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Abstract

Fuchsian groups (acting as isometries of the hyperbolic plane) oc-
cur naturally in geometry, combinatorial group theory, and other con-
texts. We use character-theoretic and probabilistic methods to study
the spaces of homomorphisms from Fuchsian groups to symmetric
groups. We obtain a wide variety of applications, ranging from count-
ing branched coverings of Riemann surfaces, to subgroup growth and
random finite quotients of Fuchsian groups, as well as random walks
on symmetric groups.

In particular we show that, in some sense, almost all homomor-
phisms from a Fuchsian group to alternating groups An are surjective,
and this implies Higman’s conjecture that every Fuchsian group sur-
jects onto all large enough alternating groups. As a very special case
we obtain a random Hurwitz generation of An, namely random gen-
eration by two elements of orders 2 and 3 whose product has order 7.
We also establish the analogue of Higman’s conjecture for symmetric
groups. We apply these results to branched coverings of Riemann sur-
faces, showing that under some assumptions on the ramification types,
their monodromy group is almost always Sn or An.

Another application concerns subgroup growth. We show that a
Fuchsian group Γ has (n!)µ+o(1) index n subgroups, where µ is the mea-
sure of Γ, and derive similar estimates for so-called Eisenstein numbers
of coverings of Riemann surfaces.

A final application concerns random walks on alternating and sym-
metric groups. We give necessary and sufficient conditions for a collec-
tion of ‘almost homogeneous’ conjugacy classes in An to have product
equal to An almost uniformly pointwise.

Our methods involve some new asymptotic results for degrees and
values of irreducible characters of symmetric groups.
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1 Introduction

A Fuchsian group is a finitely generated non-elementary discrete group of
isometries of the hyperbolic plane H2. By classical work of Fricke and Klein,
the orientation-preserving such groups Γ have a presentation of the following
form:

(1.1) generators: a1, b1, . . . , ag, bg (hyperbolic)
x1, . . . , xd (elliptic)
y1, . . . , ys (parabolic)
z1, . . . , zt (hyperbolic boundary elements)

relations: xm1
1 = · · · = xmdd = 1,
x1 · · ·xd y1 · · · ys z1 · · · zt [a1, b1] · · · [ag, bg] = 1,

where g, d, s, t ≥ 0 and mi ≥ 2 for all i. The number g is referred to as the
genus of Γ. The measure µ(Γ) of an orientation-preserving Fuchsian group
Γ is defined by

µ(Γ) = 2g − 2 +
d∑
i=1

(1− 1

mi
) + s+ t.

It is well known that µ(Γ) > 0. The groups with presentations as above,
but having µ(Γ) = 0 or µ(Γ) < 0, are the so-called Euclidean and spherical
groups, respectively.

The second author thanks EPSRC for its support and Imperial College for its hospi-
tality while this work was carried out
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We shall also study non-orientation-preserving Fuchsian groups; these
have presentations as follows, with g > 0:

(1.2) generators: a1, . . . , ag
x1, . . . , xd
y1, . . . , ys
z1, . . . , zt

relations: xm1
1 = · · · = xmdd = 1,
x1 · · ·xd y1 · · · ys z1 · · · zt a2

1 · · · a2
g = 1.

In this case the measure µ(Γ) is defined by

µ(Γ) = g − 2 +
d∑
i=1

(1− 1

mi
) + s+ t,

and again, µ(Γ) > 0.

We call Fuchsian groups as in (1.1) oriented, and those as in (1.2) non-
oriented. Note that µ(Γ) coincides with −χ(Γ), where χ(Γ) is the Euler
characteristic of Γ.

If s + t > 0 then Γ is a free product of cyclic groups. In particular,
non-abelian free groups are Fuchsian, as well as free products of finite cyclic
groups, such as the modular group. Other examples are surface groups
(where d = s = t = 0), and triangle groups

∆(m1,m2,m3) = 〈x1, x2, x3 | xm1
1 = xm2

2 = xm3
3 = x1x2x3 = 1〉,

(where g = s = t = 0, d = 3 and
∑ 1

mi
< 1). Among triangle groups, the

Hurwitz group ∆(2, 3, 7) has received particular attention, one reason being
that its finite images are precisely those finite groups which occur as the
automorphism group of a Riemann surface of genus h ≥ 2 and have order
achieving the Hurwitz bound 84(h− 1) (see [7, 21]).

We call Fuchsian groups with s = t = 0 proper (also termed F -groups in
[33, iii.5]). Our main focus is on proper Fuchsian groups, since the improper
ones are easier to handle, and some of our results are either known or easily
derived for them.

In this paper we study the space of homomorphisms Hom(Γ, Sn) from
a Fuchsian group Γ to a symmetric group. The study of this space and
various subspaces has a wide variety of applications, ranging from coverings
of Riemann surfaces to subgroup growth and random finite quotients of
Fuchsian groups, as well as random walks on symmetric groups. Two major
by-products are estimates for Eisenstein numbers of coverings of Riemann
surfaces in the hyperbolic case (Theorem 1.3), and a probabilistic proof
of the well-known conjecture of Graham Higman that any Fuchsian group
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surjects onto all but finitely many alternating groups (Corollary 1.8). This
conjecture has recently been proved by Everitt [16] for oriented Fuchsian
groups using completely different methods. Our approach handles general
Fuchsian groups, and we also prove an analogue of Higman’s conjecture for
symmetric quotients, determining precisely which Fuchsian groups surject
to all but finitely many symmetric groups (Theorem 1.10). These results
have applications to monodromy groups of branched coverings of Riemann
surfaces (Theorem 1.13).

A major tool in our proofs is the character theory of symmetric groups,
and we establish a number of new asymptotic results relating to degrees and
values of such characters. For example, denoting by Irr(Sn) the set of all
irreducible characters of Sn, we prove

Theorem 1.1 Fix a real number s > 0. Then∑
χ∈Irr(Sn)

χ(1)−s → 2 as n→∞.

Moreover,
∑

χ∈Irr(Sn) χ(1)−s = 2 +O(n−s).

For integers s ≥ 1 this was originally proved by Lulov in his unpublished
thesis [32]; this was reproved in [37], where more detailed estimates are
obtained. The proof of Theorem 1.1 is fairly elementary, but it is important
for many of our results, and we sometimes need it for rather small values of
s, for example s = 1

42 . We also prove a version for alternating groups (see
Corollary 2.7).

We now state our main results. The first deals with the number of
homomorphisms from a Fuchsian group to a symmetric group, and forms
the basis for the other results. In the statements below, o(1) denotes a
quantity which tends to 0 as n→∞.

Theorem 1.2 For any Fuchsian group Γ, we have

|Hom(Γ, Sn)| = (n!)µ(Γ)+1+o(1).

In fact our estimates for |Hom(Γ, Sn)| are more precise - see Theorem 1.12,
Corollary 3.6 and Theorem 3.7 below. We also obtain similar results for
|Hom(Γ, An)|, which are important for some of the main applications.

A classical motivation behind the study of |Hom(Γ, Sn)| stems from the
theory of branched coverings of Riemann surfaces. Let Y be a compact
connected Riemann surface of genus g, and let y1, . . . , yd ∈ Y be fixed
distinct points. Consider index n coverings π : X → Y , unramified out-
side {y1, . . . , yd}, and with monodromy elements g1, . . . , gd ∈ Sn around
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y1, . . . , yd respectively. As is standard, we identify geometrically equivalent
coverings.

For conjugacy classes C1, . . . , Cd of Sn, and integers m1, . . . ,md ≥ 2, set
C = (C1, . . . , Cd), m = (m1, . . . ,md) and define

P (C, n) = {π : X → Y : gi ∈ Ci for all i},
P (m, n) = {π : X → Y : gmii = 1 for all i}.

Attempts to count such coverings go back to Hurwitz [22]. Define Aut π to
be the centralizer in Sn of the monodromy group of π. Following [26] we
call the sums

∑
1/|Autπ| over such sets of coverings P (C, n) the Eisenstein

numbers of coverings, a term which the authors attribute to Serre. When all
but one of the classes Ci consists of transpositions these numbers are called
Hurwitz numbers, which have been the subject of recent intensive study in
view of connections with geometry and physics - see for instance [46] and
the references therein. See also [13], where asymptotic results are proved in
the case where the Ci consist of cycles of bounded length, and used to study
volumes of certain moduli spaces.

Eisenstein numbers are related to homomorphisms of Fuchsian groups in
the following way. Let Ci = gSni (1 ≤ i ≤ d) be classes in Sn, and let mi be
the order of gi. Define sgn(Ci) = sgn(gi), and write C = (C1, . . . , Cd). For
a group Γ having presentation as in (1.1) or (1.2), define

HomC(Γ, Sn) = {φ ∈ Hom(Γ, Sn) : φ(xi) ∈ Ci for 1 ≤ i ≤ d}.
Note that if Γ is proper, and HomC(Γ, Sn) 6= ∅, then

∏d
i=1 sgn(Ci) = 1.

When Γ is a proper oriented Fuchsian group (as in (1.1) with s = t =
0), a covering in P (C, n) corresponds to an Sn-class of homomorphisms in
HomC(Γ, Sn) (see Section 8 for details). If π ∈ P (C, n) corresponds to the
class φSn (where φ ∈ HomC(Γ, Sn)), then |Autπ| = |CSn(φ(Γ))|.

The following formula, which essentially dates back to Hurwitz, connects
Eisenstein numbers and |HomC(Γ, Sn)| with characters of symmetric groups
(see Proposition 3.2 and Section 8):

(1.3)
∑

π∈P (C,n)

1

|Autπ| =
|HomC(Γ, Sn)|

n!
=
|C1| . . . |Cd|

(n!)2−2g

∑
χ∈Irr(Sn)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
.

This formula includes the case where d = 0; here Γ is a surface group, the
coverings are unramified, HomC = Hom, and empty products are taken
to be 1. While the formula (1.3) has been around for a century or so, it
has not been used extensively, partly due to the difficulty in dealing with
the character-theoretic sum on the right hand side; rather, geometric and
combinatorial methods have often been applied (see for instance [26, 46, 42]).
See also [25] for a survey of some related material.
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In this paper we are able to use character theory to estimate the sum in
(1.3) for certain types of conjugacy classes Ci described below. This leads to
estimates for Eisenstein numbers, as well as being a key ingredient for many
of the other theorems in the paper. A key tool in our character-theoretic
approach is a result of Fomin and Lulov [17] which bounds the values of
irreducible characters of Sn on classes of cycle-shape (ma), where n = ma.
We call such classes homogeneous.

There is special interest in the case where the classes Ci are all homo-
geneous. Indeed, the Eisenstein numbers corresponding to such classes are
studied in [26], mainly in the case where Γ is Euclidean or spherical, and
formulae are obtained in [26, Section 3] using geometric methods. As stated
in [26, p.414], the most interesting case is the hyperbolic one, in which the
group Γ is Fuchsian. For this case, even allowing the permutations in Ci to
have boundedly many fixed points, we prove the following result.

Theorem 1.3 Fix integers g ≥ 0 and m1, . . . ,md ≥ 2. Let µ = 2g − 2 +∑d
i=1(1− 1

mi
) and suppose µ > 0.

(i) For 1 ≤ i ≤ d let Ci be a conjugacy class in Sn having cycle-shape
(mai

i , 1
fi), and assume

∏d
i=1 sgn(Ci) = 1. Then for fi bounded and n→∞,

we have ∑
π∈P (C,n)

1
|Autπ| = (2 +O(n−µ))|C1| · · · |Cd| · (n!)2g−2

∼ (n!)µ · n
∑ fi

mi
− 1

2
(1− 1

mi
)
.

(ii)
∑

π∈P (m,n)
1

|Autπ| = (n!)µ+o(1).

Here, and throughout the paper, for functions f1, f2, we write f1 ∼ f2 if
there are positive constants c1, c2 such that c1f2 ≤ f1 ≤ c2f2. We call classes
Ci as in (i) with fi bounded almost homogeneous classes of Sn. We can show
that most coverings in P (C, n) are connected (see Proposition 8.1), and so
the estimates in 1.3 also hold for the numbers of connected coverings.

A different motivation behind the study of homomorphisms from Fuch-
sian groups to symmetric groups stems from the fast-growing theory of sub-
group growth. For a finitely generated group Γ and a positive integer n, de-
note by an(Γ) the number of index n subgroups of Γ. The relation between
the function an(Γ) and the structure of Γ has been the subject of intensive
study over the past two decades (see the monograph [31]). The subgroup
growth of the free group Fr of rank r was determined by M. Hall and M.
Newman [19, 40]; extensions to the modular group as well as arbitrary free
products of cyclic groups were subsequently given in [8, 40]. Recently Müller
and Puchta [37], following the character-theoretic approach of Mednykh [34],
determined the subgroup growth of surface groups. It follows from these re-
sults that an(Fr) = (n!)r−1+o(1), that an(PSL2(Z)) = (n!)

1
6

+o(1), and for an
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oriented surface group Γg of genus g ≥ 2, that an(Γg) = (n!)2g−2+o(1). We
show that these results are particular cases of a general phenomenon:

Theorem 1.4 For any Fuchsian group Γ,

an(Γ) = (n!)µ(Γ)+o(1).

This implies, for example, that the Hurwitz group ∆(2, 3, 7) has sub-

group growth (n!)
1
42

+o(1). In fact this is the minimal subgroup growth of a
Fuchsian group, since 1

42 is easily seen to be the smallest possible value of
µ(Γ). Note that Theorem 1.4 amounts to saying that

log an(Γ)

log n!
→ µ(Γ) = −χ(Γ) as n→∞.

Again, our results are more precise than stated in the theorem - see Theo-
rems 1.12 and 4.6 below.

