. For $b=2$ first consider $G=C_{3}$. We have $S^{2}(001)=V+200$. As $001 \downarrow A=9+3$, it follows that $V \downarrow A$ contains $6^{2}\left(=(r-12)^{2}\right)$. Next suppose that $G=C_{n}$ with $n \geq 4$ and $b=2$. This case essentially follows from the C_{3} result. We need only show that there are at least two more weights $r-12$ than weights $r-10$. For $n=4$ the only weights $r-10$ that do not arise from the C_{3} Levi, are $\lambda-123^{2} 4, \lambda-1234^{2}$. Correspondingly there are new $r-12$ weights, $\lambda-12^{2} 3^{2} 4, \lambda-123^{2} 4^{2}$. Similar reasoning applies for C_{5}, where $\lambda-12345$ is the only weight $r-10$ not appearing for C_{4} and we conjugate by s_{4} to get a new weight $r-12$. And for $n \geq 6$ there are no $r-10$ weights that were not present in a C_{5} Levi factor.

Now let $G=B_{n}$. If $b \geq 3$ we find that T weight $r-6$ appears with multiplicity at least 4. Indeed, for the B_{2} Levi the module $0 b=S^{b}(01)$ and this yields weights $\lambda-n^{3}, \lambda-(n-1) n^{2}$, the latter with multiplicity 2 . Also $\lambda-(n-2)(n-1) n$ affords T-weight $r-6$, which yields the assertion.

Now assume $b=2$. First consider $G=B_{3}$, so that $\lambda=002$. The module 001 for B_{3} is the spin module where A acts as $6+0$. We have $S^{2}(001)=002+000$, and it follows that $V \downarrow A=12+8+6+4+0$, which is multiplicity-free. Now assume $n>3$. Here we show that T-weight $r-8$ occurs with multiplicity 5 . The above shows that $r-8$ occurs with multiplicity 4 just working in the B_{3} Levi. As $\lambda-(n-3)(n-2)(n-1) n$ affords $r-8$ the assertion follows.

Finally, consider $G=D_{n}$. If $b \geq 3$ then T-weight $r-6$ occurs with multiplicity 4 (from $\lambda-n^{3}, \lambda-(n-2) n^{2}, \lambda-(n-1)(n-2) n, \lambda-(n-3)(n-2)(n)$), and so $V \downarrow A$ is not multiplicity-free by 2.2 (iii). Now assume $b=2$. Applying a graph automorphism if necessary, we can assume $n \geq 5$ (the conclusion allows for D_{4} using 4.2). Then T-weight $r-8$ occurs with multiplicity at least 5 (from $\lambda-(n-4)(n-3)(n-2) n, \lambda-$ $\left.(n-3)(n-2)(n-1) n, \lambda-(n-3)(n-2) n^{2}, \lambda-(n-1)(n-2) n^{2}, \lambda-(n-2)^{2} n^{2}\right)$. Therefore $V \downarrow A$ is not multiplicity-free.

Lemma 4.4 Assume that $G=A_{n}, B_{n}(n \geq 3), C_{n}(n \geq 3)$ or $D_{n}(n \geq 4)$, and that $\lambda=b \omega_{1}$ with $b \geq 3$. Then $V \downarrow A$ is multiplicity-free only for the cases listed in rows $2-4$ of the table in Proposition 4.1.

Proof First let $G=A_{n}$, so $V=V_{G}\left(b \omega_{1}\right)=S^{b}\left(\omega_{1}\right)$. First consider $b=3$, so that $r=3 n$. If $n \geq 6$, then T-weight $3 n-12$ occurs with multiplicity at least 7 and $V \downarrow A$ cannot be multiplicity-free. Indeed, independent vectors of weight $3 n-12$ occur as tensor symmetric powers of vectors of weights (i, j, k), where (i, j, k) is one of $(n, n, n-12),(n, n-2, n-10),(n, n-4, n-8),(n, n-6, n-6),(n-2, n-2, n-8)$, $(n-2, n-4, n-6),(n-4, n-4, n-4)$. On the other hand for $n \leq 5$ the restriction is multiplicity-free.

Next consider $b=4$, so that $r=4 n$. If $n \geq 4$, then $4 n-8$ appears with multiplicity at least 5 and hence $V \downarrow A$ is not multiplicity-free. Indeed, independent vectors arise from symmetric powers of vectors of weights ($n, n, n, n-8$), ($n, n, n-$
$2, n-6),(n, n, n-4, n-4),(n, n-2, n-2, n-4),(n-2, n-2, n-2, n-2)$. And for $n \leq 3$ a direct check shows that $S^{b}\left(\omega_{1}\right) \downarrow A$ is multiplicity-free. If $b \geq 5, n \geq 3$ and $(b, n) \neq$ $(5,3)$ then a similar argument shows that weight $b n-12$ occurs with multiplicity at least two more than does $b n-10$; hence $V \downarrow A$ is not multiplicity-free in these cases. And if $(b, n)=(5,3)$ one checks that $V \downarrow A=S^{5}(3)=15+11+9+7+5+3$, which is multiplicity-free.

The final case for $G=A_{n}$ is when $n=2$. We first note that the multiplicity of weight $2 j$ in $S^{b}(2)$ is precisely the multiplicity of weight 0 in $S^{b-j}(2)$. Indeed, if we write $2^{c} 0^{d}(-2)^{e}$ to denote a symmetric tensor of c vectors of weight $2, d$ vectors of weight 0 and e vectors of weight -2 , then a basis for the $2 j$-weight space is given by vectors $2^{j} 0^{b-j}(-2)^{0}, 2^{j+1} 0^{b-j-2}(-2)^{1}, 2^{j+2} 0^{b-j-4}(-2)^{2}, \cdots$ and ignoring the first j terms in each tensor we obtain the assertion. The multiplicity of weight 0 in $S^{b-j}(2)$ is easily seen to be $\frac{b-j+1}{2}$ if $b-j$ is odd and $\frac{b-j+2}{2}$ if $b-j$ is even. From this information we see that $S^{b}(2)=2 b+(2 b-4)+(2 b-8)+\cdots$ and hence $V \downarrow A$ is multiplicity-free.

Now consider $G=B_{n}, C_{n}$, or D_{n}. The C_{n} case follows from the $A_{2 n-1}$ case since $V=S^{b}\left(\omega_{1}\right)$ (see [6]). If $G=D_{n}$ with $n \geq 4$, then $A \leq B_{n-1}<G$. If the corresponding module for this subgroup is not multiplicity-free, then the same holds for G since it appears as a direct summand of V.

