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Abstract

We show that small normal subsets A of finite simple groups grow
very rapidly – namely, |A2| ≥ |A|2−ε, where ε > 0 is arbitrarily small.
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1 Introduction

In recent years there has been intense interest in the growth of powers of
subsets of finite (nonabelian) simple groups. For example, the remarkable
product theorem of [1, 12] states that if G is a simple group of Lie type, and
A is any subset generating G, then either A3 = G or |A3| ≥ |A|1+ε, where
ε > 0 depends only on the rank of G. See also [6] for important earlier
results in this direction, and [4, 5] for the groundbreaking results on L2(p)
and L3(p).

The case where the subset A is a conjugacy class and G is an arbitrary
finite simple group was considered in [13] before the product theorem was
established. Theorem 2.7 of [13] shows that for any δ > 0 there is ε > 0
depending on δ such that |A3| ≥ |A|1+ε for any class A of size at most
|G|1−δ; here G is any finite simple group, and ε does not depend on its rank
or degree.

While the above mentioned results establish 3-step growth, results on
2-step growth were also obtained. In [13, 10.4] it is shown that if A is a
conjugacy class of a finite simple group G of Lie type, then |A2| ≥ |A|1+ε

where ε > 0 now depends on the rank of G.

Subsequently, growth of normal subsets was also studied. Recall that a
subset A of a group G is said to be normal if it is closed under conjugation,
namely, it is a union of conjugacy classes of G. In [3, 1.5] it is shown that
there are absolute constants b ∈ N and ε > 0 such that for any normal subset
A of a finite simple group G, either Ab = G or |A2| ≥ |A|1+ε.

In this paper we obtain a stronger growth result for normal subsets, as
follows.

Theorem 1.1. Given any ε > 0, there exists b ∈ N such that for any normal
subset A of any finite simple group G, either Ab = G or |A2| ≥ |A|2−ε.

Obviously |A2| ≤ |A|2, so the result says that small normal subsets of
simple groups grow almost as fast as possible. Theorem 1.1 follows from the
following result.

Theorem 1.2. Given any ε > 0, there exists δ > 0 such that if A is a normal
subset of a finite simple group G satisfying |A| ≤ |G|δ, then |A2| ≥ |A|2−ε.

Note that some upper bound on the size of A is needed in order for the
above conclusion to be true. The study of the growth of large normal subsets
requires different methods and will be carried out elsewhere.

We will deduce Theorem 1.2 from the following more general result.

Theorem 1.3. Given any ε > 0, there exists δ > 0 such that if A1, A2 are
normal subsets of a finite simple group G satisfying |Ai| ≤ |G|δ for i = 1, 2,
then |A1A2| ≥ (|A1| |A2|)1−ε.
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Let us now briefly describe the strategy of the proof of Theorem 1.3.

The theorem holds vacuously for simple groups of bounded order, or of
bounded Lie rank, since for these groups we may choose δ so small that
|A| > |G|δ for all nontrivial classes (see Lemma 2.3 below); this enables us
to ignore the sporadic groups and the exceptional groups of Lie type. It
therefore remains to prove Theorem 1.3 for simple classical groups of large
rank, and for alternating groups of large degree.

Next, we reduce Theorem 1.3 to the case where the normal subsets
A1, A2 ⊆ G are single conjugacy classes. This is done using a certain zeta
function encoding the class sizes, and showing that a normal subset must
contain a conjugacy class of comparable size (see Theorem 2.2 below for the
exact formulation).

Our proof of Theorem 1.3 for conjugacy classes is based on results from
[9, 10, 11], together with some new results on the size of the conjugacy classes
in classical groups and in symmetric groups; see e.g. Propositions 3.1 and
4.1 below. In fact, under the assumptions of Theorem 1.3, we establish a
stronger conclusion: there exists a single conjugacy class C ⊆ A1A2 such
that |C| ≥ (|A1| |A2|)1−ε. The notion of the support of elements of G plays
a key role in our arguments.

A similar result for k subsets follows inductively from Theorem 1.3:

Corollary 1.4. Given ε > 0 and k ∈ N there exists δ > 0 such that if
A1, . . . , Ak ⊆ G are normal subsets of a finite simple group G with |Ai| ≤
|G|δ, then |A1 · · ·Ak| ≥ (|A1| · · · |Ak|)1−ε. In particular, |Ak| ≥ |A|k−ε for
every normal subset A of G satisfying |A| ≤ |G|δ, where δ depends on ε and
k.

We also prove a result analogous to Theorem 1.3 for algebraic groups
over algebraically closed fields:

Theorem 1.5. Given any ε > 0, there exists δ > 0 such that if A1, A2 are
conjugacy classes in a simple algebraic group G satisfying dimAi ≤ δ dimG
for i = 1, 2, then the product A1A2 contains a conjugacy class of dimension
at least (1− ε)(dimA1 + dimA2).