To explain the relation between an(Γ) and homomorphisms of Γ, define

Homtrans(Γ, Sn) = {φ ∈ Hom(Γ, Sn) : φ(Γ) is transitive}.
It is well known that an(Γ) = |Homtrans(Γ, Sn)|/(n−1)!. Thus Theorem 1.2
immediately yields an upper bound for an(Γ). To obtain a lower bound,
we show that for almost homogeneous classes C1, . . . , Cd, almost all homo-
morphisms in HomC(Γ, Sn) lie in Homtrans(Γ, Sn) (see Theorem 4.4). Using
the character formula (1.3) for |HomC(Γ, Sn)| and our character-theoretic
results in Section 2, we then complete the proof of Theorem 1.4.

For further applications it is important for us to estimate how many of
the homomorphisms in Homtrans(Γ, Sn) have primitive images in Sn. To do
this we study the maximal subgroup growth of Fuchsian groups. Denote by
mn(Γ) the number of maximal subgroups of index n in Γ. It turns out that
most finite index subgroups of Fuchsian groups are maximal:

Theorem 1.5 For any Fuchsian group Γ, we have

mn(Γ)

an(Γ)
→ 1 as n→∞.

Moreover, mn(Γ)
an(Γ) = 1−O(c−n), where c > 1 is a constant depending on Γ.

This extends previously known results for free groups (see [12, Lemma 2])
and surface groups [37].

Theorem 1.5 amounts to saying that almost all transitive homomor-
phisms from a Fuchsian group to Sn have primitive images. The next the-
orem is the culmination of our results on homomorphisms from Fuchsian
groups to symmetric groups, and shows that almost all of these homomor-
phisms have image containing An. In the statement, by HΓ we mean the
core of H, namely the largest normal subgroup of Γ contained in H.

7



Theorem 1.6 Let Γ be a Fuchsian group, and let H be a randomly cho-
sen index n subgroup of Γ. Then the probability that Γ/HΓ

∼= An or Sn
tends to 1 as n → ∞; moreover, this probability is 1 − O(c−n) for some
constant c > 1 depending on Γ. Equivalently, a random homomorphism
φ ∈ Homtrans(Γ, Sn) satisfies φ(Γ) ⊇ An with probability 1−O(c−n).

The methods of proof of Theorem 1.6 also establish the following useful
variant, dealing with maps to alternating groups.

Theorem 1.7 Let Γ be a Fuchsian group. Then the probability that a ran-
dom homomorphism in Homtrans(Γ, An) is an epimorphism tends to 1 as
n → ∞. Moreover, this probability is 1 − O(c−n) for some constant c > 1
depending on Γ.

Our proofs show that in Theorems 1.5, 1.6 and 1.7, any constant c sat-
isfying 1 < c < 2µ(Γ) will do.

Theorem 1.7 obviously implies the following.

Corollary 1.8 Every Fuchsian group surjects to all but finitely many alter-
nating groups. In other words, Higman’s conjecture holds for all Fuchsian
groups (including the non-oriented ones).

Higman formulated his conjecture in the 1960s. Perhaps the first evi-
dence in this direction was the result of Miller [35] that apart from A6, A7 and
A8, every alternating group An can be generated by two elements of orders
2 and 3, and hence is a quotient of the modular group. A much more telling
contribution was that of Higman and Conder concerning Hurwitz generation
of An - namely, generation by elements x, y satisfying x2 = y3 = (xy)7 = 1.
Using the method of coset diagrams, Higman (in unpublished work) proved
that every sufficiently large alternating group can be generated in this way -
in other words, is an image of the Hurwitz triangle group ∆(2, 3, 7). Conder
[5] was able to find the precise values of n for which An is a quotient of
∆(2, 3, 7), and later in [6] showed that if k ≥ 7 then every sufficiently large
alternating group is a quotient of ∆(2, 3, k). Further triangle groups were
handled in [38, 39, 14, 15], and the full conjecture for oriented Fuchsian
groups was finally proved by Everitt in [16].

The papers mentioned above all use extensions of the original Higman-
Conder method of coset diagrams. Our approach to Higman’s conjecture is
completely different, and gives a uniform treatment of all Fuchsian groups.
In particular we also establish the conjecture for non-oriented groups.

We also prove a more explicit result on random quotients of Fuchsian
groups, dealing with homomorphisms sending the generators to elements in
given almost homogeneous classes.
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Theorem 1.9 Let Γ be a Fuchsian group as in (1.1) or (1.2), and let Ci (1 ≤
i ≤ d) be conjugacy classes in Sn with cycle-shapes (mai

i , 1
fi), where fi are

bounded and
∏d
i=1 sgn(Ci) = 1. Set C = (C1, . . . , Cd). Then the probability

that a random homomorphism in HomC(Γ, Sn) has image containing An
tends to 1 as n→∞. Moreover, this probability is 1−O(n−µ(Γ)).

For example, applying this when Γ is the triangle group ∆(m1,m2,m3)
demonstrates that three elements, with product 1, from almost homoge-
neous classes C1, C2, C3 of orders m1,m2,m3, randomly generate An or Sn
provided 1

m1
+ 1

m2
+ 1

m3
< 1. In particular, when (m1,m2,m3) = (2, 3, 7),

this gives random Hurwitz generation of An.

Theorem 1.9 is instrumental in establishing the analogue of Higman’s
conjecture for symmetric quotients. Let Γ be as in (1.1) or (1.2), and define

d∗ = |{i : mi even}|.
Note that if s + t = g = 0 and d∗ ≤ 1, or if s + t = 1 and g = d∗ = 0, then
Γ is generated by elements of odd order, so cannot have a symmetric group
as a quotient. It turns out that these conditions form the only obstruction
to Γ having symmetric quotients:

Theorem 1.10 Let Γ be a Fuchsian group. If s + t = 0, assume (g, d∗) 6=
(0, 0), (0, 1); and if s+ t = 1, assume (g, d∗) 6= (0, 0). Then Γ surjects to all
but finitely many symmetric groups. Equivalently, if a Fuchsian group has
S2 as a quotient, then it has Sn as a quotient for all sufficiently large n.

Our proof of this result is probabilistic; to cover all possibilities for Γ
we need to consider suitably chosen subspaces of Hom(Γ, Sn) as probability
spaces (see Section 7 and Theorem 1.12(vi) below).

Theorem 1.10 is new even for triangle groups, where it takes the following
form.

Corollary 1.11 Let m1,m2,m3 ≥ 2 be integers such that
∑ 1

mi
< 1, and

suppose at least two of the mi are even. Then the triangle group ∆(m1,m2,m3)
surjects to all but finitely many symmetric groups.

The special case of this where (m1,m2,m3) = (2, 3, k) with k even was
established by Conder in [6].

The above results provide yet another demonstration of the power of
probabilistic methods in group theory; see [44] for background.

When the genus g of the Fuchsian group Γ is at least 2 (at least 3
in the non-oriented case), we obtain below stronger versions of most of the
above results, improving the asymptotics and replacing Homtrans(Γ, Sn) and
HomC(Γ, Sn) by Hom(Γ, Sn).
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To state this, we need some notation. For positive integers n,m define

E(n,m) = n−
1
2

(1− 1
m

) · exp(
∑

a|m,a<m

na/m

a
).

We also define v = v(Γ) to be 2 if Γ is as in (1.1), and 1 if Γ is as in (1.2).

Theorem 1.12 Let Γ be a Fuchsian group of genus g with presentation as
in (1.1) or (1.2) above, and let µ = µ(Γ). If s + t = 0, suppose that g ≥ 2,
and g ≥ 3 in the non-oriented case. Then

(i) |Hom(Γ, Sn)| ∼ |Hom(Γ, An)| ∼ (n!)µ+1 ·∏d
i=1E(n,mi).

(ii)
∑

π∈P (m,n)
1

|Autπ| ∼ (n!)µ ·∏d
i=1E(n,mi).

(iii) an(Γ) ∼ (n!)µ · n ·∏d
i=1E(n,mi).

(iv) The probability that a random homomorphism φ ∈ Hom(Γ, Sn) sat-
isfies φ(Γ) ⊇ An tends to 1 as n→∞. This probability is 1−O(n−µ).

(v) The probability that a random homomorphism φ ∈ Hom(Γ, An) is an
epimorphism tends to 1 as n→∞. This probability is 1−O(n−µ).

(vi) The probability that a random homomorphism φ ∈ Hom(Γ, Sn) sat-
isfies φ(Γ) = Sn is equal to 1− 21−vg−d∗−s−t +O(n−(vg−2)) if d∗+ s+ t > 0,
and is equal to 1− 2−vg +O(n−(vg−2)) if d∗ + s+ t = 0.

In parts (i), (ii) and (iii), the implied multiplicative constants can easily
be found using our methods (see for example Theorem 3.8).

When s + t > 0, Γ is a free product of cyclic groups and some parts
of this result are essentially known. Details will be given in the relevant
sections.

In a subsequent paper [30] we extend various parts of Theorem 1.12 to all
finite simple groups. More specifically, assuming that Γ is Fuchsian of genus
g ≥ 2 (g ≥ 3 if Γ is non-oriented), we give precise estimates for |Hom(Γ, G)|
where G is a finite simple group of Lie type, and prove that a random
homomorphism in Hom(Γ, G) is surjective. We also apply these results to
the study of representation varieties Hom(Γ, Ḡ), where Ḡ is GLn(K) or
a simple algebraic group over K, an algebraically closed field of arbitrary
characteristic.

Our results on random quotients of Fuchsian groups have implications for
the monodromy groups of branched coverings of Riemann surfaces, under
suitable assumptions on the ramification types around the branch points.
Any finite set of index n coverings can be naturally viewed as a probability
space, where the probability assigned to a covering π is proportional to
1/|Autπ|.

We adopt the notation of the preamble to Theorem 1.3.
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Theorem 1.13 Fix integers g ≥ 0 and m1, . . . ,md ≥ 2. Let µ = 2g − 2 +∑d
i=1(1− 1

mi
) and suppose µ > 0.

(i) The probability that a randomly chosen connected covering π ∈ P (m, n)
has monodromy group An or Sn tends to 1 as n→∞; moreover, this prob-
ability is 1−O(c−n) for some constant c > 1.

(ii) For 1 ≤ i ≤ d let Ci be a conjugacy class in Sn having cycle-
shape (mai

i , 1
fi) with fi bounded, and assume

∏d
i=1 sgn(Ci) = 1. Write

C = (C1, . . . , Cd). If π ∈ P (C, n) is randomly chosen, then the probability
that the monodromy group of π is An or Sn is 1−O(n−µ).

Further results along these lines can be found in Section 8.

The ideas in this paper also have some bearing on certain random walks
on symmetric groups. Let S be a subset of Sn generating An or Sn, and
consider the random walk on the corresponding Cayley graph starting at
the identity, and at each step moving from a vertex g to a neighbour gs,
where s ∈ S is chosen at random. Let P t(g) be the probability of reaching
the vertex g after t steps. In recent years there has been much work on
understanding the distribution P t as t gets larger, and its relation to the
uniform distribution. See Diaconis [9, 10] for background. The mixing time
of the random walk is the smallest integer t such that

||P t − U ||1 < 1

e

where ||f ||1 =
∑ |f(x)| is the l1-norm. Much attention has focussed on the

mixing time in the case where S is a conjugacy class of Sn. For example,
[11] deals with transpositions, [32] with cycle-shapes (ma) for fixed m, and
[43] with arbitrary classes of permutations having at least εn fixed points (ε
a positive constant). See also [18, 29] for some results on random walks on
groups of Lie type.

In the next result we consider more general random walks, where the
generating conjugacy class S may change with time. In the conclusion we
arrive at a probability distribution which is close to the uniform distribution
in the l∞-norm, which is stronger than the l1-norm condition in the definition
of mixing time (and it also implies that the random walk hits all elements
of the correct signature).

Theorem 1.14 Let m1, . . . ,md ≥ 2 be integers satisfying
∑d

i=1
1
mi

< d−2,

and set µ = d−2−∑d
i=1

1
mi

. For 1 ≤ i ≤ d let Ci be a conjugacy class in Sn

having cycle-shape (mai
i , 1

fi) with fi bounded. Set α =
∏d
i=1 sgn(Ci). Then

for any h ∈ Sn satisfying sgn(h) = α, and for randomly chosen xi ∈ Ci, we
have

Prob(x1 · · ·xd = h) =
2

n!
(1 +O(n−µ)).
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In particular, if n is sufficiently large then, taking σ to be any permutation
with sgn(σ) = α, we have

∏d
i=1Ci = Anσ almost uniformly pointwise.

Taking m1 = . . . = md = m and C1 = . . . = Cd = C, of cycle-shape
(ma, 1f ) with f bounded, we see that a random walk on Sn with generating
set C achieves an almost uniform distribution after t steps, where t = 3 if
m ≥ 4, t = 4 if m = 3 and t = 5 if m = 2. For the case where C is fixed
point free (i.e. f = 0), Lulov [32] shows that the mixing time is 3 if m = 2
and 2 otherwise; while our number t of steps is slightly more than this, our
distribution is arbitrarily close to uniform in the l∞-norm, which is stronger
than the mixing time condition. Moreover, our numbers t are best possible
for this distribution (see below).

Another interesting case of Theorem 1.14 is that in which d = 3 and
(m1,m2,m3) = (2, 3, 7). In particular it follows that if C1, C2, C3 are conju-
gacy classes of elements in An of orders 2,3,7 respectively, with boundedly
many fixed points, then C1C2C3 = An almost uniformly pointwise (the proof
of this depends on an application of Theorem 1.1 with s = 1

42).

Theorem 1.14 is best possible, in the sense that if
∑ 1

mi
≥ d−2 then the

resulting distribution is not sufficiently close to uniform (in the l∞-norm).
We prove this in Proposition 9.1 using results on Eisenstein numbers in
the Euclidean and spherical cases which are obtained in [26] by geometric
methods.

We are grateful to Martin Bridson, Persi Diaconis, Brent Everitt and
Paul Seidel for useful discussions on some of the background material in this
paper, and to Walter Hayman for his help with the proof of Lemma 2.18.