So assume $G=B_{n}$. If $b \geq 4$, then T-weight $r-8$ occurs with multiplicity at least 4. Indeed, if $n \geq 4$ this weight arises from $\lambda-1234, \lambda-1^{2} 23, \lambda-1^{2} 2^{2}, \lambda-1^{3} 2, \lambda-1^{4}$, whereas if $n=3$ replace the first of these weights by $\lambda-123^{2}=(\lambda-12)^{s_{3}}$. Now consider $b=3$. If $n=4$, then $S^{3}\left(\lambda_{1}\right)=3000+1000$ and one checks that T-weight $r-12=12$ occurs with multiplicity 7 , and so $V \downarrow A$ is not multiplicity-free. And for $n>4$ we apply Lemma 2.8 to get the same conclusion. Finally, if $n=3$ then $S^{3}\left(\lambda_{1}\right)=V+100$, and a direct check of weights shows that $S^{3}\left(\lambda_{1}\right) \downarrow A=$ $18+14+12+10+8+6^{2}+2$, which implies that $V \downarrow A$ is multiplicity-free.

The only remaining case is when $G=D_{4}$ and $b=3$, since here the module $300 \downarrow A$ for B_{3} is multiplicity-free. As a module for G we have $S^{3}\left(\omega_{1}\right)=3 \omega_{1} \oplus \omega_{1}$, so that $V \downarrow A=S^{3}(6+0)-(6+0)$, which one easily checks is not multiplicity-free.

Lemma 4.5 Assume that $G=B_{2}, C_{2}$ or G_{2} and $\lambda=b \omega_{i}$ (with $b \geq 2$). Then $V \downarrow A$ is multiplicity-free if and only if one of the following holds:
(i) $G=B_{2}$ or C_{2} and $\lambda=b 0,0 b(b \leq 5)$.
(ii) $G=G_{2}$ and $\lambda=20,30$ or 02 .

Proof (i) Let $G=B_{2}$. Then the module $0 b=S^{b}(01)$ which restricts to A as $S^{b}(3)$. Therefore the assertion follows from the A_{3} result which has already been established.

Now assume $\lambda=b 0$. Here $\operatorname{dim}(b 0)=(b+1)(b+2)(2 b+3) / 6$ and the highest weight of $V \downarrow A$ is $4 b$. If the restriction were multiplicity-free, then weight $4 b-2$ would only occur with multiplicity 1 , and the restriction with largest possible dimension would have composition factors $4 b+(4 b-4)+(4 b-6)+\cdots+2+0$ which totals $4 b^{2}+2$. For $b \geq 7$, this is less than the above dimension of $b 0$ and so the restriction cannot be multiplicity-free. And for $b \leq 3, V$ is a summand of $S^{b}(4)$ which we have already seen to be multiplicity-free. This leaves the cases $b=4,5,6$.

A computation gives the following decompositions of symmetric powers of the the G-module 10 :

$$
\begin{aligned}
& S^{6}(10)=60+40+20+00, \\
& S^{5}(10)=50+30+10, \\
& S^{4}(10)=40+20+00, \\
& S^{3}(10)=30+10, \\
& S^{2}(10)=20+00
\end{aligned}
$$

It follows that $40 \downarrow A=16+12+10+8+4$ and $50 \downarrow A=20+16+14+12+10+8+4$, so these are both multiplicity-free. Also $S^{6}(4)=24+20+18+16^{2}+14+12^{3}+\cdots$. This and the above imply that $60 \downarrow A$ is not multiplicity-free. This completes the proof of (i).
(ii) It follows from [6] that $V_{B_{3}}(b 00)$ is irreducible upon restriction to G_{2}, with highest weight $b 0$, and also a regular A in B_{3} lies in a subgroup G_{2}. So for $i=1$ the assertion follows from our results for B_{3}. Now assume $i=2$. Then

$$
\operatorname{dim}(0 b)=\frac{1}{120}(b+1)(b+2)(2 b+3)(3 b+4)(3 b+5),
$$

and the highest T-weight is $10 b$. First let $b=2$. Then $V \downarrow A$ is a direct summand of $S^{2}(01) \downarrow A=20+16+12^{2}+10+8^{2}+4^{2}+0^{2}$. We have $S^{2}(01)=V \oplus 20 \oplus 00$ and hence $V \downarrow A=20+16+12+10+8+4+0$, which is multiplicity-free. On the other hand if $b \geq 3$, then 2.1 implies that $V \downarrow A$ is not multiplicity-free.

Lemma 4.6 If $G=E_{n}$ and $\lambda=b \omega_{i}$ with $b>1$, then $V \downarrow A$ is not multiplicity-free.
Proof By Lemma 2.3, we can take α_{i} to be an end-node. First assume $i=1$. If $b=2$ one checks that $r-6$ is only afforded by $\lambda-134, \lambda-1^{2} 3$, while $r-8$ is afforded by $\lambda-1234, \lambda-1345, \lambda-1^{2} 34, \lambda-1^{2} 3^{2}$, so that $V \downarrow A$ is not multiplicityfree by 2.2 (ii). Similarly for $b \geq 3$ as T-weight $r-6$ appears with multiplicity 3 (from $\lambda-134, \lambda-1^{2} 3, \lambda-1^{3}$), but $r-8$ appears with multiplicity at least 5 (from $\left.\lambda-1345, \lambda-1234, \lambda-1^{2} 34, \lambda-1^{2} 2^{2}, \lambda-1^{3} 3\right)$.

If $i=2$, we see that weight $r-8$ appears with multiplicity at least 5 , since it is afforded by each of $\lambda-2345, \lambda-1234, \lambda-2456, \lambda-2^{2} 34, \lambda-2^{2} 45$. So $V \downarrow A$ is not multiplicity-free by 2.2 (iii).

Finally, assume that $i=n$. For $n=6, V$ is just the dual of $V_{G}\left(\lambda_{1}\right)$, so suppose $G=E_{7}$ or E_{8}. If $b \geq 4$ it is easy to list weights and verify that T-weight $r-8$ appears with multiplicity at least 5 , so 2.2 (iii) shows that $V \downarrow A$ is not multiplicity-free. And if $b=2$ or 3 , we see that T-weight $r-12$ appears with multiplicity at least 2 more than T-weight $r-10$.