The layout of the paper is as follows. In Section 2 we perform the
reduction to conjugacy classes described above. Section 3 is devoted to
classical groups of large rank. We study the size of conjugacy classes in these
groups, and show that it is closely related to the support of the elements in
the class; see Propositions 3.1 and 3.4 for more details. Section 3 concludes
the proof of Theorem 1.3 for classical groups. Then, in Section 4, we prove
Theorem 1.3 for symmetric and alternating groups, and derive some stronger
results. Finally in Section 5 we deduce Theorems 1.1 and 1.5 as well as
Corollary 1.4.
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2 Reduction to conjugacy classes

We start with some notation. Throughout, finite simple groups G are as-
sumed to be nonabelian, and for subsetsA1, . . . , Ak ofG we defineA1 · · ·Ak =
{a1 · · · ak : ai ∈ Ai}. The conjugacy class of x ∈ G in G is denoted by xG.
We define the rank of a finite simple group to be its untwisted Lie rank if it
is a group of Lie type, and to be its degree if it is an alternating group.

For a positive integer i and a finite group G, let ci(G) denote the number
of conjugacy classes of G of size i. For s ∈ R, the function

ηG(s) =
∑
i∈N

ci(G)i−s =
∑
C

|C|−s

(where the second sum is over conjugacy classes C), was defined in [11] and
studied for simple groups G.

We need the following two results which are of independent interest.

Proposition 2.1. For any ε > 0 there exists N such that if G is a finite
simple group of rank at least N , then for all m ∈ N, G has at most mε

conjugacy classes of size at most m.

Proof. The alternating (and symmetric) case is covered in the proof of
[10, 2.3]. So now assume that G is of Lie type. Choosing N large enough we
may assume that G is a classical group. Let ε > 0. Theorem 1.10(ii) of [11]
shows that ηG(ε/2) → 1 as rank(G) → ∞. Hence there exists N such that
for G of rank at least N we have

∑
i≥1 ci(G)i−ε/2 ≤ 1 + ε/2, and it follows

that
∑m

i=1 ci(G) ≤ (1 + ε/2)mε/2. For m ≥ 3 we have 1 + ε/2 ≤ eε/2 ≤ mε/2,
which implies

∑m
i=1 ci(G) ≤ mε as required. Finally, the last inequality

holds trivially for m = 1, 2 (since c2(G) = 0). The conclusion follows.

The next result shows that normal subsets of finite simple groups of large
rank contain a relatively large conjugacy class.

Theorem 2.2. For any ε > 0 there exists N such that if G is a finite
simple group (or a symmetric group) of rank at least N , and A is a non-
empty normal subset of G, then A contains a conjugacy class C such that
|C| ≥ |A|1−ε.

Proof. Let ε > 0, and let N be as in the conclusion of Proposition 2.1.
Let G be a finite simple group of rank at least N , and A a normal subset
of G. Denote by m the maximal size of a conjugacy class contained in A.
Then A is a union of at most mε classes, each of size at most m, and hence
|A| ≤ m1+ε. This implies that m ≥ |A|1−ε, and the result follows.

Note that Theorem 2.2 improves [10, 2.4] in the case where the rank is
unbounded.
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We now reduce Theorem 1.3 to the case where the normal subsets in the
theorem are single conjugacy classes. First we need

Lemma 2.3. For any N ∈ N, there exists δ > 0 such that if a finite
simple group G has a nontrivial conjugacy class of size at most |G|δ, then
rank(G) ≥ N .

Proof. The case of alternating groups is trivial, since the order of the
group is then bounded in terms of the rank. Now suppose G = G(q) is of
Lie type over Fq of rank r. Since |xG| = |G : CG(x)|, the size of a nontrivial
conjugacy class in G is at least the minimal index of a proper subgroup,
which is at least cqr, where r = rank(G) and c > 0 is a constant, as can be
seen from [7, Tables 5.2A, 5.3A]. The result follows since |G| < q4r2 .

Lemma 2.4. It suffices to prove Theorem 1.3 in the case where A1, A2 are
single conjugacy classes.

Proof. Assume the conclusion of Theorem 1.3 holds in the case of
conjugacy classes. Namely, given ε > 0, there exists δ1 > 0 such that if
C1, C2 are conjugacy classes of finite simple group G of size at most |G|δ1 ,
then |C1C2| ≥ (|C1| |C2|)1−ε/2.

Applying Theorem 2.2, choose N such that whenever A is a normal
subset of a simple group G of rank at least N , then A contains a conjugacy
class C such that |C| ≥ |A|1−ε/2.