Notation

Unless otherwise stated, Γ will denote a Fuchsian group as in (1.1) or
(1.2). Define v = v(Γ) to be 2 in the oriented case (1.1), and to be 1 in the
non-oriented case (1.2). Define µ = µ(Γ), so that

(1.4) µ = vg − 2 +
d∑
i=1

(1− 1

mi
) + s+ t.

For a positive integer n, denote by p(n) the number of partitions of n. It is
well known that p(n) < c

√
n for some constant c (see [1, 6.3]).

For a positive integer m and a finite group G, denote by jm(G) the
number of solutions to the equation xm = 1 in G.

Recall that for functions f1, f2, we write f1 ∼ f2 if there are positive
constants c1, c2 such that c1f2 ≤ f1 ≤ c2f2.

We shall use c, c1, c2, . . . to denote constants, never depending on n,
but often depending on various fixed parameters in a given context; this

12



dependence will be clarified whenever necessary.

Layout

Section 2, which is the longest section in this paper, contains our results
on characters of symmetric groups, which serve as a main tool in the rest
of the paper. In Section 3 we count homomorphisms from Fuchsian groups
to symmetric and alternating groups, proving Theorems 1.2 and 1.12(i). In
Section 4 we study Homtrans(Γ, Sn) and prove the subgroup growth results
1.4 and 1.12(iii). In Section 5 we prove Theorem 1.5, showing that almost all
index n subgroups of a Fuchsian group are maximal. Section 6 contains our
proofs of the random quotient theorems 1.6 and 1.7, together with Higman’s
conjecture 1.8. In Section 7 we prove our more explicit random quotient
result 1.9 and use it to prove Theorem 1.10. Section 8 deals with applications
to coverings of Riemann surfaces, and contains the proofs of Theorems 1.3
and 1.12(ii), as well as Theorem 1.13 and some related results. Finally, in
Section 9 we discuss the random walk applications, proving Theorem 1.14
and also Proposition 9.1 showing the best possible nature of the theorem.

2 Characters of symmetric groups: asymptotic re-
sults

In this section we develop some of the machinery needed in the proofs of our
main results. Most of this machinery consists of results, largely of an asymp-
totic nature, concerning the degrees and values of the irreducible characters
of symmetric groups. The main such results are Theorems 2.6, 2.14 and
2.15 below. At the end of the section we discuss the numbers of elements of
given order in symmetric and alternating groups.

We shall use [23] as our basic reference for the character theory of sym-
metric groups.

2.1 Results on character degrees

By a partition of a positive integer n, we mean a tuple λ = (λ1, . . . , λr) with
λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 and

∑r
i=1 λi = n. Denote by χλ the irreducible

character of Sn corresponding to the partition λ.

We begin with an easy lower bound.

13



Lemma 2.1 Write λ1 = n − k, and assume that n ≥ 2k. Then χλ(1) ≥(
n−k
k

)
.

Proof Recall that χλ(1) is equal to the number of standard λ-tableaux,
that is, the number of ways of filling in a λ-tableau with the numbers 1, . . . , n
in such a way that the numbers increase along the rows and down the
columns.

Consider the following procedure. Write the numbers 1, . . . , k in ascend-
ing order at the beginning of the first row of a λ-tableau. Then choose
any k of the remaining n− k numbers and arrange them in rows 2, . . . , r of
the λ-tableau, increasing along rows and down columns. Finally, write the
remaining n− 2k numbers in ascending order along the rest of the first row.

This procedure gives a standard λ-tableau, and can be carried out in at
least

(
n−k
k

)
ways, giving the result.

Lemma 2.2 We have χλ(1) ≥ (n−λ2

n−λ1

)
.

Proof The proof is virtually the same as the previous one. Write 1, . . . , λ2

to start the first row of a λ-tableau, then choose n − λ1 of the remaining
n − λ2 numbers to put in rows 2, . . . , r, and finally fill in the rest of the
first row with the remaining numbers in ascending order. This gives at least(
n−λ2

n−λ1

)
standard λ-tableaux.

Lemma 2.3 We have χλ(1) ≥ 2min(λ2,λ1−1).

Proof In a λ-tableau, place a 1 in the first entry of row 1, and for 1 ≤ i ≤
min(λ2, λ1 − 1), place i, i + 1 in either order in the ith entry of row 2 and
the i + 1th entry of row 1. This can be done in 2min(λ2,λ1−1) ways, each of
which can be completed to a standard λ-tableau.

Denote by λ′ = (λ′1, . . . , λ′s) the partition conjugate to λ (so that λ′1 = r),
and recall that χλ′ = χλ ⊗ sgn, where sgn = χ(1n) is the sign character of
Sn.

Proposition 2.4 Let 0 < ε < 1, and suppose that λ is a partition of n such
that λ′1 ≤ λ1 ≤ (1− ε)n. Then χλ(1) > cn, where c = c(ε) > 1.

Proof If λ2 ≥ εn this is immediate from the previous lemma, so assume
λ2 < εn. Moreover, if λ1 > λ2 + εn the conclusion follows from Lemma 2.2,
so assume also that λ1 ≤ λ2 + εn < 2εn.

Without loss of generality we may assume that ε ≤ 1
8e . Now for any

i, j the ij-hook has length hij = λi + λ′j + 1 − i − j (see [23, p.73]), and so

14



hij ≤ λ1 + λ′1 < 4εn. Hence by the Hook Formula [23, 20.1],

χλ(1) =
n!∏
hij

>
n!

(4εn)n
>

(n/e)n

(4εn)n
= (

1

4εe
)n ≥ 2n,

giving the result.

Proposition 2.5 Fix a real number s > 0 and a positive integer k, and let
Λ be the set of partitions λ of n such that λ′1 ≤ λ1 ≤ n− k. Then∑

λ∈Λ

χλ(1)−s = O(n−sk)

(where the implied constant depends on k).

Proof Define Λ1 = {λ ∈ Λ : λ1 ≥ 2
3n} and Λ2 = {λ ∈ Λ : λ1 <

2
3n}, and

let
Σ1 =

∑
λ∈Λ1

χλ(1)−s, Σ2 =
∑
λ∈Λ2

χλ(1)−s.

For k ≤ l ≤ n/3, the set Λ1 contains at most p(l) partitions λ with λ1 = n−l
(where p(l) denotes the partition function). Hence using Lemma 2.1, we have

Σ1 ≤
∑

k≤l≤n/3

p(l)(
n−l
l

)s .
We claim that

Σ1 = O(n−sk). (1)

To see this, observe that for 1 ≤ l ≤ n
3 , we have(

n− l
l

)
≥ (

n− l
l

)l ≥ (n− l)
√
l ≥ (

2n

3
)
√
l.

Set

Σ′1 =
∑

k≤l≤k2

p(l)(
n−l
l

)s , Σ′′1 =
∑

k2<l≤n/3

p(l)(
n−l
l

)s .
Since k is fixed we obviously have Σ′1 ≤ cn−sk (where c depends on k). Now
consider Σ′′1. For k2 < l ≤ n/3, we have

p(l)(
n−l
l

)s ≤ c
√
l

1

(2n/3)s
√
l
≤ (

c2

ns
)
√
l,

where c1, c2 are absolute constants. This yields

Σ′′1 ≤
∞∑

l=k2+1

(
c2

ns
)
√
l,
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which, letting q denote c2/n
s, is bounded above by the integral∫ ∞

k2

q
√
xdx =

2qk

α
(k +

1

α
),

where α = − log q. Hence Σ′′1 ≤ c3n
−sk, where c3 depends on k. This proves

(1).

Next, by Proposition 2.4, there is a constant c > 1 such that

Σ2 < p(n)c−ns.

Since p(n) < c
√
n

4 for some constant c4, it follows that Σ2 ≤ c−ns5 , and hence

Σ1 + Σ2 = O(n−sk),

giving the result.

Observe that the ‘dual’ result
∑

λ∈Λ′ χλ(1)−s = O(n−sk) also holds,
where Λ′ = {λ ` n : λ1 ≤ λ′1 ≤ n− k}, since χλ(1) = χλ′(1).

From this we deduce one of our main character-theoretic results, stated
as Theorem 1.1 in the Introduction:

Theorem 2.6 Fix a real number s > 0. Then∑
χ∈Irr(Sn)

χ(1)−s = 2 +O(n−s).

Proof The number 2 on the right hand side comes from χ = χ(n)(= 1)
and χ = χ(1n)(= sgn). Applying Proposition 2.5 and the remark following
it for k = 1, we see that the remaining characters contribute O(n−s) to the
sum on the right hand side, giving the result.

We shall need the following easy consequence for An.

Corollary 2.7 Fix a real number s > 0. Then∑
χ∈Irr(An)

χ(1)−s = 1 +O(n−s).

Proof For each irreducible character χ of Sn, either χ ↓ An is irreducible,
or χ ↓ An = χ1 + χ2, a sum of two irreducible characters of degree χ(1)/2.
All irreducible characters of An occur in this way. Hence∑

1 6=χ∈Irr(An)

χ(1)−s ≤ 2 · 2s ·
∑

χ∈Irr(Sn),χ(1)>1

χ(1)−s = O(n−s).

The result follows.
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2.2 Results on character values

We begin by stating a result of Fomin and Lulov [17] which plays a key role
in this paper.

Theorem 2.8 (Fomin-Lulov [17]) Fix an integer m ≥ 2. Suppose n is
divisible by m, say n = am, and let π ∈ Sn be a permutation of cycle-shape
(ma). Then for any irreducible character χ of Sn, we have

|χ(π)| ≤ a!ma

(n!)1/m
· χ(1)1/m ≤ c · n 1

2
(1− 1

m
) · χ(1)1/m,

where c depends only on m.

We shall also frequently use the Murnaghan-Nakayama Rule [23, 21.1].
By a rim r-hook ν in a λ-tableau, we mean a connected part of the rim
containing r nodes, which can be removed to leave a proper tableau, denoted
by λ\ν. If, moving from right to left, the rim hook ν starts in row i and
finishes in column j, then the leg-length l(ν) is defined to be λ′j − i (the
number of nodes below the ij-node in the λ-tableau).

Theorem 2.9 (Murnaghan-Nakayama Rule) Let ρσ ∈ Sn, where ρ is an
r-cycle and σ is a permutation of the remaining n− r points. Then

χλ(ρσ) =
∑
ν

(−1)l(ν)χλ\ν(σ),

where the sum is over all rim r-hooks ν in a λ-tableau.

An easy consequence is the following.

Lemma 2.10 Let ρ ∈ Sn be an (n− c)-cycle, and let σ be a permutation of
the remaining c points. Then for any partition λ of n,

|χλ(ρσ)| ≤ f(c),

where f(c) depends only on c, and f(0) = 1, f(1) = 2.

Proof Apply Theorem 2.9 with r = n − c. Observe that λ has at most
c+ 1 rim (n− c)-hooks ν, and for each such ν we have

|χλ\ν(σ)| ≤ χλ\ν(1) ≤ (c!)1/2,

so f(c) = (c+ 1) · (c!)1/2 will do.

In order to apply the Murnaghan-Nakayama rule it is useful to estimate
the number of rim r-hooks in a tableau. We prove the following.
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Lemma 2.11 For any positive integer r, and any partition λ of n, the num-
ber of rim r-hooks in a λ-tableau is at most

√
2n.

Proof A rim r-hook ν is uniquely determined by the topmost row it
intersects, say row tν , and also by the leftmost column it intersects, say
column lν . Let R be the set of all rim r-hooks, and denote by P2(R) the set
of all 2-subsets of R. Define a map from R ∪ P2(R) to the set consisting of
the n nodes of the λ-tableau as follows:

ν → node (tν , lν) (ν ∈ R),
{ν1, ν2} → node (tν1 , lν2) (ν1, ν2 ∈ R, tν1 < tν2).

This map is injective, showing that

|R|+
(|R|

2

)
≤ n,

which gives the result.

Proposition 2.12 (i) Let π ∈ Sn and let C(π) be the total number of cycles
in π. Then for any χ ∈ Irr(Sn), we have

|χ(π)| ≤ (2n)C(π)/2.

(ii) Let π = ρσ ∈ Sn be a permutation of order m, where ρ has cycle-
shape (ma) and σ permutes the remaining n −ma points. Let C(σ) be the
number of cycles in σ. Then for any χ ∈ Irr(Sn) we have

|χ(π)| ≤ c · (2n)
1
2
C(σ)(1− 1

m
)χ(1)1/mn1/2,

where c depends only on m.

(iii) Let π ∈ Sn have cycle-shape (ma, 1f ). Then for any χ ∈ Irr(Sn) we
have

|χ(π)| ≤ c · (2n)
1
2

(f+1)χ(1)1/m,

where c depends only on m.

Proof (i) This follows by repeated application of the Murnaghan-Nakayama
Rule, using Lemma 2.11.

(ii) Applying the Murnaghan-Nakayama Rule and Lemma 2.11 we see
that

|χ(π)| ≤
∑
|χi(ρ)|,

where χi ∈ Irr(Sma), the sum has at most (2n)C(σ)/2 terms, and
∑
χi(1) ≤

χ(1). By Theorem 2.8, |χi(ρ)| ≤ c ·χi(1)1/mn1/2, where c = c(m). It is easy

to see that the maximum of
∑N

i=1X
1/m
i subject to

∑N
i=1Xi ≤ X (where
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X,Xi are positive real numbers) is N1−1/mX1/m (obtained when the Xi are
all equal). This implies

|χ(π)| ≤ c · (2n)(C(σ)/2)(1−1/m)χ(1)1/mn1/2,

as required.

(iii) This is immediate from (ii).

Lemma 2.13 Let π ∈ Sn have cycle-shape (ma, 1f ), let λ be a partition
of n, and write λ1 = n − k. Then there exists c = c(m, k, f) such that
|χλ(π)| ≤ cn[k/m].

Proof Write π = π′1 where π′ ∈ Sn−f has cycle-shape (ma). The number
of sequences of f rim 1-hooks we can successively remove from a λ-tableau
is bounded in terms of f and k, so we have

|χλ(π)| ≤
∑
|χµi(π′)|

where each µi is a partition of n− f obtained by removing f nodes from λ,
and there are c1(k, f) terms in the sum.