Lemma 4.7 If $G=F_{4}$ and $\lambda=b \omega_{i}$ with $b>1$, then $V \downarrow A$ is not multiplicity-free.
Proof As usual we can take α_{i} to be an end-node. First assume $i=1$. If $b=2$, then T weight $r-6$ occurs with multiplicity $2\left(\right.$ from $\left.\lambda-123, \lambda-1^{2} 2\right)$ whereas $r-8$ occurs with multiplicity 4 (from $\lambda-1234, \lambda-123^{2}=(\lambda-12)^{s_{3}}, \lambda-1^{2} 23, \lambda-1^{2} 2^{2}$). If $b \geq 3$, then the weight $r-6$ appears with multiplicity 3 due to the additional weight $\lambda-1^{3}$. But we also get an additional weight $r-8$ from $\lambda-1^{3} 2$. In either case 2.2 implies that $V \downarrow A$ is not multiplicity-free.

Now assume $i=4$. First assume $b=2$. Then $S^{2}(0001)=V+0001+0000$. Moreover, a consideration of weights shows that $0001 \downarrow A=16+8$ and we conclude that $V \downarrow A$ is not multiplicity-free as there is a summand 20^{2}.

Finally, assume $b \geq 3$. The T-weight $r-6$ occurs with multiplicity 3 (from $\lambda-234, \lambda-34^{2}, \lambda-4^{3}$), whereas T-weight $r-8$ occurs with multiplicity at least 5 (from $\lambda-1234, \lambda-23^{2} 4=(l-234)^{s_{3}}, \lambda-234^{2}, \lambda-3^{2} 4^{2}, \lambda-34^{3}$).

This completes the proof of Proposition 4.1.

5 The case where A is regular and $\lambda=\omega_{i}$

Continue to assume that G is a simple algebraic group, A is a regular A_{1} in G, and $V=V_{G}(\lambda)$. In this section we prove Theorem 1 in the case where $\lambda=b \omega_{i}$ for some i.

Proposition 5.1 Assume that $\lambda=\omega_{i}$ for some i. Then $V \downarrow A$ is multiplicity-free if and only if G and λ are as in the following table, up to graph automorphisms.

λ	G
ω_{1}, ω_{2}	$A_{n}, B_{n}, C_{n}, D_{n}(n=2 k+1), G_{2}$
ω_{3}	$A_{n}(n \leq 7), C_{n}(n \leq 5)$
ω_{n}	C_{4}, C_{5}
ω_{n}	$B_{n}(n \leq 8), D_{n}(n \leq 9)$
ω_{1}, ω_{2}	$G=E_{6}$
ω_{1}, ω_{7}	E_{7}
ω_{8}	E_{8}
ω_{1}, ω_{4}	F_{4}

The proof is carried out in a series of lemmas.
Lemma 5.2 Assume that $\lambda=\omega_{i}$.
(i) Then $V \downarrow A$ is not multiplicity-free if $G=A_{n}, B_{n}, C_{n}$ or D_{n} and $4 \leq i \leq n-3$.
(ii) If $i=3$ and $G=A_{n}$ with $n \geq 5$, then $V \downarrow A$ is multiplicity-free if and only if $n \leq 7$.
(iii) If $G=A_{n}, B_{n}, C_{n}, D_{n}$ or G_{2} and $i=1$ or 2 , then $V \downarrow A$ is multiplicity-free except when $G=D_{n}, i=2$, and n even.

Proof (i) This follows from 2.7.
(ii) Assume $i=3$ and $G=A_{n}$ with $n \geq 5$. Then $V=\wedge^{3}\left(\omega_{1}\right)$ and a computation using Magma shows that $V \downarrow A$ is multiplicity-free for $n=5,6,7$. If $n \geq 8$ one checks that T-weight $r-12$ occurs with multiplicity at least 7 . Indeed, here $r=3 n-6$, and $r-12=3 n-18$ is afforded by the wedge of tensors of weight vectors for each of the following weights: $n(n-2)(n-16), n(n-4)(n-14), n(n-6)(n-12), n(n-$ 8) $(n-10),(n-2)(n-4)(n-12),(n-2)(n-6)(n-10),(n-4)(n-6)(n-8)$. Hence $V \downarrow A$ is not multiplicity-free for $n \geq 8$ by 2.2 (iii).
(iii) If $G=A_{n}$ then A is irreducible on the natural module (i.e. ω_{1}) for G with highest weight n. And if $i=2$, then $V \downarrow A=\wedge^{2}(n)$ is a direct summand of $n \otimes n=2 n+(2 n-2)+(2 n-4)+\cdots+0$, and hence $V \downarrow A$ is multiplicity-free. Now consider $G=B_{n}, C_{n}, D_{n}$ embedded in $X=A_{2 n}, A_{2 n-1}, A_{2 n-1}$. In the first
two cases A acts irreducibly on the natural module, $V_{X}\left(\omega_{1}\right)$, and in the third case A acts as $(2 n-2)+0$. So $V \downarrow A$ is obviously multiplicity-free for $i=1$. Now consider $i=2$. Then $V_{X}\left(\omega_{2}\right) \downarrow G=V$ if $G=B_{n}$ or $D_{n}([6])$ and equals $V+0$ if $G=C_{n}$ (the fixed space corresponds to a fixed alternating form). Therefore $V \downarrow A=\wedge^{2}(2 n), \wedge^{2}((2 n-2)+0)$ or $\wedge^{2}(2 n-1)-0$, respectively. So $V \downarrow A$ is multiplicity-free if $G=B_{n}$ or C_{n}. But if $G=D_{n}$, then $V \downarrow A=\wedge^{2}((2 n-2)+0)=$ $(2 n-2)+(4 n-6)+(4 n-10)+\cdots$ and this is multiplicity-free only if n is odd. Finally consider $G=G_{2}$ viewed as a subgroup of A_{6}. Then A is irreducible on the natural 7 -dimensional module $V_{G}\left(\omega_{1}\right)$. Also $V_{G}\left(\omega_{2}\right)$ is a direct summand of $\wedge^{2}\left(V_{G}\left(\omega_{1}\right)\right)$. So $V \downarrow A$ is multiplicity-free in both cases.

Lemma 5.3 Suppose that $G=B_{n}, C_{n}$ or D_{n}, that $\lambda=\omega_{i}$ for $i \geq 3$ and that V is not a spin module for B_{n} or D_{n}. Then $V \downarrow A$ is multiplicity-free if and only if one of the following holds:
(i) $i=n$ and $G=C_{4}$ or C_{5}.
(ii) $i=3$ and $G=C_{n}$ for $n=3,4,5$.