By Lemma 2.3, there exists δ2 > 0 such that if a finite simple group G
has a nontrivial conjugacy class of size at most |G|δ2 , then rank(G) ≥ N .
Define δ = min(δ1, δ2).

Let G be a finite simple group, and let A1, A2 be normal subsets of G
satisfying |Ai| ≤ |G|δ for i = 1, 2. Let Ci be a largest conjugacy class in Ai,
so that |Ci| ≥ |Ai|1−ε/2. Then

|A1A2| ≥ |C1C2| ≥ (|C1| |C2|)1−ε/2 ≥ (|A1| |A2|)(1−ε/2)2 ≥ (|A1| |A2|)1−ε,

as required.

3 Classical groups

In this section we relate the size of a conjugacy class in a classical group to
the support of the elements in the class; we then use our results to prove
Theorem 1.3 for classical groups. By Lemma 2.3, we need only prove the
result for classical groups of large dimension.
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Let G be one of the classical groups L±n (q), PSpn(q) or PΩ±n (q), and let
V = Vn(qu) be the natural module for G with n large, where u = 2 if G is
unitary and u = 1 otherwise. Let F̄ be the algebraic closure of Fq, and let
V̄ = V ⊗ F̄. Let x ∈ G, and let x̂ be a preimage of x in GL(V ). Define

ν(x) = νV,F̄(x) = min{codim ker(x̂− λI) : λ ∈ F̄∗}.

We shall refer to ν(x) as the support of x.

The following proposition, which is an extension of [9, 3.4], shows that
ν(x) is closely related to the size of the conjugacy class of x. Define

a(G) =

{
1, if G = L±n (q)
1
2 , otherwise

Proposition 3.1. Suppose that ν(x) = s < n
2 , and let a = a(G). There are

absolute constants c, c′ > 0 such that

cq2as(n−s−1) ≤ |xG| ≤ c′qas(2n−s+1).

Proof. In the case where x has prime order this is [9, 3.4], but the
general case requires quite a bit more argument.

Write x̂ = tu, where t is the semisimple part and u the unipotent part.

First suppose that G = Ln(q). Since ν(t) ≤ ν(x) = s < n
2 , the semisim-

ple part t has an eigenvalue λ ∈ F̄ of multiplicity n − s > n
2 . Then λ must

lie in F∗q . Denote by Vλ the λ-eigenspace of t, and let u act on Vλ as
∑

i J
ni
i ,

where Ji is a Jordan block of size i. Writing k = n−
∑
ini, we have

x̂ = λ
∑

Jnii ⊕K = x1 ⊕K,

where x1 = λ
∑
Jnii ∈ GLn−k(q), K ∈ GLk(q), and n = k +

∑
ini =

s+
∑
ni. If we write

f =
∑
i

in2
i + 2

∑
i<j

ininj , (1)

then |CGLn−k(q)(x1)| ∼ qf (see [8, 3.1]), and hence

cqn
2−f−k2 < |xG| < c′qn

2−f−k, (2)

where c, c′ > 0 are constants. Now ν(x1) = n − k −
∑
ni = s − k. So the

inequalities labelled (1) and (2) in the proof of [9, 3.4(i)] show that

(n− s)2 + s− k ≤ f ≤ (n− s)2 + (s− k)2.

Putting this into (2) gives the conclusion of the lemma for the case G =
Ln(q).
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Next consider the unitary group G = Un(q). Again the semisimple part t
has an eigenspace Vλ of dimension greater than n

2 . Write ( , ) for the unitary
form on V preserved by G, and α→ ᾱ for the involutory automorphism of
the field Fq2 . There is a nonsingular vector v ∈ Vλ, so 0 6= (v, v) = (vx̂, vx̂) =
λλ̄(v, v), and hence λλ̄ = 1. Also Vλ is a non-degenerate subspace, since its
radical must be contained in the radical of the whole space V . Hence, letting
u acts on Vλ as

∑
i J

ni
i , we have as above

x̂ = λ
∑

Jnii ⊥ K,

where K ∈ GUk(q) and n = k +
∑
ini = s +

∑
ni. Now we argue exactly

as in the previous paragraph.

Next let G = PSpn(q). Here t has an eigenspace Vλ of dimension greater
than n

2 , and λ must be ±1 and Vλ non-degenerate. So x̂ = λ
∑
Jnii ⊥ K =

x1 ⊥ K with K ∈ Spk(q) and n = k +
∑
ini = s+

∑
ni.