Now fix i, and consider the set Si of sequences of a rim m-hooks which
we can successively remove from µi. Given the positions in the sequence in
which m-hooks having all nodes below the first row appear, the number of
such sequences is bounded in terms of m and k (apart from these positions,
one is forced to remove hooks from the first row until an m, k-bounded shape
is reached). Clearly the number of positions for m-hooks having all nodes
below the first row is at most [k/m]. Hence

|Si| ≤ c2(m, k) ·
[k/m]∑
i=1

(
n

i

)
≤ c3(m, k)

(
n

[k/m]

)
.

The Murnaghan-Nakayama Rule implies that |χµi(π′)| ≤ |Si|, and hence

|χλ(π)| ≤ c1(k, f)c3(m, k)

(
n

[k/m]

)
≤ c(k, f,m)n[k/m],

as required.

The next theorem is our second main result on character values for Sn.

Theorem 2.14 Let m ≥ 2 be an integer. There is a constant c = c(m)
such that for any π ∈ Sn of order m and any χ ∈ Irr(Sn), we have

|πSn | · |χ(π)| < (n!)1− 1
m · χ(1)1/m · cn1− 1

2m
.
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Proof In this proof we use constants ci (i = 0, 1, 2, . . .), all of which depend
only on m. Let π have cycle-shape (ma1

1 , . . . ,m
ak
k ), where

∑
miai = n,

m1 > m2 > . . . > mk and m1 = m (allowing the possibility that a1 = 0).
Set A =

∑k
i=2 ai. Since

|πSn | = n!∏k
i=1m

ai
i

∏k
i=1 ai!

,

Proposition 2.12(ii) implies that

|πSn | · |χ(π)| ≤ c0 · n!∏k
i=1m

ai
i

∏k
i=1 ai!

(2n)
1
2
A(1− 1

m
)χ(1)1/mn1/2. (2)

Hence, setting

γ = 1− 1

2m
, T =

n!∏k
i=1m

ai
i

∏k
i=1 ai!

(2n)
1
2
A(1− 1

m
),

it suffices to prove

T ≤ (n!)1− 1
m cn

γ

1 (3)

for some constant c1 (since c0c
nγ

1 n1/2 ≤ cnγ ).

Assume first that A > n/m. Since na

a! < ea for any positive integer a,

we have n
∑
ai∏
ai!

< e
∑
ai , and hence

n!∏k
i=1 ai!

<
nn∏k
i=1 ai!

< e
∑k

1 ainn−
∑k

1 ai .

This implies

T < cn2 · nn−
∑k

1 ai · n 1
2
A(1− 1

m
) = cn2 · nn−a1− 1

2
A(1+ 1

m
).

Recall that A =
∑k

i=2 ai, and that for i ≥ 2, mi is a proper divisor of m. It
follows that a1m+Am/2 ≥ n, whence

a1 +
1

2
A(1 +

1

m
) ≥ a1 +

1

2
A+

n

2m2
≥ n(

1

m
+

1

2m2
).

It follows that
T < cn2 · nn(1− 1

m
− 1

2m2 ) < (n!)1− 1
m

for large n, which implies (3) in this case.

Now assume that A ≤ n/m. By Stirling’s formula,

T < c3n
1/2(

n

e
)n · (2n)

1
2
A(1− 1

m
)

ma1(a1/e)a1
∏k
i=2 ai!

. (4)
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Since a1 ≥ n
m − 1

2A, we have

aa1
1 ≥ (

n

m
− 1

2
A)a1 = (

n

m
)a1(1− mA

2n
)a1

= (
n

m
)a1(1− mA

2n
)

2n
mA
·a1mA

2n .

Since A ≤ n/m, we have mA
2n ≤ 1

2 , which implies (1 − mA
2n )

2n
mA ≥ e−2. This

yields

aa1
1 ≥ (

n

m
)a1e

−a1mA
n ≥ (

n

m
)a1e−A

(since a1 ≤ n/m). Substituting in (4), this gives

T < c3n
1/2(

n

e
)n · (2n)

1
2
A(1− 1

m
)ea1

ma1(n/m)a1e−A
∏k
i=2 ai!

= c3n
1/2(

n

e
)n · (2n)

1
2
A(1− 1

m
)ea1+A

na1
∏k
i=2 ai!

≤ c3c
A
4 n

1/2 · (n
e

)n−a1 · n
1
2
A(1− 1

m
)∏k

i=2 ai!
.

Now n− a1 ≤ n(1− 1
m) + 1

2A. So

T < c3c
A
4 n

1/2 · (n
e

)n(1− 1
m

)+ 1
2
A · n

1
2
A(1− 1

m
)∏k

i=2 ai!
≤ c3c

A
5 n

1/2 · (n
e

)n(1− 1
m

) · n
A− A

2m∏k
i=2 ai!

= c3n
1/2(

n

e
)n(1− 1

m
) ·

k∏
i=2

(c5n
1− 1

2m )ai

ai!

< c3n
1/2(

n

e
)n(1− 1

m
) ·

k∏
i=2

ec5n
1− 1

2m
< (n!)1− 1

m ec6n
γ

,

whence (3).

Theorem 2.14 is our main tool for bounding the right hand side in the
formula (1.3), for general classes Ci of elements of order mi. In the case of
almost homogeneous classes, we are able to establish the following precise
estimate, which will be used frequently in later sections.

Theorem 2.15 For 1 ≤ i ≤ d fix integers mi ≥ 2 and fi ≥ 0, and let
πi ∈ Sn have cycle-shape (mai

i , 1
fi). Let l ≥ 0 and set µ = l+d−2−∑d

i=1
1
mi

.
Assume that µ > 0. Then∑

χ∈Irr(Sn),χ(1)>1

|χ(π1) · · ·χ(πd)|
χ(1)l+d−2

= O(n−µ).
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In particular, if
∏d
i=1 sgn(πi) = 1, then

∑
χ∈Irr(Sn)

χ(π1) · · ·χ(πd)

χ(1)l+d−2
= 2 +O(n−µ).

Proof In this proof we use c1, . . . , c6 to denote constants depending only
on the mi and fi. To prove the first statement, we may restrict attention
to characters χ = χλ with λ′1 ≤ λ1 (since the other characters are products
of these with the sign character). We subdivide these non-linear irreducible
characters of Sn as follows. Define C = 1

µ

∑d
i=1

fi+1
2 , and write

Λ1 = {λ ` n : λ′1 ≤ λ1 ≤ n− C − 1},
Λ2 = {λ ` n : λ′1 ≤ λ1, n > λ1 > n− C − 1}.

For λ ∈ Λ1, Proposition 2.12(iii) gives |χλ(πi)| ≤ c1(2n)
fi+1

2 χλ(1)1/mi , and
hence

|χλ(π1) · · ·χλ(πd)|
χλ(1)l+d−2

≤ cd1n
∑

(fi+1)/2χλ(1)
(
∑ 1

mi
)−(l+d−2)

= c2n
∑

(fi+1)/2χλ(1)−µ.

Therefore ∑
λ∈Λ1

|χλ(π1) · · ·χλ(πd)|
χλ(1)l+d−2

≤ c2 · n
∑

(fi+1)/2
∑
λ∈Λ1

χλ(1)−µ.

Hence by Theorem 2.5,∑
λ∈Λ1

|χλ(π1) · · ·χλ(πd)|
χλ(1)l+d−2

≤ c3 · n
∑

(fi+1)/2 · n−µ(C+1) = O(n−µ). (5)

For λ ∈ Λ2 we have λ1 = n − k with k < C + 1, and Lemmas 2.13 and 2.1
give

|χλ(πi)| < c4n
[k/mi], χλ(1) > c5n

k.

Hence |χλ(π1) · · ·χλ(πd)|
χλ(1)l+d−2

< c6n
∑

[k/mi]−k(l+d−2) ≤ c6n−kµ,

and it follows that

∑
λ∈Λ2

|χλ(π1) · · ·χλ(πd)|
χλ(1)l+d−2

≤
[C+1]∑
k=1

c6n
−kµ = O(n−µ). (6)

The first conclusion now follows from (5) and (6).

The last part follows, noting that the number 2 on the right hand side
comes from the trivial and sign characters of Sn.
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We shall also need a version of Theorem 2.15 with An replacing Sn. We
rely on the following information about the irreducible characters of An (see
[24]). For partitions λ 6= λ′ of n, we have χλ ↓ An = χλ′ ↓ An, and these are

irreducible. And for λ = λ′, χλ ↓ An = χ
(1)
λ + χ

(2)
λ , a sum of two irreducible

characters of An; moreover, for σ ∈ An, if σSn = σAn then

χ
(j)
λ (σ) =

1

2
χλ(σ) (j = 1, 2).

In particular this holds when σ is of cycle-shape (ma, 1f ) with a ≥ 2.

Corollary 2.16 Assume the hypotheses of Theorem 2.15, with πi ∈ An.
Then ∑

1 6=χ∈Irr(An)

|χ(π1) · · ·χ(πd)|
χ(1)l+d−2

= O(n−µ),

and ∑
χ∈Irr(An)

χ(π1) · · ·χ(πd)

χ(1)l+d−2
= 1 +O(n−µ).

Proof Write

T (An) =
∑

1 6=χ∈Irr(An)

|χ(π1) · · ·χ(πd)|
χ(1)l+d−2

,

T (Sn) =
∑

χ∈Irr(Sn),χ(1)>1

|χ(π1) · · ·χ(πd)|
χ(1)l+d−2

.

We claim that T (An) ≤ 2l−1T (Sn).

To see this, consider a term |χ(π1)···χ(πd)|
χ(1)l+d−2 of T (An). If χ = χλ ↓ An

(λ 6= λ′) then this term appears twice in T (Sn). If not, then χ = χ
(j)
λ with

λ = λ′, j ∈ {1, 2}, and by the above remarks (noting that we make take n
large, so that ai ≥ 2 for all i), χ(πi) = 1

2χλ(πi) and χ(1) = 1
2χλ(1). Hence

|χ(π1) · · ·χ(πd)|
χ(1)l+d−2

= 2l−2 · |χλ(π1) · · ·χλ(πd)|
χλ(1)l+d−2

.

The claim follows, and the conclusion is now a consequence of Theorem 2.15.

2.3 Elements of given order in Sn and An

We conclude the section with some results on the numbers of elements of
given order in symmetric and alternating groups. These will be useful in
later sections.
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Recall from the Introduction that for a finite group G and a positive
integer m, we write

jm(G) = |{x ∈ G : xm = 1}|,

and also that for positive integers m,n,

E(n,m) = n−
1
2

(1− 1
m

) · exp(
∑

a|m,a<m

na/m

a
).

Lemma 2.17 Let m ≥ 2 be an integer. Then jm(Sn) ∼ (n!)1−1/mE(n,m).

Proof The asymptotics of the numbers jm(Sn) were determined by Wilf
[47]. The convenient formula in the conclusion is a special case of Müller’s
more general result [36, Theorem 5].

In fact the results in [36, 47] are more precise, providing a constant c
depending on m such that jm(Sn) = (c+ o(1)) · (n!)1−1/mE(n,m).

We shall also need a version of this result for jm(An). Obviously if m
is odd then jm(An) = jm(Sn), so it is only necessary to consider the case
where m is even.

We are very grateful to Walter Hayman for supplying most of the details
of the proof of the following lemma.

Lemma 2.18 Let m ≥ 2 be an even integer. Then

jm(An)

jm(Sn)
→ 1

2
as n→∞.

Moreover there is a constant c = c(m) > 0 such that jm(An)
jm(Sn) = 1

2+O(e−cn1/m
).

Proof It is possible to prove this directly, but we choose to give an elegant
proof using generating functions, along similar lines to part of Wilf’s proof in
[47]. Write an = jm(Sn), bn = jm(An), and for z ∈ C define the generating
functions

f(z) =
∞∑
n=1

anz
n, g(z) = 2

∞∑
n=1

bnz
n.

An old result of Chowla, Herstein and Scott [3] states that

f(z) = exp(
∑
k|m

zk

k
),
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while it follows from [4, Theorem 4] that

g(z) = exp(
∑
k|m

zk

k
) + exp(

∑
k|m

(−1)k−1zk

k
).

Write

h(z) = g(z)− f(z) = exp(
∑
k|m

(−1)k−1zk

k
).

At the heart of the proofs of Lemma 2.17 in [36, 47] is a result of Hayman
[20], which provides an asymptotic estimate for an as follows. Write P (z) =∑

k|m
zk

k and set r = |z|. Define a(r) = rP ′(r) and b(r) = ra′(r), so a(r) ∼
mP (r) and b(r) ∼ m2P (r). (Here and in the rest of this proof only, we are
using ∼ in a stronger sense than elsewehere, writing α(r) ∼ β(r) to mean
that α(r)/β(r) → 1 as r → ∞.) Then by [20, Corollary II], if we define rn
by a(rn) = n, we have

an ∼ f(rn)

(rn)n
√

2πb(rn)
∼ f(rn)

(rn)n
√

2πm2P (rn)
. (7)

We shall establish that if M(r, h) = sup|z|=r|h(z)|, then there is a positive
constant ε1 such that for large r,

M(r, h)

M(r, f)
≤ e−ε1r. (8)

Given (8), the lemma follows quickly: letting h(z) =
∑
cnz

n (so cn =
2bn − an), Cauchy’s inequality and (8) yield, for large n,

|cn| ≤ M(rn, h)

(rn)n
≤ e−ε1rnM(rn, f)

(rn)n
≤ e−ε1rnf(rn)

(rn)n

(the last inequality holds since |f(z)| ≤ f(|z|)). Hence by (7) we have |cn|an
≤

e−ε2rn for some constant ε2 > 0. By definition of rn we have P (rn) ∼ n/m.

Therefore |cn|an
≤ e−ε3n1/m

for some constant ε3 > 0. As bn
an

= 1
2 + cn

an
, the

lemma follows.