Proof If $G=B_{n}$ or D_{n}, then $V=\wedge^{i}\left(\omega_{1}\right)$ and the result follows from the $A_{2 n}$ or $A_{2 n-1}$ part of 5.2. Indeed, if $G=B_{n}$, then A is regular in $A_{2 n}$ while if $G=D_{n}$, $A<B_{n-1}<D_{n}$. Therefore we may assume that $G=C_{n}$. If $4 \leq i \leq n-3$ then $V \downarrow A$ is not multiplicity-free by 5.2.

Suppose $i \geq 4$. By the previous paragraph we can assume that $i>n-3$. If $i=n-2$, then T-weight $r-8$ occurs with multiplicity at least 5 as it is afforded by $\lambda-(i-3)(i-2)(i-1) i, \lambda-(i-2)(i-1) i(i+1), \lambda-(i-1) i(i+1)(i+2)$, $\lambda-(i-1) i^{2}(i+1), \lambda-i(i+1)^{2}(i+2)=(\lambda-i(i+1)(i+2))^{s_{i+1}}$, so $V \downarrow A$ is not multiplicity-free by 2.2 (iii).

Next assume $i=n-1$. First consider $n=5$, where $\wedge^{4}\left(\omega_{1}\right)=\omega_{4}+\omega_{2}+0$. Here $r=24$ and a computation shows that $r-12=12$ occurs with multiplicity 9 in $\wedge^{4}\left(\omega_{1}\right)$ but it only occurs twice in $\wedge^{2}\left(\omega_{1}\right)=\omega_{2}+0$. Therefore this weight occurs with multiplicity 7 in V and hence $V \downarrow A$ is not multiplicity-free by 2.2(iii). Now return to the general case with $i=n-1$. Then an application of 2.8(ii) to a $C_{5} \mathrm{Levi}$ subgroup shows that T-weight $r-12$ appears with multiplicity at least 7 , against 2.2.

A similar argument settles the case where $n=i$. If $n=4$ or 5 , then a Magma computation shows that $V \downarrow A$ is multiplicity-free. If $n=6$, weights $24=r-12$ and $26=r-10$ occur with multiplicities 6 and 4 respectively, and so $2.2(\mathrm{i})$ implies that $V \downarrow A$ is not multiplicity-free. For $n>6$ we also compare weights $r-10$ and $r-12$. These must already be weights of the C_{6} Levi subgroups, so again this contradicts 2.2(i).

Now assume $i=3$ with $G=C_{n}$. Then $\wedge^{3}\left(\omega_{1}\right)=V+\omega_{1}$. Also A is irreducible on the natural module for $A_{2 n-1}$. In the proof of $5.2(\mathrm{ii})$ we saw that for $n \geq 5$ the weight $r-12=6 n-21$ occurs in $\wedge^{3}\left(\omega_{1}\right)$ with multiplicity at least 7 . If $n \geq 6$, then all these weights occur within V, so $V \downarrow A$ is not multiplicity-free. This leaves $n=3,4,5$. In these cases a simple check of weights shows that $V \downarrow A$ is multiplicity-free.

Lemma 5.4 Assume V is a spin module for B_{n} or D_{n}. Then $V \downarrow A$ is multiplicityfree if and only if $n \leq 8$ for B_{n} and $n \leq 9$ for D_{n}.

Proof If $G=D_{n}$, then $A \leq B_{n-1}<G$ and B_{n-1} is irreducible on V, so it will suffice to settle the $G=B_{n}$ case. In terms of roots, $\omega_{n}=\sum\left(i \alpha_{i}\right) / 2$, so that $r=n(n+1) / 2$. As $\operatorname{dim}(V)=2^{n}$, Lemma 2.1 shows that $V \downarrow A$ is not multiplicityfree if $n \geq 10$. If $n=9$ then $\operatorname{dim} V=2^{9}=512$ while the sum in 2.1 is 552 . However, $V \downarrow A$ does not contain a summand of highest weight $r-2=43$, so $\operatorname{dim} V \leq 552-44=508$. So here too $V \downarrow A$ fails to be multiplicity-free. This leaves the case $n \leq 8$.

Consider the restriction $V \downarrow L$, where $L=G L_{n}$ is a Levi subgroup. One checks (see [5, 11.15]) that the restriction to $S L_{n}$ consists of the natural module and all its wedge powers together with two trivial modules. For example, when $n=8$ the restriction to A of the weights $\lambda, \lambda-8, \lambda-78^{2}=(\lambda-8)^{s_{7} s_{8}}, \lambda-67^{2} 8^{3}=$ $\left(\lambda-78^{2}\right)^{s_{6} s_{7} s_{8}}, \cdots$ afford the modules $0, \omega_{7}, \omega_{6}, \omega_{5}, \cdots$ for the A_{7} factor. However, the T-weights are shifted in accordance with the the number of fundamental roots subtracted. In the above example, the T-weight of 0 is just that of λ, namely 36 and the T-weights of ω_{7} are $34,32, \cdots, 20$, etc.

Carrying out the above we obtain the conclusion. We indicate below some of the decompositions for $V \downarrow A$ as they will be needed later.

$$
\begin{array}{ll}
n=8: & 36+30+26+24+22+20+18+16+14+12+10+8+6+0 \\
n=7: & 28+22+18+16+14+10+8+4 \\
n=6: & 21+15+11+9+3 \\
n=5: & 15+9+5 \\
n=4: & 10+4 \\
n=3: & 6+0 .
\end{array}
$$

Lemma 5.5 Assume that $G=E_{n}$ or F_{4}. Then $V \downarrow A$ is multiplicity-free if and only if λ is as in the following table.

G	λ
E_{6}	$\omega_{1}, \omega_{2}, \omega_{6}$
E_{7}	ω_{1}, ω_{7}
E_{8}	ω_{8}
F_{4}	ω_{1}, ω_{4}

Proof First assume $G=F_{4}$ and $\lambda=\omega_{4}$. It is straightforward to list the first few weights and see that $V \downarrow A=16+8$. Propositions 2.4 and 2.5 of [4] show that $V \downarrow A$ is multiplicity-free for each of the remaining cases listed in the table.

It remains to show that all other possibilities fail to be multiplicity-free. To do this, we use 2.1 along with the dimensions of $V=V\left(\omega_{i}\right)$, which can be found using Magma; the values of r can be calculated using the expressions for ω_{i} in terms of roots, given in [2, p.250].