Suppose q is odd. Then by [8, 3.1] we have |CSpn−k(q)(x1)| ∼ qg/2, where

g =
∑
i

in2
i + 2

∑
i<j

ininj +
∑
i odd

ni. (3)

As |Spn(q)| ∼ q
1
2

(n2+n), it follows that

cq
1
2

(n2+n−g−k2−k) < |xG| < c′q
1
2

(n2+n−g−k). (4)

The inequalities labelled (1) and (2) in the proof of [9, 3.4(ii)] show that

(n− s)2 + n− s ≤ g ≤ (n− s)2 + (s− k)2 + n− k.

Putting this into (4) gives the conclusion of the lemma for G = PSpn(q)
with q odd.

Now suppose q is even. This is slightly more complicated, as in general
there can be many unipotent classes in a symplectic group having the same
Jordan form. The general form of a unipotent element, and its centralizer, is
given by [8, 6.2, 7.3], from which it can be seen that |CSpn−k(q)(x1)| ∼ q

1
2
g′ ,

where
g ≤ g′ ≤ g + 2

∑
i,ni even

ni

and g is as above. Then g′ ≥ g ≥ (n− s)2 + n− s, and the lower bound for
|xG| follows as before. As for the upper bound, observe that

(s− k)2 + n− k = (
∑

(i− 1)ni)
2 +

∑
ini

≥
∑

(i− 1)n2
i + 2

∑
i<j(i− 1)ninj +

∑
i odd ni + 2

∑
i even ni

= g + 2
∑

i even ni − (n− s)2

≥ g′ − (n− s)2.
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Hence g′ ≤ (n− s)2 + (s− k)2 +n− k, and the upper bound for |xG| follows
as before. This completes the proof for the symplectic groups.

The argument for orthogonal groups is very similar: again we have x̂ =
λ
∑
Jnii ⊥ K = x1 ⊥ K ∈ On−k(q) × Ok(q), where λ = ±1, k < n

2 and
n = k +

∑
ini = s+

∑
ni. If we define

h =
∑
i

in2
i + 2

∑
i<j

ininj −
∑
i odd

ni,

then for q odd we have |COn−k(q)(x1)| ∼ qh/2, and for q even we have

|COn−k(q)(x1)| ∼ qh
′/2, where h − 2

∑
i,ni even

ni ≤ h′ ≤ h (see [8, 3.1, 6.2,
7.3]). Arguing as for the symplectic case, we see that

(n− s)2 − (n− k)− (s− k) ≤ h′ ≤ (n− k)2 + (s− k)2 + 2(s− k)− n,

and the conclusion follows.

Lemma 3.2. Let x ∈ G with ν(x) = s, and suppose that |xG| ≤ |G|
1
4 . Then

s < n
2 − 1.

Proof. First suppose G = Ln(q), and write x̂ = tu as in the previous
proof. Recall our assumption that n is large. The centralizer of t in GLn(q)
is of the form C =

∏
GLni(q

ai), where
∑
niai = n. Since this must have

order greater than |G|
3
4 , it follows that the largest factor of C is GLr(q),

where r > n
2 and qr

2+(n−r)2 > |G|
3
4 . Hence in fact r > αn, where α = 0.85.

Let Vr be the r-dimensional eigenspace for t, and let u act on Vr as
∑
Jnii .

So as in the previous proof we have

x̂ = λ
∑

Jnii ⊕K = x1 ⊕K ∈ GLr(q)×GLn−r(q).

Let s1 = ν(x1), so that s ≤ s1 + n − r. Define f as in (1) in the previous
proof.

Suppose s1 >
r
2 . Then the inequality (3) in the proof of [9, 3.4(i)] shows

that f ≤ r(r− s1). Therefore |xG| ≥ |xGLr(q)1 | ≥ cqrs1 (where c is a positive

constant). Since by hypothesis |xG| ≤ |G|
1
4 , it follows that rs1 ≤ n2

4 . Then

s ≤ s1 + n− r ≤ n2

4r
+ n− r, (5)

which is less than n
2 − 1 since r > αn.

Now suppose s1 ≤ r
2 . Then the inequality (2) in the proof of [9, 3.4(i)]

shows that f ≤ (r − s1)2 + s2
1, and so |xG| ≥ |xGLr(q)1 | ≥ cq2s1(r−s1). Thus

2s1(r−s1) ≤ n2

4 . Writing β = s1
r (so 0 < β < 1

2), this gives 2β(1−β)r2 ≤ n2

4 ,
and hence

2β(1− β) ≤ 1

8α2
. (6)
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Also s ≤ s1 + n− r ≤ n− (1− β)r ≤ n(1− α(1− β)). Now check that for
β satisfying (6), we have α(1 − β) > 1

2 , and the conclusion follows. This
completes the proof for G = Ln(q).