It remains to establish (8). Write z = reiθ, so Re(zn) = rn cosnθ, and

define Q(z) =
∑

k|m
(−1)k−1zk

k . As m is even, zm appears with a negative
coefficient in Q(z).

If |θ| < π
4m , then cosmθ > cos(π/4) = 1/

√
2, and so

log |h(z)

f(z)
| ≤ − 2

m
rm cosmθ <

−√2rm

m
.
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And if |θ| ≥ π
4m , consideration of the k = 1 terms in the expressions f(z) =

exp(
∑

k|m
zk

k ) and h(z) = exp(
∑

k|m
(−1)k−1zk

k ) shows that

log |h(reiθ)

f(r)
| ≤ r cos θ − r ≤ −r(1− cos(π/4m)).

Thus for large r and all θ, we deduce that

log
|h(reiθ)|
M(r, f)

≤ −εr,

where ε is a positive constant. This yields (8), and hence completes the
proof.

3 Homomorphisms from Fuchsian groups to sym-
metric groups

In this section we prove Theorems 1.2 and 1.12(i).

First, for completeness, we give a proof of Theorems 1.2 and 1.12(i) in
the easier (essentially known) case where Γ is improper (i.e. s + t > 0 in
(1.1) or (1.2)). In this case

Γ ∼= Zm1 ∗ · · · ∗ Zmd ∗ Fr, (9)

where Fr is a free group of rank r = vg + s+ t− 1 and Zm denotes a cyclic
group of order m. It then follows immediately that for any finite group G,

|Hom(Γ, G)| = |G|r
d∏
i=1

jmi(G), (10)

and hence Lemma 2.17 and Lemma 2.18 yield

|Hom(Γ, Sn)| ∼ |Hom(Γ, An)| ∼ (n!)
r+
∑d

1 1− 1
mi ·

d∏
i=1

E(n,mi). (11)

Since r +
∑

(1 − 1
mi

) = µ + 1, this proves Theorem 1.12(i) for the case

s+ t > 0. Note that
∏d
i=1E(n,mi) is at most c

√
n, and at least nb, for any

b and sufficiently large n. Hence Theorem 1.2 and the remarks following it
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also follow in this case. The constant c can be taken to be c0(m)d+1, where
m = max (1,m1, . . . ,md).

Next, observe that by (10) we have

|Hom(Γ, An)|
|Hom(Γ, Sn)| ≤

|An|r
|Sn|r ·

d∏
i=1

jmi(An)

jmi(Sn)
.

Applying Lemma 2.18, this yields

|Hom(Γ, An)|
|Hom(Γ, Sn)| = 2−r−d

∗
+ o(1), (12)

where r is as above and d∗ is the number of mi which are even. The o(1)
term is zero if d∗ = 0; otherwise, using the error term in 2.18, we see that

the o(1) term is O(e−cn1/m∗
), where m∗ = max(mi : i even). In other

words, the probability that a random homomorphism in Hom(Γ, Sn) has

image contained in An is 2−vg−s−t−d∗+1 +O(e−nδ) for some δ > 0. This will
be used in Section 6 in the proof of Theorem 1.12(vi) for the improper case.

Before continuing, we record a well known result on the number of so-
lutions to certain equations in finite groups. In the statement ι(χ) denotes
the Schur indicator of an irreducible character χ of G. Recall that ι(χ) is
±1 if χ is a real character, and 0 otherwise.

Lemma 3.1 Let G be a finite group and let d, g be positive integers. Fix an
element z ∈ G.

(i) For 1 ≤ i ≤ d let Ci be a conjugacy class in G with representative
gi. Then the number of solutions to the equation x1 · · ·xd = z with xi ∈ Ci
(1 ≤ i ≤ d) is equal to

|C1| · · · |Cd|
|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gd)χ(z−1)

χ(1)d−1
.

(ii) The number of solutions to the equation [a1, b1] · · · [ag, bg] = z with
ai, bi ∈ G is equal to

|G|2g−1
∑

χ∈Irr(G)

χ(z)

χ(1)2g−1
.

(iii) The number of solutions to a2
1 · · · a2

g = z with ai ∈ G is equal to

|G|g−1
∑

χ∈Irr(G)

ι(χ)g
χ(z)

χ(1)g−1
.
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Proof All parts are well known. Part (i) can be found in [2, 10.1,p.43],
and parts (ii),(iii) in [31, Chapter 14].

In estimating |Hom(Γ, G)| it is often useful to focus on a certain subspace
of special homomorphisms, defined as follows. Let C = (C1, . . . , Cd) be a
d-tuple of conjugacy classes Ci of the finite group G. Set

HomC(Γ, G) = {φ ∈ Hom(Γ, G) : φ(xi) ∈ Ci i = 1, . . . , d}.
Clearly (9) gives

|HomC(Γ, G)| = |G|vg−1+s+t|C1| · · · |Cd| for Γ improper. (13)

It turns out that under some extra conditions, a similar estimate holds for
proper Fuchsian groups Γ (see Theorem 3.3 below).

So let us now turn to the main case, estimating |Hom(Γ, Sn)| when Γ is
a proper Fuchsian group (as in (1.1), (1.2) with s = t = 0).

Our starting point is the following.

Proposition 3.2 (i) Let Γ be a group with presentation as in (1.1) with
s = t = 0 (but µ(Γ) not necessarily positive). Let G be a finite group, and
for 1 ≤ i ≤ d let Ci be a conjugacy class in G with representative gi of order
mi. Define C = (C1, . . . , Cd). Then

|HomC(Γ, G)| = |G|2g−1|C1| · · · |Cd|
∑

χ∈Irr(G)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
.

(ii) Let Γ be a group with presentation as in (1.2) with s = t = 0 (but
µ(Γ) not necessarily positive), and let G,Ci, gi be as in (i). Then

|HomC(Γ, G)| = |G|g−1|C1| · · · |Cd|
∑

χ∈Irr(G)

ι(χ)g
χ(g1) · · ·χ(gd)

χ(1)d−2+g
.

Proof (i) This essentially goes back to Hurwitz [22]. For completeness we
provide a proof. Observe first that |HomC(Γ, G)| is equal to the number of
solutions to the equation x1 · · ·xd [a1, b1] · · · [ag, bg] = 1 (ai, bi ∈ G, xi ∈ Ci).
By Lemma 3.1(i), given z ∈ G, the number of solutions to x1 · · ·xd = z with
xi ∈ Ci is

|G|−1|C1| · · · |Cd|
∑

χ∈Irr(G)

χ(g1) · · ·χ(gd)χ(z−1)

χ(1)d−1
.

Moreover, Lemma 3.1(ii) shows that the number of solutions to the equation
[a1, b1] · · · [ag, bg] = z−1 is

|G|2g−1
∑

χ∈Irr(G)

χ(z)

χ(1)2g−1
.
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Hence |HomC(Γ, G)| = |G|2g−2|C1| · · · |Cd|Λ, where

Λ =
∑
z∈G

∑
χ1∈Irr(G)

χ1(g1) · · ·χ1(gd)χ1(z−1)

χ1(1)d−1

∑
χ2∈Irr(G)

χ2(z)

χ2(1)2g−1

=
∑

χ1,χ2,z

χ1(g1) · · ·χ1(gd)χ1(z−1)χ2(z)

χ1(1)d−1χ2(1)2g−1
.

By the orthogonality relations,
∑

z∈G χ1(z−1)χ2(z) is equal to 0 if χ1 6= χ2,
and is equal to |G| if χ1 = χ2. Consequently

Λ = |G|
∑

χ∈Irr(G)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
.

Part (i) follows.

(ii) The argument is similar to (i). Here |HomC(Γ, G)| is equal to the
number of solutions to the equation x1 · · ·xd a2

1 · · · a2
g = 1 (ai, bi ∈ G, xi ∈

Ci). Now argue as above, using Lemma 3.1(iii).

The next result determines the precise behaviour of |HomC(Γ, Sn)| when
Γ is Fuchsian and the classes Ci are almost homogeneous.

Theorem 3.3 Let Γ be a proper Fuchsian group, and let µ = µ(Γ) > 0.
For 1 ≤ i ≤ d let Ci be a conjugacy class in Sn with cycle-shape (mai

i , 1
fi),

where the fi are bounded and
∏

sgn(Ci) = 1. Then

|HomC(Γ, Sn)| = (n!)vg−1|C1| · · · |Cd| · (2 +O(n−µ)).

Moreover, if all the classes Ci lie in An then

|HomC(Γ, An)| = (n!/2)vg−1|C1| · · · |Cd| · (1 +O(n−µ)).

Proof This follows by combining Proposition 3.2 with Theorem 2.15 for
Sn, and Corollary 2.16 for An. (In both cases we take l = vg.)

To derive the asymptotics of the expressions in Theorem 3.3, we need
the following lemma on the size of an almost homogeneous class in Sn.

Lemma 3.4 Let m ≥ 2 and f ≥ 0 be fixed integers, and let π ∈ Sn have
cycle-shape (ma, 1f ). Then

|πSn | ∼ (n!)1− 1
m · n f

m
− 1

2
(1− 1

m
).
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Proof Using Stirling’s formula we have

|πSn | = n!

maa!f !
∼ n1/2(n/e)n

maa1/2(a/e)a
=

n1/2(n/e)n

a1/2(n−fe )
n−f
m

.

Now ( n
n−f )n−f = (1 + f

n−f )n−f < ef , hence (n−fe )
n−f
m ∼ (n/e)

n−f
m , and

|πSn | ∼ n1/2(n/e)n

((n− f)/m)1/2(n/e)
n−f
m

∼ (
n

e
)n(1− 1

m
)+ f

m ∼ (n!)1− 1
m · n f

m
− 1

2
(1− 1

m
),

as required.

We can now deduce

Theorem 3.5 In the notation of Theorem 3.3, we have

|HomC(Γ, Sn)| ∼ (n!)µ+1 · n
∑ fi

mi
− 1

2
(1− 1

mi
)
.

The same holds for |HomC(Γ, An)| provided all the classes Ci lie in An.

Proof Combining Theorem 3.3 with Lemma 3.4, we obtain

|HomC(Γ, Sn)| ∼ (n!)
vg−1+

∑
(1− 1

mi
) · n

∑ fi
mi
− 1

2
(1− 1

mi
)
.

The result follows for Sn. The argument for An is similar.

Corollary 3.6 Let Γ be a Fuchsian group, and let b be any fixed real number.
Then for sufficently large n we have

|Hom(Γ, Sn)| ≥ |Hom(Γ, An)| ≥ (n!)µ+1 · nb.

Proof The proof for Γ improper was already given in (11) and the remarks
following it. For Γ proper, the result follows from Theorem 3.5, taking the
fi fixed, but as large as we want.

We now turn to proving upper bounds for |Hom(Γ, Sn)|.

Theorem 3.7 Let Γ be a Fuchsian group. Let m = max(1,m1, . . . ,md),
and set γ = 1− 1

2m . Then there is a constant c depending on Γ such that

(i) |Hom(Γ, Sn)| ≤ (n!)µ+1cn
γ

for all n;

(ii) if g ≥ 1 (g ≥ 2 in the non-oriented case), then

|Hom(Γ, Sn)| ≤ (n!)µ+1c
√
n for all n.

Moreover, in both cases we may take c = cd+1
0 , where c0 = c0(m) depends

only on m.
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Proof The case where Γ is improper is covered by (11) and the remarks
following it.

Now assume Γ is proper. We start with the oriented case; so suppose
Γ is as in (1.1). Obviously, |Hom(Γ, Sn)| =

∑
C |HomC(Γ, Sn)|, where the

sum is over all C = (C1, . . . , Cd) such that each Ci is a conjugacy class in
Sn of elements of order dividing mi. By Proposition 3.2(i) this yields

|Hom(Γ, Sn)| =
∑
C

(n!)2g−1|C1| · · · |Cd|
∑

χ∈Irr(Sn)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
. (14)

By Theorem 2.14, for all i and χ ∈ Irr(Sn) we have

|Ci| · |χ(gi)| < (n!)
1− 1

mi · χ(1)1/mi · cn
1− 1

2mi

i ,

where ci = ci(mi). Hence

|Hom(Γ, Sn)| ≤ (n!)2g−1
∑
C,χ

∏d
1((n!)

1− 1
mi · χ(1)1/mi · cn1− 1

2mi

i )

χ(1)d−2+2g

≤ (n!)µ+1cdn
γ

0

∑
C

∑
χ

χ(1)−µ,

where c0 = max ci depends only on m. Observe that since the orders mi

are given, the number of possiblities for C is at most na, where a = a(m).
Also by Theorem 2.6,

∑
χ χ(1)−µ = 2 +O(n−µ). Therefore, replacing c0 by

a larger constant (still depending only on m), we have

|Hom(Γ, Sn)| ≤ (n!)µ+1c
(d+1)nγ

0

(the d + 1 factor replacing d to accomodate the case where d = 0). This
proves part (i) in the oriented case.

Now assume g ≥ 1 (still in the oriented case). Observe that∑
χ∈Irr(Sn)

|χ(g1) · · ·χ(gd)|
χ(1)d−2+2g

≤
∑
χ

χ(1)−2+2g. (15)

Since g ≥ 1 the last sum is at most p(n). We clearly have

∑
C

|C1| · · · |Cd| =
d∏
1

jmi(Sn).

Hence by (14),

|Hom(Γ, Sn)| ≤ p(n)(n!)2g−1
∑
C

|C1| · · · |Cd|
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= p(n)(n!)2g−1
d∏
i=1

jmi(Sn).

Since by Lemma 2.17 we have jmi(Sn) ∼ (n!)
1− 1

mi ·E(n,mi), and both p(n)

and E(n,mi) are bounded by c
√
n

0 , where c0 = c0(m), this gives

|Hom(Γ, Sn)| ≤ (n!)µ+1c
(d+1)

√
n

0 ,

proving (ii).

The non-oriented case is very similar, using Proposition 3.2(ii), and is
left to the reader.