This completes the proof of Proposition 5.1

6 The case where A is non-regular

Assume that G is a simple algebraic group, and $A \cong A_{1}$ is a G-irreducible subgroup of G. Recall from the Introduction that this means that a non-identity unipotent
element u of A is distinguished in G. In this section we prove Theorem 1, classifying G-modules $V=V_{G}(\lambda)$ such that $V \downarrow A$ is multiplicity-free, in the case where u is distinguished, but not a regular element of G. Such elements exist for G of type $B_{n}(n \geq 4), C_{n}(n \geq 3), D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}, F_{4}$ or G_{2}. We shall see that there are relatively few examples; they are listed in Table 2 of Section 1.

We begin with the analysis of the classical groups.
Proposition 6.1 Assume that $G=B_{n}, C_{n}$ or D_{n} and u is distinguished but not regular. Then up to graph automorphisms of $D_{n}, V_{G}(\lambda) \downarrow A$ is multiplicity-free if and only if one of the following holds:
(i) $\lambda=\omega_{1}$.
(ii) $G=D_{n}$ with $5 \leq n \leq 7, \lambda=\omega_{n}$, and $A<B_{n-2} B_{1}$ projecting to a regular A_{1} in each factor.

For the next four lemmas assume the hypotheses of 6.1 . The natural G-module, when restricted to A, is a direct sum of irreducible modules of distinct highest weights, and we first discuss the corresponding T-labelling of the Dynkin diagram of G. A full description can be found in [5, 3.18]. As an example, consider $G=$ C_{15} with A acting as $15+9+3$. The T-weights are $15,13,11,9^{2}, 7^{2}, 5^{2}, 3^{3}, 1^{3}$ plus negatives. The corresponding labelling of the Dynkin diagram is 222020202002002 . So the labelling begins with an initial string of 2's, then a number of terms 20, several of type 200 , and so on. For C_{n}, the end-node α_{n} has label 2 , and for B_{n} it has label 0 . For D_{n} both of α_{n-1}, α_{n} have the same label; it is 2 or 0 , according to whether there are just two summands for A or more than two, respectively.

As in previous sections, let $V=V_{G}(\lambda)$, of highest weight $\lambda=\sum c_{i} \omega_{i}$ affording T-weight r.

Lemma 6.2 Assume $V \downarrow A$ is multiplicity-free. Then the following hold.
(i) $c_{i}=0$ if α_{i} has label 0 .
(ii) $c_{i}=0$ if α_{i} has label 2 and α_{i} is adjacent to two nodes having label 0 .
(iii) $\lambda=b \omega_{i}$ for some i.
(iv) If $\lambda=b \omega_{i}$ with $b>1$, then $i=1$.
(v) $\lambda \neq \omega_{n}$ if $G=B_{n}$ or C_{n}.

Proof (i) Assume α_{i} has label 0 but $c_{i} \neq 0$. Then $\lambda-\alpha_{i}$ is a weight affording T-weight r, which implies that r^{2} is a summand of $V \downarrow A$, a contradiction.
(ii) Next suppose that α_{i} has label 2 but nodes on either side have label 0 . If we label these nodes $\alpha_{i}, \alpha_{j}, \alpha_{k}$, then $\lambda-i, \lambda-i j, \lambda-i k$ all afford T-weight $r-2$, contradicting 2.2.
(iii) Assume $c_{i} \neq 0 \neq c_{j}$. Then $\lambda-i$ and $\lambda-j$ afford the only T-weights $r-2$. This implies that neither α_{i} nor α_{j} can be adjacent to a node with 0 label, as otherwise $r-2$ would occur with multiplicity at least 3 . Therefore both occur in the initial string of 2's, and within this string we can argue exactly as in the regular case. Indeed, the argument of $2.6(\mathrm{iv}),(\mathrm{v})$ implies that $i=1, j=2$, and $c_{i}=c_{j}=1$. Then
the first paragraph of the proof of Lemma 3.4 implies that the initial string of 2's has length 3 . But then T-weight $r-4$ is afforded by $\lambda-12$ (multiplicity 2), $\lambda-23$ and $\lambda-234$, contradicting 2.2.
(iv) Assume $\lambda=b \omega_{i}$ with $b>1$. By 2.3(i), α_{i} is an end-node. Suppose $i=n$. Then $G \neq B_{n}$, as otherwise α_{n} has label 0 , against (i). If $G=C_{n}$, then $\lambda-n, \lambda-$ $n(n-1), \lambda-n(n-1)^{2}=(\lambda-n(n-1))^{s_{n-1}}$ all afford $r-2$. And for $D_{n}, r-4$ is afforded by $\lambda-n^{2}, \lambda-n^{2}(n-2), \lambda-n^{2}(n-2)^{2}, \lambda-n(n-2)(n-1)$. This is a contradiction. A similar argument applies if $G=D_{n}$ and $i=n-1$.
(v) Suppose $\lambda=\omega_{n}$. The last argument of the previous paragraph also shows that $V \downarrow A$ is not multiplicity-free if $G=C_{n}$. And if $G=B_{n}$ then α_{n} has label 0 , contradicting (i).

Lemma 6.3 Suppose $G=D_{n}$ for $n \geq 5$ and $\lambda=\omega_{n}$. Then $V \downarrow A$ is multiplicity-free if and only if $n \leq 7$ and $A<B_{n-2} B_{1}$, projecting to a regular A_{1} in each factor.

Proof Assume $G=D_{n}$ and $\lambda=\omega_{n}$. Then the labels of α_{n-1} and α_{n} are both 2, and A has two irreducible summands on the natural G-module. The label of α_{n-2} is 0 .

Suppose $V \downarrow A$ is multiplicity-free. If α_{n-3} also has label 0 , then $\lambda-n, \lambda-(n-$ 2) $n, \lambda-(n-3)(n-2) n$ all afford $r-2$, a contradiction. Therefore α_{n-3} has label 2. Next consider α_{n-4}. If α_{n-4} has label 0 then $n \geq 6$ and α_{n-5} must have label 2. Hence $r-6$ is afforded by each of $\lambda-(n-3)(n-2)(n-1) n, \lambda-(n-4)(n-$ $3)(n-2)(n-1) n, \lambda-(n-3)(n-2)^{2}(n-1) n, \lambda-(n-4)(n-3)(n-2)^{2}(n-1) n$, $\lambda-(n-5)(n-4)(n-3)(n-2) n$, again a contradiction. Therefore, α_{n-4} has label 2. This forces the full labelling to be $22 \cdots 22022$.