The proof for the other classical groups runs along entirely similar lines.
We shall just give a sketch for the symplectic groups and leave the other
cases to the reader. Let G = PSpn(q) with n large, and write x̂ = tu as
above. The centralizer of t in Spn(q) is of the form C = Spr(q)× Sps(q)×∏
GLεini(q

ai), where n = r+s+2
∑
niai and the first two factors correspond

to the ±1-eigenspaces. This has order greater than |G|
3
4 , so C must have

a factor Spr(q), where r > n
2 and |Spr(q) × Spn−r(q)| ≥ |G|

3
4 . As above it

follows that for large n we have r > αn with α = 0.85. As usual we can
write

x̂ = λ
∑

Jnii ⊕K = x1 ⊕K ∈ Spr(q)× Spn−r(q),

where λ = ±1. As in the proof of the previous lemma we have |CSpr(q)(x1)| ∼
q

1
2
g′ , where g ≤ g′ ≤ g + 2

∑
i,ni even

and g is as in (3). If s1 > r
2 then

g′ ≤ (r − s1)2 + s1(r − s1) + r, since

(r − s1)2 + s1(r − s1) + r = (
∑
ni)

2 + (
∑

(i− 1)ni) (
∑
ni) +

∑
ini

≥
∑
n2
i + 2

∑
i<j ninj +

∑
(i− 1)n2

i+

2
∑

i<j(i− 1)ninj +
∑
ini

≥ g + 2
∑

i even ni
≥ g′.

Hence |xG| ≥ |xSpr(q)1 | ≥ cq
1
2

(r2+r−g′) ≥ cq
1
2
rs1 . As |xG| ≤ |G|

1
4 it follows

that rs1 ≤ n2+n
4 . Now the conclusion follows as in (5) above. Finally, if

s1 ≤ r
2 then we similarly deduce that g′ ≤ (r − s1)2 + s2

1 + r, which implies

that |xG| ≥ cqs1(r−s1). Hence s1(r− s1) ≤ n2+n
4 and now we argue as in the

Ln(q) case above.

Lemma 3.3. Let x ∈ G with ν(x) = s, and let 0 < δ ≤ 1
4 . There is a

constant d such that if |xG| ≤ |G|δ, then s ≤ 2δn+ d
n .

Proof. Let C = xG and suppose |C| ≤ |G|δ. By Lemma 3.2 and
Proposition 3.1 we have

cq2as(n−s−1) ≤ |C| ≤ |G|δ < qn
2δ,

Writing d′ = log2
1
c , this gives q2as(n−s−1) < qn

2δ+d′ . Since s ≤ n
2 − 1, this

implies ans < δn2 + d′.

The next result shows that the size of a small conjugacy class xG of a
finite simple classical group G is almost determined by the support ν(x) of
x.
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Proposition 3.4. For any ε1 > 0, there exists δ > 0 such that if x ∈ G
with ν(x) = s and |xG| ≤ |G|δ, then

q(2a−ε1)ns ≤ |xG| ≤ q(2a+ε1)ns.

Proof. We may assume that ε1 <
2
3 . Choose δ = ε1

4 . Now s ≤ 3δn for
large n, by Lemma 3.3. Since s < n

2 , we may apply Proposition 3.1. We
have ε1n ≥ 3δn+ 1 ≥ s+ 1, so Proposition 3.1 gives the conclusion.

Now let x1, x2 ∈ G, and assume that ν(xi) = si with si <
1
4n for i = 1, 2.

The largest eigenspace of x̂i on V̄ has dimension n− si > 3
4n, and it follows

that the corresponding eigenvalue λi lies in Fqu , and also that λiλ̄i = 1 in
the unitary case, and λi = ±1 in the symplectic and orthogonal cases. As
in the proof of Proposition 3.1 we have x̂ = λ

∑
Jnii ⊥ K, and separating

the Jordan blocks of size 1, we can write

x̂i = λiIti ⊥
ri∑
j=1

Jnji(λi) ⊥ Ki,

where Jnji(λi) denotes a single Jordan block of size nji ≥ 2 for each j, and
Ki has no eigenvalue equal to λi; moreover the subspaces on which the three
summands act are non-degenerate and mutually perpendicular in the case
G 6= Ln(q).

Now si = n − (ti + ri) and n ≥ ti + 2ri, hence ti > n − si − 1
2(n − ti).

Since si <
1
4n it follows that ti >

1
2n, and

x̂i = λiIti ⊥ Li,

where Li =
∑

j Jnji(λi) ⊥ Ki. Now define

ŷ = λ1λ2It1+t2−n ⊥ λ2L1 ⊥ λ1L2,

and let y be the image of ŷ in G. Write y = x1 ∗ x2 (defined only up to
conjugacy).

Lemma 3.5. Let y = x1 ∗ x2 as above. Then y ∈ xG1 x
G
2 , and ν(y) =

ν(x1) + ν(x2).