When the genus is at least 2, we can prove a much more precise result.
Recall from the Introduction that d∗ is the number of mi which are even.

Theorem 3.8 Let Γ be a proper Fuchsian group, and suppose that g ≥ 2
(g ≥ 3 in the non-oriented case). Then

(i) |Hom(Γ, An)| = (1 +O(n−(vg−2)) · (n!
2 )vg−1

∏d
i=1 jmi(An).

(ii) |Hom(Γ, Sn)| = (h+O(n−(vg−2))·(n!)vg−1
∏d
i=1 jmi(Sn), where h = 1

if d∗ > 0, and h = 2 if d∗ = 0.

(iii) |Hom(Γ, Sn)| ∼ |Hom(Γ, An)| ∼ (n!)µ+1 ·∏d
i=1E(n,mi).

Proof We shall give the proof only for the case where Γ is oriented. The
non-oriented case is similar and is left to the reader.

As before, |Hom(Γ, An)| = ∑C |HomC(Γ, An)|, where the sum is over all
C = (C1, . . . , Cd) such that each Ci is a conjugacy class in An of elements
of order dividing mi. Hence by Proposition 3.2(i),

|Hom(Γ, An)| =
∑
C

(
n!

2
)2g−1|C1| · · · |Cd|

∑
χ∈Irr(An)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
. (16)

Each term |χ(g1)···χ(gd)|
χ(1)d−2+2g ≤ χ(1)−(2g−2). Since g ≥ 2 we have 2g − 2 ≥ 2, and

hence by Corollary 2.7,∑
χ∈Irr(An)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
= 1 +O(n−(2g−2)).

It follows that

|Hom(Γ, An)| = (1 +O(n−(2g−2))) · (n!

2
)2g−1 ·

∑
C

|C1| · · · |Cd|
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= (1 +O(n−(2g−2))) · (n!

2
)2g−1 ·

d∏
i=1

jmi(An),

giving (i).

For part (ii), assume first that d∗ = 0; in other words, all mi are odd.
Then by Theorem 2.6 and the assumption g ≥ 2, we have∑

χ∈Irr(Sn)

χ(g1) · · ·χ(gd)

χ(1)d−2+2g
= 2 +O(n−(2g−2)),

and so (14) gives the conclusion as above.

Now assume d∗ > 0. Then
∑

χ∈Irr(Sn)
χ(g1)···χ(gd)
χ(1)d−2+2g is 2 + O(n−(2g−2)) if

g1 · · · gd ∈ An, and is O(n−(2g−2)) if g1 · · · gd 6∈ An. By Lemma 2.18, given

gmii = 1, the probability that g1 · · · gd lies in An is 1
2 + O(e−nδ) for some

δ > 0, and the conclusion follows from (14) again.

Finally, (iii) follows from (i) and (ii), together with 2.17 and 2.18.

The proofs of Theorems 1.2 and 1.12(i) are now complete.

It is now easy to deduce the following result, which will be used in the
proof of Theorem 1.12(vi).

Corollary 3.9 Under the hypotheses of Theorem 3.8, the probability that a
random homomorphism in Hom(Γ, Sn) has image contained in An is equal
to 2−(vg+d∗−1) + O(n−(vg−2)) if d∗ > 0, and is equal to 2−vg + O(n−(vg−2))
if d∗ = 0.

Proof The probability in question is |Hom(Γ,An)|
|Hom(Γ,Sn)| . Hence the result follows

from Theorem 3.8 and Lemma 2.18.

4 Subgroup growth

In this section we prove Theorems 1.4 and 1.12(iii). Let Γ be a Fuchsian
group. If Γ is improper then it is a free product of cyclic groups, and precise
estimates on the subgroup growth of Γ are known by [40, 36] and imply
Theorem 1.4 and also the conclusion of 1.12(iii).
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For completeness and for use in later sections, we include improper
groups in our results, although most of the work is taken up with the main
case, where Γ is proper.

Recall from the Introduction that an(Γ) = |Homtrans(Γ, Sn)|/(n − 1)!.
Using Theorem 3.7(i) we have

|Homtrans(Γ, Sn)| ≤ |Hom(Γ, Sn)| ≤ (n!)µ+1 · cnγ

where γ < 1 and c are constants, and so

an(Γ) ≤ (n!)µ · cnγ1 . (17)

Moreover, we may take c1 to be of the form c0(m)d+1.

The idea for proving the lower bound is probabilistic: we show that for
almost homogeneous classes C1, . . . , Cd with elements of orders m1, . . . ,md,
almost all homomorphisms in HomC(Γ, Sn) lie in Homtrans(Γ, Sn) (where
C = (C1, . . . , Cd)). To do this we need some preparations.

Lemma 4.1 Let M = Sk × Sn−k < Sn (1 ≤ k ≤ n/2), and fix an integer
m ≥ 2. Then there is a constant c such that for all n we have

jm(M)

jm(Sn)
≤
(
n

k

)−(1− 1
m

)

c
√
k.

Proof Write l = n−k, so that jm(M) = jm(Sk)jm(Sl). Using Lemma 2.17,
we have

jm(M)

jm(Sn)
∼ (k! l!)1−1/mE(k,m)E(l,m)

(n!)1−1/mE(n,m)

≤
(
n

k

)−(1− 1
m

)

· E(k,m).

Note that E(k,m) < c
√
k. The result follows.

Lemma 4.2 Let M = Sk × Sn−k < Sn (1 ≤ k ≤ n/2), and fix integers
m ≥ 2, f ≥ 0. Let C be a conjugacy class of Sn with cycle-shape (ma, 1f ).
Then there is a constant c such that

|C ∩M |
|C| ≤ c

(
n

k

)−(1− 1
m

)

.

Proof Write l = n − k. By Lemma 3.4, |C| ∼ (n!)1− 1
m · n f

m
− 1

2
(1− 1

m
).

Writing C = C(n,m, f), we have

|C ∩M | =
∑

f1+f2=f

|C(k,m, f1)| · |C(l,m, f2)|
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≤
∑

f1+f2=f

(k!)1− 1
m k

f1
m
− 1

2
(1− 1

m
) · (l!)1− 1

m l
f2
m
− 1

2
(1− 1

m
)

≤ (f + 1)(k! l!)1− 1
mn

f
m (kl)−

1
2

(1− 1
m

).

Hence

|C ∩M |
|C| ≤ (f + 1)

(
n

k

)−(1− 1
m

)

(
n

kl
)

1
2

(1− 1
m

) ≤ c
(
n

k

)−(1− 1
m

)

,

where c = 2(f + 1).

For 1 ≤ i ≤ d let Ci be a conjugacy class in Sn with cycle-shape
(mai

i , 1
fi), where the fi are bounded and

∏d
i=1 sgn(Ci) = 1. Write C =

(C1, . . . , Cd). For a subgroup M of Sn, we let HomC(Γ,M) denote the set
of those φ ∈ HomC(Γ, Sn) satisfying φ(Γ) ⊆M .

Lemma 4.3 There is a constant c such that for every k with 1 ≤ k ≤ n/2,
and any k-subset stabilizer M ∼= Sk × Sn−k, we have

|HomC(Γ,M)| < c|M |vg−1+s+t
d∏
i=1

|Ci ∩M |.

Proof Writing l = n− k and Ci = Ci(n,mi, fi), we have

Ci ∩M =
⋃

fi1+fi2=fi

C(k,mi, fi1)× C(l,mi, fi2).

This enables us to present HomC(Γ,M) as a disjoint union of direct products
HomK(Γ, Sk) × HomL(Γ, Sl), where K,L range over a bounded number of
d-tuples of almost homogeneous classes in Sk and Sl respectively.

It follows from Theorem 3.3 if s+ t = 0, and from (13) if s+ t > 0, that
for a suitable constant c we have

|HomK(Γ, Sk)| ≤ c(k!)vg−1+s+t
d∏
i=1

|Ki|,

and

|HomL(Γ, Sl)| ≤ c(l!)vg−1+s+t
d∏
i=1

|Li|.

Applying this and the above decomposition of HomC(Γ,M) we easily see
that, for some constant c1 we have

|HomC(Γ,M)| ≤ c1(k! l!)vg−1+s+t
d∏
i=1

|Ci ∩M |.

The result follows.
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Theorem 4.4 With C as above, the probability that a random homomor-
phism φ ∈ HomC(Γ, Sn) has a transitive image tends to 1 as n → ∞.
Moreover, this probability is of the form 1− O(n−µ), where µ = µ(Γ). The
same holds for HomC(Γ, An), assuming that the classes Ci all lie in An.

Proof For 1 ≤ k ≤ n/2, let M ∼= Sk × Sl < Sn be the stabilizer of
a k-subset, where l = n − k. If Q is the probability that a random φ ∈
HomC(Γ, Sn) has intransitive image, then

Q ≤
∑
M

|HomC(Γ,M)|
|HomC(Γ, Sn)| ,

where M ranges over all stabilizers of subsets of size between 1 and n/2.

Now, combining Theorem 3.3 and (13) with the preceding lemma, we
obtain

|HomC(Γ,M)|
|HomC(Γ, Sn)| ≤ c1|G : M |−(vg−1+s+t)

d∏
i=1

|Ci ∩M |
|Ci|

≤ c2|G : M |−(vg−1+s+t)
d∏
i=1

(
n

k

)−(1− 1
mi

)

= c2

(
n

k

)−(µ+1)

.

Summing over k, noting that there are
(
n
k

)
stabilizers of k-subsets, we see

that

Q ≤ c2

∑
1≤k≤n/2

(
n

k

)−µ
= O(n−µ).

This completes the proof for Sn. The argument for An is entirely similar.

Corollary 4.5 For any constant b and for all sufficiently large n we have

|Homtrans(Γ, Sn)| ≥ |Homtrans(Γ, An)| ≥ (n!)µ+1 · nb.

Proof By Theorem 4.4, it follows that

|Homtrans(Γ, Sn)| ≥ (1−O(n−µ))|HomC(Γ, Sn)|, (18)

where C is as above. Applying Theorem 3.5 with the fi fixed, but arbitrarily
large, the result follows for Sn. The same argument works for An.

This, combined with the upper bound (17), proves our main result on
subgroup growth:

Theorem 4.6 (i) For every constant b and for all sufficiently large n we
have an(Γ) ≥ (n!)µ · nb.

(ii) There is a constant c such that for all n we have an(Γ) ≤ (n!)µ · cnγ ,
where γ = 1− 1

2m (m = max(1,m1, . . . ,md)). We can take c = c0(m)d+1.
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In particular it follows that an(Γ) = (n!)µ+o(1), proving Theorem 1.4.

To prove Theorem 1.12(iii), we need the following.

Theorem 4.7 Let Γ be a Fuchsian group. If Γ is proper, assume that g ≥
2 (g ≥ 3 in the non-oriented case). Then the probability that a random
homomorphism φ ∈ Hom(Γ, Sn) has transitive image tends to 1 as n→∞.
Moreover, this probability is 1−O(n−µ).

Proof By Theorem 3.8(ii) for Γ proper, and using (10) for Γ improper,
we have |Hom(Γ, Sn)| ∼ (n!)vg+s+t−1

∏d
i=1 jmi(Sn). Hence for 1 ≤ k ≤ n/2,

letting M ∼= Sk × Sn−k be the stabilizer of a k-subset, we have

|Hom(Γ,M)| ≤ c|M |vg+s+t−1
d∏
i=1

jmi(M).

Thus if Q is the probability that a random φ ∈ Hom(Γ, Sn) has intransitive
image, then

Q ≤
∑
M

|Hom(Γ,M)|
|Hom(Γ, Sn)| ≤

n/2∑
k=1

(
n

k

) |Hom(Γ, Sk × Sn−k)|
|Hom(Γ, Sn)|

≤
n/2∑
k=1

(
n

k

)−(vg+s+t−2) d∏
i=1

jmi(Sk × Sn−k)
jmi(Sn)

.

Applying Lemma 4.1, this gives

Q ≤
n/2∑
k=1

(
n

k

)−(vg+s+t−2)−∑(1− 1
mi

)

· c
√
k = O(n−µ),

completing the proof.

It follows that |Homtrans(Γ, Sn)| ∼ |Hom(Γ, Sn)| under the hypotheses
of Theorem 1.12, and hence Theorem 1.12(iii) follows from 1.12(i).

We shall also need the following slight variant of Theorem 4.7.

Theorem 4.8 Assume the hypotheses of Theorem 4.7. Then the probability
that a random homomorphism φ ∈ Hom(Γ, An) has transitive image tends
to 1 as n→∞. Moreover, this probability is 1−O(n−µ).

Proof By 3.8 and (12), there is a constant c > 0 such that |Hom(Γ, An)| >
c|Hom(Γ, Sn)| for all n. Hence the result follows from Theorem 4.7.

37



5 Maximal subgroup growth

In this section we prove Theorem 1.5, showing that almost all index n sub-
groups of a Fuchsian group are maximal. It is interesting to note that our
proof of this for a given Fuchsian group requires our subgroup growth results
for all Fuchsian groups.

For a group Γ as in (1.1) or (1.2) write γ(Γ) = 1− 1
2m where m = m(Γ) =

max (1,m1, . . . ,md). Set also d(Γ) = d (the number of elliptic generators).

We shall need the following result.

Proposition 5.1 Let Γ be a Fuchsian group, and let Γ0 be a subgroup of
finite index in Γ. Then

(i) Γ0 is also a Fuchsian group,

(ii) µ(Γ0) = |Γ : Γ0| · µ(Γ),

(iii) m(Γ0) ≤ m(Γ) and γ(Γ0) ≤ γ(Γ),

(iv) d(Γ0) ≤ |Γ : Γ0| · d(Γ).

Proof Part (i) is obvious from the geometric definition of Fuchsian groups.
Part (ii) for proper Fuchsian groups is [33, III.7.9, p.140]; the improper case
is covered by the remarks following that result. Next, (iii) follows from the
well known fact that every non-identity torsion element of Γ is conjugate
to a power of one of the elliptic generators xi (so m above is equal to the
maximal order of a torsion element of Γ). Finally, part (iv) follows from the
description of possible signatures of subgroups of given index in Γ in [45,
Theorem 1].