Hence A acts on the natural G-module as $(2 n-4)+2$ and so lies in a subgroup $B_{n-2} B_{1}$, which acts on V as the tensor product of spin modules for the factors. That is, $V \downarrow A=X \otimes 1$ where X is the restriction of the spin module of B_{n-1} to a regular A_{1}. As we are assuming $V \downarrow A$ to be multiplicity-free, this forces X to be multiplicity-free. Applying 5.4 we see that this implies $n-2 \leq 8$. Moreover, at the end of the proof of 5.4 we listed the decompositions of X when this occurs. Tensoring these with 1 it is immediate from 2.4 that the V is multiplicity-free if and only if $n \leq 7$.

Lemma 6.4 (i) Assume $\lambda=b \omega_{1}$ with $b>1$. Then $V \downarrow A$ is not multiplicity-free.
(ii) Assume $\lambda=\omega_{2}$. Then $V \downarrow A$ is not multiplicity-free.

Proof (i) First suppose $b=2$. Note that $S^{2}\left(\omega_{1}\right)=V$ if $G=C_{n}$, while $S^{2}\left(\omega_{1}\right)=$ $V+0$ if $G=B_{n}$ or D_{n}. Let A act on the natural module for G as $c+d+\cdots$, where $c>d>\cdots$. Note that if $d=0$, then u is a regular element of B_{n-1} and is hence regular in $G=D_{n}$, which we are assuming is not the case. Hence $d>0$.

Now $S^{2}\left(\omega_{1}\right) \downarrow A$ contains $S^{2}(c)=2 c+(2 c-4)+\cdots$ and $c \otimes d=(c+d)+(c+$ $d-2)+\cdots$ as direct summands. If $c-d=4 k$, then $2 c-4 k=c+d$ is common to both summands. And if $c-d=4 k-2$, then $2 c-4 k=c+d-2$ is common to both summands. In either case we see that $V \downarrow A$ is not multiplicity-free.

Now assume that $b \geq 3$ and that $V \downarrow A$ is multiplicity-free. We first settle some special cases. If the T - labelling is $202 \cdots$, then $r-4$ is afforded by $\lambda-1^{2}, \lambda-1^{2} 2$, $\lambda-1^{2} 2^{2}, \lambda-123$, a contradiction. Similarly, if the labelling is $2202 \cdots$, then $r-4$ is
afforded by $\lambda-12, \lambda-123, \lambda-1^{2}$, which contradicts 2.2 (iii). And if the labelling is $22202 \cdots$, then $r-8$ is afforded by $\lambda-12345, \lambda-1^{2} 23, \lambda-1^{2} 234, \lambda-1^{2} 2^{2}, \lambda-1^{3} 2$, again contradicting 2.2 (iii).

Now suppose that the initial string of 2 's has length at least 4 . If $b \geq 4$, the weights $\lambda-1234, \lambda-1^{2} 23, \lambda-1^{2} 2^{2}, \lambda-1^{3} 2, \lambda-1^{4}$ all afford $r-8$, against 2.2 (iii). So assume $b=3$. Then $S^{3}\left(\omega_{1}\right)=V$ or $V+\omega_{1}$ according to whether or $\operatorname{not} G=C_{n}$. One checks $S^{3}\left(\omega_{1}\right)$ to see that $r-12$ occurs with multiplicity at least 7 in $V \downarrow A$, and hence $V \downarrow A$ is not multiplicity-free.
(ii) The argument is similar to the $b=2$ case in (i). Assume A acts on the natural module as $c+d+\cdots$, where $c>d>\cdots$. Note that $d>0$, as otherwise u would be a regular element of $G=D_{n}$. Then $\wedge^{2}\left(\omega_{1}\right)=V$ or $V+0$ according to whether or not G is an orthogonal group. So $\wedge^{2}\left(\omega_{1}\right) \downarrow A$ contains $\wedge^{2}(c)=(2 c-2)+(2 c-6)+\cdots$, as well as $c \otimes d=(c+d)+(c+d-2)+\cdots$, as direct summands. If $c-d=4 k+2$, then $2 c-2-4 k=c+d$ and if $c-d=4 k$, then $2 c-2-4 k=c+d-2$. In either case $V \downarrow A$ is not multiplicity-free.

Lemma 6.5 Assume $\lambda=\omega_{i}$ for $3 \leq i<n$ and V is not a spin module for D_{n}. Then $V \downarrow A$ is not multiplicity-free .

Proof Assume $V \downarrow A$ is multiplicity-free. By 6.2 (ii) we know that α_{i} is in the initial string of 2's. Suppose the end of this string is at α_{j}. First assume $i \geq 4$. If in addition, $i \leq j-3$, then the result follows from 2.7. So we now consider situations where $i>j-3$ (still with $i \geq 4$).

Suppose $i=j$. Then α_{i+1} has label 0. If $n=i+1$, then $G=B_{n}$ and each of $\lambda-i, \lambda-i(i+1), \lambda-i(i+1)^{2}=(\lambda-i(i+1))^{s_{i+1}}$ afford $r-2$, a contradiction. Therefore $n>i+1$. If α_{i+2} has label 0 we obtain the same contradiction from $\lambda-i, \lambda-i(i+1), \lambda-i(i+1)(i+2)$. So suppose α_{i+2} has label 2 . Then $r-4$ is afforded by each of $\lambda-(i-1) i, \lambda-(i-1) i(i+1), \lambda-i(i+1)(i+2)$, which is not yet a contradiction. If $n=i+2$, then $G=C_{n}$ and we also get $r-4$ from $\lambda-i(i+1)^{2}(i+2)=(\lambda-i(i+1)(i+2))^{s_{i+2}}$. And if $n>i+2$, either α_{i+3} has label 0 or else $G=D_{n+3}$. In either case we get an extra weight affording $r-4$, which does contradict 2.2.

Therefore $i<j$. Then $r-2$ appears with multiplicity 1 and 2.2 (iii) applies. By assumption, α_{j+1} has label 0 . Suppose $i=j-1$. Then $r-4$ is afforded by each of $\lambda-(i-1) i, \lambda-i j, \lambda-i j(j+1)$ a contradiction. And if $i=j-2$, then $r-8$ is afforded by each of $\lambda-(i-3)(i-2)(i-1) i, \lambda-(i-2)(i-1) i(i+1), \lambda-(i-1) i(i+1)(i+2)$, $\lambda-(i-1) i(i+1)(i+2)(i+3), \lambda-(i-1) i^{2}(i+1)$, contradicting 2.2(iii).