Proof. There are conjugates of x̂1, x̂2 of the form λ1It1+t2−n ⊥ L1 ⊥
λ1In−t2 and λ2It1+t2−n ⊥ λ2In−t1 ⊥ L2 respectively, and their product is
equal to ŷ. Also, from the definition of ŷ we have

ν(y) = n− (t1 + t2 − n)− r1 − r2 = 2n− (t1 + r1)− (t2 + r2) = s1 + s2,

as required.
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Lemma 3.6. Given ε > 0, there exists δ > 0 such that the following holds.
If xG1 , x

G
2 are classes in G with |xGi | ≤ |G|δ for i = 1, 2, and y = x1 ∗ x2,

then |yG| ≥ (|xG1 | |xG2 |)1−ε.

Proof. By Lemma 3.3 and Proposition 3.4, there exists δ > 0 such that
if xG is a class such that |xG| ≤ |G|δ, then ν(x) < n

4 and also the conclusion
of Proposition 3.4 holds with ε1 = ε

2 .

Now let xG1 , x
G
2 be classes in G with |xGi | ≤ |G|δ. Then si := ν(xi) <

n
4

for i = 1, 2, so we can define y = x1 ∗x2. Moreover ν(y) = s1 +s2 by Lemma
3.5, so Proposition 3.4 gives

|yG| ≥ q(2a−ε1)n(s1+s2), |xG1 | |xG2 | ≤ q(2a+ε1)n(s1+s2).

The conclusion follows, since 2a−ε1
2a+ε1

≥ 1− ε.

Theorem 1.3 for classical groups now follows from Lemmas 3.5 and 3.6,
together with Lemma 2.4.

4 Symmetric and alternating groups

We now prove Theorem 1.3 for alternating groups. Recall that it suffices to
prove it for conjugacy classes. We start with symmetric groups Sn.

Let π ∈ Sn and let s be the support of π, namely

s = |{1 ≤ j ≤ n : π(j) 6= j}|.

As in the previous section, we shall relate the size of the conjugacy class of
an element π ∈ Sn to the support s of π. However, in this case it is not true
that the support almost determines the class size as in Proposition 3.4 for
classical groups.

For i ≥ 2 let ci denote the number of cycles of length i in π. Then
s =

∑
i≥2 ici and π has n− s fixed points. Let C be the conjugacy class of

π in Sn. It is well known that

|C| = n!

(n− s)!
∏
i≥2 i

ci
∏
i≥2 ci!

.

The following result provides best possible bounds on the size of a conjugacy
class C ⊆ Sn in terms of its support s.

Proposition 4.1. With the above notation, if s 6= 3 we have

n!

(n− s)!2s/2
⌊
s
2

⌋
!
≤ |C| ≤ n!

(n− s)!s
.

The right hand inequality holds also for s = 3.

11



Proof. For the upper bound we need to prove
∏
i≥2 i

ci
∏
i≥2 ci! ≥ s.

This inequality holds since
∏
i≥2 i

ci ≥
∏
i≥2 ici = s.

For the lower bound we need to prove∏
i≥2

ici
∏
i≥2

ci! ≤ 2s/2
⌊s

2

⌋
!. (7)

Since
∑

i≥2 ici = s, we have
∑

i≥2 ci ≤
⌊
s
2

⌋
. This implies

∏
i≥2 ci! ≤

⌊
s
2

⌋
!.

Also for i 6= 3, i ≤ 2i/2. Therefore∏
36=i≥2

ici ≤
∏

36=i≥2

2ici/2 = 2(s−3c3)/2.

Hence if c3 = 0 the inequality (7) follows.

Now suppose that c3 > 1. Then

c3! = (b3c3/2c − bc3/2c)! ≤
1

2bc3/2c
b3c3/2c!.

Also 3 < 23/2 · 21/4, so

3c3 ≤ 23c3/2 · 2c3/4 ≤ 23c3/2 · 2bc3/2c.

Thus 3c3c3! ≤ 23c3/2 b3c3/2c!. Note that∏
36=i≥2

ici
∏

36=i≥2

ci! ≤ 2(s−3c3)/2

⌊
s− 3c3

2

⌋
!.

It follows that∏
i≥2

ici
∏
i≥2

ci! ≤ 23c3/2 b3c3/2c!2(s−3c3)/2

⌊
s− 3c3

2

⌋
! ≤ 2s/2

⌊s
2

⌋
!.

(We used the fact that
⌊
k
2

⌋
!
⌊
n
2

⌋
! ≤

⌊
k+n

2

⌋
!.) This completes the proof for

c3 > 1.