We shall also need the following easy observation concerning indices of
wreath product subgroups.

Lemma 5.2 Let k, n be positive integers such that k|n and 1 < k < n. Set
i(n, k) = n!

k!((n/k)!)k
.

(i) i(n, k) ≥ 2n · cn−1/2, where c > 0 is an absolute constant.

(ii) Fix ε with 0 < ε < 1. If k ≥ nε then i(n, k) ≥ (n!)ε/2 for all
sufficiently large n.

Proof Part (i) is well known and easy. For (ii), observe that by Stirling’s
formula we have

i(n, k) ∼ (n/k)
1
2

(1+k)ekkn

nk
≥ kn

nk
.

Set j(n, k) = kn

nk
. The function xn/nx increases for 2 ≤ x ≤ n

logn and
decreases for n

logn < x ≤ n/2. Hence, for k ≥ nε we have j(n, k) ≥
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min {j(n, nε), j(n, n/2)}, which is easily seen to be at least (n!)ε/2 for large
n.

We now prove Theorem 1.5.

Recall that mn(Γ) denotes the number of index n maximal subgroups
of Γ. We estimate below the number an(Γ) − mn(Γ) of non-maximal in-
dex n subgroups. If H is such a subgroup, then there exists k|n with
1 < k < n and an index k subgroup K of Γ such that H < K. Given
such k, the number of choices for K is ak(Γ), which is bounded above by

(k!)µ(Γ)c(d(Γ)+1)kγ(Γ)
by Theorem 4.6, where c = c(m(Γ)). Given K, the

number of choices for our subgroup H is an/k(K), which is bounded above

by ((n/k)!)µ(K)c
(d(K)+1)(n/k)γ(K)

1 , where c1 = c1(m(K)). By Proposition 5.1
we have m(K) ≤ m(Γ), so we may take c1 = c. The same proposition
also gives µ(K) = kµ(Γ), γ(K) ≤ γ(Γ) and d(K) ≤ kd(Γ). Hence, setting
µ = µ(Γ), γ = γ(Γ) and d = d(Γ), we obtain

an(Γ)−mn(Γ) ≤
∑

k|n,1<k<n
(k!(n/k)!k)µ · c(d+1)kγ+(kd+1)(n/k)γ .

Using the lower bound an(Γ) ≥ (n!)µ which holds for all large n by Theo-
rem 4.6, and letting i(n, k) be as in Lemma 5.2 this gives

an(Γ)−mn(Γ)

an(Γ)
≤

∑
k|n,1<k<n

i(n, k)−µ · c(d+1)kγ+(kd+1)(n/k)γ .

Let ε = 1− γ. We divide the sum above into two parts Σ1, Σ2, over k < nε

and k ≥ nε respectively. Note that for k < nε we have

(d+ 1)kγ + (kd+ 1)(n/k)γ ≤ (d+ 1)(nγ + n1−γ+γ2
) ≤ c2nγ′ ,

where γ′ = 1 − γ + γ2 < 1 and c2 = 2(d + 1). Using part (i) of Lemma 5.2
this yields

Σ1 ≤ cc2nγ
′ ∑

1<k<nε

(2nc3n
−1/2)−µ ≤ 1

2
c−n4 ,

for any constant c4 satisfying 1 < c4 < 2µ and sufficiently large n.

To bound Σ2 note that, for all k we have

(d+ 1)kγ + (kd+ 1)(n/k)γ ≤ c2n

with c2 as above. Now part (ii) of Lemma 5.2 yields

Σ2 ≤ cc2n
∑

nε≤k<n
((n!)ε/2)−µ ≤ 1

2
c−n4 ,
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for all sufficiently large n (where c4 is as above).

Altogether it follows that if n is large enough, then

an(Γ)−mn(Γ)

an(Γ)
≤ Σ1 + Σ2 ≤ c−n4 .

This completes the proof of Theorem 1.5.

The following is an equivalent version of Theorem 1.5, which we shall
use in the sequel.

Corollary 5.3 If Γ is a Fuchsian group, then the probability that a ran-
domly chosen φ ∈ Homtrans(Γ, Sn) has primitive image tends to 1 as n→∞.
Moreover, this probability is 1−O(c−n) for some constant c > 1.

We shall also need the corresponding statement for An:

Corollary 5.4 If Γ is a Fuchsian group, then the probability that a ran-
domly chosen φ ∈ Homtrans(Γ, An) has primitive image is 1−O(c−n), where
c > 1.

Proof The proof is very similar to that of Theorem 1.5. Define a′n(Γ)
to be the number of index n subgroups H of Γ such that the permutation
representation of Γ on Γ/H maps Γ into An, and let m′n(Γ) denote the

number of maximal such subgroups. It is enough to show that a′n(Γ)−m′n(Γ)
a′n(Γ) ≤

c−n for some c > 1. Note that a′n(Γ)−m′n(Γ) ≤ an(Γ)−mn(Γ) (since the left
hand side is the number of non-maximal index n subgroups with an etxra
property). Also

a′n(Γ) ≥ |Homtrans(Γ, An)|/(n− 1)! ≥ (n!)µ · n
for sufficiently large n, by 4.5. Hence the proof above carries over to show
that

a′n(Γ)−m′n(Γ)

a′n(Γ)
≤ c−n,

yielding the conclusion.

Note that in 5.3 and 5.4, any constant c with 1 < c < 2µ will do.

Define Homprim(Γ, Sn) to be the set of homomorphisms φ : Γ→ Sn such
that φ(Γ) is primitive, and define Homprim(Γ, An) similarly.

Corollary 5.5 If Γ is a Fuchsian group, then for any b and for sufficiently
large n,

|Homprim(Γ, Sn)| ≥ |Homprim(Γ, An)| ≥ (n!)µ+1 · nb.
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Proof This follows from the previous result, combined with Corollary 4.5.

6 Random quotients I: Higman’s conjecture

In this section we prove Theorems 1.6, 1.7 and deduce Higman’s conjecture
(Corllary 1.8). Unlike all previous proofs, we make use of the classification
of finite simple groups through Lemma 6.1(ii) below.

While our proof works equally well for proper and improper Fuchsian
groups, these results for improper groups (i.e. free products of cyclic groups)
are essentially known - see [12] for the case of free groups, and [28, 2.4,5.1]
for Zp ∗ Zq with p, q primes not both 2 (and the same proof applies for any
free product of finite cyclic groups). Extensions of this to free products of
arbitrary finite groups have been announced by Müller and Pyber.

We begin with Theorem 1.6. We shall need the following known result
about primitive subgroups of Sn.

Lemma 6.1 (i) If M is a primitive subgroup of Sn not containing An, then
|M | < 4n.

(ii) The number of conjugacy classes of primitive maximal subgroups in
An or Sn is at most n6/11+o(1).

Proof Part (i) follows from [41], and part (ii) from [27, 4.3], together with
the proof of [27, 4.4] (taking into account maximal subgroups of An as well
as Sn).

Lemma 6.2 If Γ is a Fuchsian group, then the probability that a randomly
chosen φ ∈ Homprim(Γ, Sn) has image An or Sn tends to 1 as n → ∞.
Moreover, this probability is 1−O((n!)−µ′) for any µ′ < µ.

Proof Denote by Mprim a set of conjugacy classes representatives of
maximal primitive subgroups of An or Sn, not including An itself. Let Q be
the probability that a randomly chosen φ ∈ Homprim(Γ, Sn) has φ(Γ) 6⊇ An.
Since each M ∈Mprim has |Sn : M | conjugates, we obtain

Q ≤
∑

M∈Mprim

|Sn : M | |Hom(Γ,M)|
|Homprim(Γ, Sn)| .
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By Corollary 5.5, we have, for large n,

|Homprim(Γ, Sn)| ≥ (n!)µ+1.

Noting that Γ can be generated by r = d + vg + s + t elements, and using
Lemma 6.1(i), we see that

Q ≤
∑

M∈Mprim

|Sn : M | · |M |r
(n!)µ+1

≤
∑

M∈Mprim

|M |r−1

(n!)µ
≤ |Mprim| · 4n(r−1)

(n!)µ
.

Now |Mprim| < n for large n by Lemma 6.1(ii), and so it follows that
Q = O((n!)−µ′ for any µ′ < µ, proving the result.

It now follows from Corollary 5.3 and Lemma 6.2 that the probability
that a random homomorphism in Homtrans(Γ, Sn) has image An or Sn is
(1 − O(c−n)) · (1 − O((n!)−µ′)) for any µ′ < µ, and taking µ′ > 0, this is
1−O(c−n). This completes the proof of Theorem 1.6.

The following corollary is immediate.

Corollary 6.3 If Γ is a Fuchsian group, and n is sufficiently large, then Γ
surjects onto either An or Sn.

We now deduce Theorem 1.7, and hence Higman’s conjecture (Corol-
lary 1.8).

Lemma 6.4 If Γ is a Fuchsian group, then the probability that a randomly
chosen φ ∈ Homprim(Γ, An) is an epimorphism tends to 1 as n→∞. More-
over, this probability is 1−O((n!)−µ′) for any µ′ < µ.

Proof Denote by M′prim a set of conjugacy classes representatives of
maximal primitive subgroups of An, and let Q′ be the probability that a
randomly chosen φ ∈ Homprim(Γ, An) satisfies φ(Γ) 6= An. Then

Q′ ≤
∑

M∈M′prim
|An : M | |Hom(Γ,M)|

|Homprim(Γ, An)| .

It now follows exactly as in the proof of Lemma 6.2 that Q′ = O((n!)−µ′)
for any µ′ < µ.

Combining Lemma 6.4 with Corollary 5.4 completes the proof of Theo-
rem 1.7 and of Higman’s conjecture.
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Now we prove parts (iv), (v) and (vi) of Theorem 1.12. Assume Γ is a
Fuchsian group, and if Γ is proper assume g ≥ 2 (g ≥ 3 in the non-oriented
case). In this case Theorem 4.7 shows that the probability that a random
φ ∈ Hom(Γ, Sn) have transitive image is 1 − O(n−µ). Combining this with
Theorem 1.6 yields part (iv) of Theorem 1.12. Likewise, part (v) follows
from Theorems 4.8 and 1.7. Finally, Theorem 1.12(vi) follows from part
(iv) together with Corollary 3.9 (for the proper case) and from (12) and the
remarks following it (for the improper case).

7 Random quotients II: symmetric quotients

In this section we prove Theorems 1.9 and 1.10.

Let Γ be a Fuchsian group as in (1.1), (1.2). For 1 ≤ i ≤ d let Ci be a
conjugacy class in Sn with cycle-shape (mai

i , 1
fi), where the fi are bounded

and
∏d
i=1 sgn(Ci) = 1. Set C = (C1, . . . , Cd).

We already know by Theorem 4.4 that a randomly chosen φ ∈ HomC(Γ, Sn)
has transitive image with probability 1−O(n−µ). The main step in the proof
of Theorem 1.9 is to show that the probability that φ has primitive image
has the same form.

We need some notation. Define

HomC,trans(Γ, Sn) = HomC(Γ, Sn) ∩Homtrans(Γ, Sn),

HomC,prim(Γ, Sn) = HomC(Γ, Sn) ∩Homprim(Γ, Sn),

Homtrans,imp(Γ, Sn) = {φ ∈ Homtrans(Γ, Sn) : φ(Γ) imprimitive},

HomC,trans,imp(Γ, Sn) = HomC(Γ, Sn) ∩Homtrans,imp(Γ, Sn).

Proposition 7.1 The probability that a randomly chosen homomorphism
in HomC(Γ, Sn) has primitive image is 1−O(n−µ).

Proof By Corollary 5.3, there is a constant c1 > 1 such that

|Homtrans,imp(Γ, Sn)| ≤ c−n1 · |Homtrans(Γ, Sn)|.

Theorem 3.7 then gives

|Homtrans,imp(Γ, Sn)| ≤ c−n1 · |Hom(Γ, Sn)| ≤ c−n1 · cnγ2 · (n!)µ+1, (19)
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where γ < 1. Combining Theorems 4.4 and 3.5, we obtain

|HomC,trans(Γ, Sn)| ≥ (1− o(1)) · |HomC(Γ, Sn)| ≥ n−c3 · (n!)µ+1, (20)

for some constant c3.

By (19) and (20), we have

|HomC,trans,imp(Γ, Sn)|
|HomC,trans(Γ, Sn)| ≤

|Homtrans,imp(Γ, Sn)|
|HomC,trans(Γ, Sn)| ≤ c

−n
1 · cnγ2 · nc3 ≤ c−n4 ,

for some constant c4 > 1. In other words, the probability that a random
homomorphism in HomC,trans(Γ, Sn) has a primitive image is at least 1−c−n4 .
Combining this with Theorem 4.4 we obtain

|HomC,prim(Γ, Sn)|
|HomC(Γ, Sn)| =

|HomC,prim(Γ, Sn)|
|HomC,trans(Γ, Sn)| ·

|HomC,trans(Γ, Sn)|
|HomC(Γ, Sn)|

≥ (1− c−n4 )(1−O(n−µ)) = 1−O(n−µ).

The result follows.

Lemma 7.2 The probability that a randomly chosen φ ∈ HomC,prim(Γ, Sn)
has image An or Sn tends to 1 as n → ∞. Moreover, this probability is
1−O((n!)−µ′) for any µ′ < µ.

Proof The argument is similar to the proof of Lemma 6.2. LetMprim be a
set of conjugacy class representatives of maximal primitive subgroups of An
or Sn. By Proposition 7.1 and Theorem 3.5 we have |HomC,prim(Γ, Sn)| ≥
(n!)µ+1 · n−c for some constant c. Hence, setting r = d + vg + s + t and
denoting by Q the probability that a random φ ∈ HomC,prim(Γ, Sn) does
not have image containing An, then

Q ≤
∑

M∈Mprim

|Sn : M | |Hom(Γ,M)|
|HomC,prim(Γ, Sn)| ≤

∑
M∈Mprim

|Sn : M | · |M |r · nc
(n!)µ+1

=
∑

M∈Mprim

|M |r−1 · nc
(n!)µ

= O((n!)−µ
′
)

by Lemma 6.1, where µ′ is any fixed number satisfying 0 < µ′ < µ. The
result follows.