Now assume $i=3$. Then $\wedge^{3}\left(\omega_{1}\right)$ equals V or $V+\omega_{1}$ depending on whether or not G is an orthogonal group. Write $\omega_{1} \downarrow A=a+b+\cdots$ with $a>b>\cdots$. We know that α_{3} is in the intial string of 2 's, and this forces $a-b \geq 6$ so that $r=3 a-6$. If G is an orthogonal group, then a, b, \cdots are even and so $a \geq 8$ (note that $b>0$ as A is not regular). Then $V \downarrow A$ contains $\wedge^{3}(a)$ as a direct summand which is not multiplicity-free by 5.2 (ii). Indeed, there is a direct summand of highest weight $r-12=3 a-18$ appearing with multiplicity 2 . Now consider $G=C_{n}$. The same argument applies provided $3 a-18>a$. So it remains to consider $a \leq 9$. The cases are $(a, b)=(7,1),(9,3),(9,1)$. Then $\wedge^{3}\left(\omega_{1}\right) \downarrow A$ contains $\wedge^{3}(a)$ and $\wedge^{2}(a) \otimes b$ as direct summands. As $\wedge^{3}(a)=(3 a-6)+(3 a-10)+\cdots$ and $\wedge^{2}(a) \otimes b=(2 a-2+b)+(2 a-4+b)+\cdots$, it follows that in each case, $3 a-10$ occurs with multiplicity at least 2 and is not present in ω_{1}.

This completes the proof of Proposition 6.1.
It remains to consider the exceptional groups. Here we label the distinguished non-regular classes as in [5]. For convenience we reproduce the list in Table 3.

Table 3: Distinguished non-regular classes in exceptional groups

G	classes	labellings
G_{2}	$G_{2}\left(a_{1}\right)$	02
F_{4}	$F_{4}\left(a_{1}\right), F_{4}\left(a_{2}\right), F_{4}\left(a_{3}\right)$	$2202,0202,0200$
E_{6}	$E_{6}\left(a_{1}\right), E_{6}\left(a_{3}\right)$	222022,200202
E_{7}	$E_{7}\left(a_{1}\right), E_{7}\left(a_{2}\right), E_{7}\left(a_{3}\right)$,	$2220222,2220202,2002022$,
	$E_{7}\left(a_{4}\right), E_{7}\left(a_{5}\right)$	2002002,0002002
E_{8}	$E_{8}\left(a_{1}\right), E_{8}\left(a_{2}\right), E_{8}\left(a_{3}\right)$,	$22202222,22202022,20020222$,
	$E_{8}\left(a_{4}\right), E_{8}\left(a_{5}\right), E_{8}\left(a_{6}\right)$,	$20020202,20020020,00020020$,
	$E_{8}\left(a_{7}\right), E_{8}\left(b_{4}\right), E_{8}\left(b_{5}\right)$,	$00002000,20020022,00020022$,
	$E_{8}\left(b_{6}\right)$	00020002

Proposition 6.6 Assume G is an exceptional group and u is distinguished but not regular. Then up to graph automorphisms of $E_{6}, V_{G}(\lambda) \downarrow A$ is multiplicity-free if and only if λ and u are as in the following table.

G	u	λ
F_{4}	$F_{4}\left(a_{1}\right)$	ω_{4}
E_{6}	$E_{6}\left(a_{1}\right)$	ω_{1}
E_{7}	$E_{7}\left(a_{1}\right)$ or $E_{7}\left(a_{2}\right)$	ω_{7}
E_{8}	$E_{8}\left(a_{1}\right)$	ω_{8}

Lemma 6.7 Proposition 6.6 holds if $G=G_{2}$ or F_{4}.
Proof First consider $G=F_{4}$. Suppose $V \downarrow A$ is multiplicity-free. If there exist $i \neq j$ with $c_{i} \neq 0 \neq c_{j}$, then either α_{i} or α_{j} is adjacent to a node with label 0 , contradicting 2.6(ii). Therefore $\lambda=b \omega_{i}$ for some i. From the diagrams in Table 3, and considering the multiplicity of $r-2$ using $6.2(\mathrm{ii})$, we see that u cannot be in the class $F_{4}\left(a_{3}\right)$, and that if $u=F_{4}\left(a_{2}\right)$ then $i=4$. But then $\lambda-234, \lambda-1234$, $\lambda-23^{2} 4, \lambda-123^{2} 4$ all afford $r-4$, contradicting 2.2.

Now consider u in class $F_{4}\left(a_{1}\right)$. If $i=2$, then $\lambda-2, \lambda-23, \lambda-23^{2}$ all afford $r-2$, a contradiction. If $i=1$, then $r-2$ appears with multiplicity 1 , but $\lambda-12$, $\lambda-123, \lambda-123^{2}$ all afford $r-4$, contradicting 2.2(i). Therefore $i=4$. If $b>1$, $r-4$ appears with multiplicity 4 , which is impossible. And if $\lambda=\omega_{4}$ it follows from [7, Table A, p.65] and the tables at the end of [4] that $A<B_{4}$, and $\omega_{4} \downarrow B_{4}=$ $1000+0001+0000$. Using the information at the end of the proof of 5.4 , we find that $V \downarrow A=8+(10+4)+0$ and hence $V \downarrow A$ is multiplicity-free.

Finally consider G_{2} where the only labelling is 02 . Hence $\lambda=b \omega_{2}$. Then $\lambda-2$, $\lambda-12, \lambda-1^{3} 2$ all afford $r-2$, a contradiction.

Lemma 6.8 Proposition 6.6 holds if $G=E_{n}$.

Proof Assume $G=E_{n}$ and $V \downarrow A$ is multiplicity-free. First suppose that there exist $i>j$ with $c_{i} \neq 0 \neq c_{j}$. Lemma 2.6 shows these are the only two such nodes, that neither can adjoin a node with label 0 , that at least one must be an end-node, and that $c_{i}=c_{j}=1$. Suppose $j=1$. Then α_{3} must be labelled 2 and from the list of possible labellings in Table 3 we see that α_{4} has label 0 . This forces $i \geq 6$. But then $r-4$ is afforded by $\lambda-13, \lambda-134, \lambda-1 i, \lambda-(i-1) i$, a contradiction. Therefore, $j \neq 1$ and hence $i=n$. If $j \neq n-1$, then we must have $G=E_{8}, j=6$, and $u=E_{8}\left(a_{1}\right)$. But here we see that $r-4$ occurs with multiplicity at least 5 , a contradiction.

Suppose $i=n, j=n-1$. If α_{n-3} has label 2 , then $r-6$ occurs with multiplicity at least 5 from $\lambda-(n-2)(n-1) n$ (multiplicity 2$), \lambda-(n-1)^{2} n=(\lambda-n)^{s_{n-1}}$, $\lambda-(n-1) n^{2}=(\lambda-(n-1))^{s_{n}}, \lambda-(n-3)(n-2)(n-1)$. We get the same contradiction if α_{n-3} has label 0 , by replacing the last weight with $\lambda-(n-3)(n-2)(n-1) n$, (it even appears with multiplicity 2).