Finally, suppose c3 = 1. Then since we are assuming s 6= 3, we have
bs/2c ≥ 2. So b(s− 3)/2c! ≤ 1

2 bs/2c!. We also have 3c3c3! = 3 ≤ 23/2 · 2.
Thus

3c3c3! ·
∏

3 6=i≥2 i
ci
∏

36=i≥2 ci! ≤ 3 · 2(s−3)/2 b(s− 3)/2c!
≤ 23/2 · 2 · 2(s−3)/2 · 1/2 bs/2c! = 2s/2 bs/2c!,

which completes the proof.

Remark. Note that if s = 3 then C is the class of 3-cycles, and the lower
bound in Proposition 4.1 does not hold; however it holds if we replace bs/2c!
by ds/2e!.

Note also that the lower bound in Proposition 4.1 is best possible, as
shown by the case π = (12)(34) . . . (s − 1 s) (s even). The upper bound is
also best possible, as shown by π = (12 . . . s).

12



We fix some notation for the rest of this section. Let π1, π2 ∈ Sn be
permutations of supports s1, s2 respectively. For i = 1, 2 let Ci denote the
conjugacy class of πi in Sn.

Suppose s1 + s2 ≤ n. Then there exists a permutation, which we denote
by π′2, that has the same cycle structure as π2, such that the points moved
by π′2 are fixed points of π1. Define the conjugacy class

C1 ∗ C2 = (π1π
′
2)Sn ⊆ C1C2. (8)

Note that the elements of C1 ∗C2 have support s1 + s2. We shall prove that
|C1C2| is large by providing lower bounds on the size of |C1 ∗ C2|.

We start by showing that the conclusion of Theorem 1.3 holds for con-
jugacy classes C1, C2 of bounded support.

Lemma 4.2. Let s1, s2 be positive integers, and let ε > 0. There exists an
integer N = N(ε, s1, s2) such that if n ≥ N and C1, C2 are classes in Sn of
support s1, s2 respectively, then

|C1C2| ≥ (|C1| |C2|)1−ε .

Proof. We shall choose N ≥ s1 + s2 so the conjugacy class C1 ∗C2 may
be constructed. It follows from Proposition 4.1 and the remark following it,
that for this class (whose support is s1 + s2) we obtain

|C1C2| ≥ |C1 ∗ C2| ≥
n!

(n− s1 − s2)!2s1+s2(s1 + s2)!
:= f(n).

By the same proposition we also have

(|C1| |C2|)1−ε ≤
(

n!

(n− s1)!
· n!

(n− s2)!

)1−ε
:= g(n)1−ε. (9)

Since f(n) and g(n) are polynomials in n of degree s1 + s2, there exists
N = N(ε, s1, s2) such that f(n) ≥ g(n)1−ε for n ≥ N , and the conclusion
follows.

In Proposition 4.6 below we will derive a similar conclusion assuming
only s1, s2 ≤ n

2 . We need some preparations.

We will need Stirling’s approximation which holds for all n ≥ 1 (see [2,
§2.9]):

e1/(12n+1)
√

2πn
(n
e

)n
≤ n! ≤ e1/(12n)

√
2πn

(n
e

)n
.

In fact, we will only need the following weaker inequality

√
2πn

(n
e

)n
≤ n! ≤ 1.1

√
2πn

(n
e

)n
. (10)

13



Lemma 4.3. Suppose s1, s2 ≤ n/2, and define f1(n, s1, s2) = n!
(n−s1−s2)! and

f2(n, s1, s2) = n!2

(n−s1)!(n−s2)! . Then

f1(n, s1, s2)

f2(n, s1, s2)
≥ 1

1.12

(
1

2

)s1+s2

.

Proof. If s1 + s2 < n use (10) to obtain

f1(n,s1,s2)
f2(n,s1,s2) = (n−s1)!(n−s2)!

n!(n−s1−s2)!

≥ 1
1.12

√
2π(n−s1)·2π(n−s2)
2πn·2π(n−s1−s2) ·

enen−s1−s2
en−s1en−s2

· (n−s1)n−s1 (n−s2)n−s2

nn(n−s1−s2)n−s1−s2

= 1
1.12

√
(n−s1)(n−s2)
n(n−s1−s2) ·

(n−s1)n−s1 (n−s2)n−s2

nn(n−s1−s2)n−s1−s2

≥ 1
1.12

(n−s1)n−s1 (n−s2)n−s2

nn(n−s1−s2)n−s1−s2

= 1
1.12

(
n−s1
n

)s2 (n−s2
n

)s1 ( (n−s1)(n−s2)
n(n−s1−s2)

)n−s1−s2
≥ 1

1.12

(
1
2

)s1+s2 .

(We used the fact that (n−s1)(n−s2)
n(n−s1−s2) ≥ 1 and that n−si

n ≥ 1
2 .)