Combining this with Proposition 7.1 it follows that the probability that
a random homomorphism φ ∈ HomC(Γ, Sn) has image containing An is
(1−O(n−µ))(1−O((n!)−µ′)) = 1−O(n−µ).

This completes the proof of Theorem 1.9.
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We now turn to the proof of Theorem 1.10. Let Γ be as in the hypothesis
of the theorem: so if s + t = 0, then (g, d∗) 6= (0, 0), (0, 1), and if s + t = 1
then (g, d∗) 6= (0, 0). We divide the analysis into three cases:

Case 1 Γ is improper.

Case 2 Γ is proper and d∗ ≥ 2.

Case 3 Γ is proper and d∗ ≤ 1.

In each case we consider a suitable subspace X of Hom(Γ, Sn), and show
that, for large n, a random homomorphism φ ∈ X has image Sn with positive
probability.

Case 1 For this case the space X is Hom(Γ, Sn) itself. By Theorem 1.12(vi),
the probability that a random homomorphism φ ∈ Hom(Γ, Sn) satisfies
φ(Γ) = Sn is equal to 1−21−vg−d∗−s−t+o(1). Note that, by our assumptions
on Γ, s+ t ≥ 1, and if s+ t = 1 then vg+ d∗ > 0. Therefore this probability
is at least 1

2 − o(1), which is positive for large n.

Case 2 Since d∗ ≥ 2 there are distinct indices j, k such that mj and mk

are even. Choose almost homogeneous classes Ci (1 ≤ i ≤ d) in such a way
that Cj and Ck are odd classes, and the rest of the classes are all contained
in An. We may assume n is large, so that for i 6= j, k, the class Ci is also a
conjugacy class in An. In this case our space X will be HomC(Γ, Sn), where
C = (C1, . . . , Cd).

By the definition of X we have φ(Γ) 6⊆ An for all φ ∈ X. Theorem 1.9
now shows that φ(Γ) = Sn with probability tending to 1 as n→∞.

Case 3 Here d∗ ≤ 1 and so by our assumption on Γ we have g > 0. Choose
Ci (1 ≤ i ≤ d) to be almost homogeneous classes in An. Again we take our
space X = HomC(Γ, Sn).

Observe that by Theorem 3.3, we have

|HomC(Γ, An)|
|HomC(Γ, Sn)| = (

1

2
)vg +O(n−µ) ≤ 1

2
+O(n−µ).

Combining this with Theorem 1.9, it follows that the probability that a
random homomorphism φ ∈ HomC(Γ, Sn) has image equal to Sn is at least
1
2 +O(n−µ), which implies Theorem 1.10.

This completes the proof of Theorem 1.10 (and hence of Corollary 1.11
as well).
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8 Branched coverings of Riemann surfaces

In this section we prove Theorems 1.3 and 1.12(ii), as well as Theorem 1.13
and further related results.

We begin by expanding a little on the discussion in the preamble to
Theorem 1.3 in the Introduction. Let Y be a compact connected Riemann
surface of genus g, and let y1, . . . , yd ∈ Y be fixed distinct points. The
fundamental group Π = π1(Y \{y1, . . . , yd}) has presentation

Π = 〈xi, aj , bj (1 ≤ i ≤ d, 1 ≤ j ≤ g) | x1 · · ·xd [a1, b1] · · · [ag, bg] = 1〉.
Topologically, index n coverings X → Y unramified outside {y1, . . . , yd}
are classified by conjugacy classes of homomorphisms Π → Sn. Now, fix-
ing the Sn-conjugacy classes C1, . . . , Cd of the monodromy elements around
y1, . . . , yd respectively, we see that the number of index n coverings with
monodromy elements in these classes is equal to the number of solutions up
to conjugacy of the equation

x1 · · ·xd [a1, b1] · · · [ag, bg] = 1 (xi ∈ Ci, aj , bj ∈ Sn). (21)

Let mi be the order of the elements in Ci, and consider the group Γ as in
(1.1) with s = t = 0. Then there is a bijection between solutions to (21)
and homomorphisms φ ∈ HomC(Γ, Sn).

Now, since a solution to (21) which corresponds to a covering π : X → Y

has n!/|Autπ| conjugates it follows that∑
π∈P (C,n)

n!

|Autπ| = |HomC(Γ, Sn)|.

This gives rise to the following formula for the Eisenstein number of cover-
ings: ∑

π∈P (C,n)

1

|Autπ| =
1

n!
· |HomC(Γ, Sn)|,

as stated in (1.3) of the Introduction.

Now part (i) of Theorem 1.3 (where the classes Ci are almost homoge-
neous) follows from Theorems 3.3 and 3.5.

To prove 1.3(ii), we sum over all C = (C1, . . . , Cd) with Ci classes in Sn
of elements of order dividing mi, and obtain∑

π∈P (m,n)

1

|Autπ| =
1

n!
· |Hom(Γ, Sn)|.

Now Theorem 1.3(ii) follows from Theorem 1.2, while Theorem 1.12(ii) fol-
lows from Theorem 3.8(iii).
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We now turn to Theorem 1.13 and other probabilistic results on cover-
ings. Let mi, Ci be as above, and assume that µ = 2g − 2 +

∑
(1− 1

mi
) > 0

(the hyperbolic case), and also that the classes Ci have cycle-shape (mai
i , 1

fi)
with fi bounded. Recall that we are viewing P (m, n) and P (C, n) as proba-
bility spaces, where the probability assigned to a covering π is proportional
to 1/|Autπ|. This is the natural measure geometrically, and corresponds
to the uniform distribution on Hom(Γ, Sn) and HomC(Γ, Sn) respectively.
Note that the monodromy group Mon(π) of π ∈ P (m, n) is the image of φ,
where φ ∈ Hom(Γ, Sn) is in the Sn-class of homomorphisms corresponding
to π. It is well known that Mon(π) is transitive if and only if π is a connected
covering. Note also that Aut π = CSn(Mon(π)); in particular, if Mon(π) is
primitive and not regular of prime degree, then Aut π = 1.

Several of our results on Hom(Γ, Sn) and its subspaces can now be trans-
lated into the language of coverings. The first result shows that most of our
coverings are connected and have trivial automorphism group.

Proposition 8.1 Let π be a randomly chosen covering in P (C, n).

(i) The probability that π is connected is 1−O(n−µ).

(ii) The probability that Autπ = 1 is 1−O(n−µ).

Proof Part (i) follows from Theorem 4.4. Part (ii) follows from Propo-
sition 7.1 (noting that the probability that Mon(π) is regular is sufficiently
small).

While Proposition 8.1 is classification-free, stronger results can be de-
duced from our later theorems which apply the classification. Indeed, The-
orem 1.9 shows that the probability that a random covering in P (C, n) has
monodromy group An or Sn is 1−O(n−µ), proving Theorem 1.13(ii).

Next, Theorem 1.6 shows that almost all connected coverings in P (m, n)
have monodromy group An or Sn, and proves part (i) of Theorem 1.13.

Finally, in some situations it is possible to compute the limit proba-
bility of having the full symmetric group as a monodromy group. Indeed,
Theorem 1.12(vi) yields

Proposition 8.2 Assume g ≥ 2 and let d∗ be the number of i such that mi

is even. Then for a random π ∈ P (m, n), the probability that Mon(π) = Sn
is equal to 1−21−2g−d∗+O(n−(2g−2)) if d∗ > 0, and is 1−2−2g+O(n−(2g−2))
if d∗ = 0.
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9 Random walks on symmetric groups

In this section we prove Theorem 1.14. Assume the hypothesis of the the-
orem. For h ∈ Sn with sgn(h) =

∏d
i=1 sgn(gi), let P (h) denote the prob-

ability that x1 · · ·xd = h for randomly chosen xi ∈ Ci. Then P (h) =
N/(|C1| · · · |Cd|), where N is the number of ways of writing h = x1 · · ·xd
with xi ∈ Ci. By Lemma 3.1(i),

N =
|C1| · · · |Cd|

n!

∑
χ∈Irr(Sn)

χ(g1) · · ·χ(gd)χ(h−1)

χ(1)d−1
.

It follows that

P (h) =
1

n!

∑
χ∈Irr(Sn)

χ(g1) · · ·χ(gd)χ(h−1)

χ(1)d−1
.

Since |χ(h−1)| ≤ χ(1), we have

|
∑

χ∈Irr(Sn),χ(1)>1

χ(g1) · · ·χ(gd)χ(h−1)

χ(1)d−1
| ≤

∑
χ∈Irr(Sn),χ(1)>1

|χ(g1) · · ·χ(gd)|
χ(1)d−2

and since µ = d−2−∑ 1
mi

> 0 by hypothesis, Theorem 2.15(i) (with l = 0)

shows that the last sum is O(n−µ). Therefore

P (h) =
1

n!
(2 +O(n−µ)),

completing the proof of Theorem 1.14.

To conclude, we show that Theorem 1.14 is best possible, in the sense
that the condition µ > 0 is essential. Indeed, as is shown below, once this
condition is removed, the resulting distribution is not sufficiently close to
uniform in the l∞-norm.

Proposition 9.1 Let d ≥ 2, let m1, . . . ,md ≥ 2 be integers and set µ =
d − 2 −∑ 1

mi
. For 1 ≤ i ≤ d, assume gi ∈ Sn has cycle-shape (mai

i ) (so

mi|n), and let Ci = gSni . Assume also that
∏d
i=1 sgn(gi) = 1, and for h ∈ An

define P (h) as above.

(i) If µ < 0 then for sufficiently large n we have P (1) ≥ 2
n! · (n!)|µ|/2,

except when d = 2 and m1 6= m2, in which case P (1) = 0.

(ii) If µ = 0 then P (1) ≥ 2
n! · c

√
n for some fixed c > 1.

Proof First note that

P (1) =
1

n!

∑
χ∈Irr(Sn)

χ(g1) · · ·χ(gd)

χ(1)d−2
.
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For µ ≤ 0, formulae for these character sums are obtained in [26, 3.3,3.9].

Assume now that µ < 0 (the elliptic case). If d = 2 we assume that
m1 = m2, since otherwise clearly P (1) = 0. Writing m = (m1, . . . ,md), the
possibilities for m and the corresponding character formulae in the elliptic
case are as follows:

(1) m = (m,m), and ∑
χ

χ(g1)2 = (
n

m
)!mn/m

(2) m = (2, 2,m), and∑
χ

χ(g1)2χ(g3)

χ(1)
=

[(n/2)! 2n/2]2(n/m)!mn/m

n! (2m)n/m(n/2m)!

(3) m = (2, 3, 3), and∑
χ

χ(g1)χ(g3)2

χ(1)
=

[(n/3)! 3n/3]2(n/2)! 2n/2

n! (12)n/12(n/12)!

(4) m = (2, 3, 4), and∑
χ

χ(g1)χ(g2)χ(g3)

χ(1)
=

(n/2)! 2n/2(n/3)! 3n/3(n/4)! 4n/4

n! (24)n/24(n/24)!

(5) m = (2, 3, 5), and∑
χ

χ(g1)χ(g2)χ(g3)

χ(1)
=

(n/2)! 2n/2(n/3)! 3n/3(n/5)! 5n/5

n! (60)n/60(n/60)!
.

Using Stirling’s formula, it follows that in all cases these are asymptotically
of the form (n/e)n|µ|/2

√
n, which for large n is at least 2(n!)|µ|/2 (since

|µ| < 2). Part (i) follows.

Now suppose µ = 0 (the parabolic case). Given positive integers n, u,
define C(n, u) to be the coefficient of qn in the infinite product

∏∞
k=1(1 −

qk)−1/u. An asymptotic expression for C(n, u) is given in [26, (3.6)], and in
particular it follows from this that there are constants c1, c2 > 1 depending
on u such that

c
√
n

1 < C(n, u) < c
√
n

2 .

By [26, 3.9], the possibilities in the parabolic cases are as follows:

(6) m = (2, 2, 2, 2), and∑
χ

χ(g1)4

χ(1)2
=

22n((n/2)!)4

(n!)2
· C(

n

2
, 2)

49



(7) m = (2, 4, 4), and

∑
χ

χ(g1)χ(g2)4

χ(1)
=

23n/2(n/2)!((n/4)!)2

n!
· C(

n

4
, 4)

(8) m = (2, 3, 6), and

∑
χ

χ(g1)χ(g2)χ(g3)

χ(1)
=

22n/33n/2(n/2)!(n/3)!(n/6)!

n!
· C(

n

6
, 6)

(9) m = (3, 3, 3), and

∑
χ

χ(g1)3

χ(1)
=

3n((n/3)!)3

n!
· C(

n

3
, 3).

By Stirling’s formula these expressions are all asymptotically of the form
n · C( nm ,m), where m = max(mi). Part (ii) follows.

Observe that when µ < 0, the number |µ|/2 is equal to 1/|H|, where H is
the finite triangle group ∆(m1,m2,m3) in cases (2)-(5) above and H = Zm
in case (1).

Theorem 1.14 and Proposition 9.1 imply, for example, that if C1, C2, C3

are classes in An of cycle-shape (ma1
1 ), (ma2

2 ), (ma3
3 ) respectively, then

C1C2C3 = An almost uniformly pointwise if and only if 1
m1

+ 1
m2

+ 1
m3

< 1.

It is interesting to note that, while in this paper character-theoretic
results are proved and used to obtain geometric results on coverings of Rie-
mann surfaces, the proofs in [26] of the character formulae above are ge-
ometric, and thus Proposition 9.1 uses geometric insights on coverings in
order to prove a probabilistic statement.
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