Hence $\lambda=b \omega_{i}$ for some i. Suppose $b>1$. Then 2.3 implies that α_{i} is an end-node with label 2 and that the adjacent node has label 2 . Therefore $i=1$ or $i=n$. If $i=1$, then $r-6$ is afforded by $\lambda-1234, \lambda-1345, \lambda-1^{2} 3, \lambda-1^{2} 34$, contradicting 2.2 (iii).

Next consider $i=n$ where we can assume $n=7$ or 8 since the E_{6} case follows from the above via a graph automorphism. If α_{n-2} has label 0 , then $r-4$ is afforded by $\lambda-(n-1) n, \lambda-(n-2)(n-1) n, \lambda-n^{2}$, contradicting $2.2\left(\right.$ iii). Therefore α_{n-2} has label 2 . The only possibilities satisfying these conditions are $u=E_{7}\left(a_{1}\right), E_{8}\left(a_{1}\right)$, $E_{8}\left(a_{3}\right)$. If $u=E_{8}\left(a_{1}\right)$, then $r-12$ arises from $\lambda-1345678, \lambda-2345678, \lambda-234^{2} 5678$, $\lambda-345678^{2}, \lambda-245678^{2}, \lambda-567^{2} 8^{2}, \lambda-6^{2} 7^{2} 8^{2}$, a contradiction. A similar argument applies to $E_{7}\left(a_{1}\right)$ and $E_{8}\left(a_{3}\right)$, using the weight $r-8$.

At this point we have $\lambda=\omega_{i}$. As in the proof of 5.5 , we use 2.1 to reduce to the cases $(G ; i)=\left(E_{6} ; 1,2,6\right),\left(E_{7} ; 1,7\right)$ and $\left(E_{8} ; 8\right)$. The action of A on $L(G)$ is given in [7] (see Table A, p. 65 and Table 1, p.193). This settles all but the 27 dimensional modules ω_{1}, ω_{6} for E_{6} and the 56 dimensional module ω_{7} for E_{7}.

Suppose $G=E_{6}$. From [7, p.65] we see that u is a regular element in C_{4} or $A_{1} A_{5}$ according to whether $u=E_{6}\left(a_{1}\right)$ or $E_{6}\left(a_{3}\right)$. Then [4, 2.3,2.5] shows that only the first case is multiplicity-free.

Finally assume $G=E_{7}$ and $\lambda=\omega_{7}$. Lemma 2.5 of [4] shows that $V \downarrow A$ is multiplicity-free if $u=E_{7}\left(a_{1}\right)$. If $u=E_{7}\left(a_{2}\right)$, then $A \leq A_{1} F_{4}$ by [7, p.65], and [4, 2.5] shows that $V \downarrow A=(1 \otimes(16+8))+3$, which is multiplicity-free. If $u=E_{7}\left(a_{4}\right)$ or $E_{7}\left(a_{5}\right)$, then both α_{5} and α_{6} have label 0 so that $r-2$ occurs with multplicity 3, a contradiction. This leaves $u=E_{7}\left(a_{3}\right)$, in which case [7, p.65] shows that $A<A_{1} B_{5}<A_{1} D_{6}$. Then [4, 2.3] shows that $V \downarrow A_{1} D_{6}=1 \otimes \omega_{1}+0 \otimes \omega_{5}$. Applying the decomposition at the end of the proof of 5.4 , we see that this is not multiplicityfree.

This completes the proof of Theorem 1.

7 Proof of Corollary 2

Now we prove Corollary 2. Let G be a simple algebraic group of rank at least 2, let $u \in G$ be a distinguished unipotent element and let A be an A_{1} subgroup of G containing u. Let $\rho: G \rightarrow I(V)$ is an irreducible representation with highest weight λ.

If $I(V)=S L(V)$, then $\rho(u)$ is distinguished in $I(V)$ if and only if $V \downarrow \rho(A)$ is irreducible, so the conclusion goes back to Dynkin [3], but see also [6, Theorem 7.1] where the result is given explicitly. Alternatively it is easy to check the Tables 1 and 2 of Theorem 1, except for ω_{1} for A_{n}, B_{n}, C_{n} and 10 for G_{2}, the subgroup acts reducibly on $V_{G}(\lambda)$.

Now suppose $I(V)=S p(V)$ or $S O(V)$. If $\rho(u)$ is distinguished in $I(V)$, then $V \downarrow \rho(A)$ is multiplicity-free, and so λ is as in Table 1 or 2 of Theorem 1. Moreover V is self-dual, so that $\lambda=-w_{0}(\lambda)$. Conversely, for all such λ in the tables, $V \downarrow \rho(A)$ is multiplicity-free, and so $\rho(u)$ has Jordan blocks on V of distinct sizes, hence is distinguished. This completes the proof.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
[2] N. Bourbaki, Groupes et Algèbres de Lie (Chapters 4,5,6), Hermann, Paris, 1968.
[3] E.B. Dynkin, Maximal subgroups of the classical groups, Trans. Amer. Math. Soc., 6, (2), (1957), 245-378.
[4] M.W. Liebeck and G.M. Seitz, Reductive subgroups of exceptional algebraic groups, Memoirs Amer. Math. Soc., Vol. 121, No. 580, 1996.
[5] M.W. Liebeck and G.M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Math. Surveys and Monographs, Vol. 180, American Math. Soc., Providence, RI, 2012.
[6] G.M. Seitz, The maximal subgroups of classical algebraic groups, Memoirs Amer. Math. Soc., Vol. 67, No. 365, 1987.
[7] G.M. Seitz, The maximal subgroups of exceptional algebraic groups, Memoirs Amer. Math. Soc., Vol. 90, No. 441, 1991.
[8] D.M. Testerman, Irreducible subgroups of exceptional algebraic groups. Memoirs Amer. Math. Soc., Vol. 75, No. 390, 1988.

Martin W. Liebeck, Imperial College, London SW7 2AZ, UK, m.liebeck@imperial.ac.uk

Gary M. Seitz, University of Oregon, Eugene, Oregon 97403, USA, seitz@uoregon.edu

Donna M. Testerman, EPFL, Lausanne, CH-1015 Switzerland, donna.testerman@epfl.ch

[^0]: ${ }^{0} 2010$ Mathematics Subject Classification: 20G05, 20G07, 20G15, 22E46