If s1 = s2 = n/2 then f1(n,s1,s2)
f2(n,s1,s2) = (n/2)!(n/2)!

n! ≥
(

1
2

)n
=
(

1
2

)s1+s2 .

As above let π1, π2 ∈ Sn have supports s1, s2 respectively. For i ≥ 2 let
ci be the number of cycles of length i in π1, and di the number of cycles of
length i in π2.

Lemma 4.4. We have∏
i≥2 ci!

∏
i≥2 di!∏

i≥2 (ci + di)!
≥ 2−(s1+s2)/2.

Proof. Observe that

ci!di!

(ci + di)!
=

1(
ci+di
ci

) ≥ 1

2ci+di
.

Combining this with the inequalities
∑
ci ≤

∑ i
2ci = s1

2 and
∑
di ≤ s2

2 we
obtain ∏

ci!
∏
di!∏

(ci + di)!
≥ 2−

∑
ci−

∑
di ≥ 2−

s1+s2
2 .

Recall that Ci = πSni for i = 1, 2.

Lemma 4.5. Suppose s1 ≤ n
2 . Then |C1| ≥ ss1/21 .

14



Proof. Applying Proposition 4.1, we obtain for s1 6= 3

|C1| ≥ n!
(n−s1)!·2s1/2bs1/2c!

≥ (n−s1)s1

2s1/2( s12 )
s1/2
≥ s

s1
1

2s1/2( s12 )
s1/2

= s
s1/2
1 .

For s1 = 3, we have |C1| = n(n−1)(n−2)
3 ≥ 6·5·4

3 ≥ 33/2.

Proposition 4.6. For any ε > 0 there exists N = N (ε) such that if n ≥ N
and s1, s2 ≤ n

2 , then |C1C2| ≥ (|C1| |C2|)1−ε.

Proof. We have

|C1| = n!
(n−s1)!

∏
ici

∏
ci!
, |C2| = n!

(n−s2)!
∏
idi

∏
di!
, and

|C1 ∗ C2| = n!
(n−s1−s2)!

∏
ici+di

∏
(ci+di)!

.

Hence, taking f1, f2 as in Lemma 4.3,

|C1 ∗ C2|
|C1| |C2|

=
f1(n, s1, s2)

f2(n, s1, s2)

∏
(ci!)

∏
(di!)∏

(ci + di)!
.

It follows using Lemmas 4.3, 4.4 and 4.5 that

|C1C2|
(|C1| |C2|)1−ε = |C1C2|

|C1| |C2| |C1|ε|C2|ε

≥ |C1∗C2|
|C1| |C2| |C1|ε|C2|ε

≥ 1
1.12
· 2−(s1+s2)2−(s1+s2)/2s

s1ε/2
1 s

s2ε/2
2

= 1
1.12
· 2−

3
2

(s1+s2)s
s1ε/2
1 s

s2ε/2
2 .

Let S0 = S0 (ε) be such that 1
1.12
· 2−

3
2

(s1+s2)s
s1ε/2
1 s

s2ε/2
2 ≥ 1 provided

s1 ≥ S0 or s2 ≥ S0. If one of the latter inequalities holds, we deduce
that |C1C2| ≥ (|C1| |C2|)1−ε. Otherwise we have s1, s2 ≤ S0, and we let
N0 = N0 (ε, S0, S0) = N (ε) be such that for n ≥ N0, |C1C2| ≥ (|C1| |C2|)1−ε

(such N0 exists by Lemma 4.2).

The next result provides a lower bound close to ns/2 for the size of a
conjugacy class of support s.

Lemma 4.7. If C ⊆ Sn is a conjugacy class with support s, then

|C| ≥ 1√
πn

n
s
2 e−

s
2 .

Proof. Using Proposition 4.1 and (10), we obtain for s 6= 3 and s < n

|C| ≥ n!
(n−s)!2s/2bs/2c! ≥

1
1.12
·

√
2πn√

2π(n−s)·2πs/2
· nn

(n−s)(n−s)(s/2)s/2
e−s/22−s/2

= 1
1.12
·

√
n√

π(n−s)s
· nn

(n−s)(n−s)ss/2 e
−s/2 ≥ 1

1.12
·
√
n√

πn2/2
· nn

n(n−s)ns/2
e−s/2

=
√

2
1.12
· 1√

πn
n
s
2 e−

s
2 ≥ 1√

πn
n
s
2 e−

s
2 ,
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as required.

For s = 3, we have

|C| = n(n− 1)(n− 2)

3
≥ 2

3
n ≥ 1√

π
ne−

3
2 =

1√
πn

n
3
2 e−

3
2 .

Finally, if s = n we obtain

|C| ≥ n!
2n/2bn/2c! ≥

1
1.1 ·

√
2πn√

2πn/2
· en/2en ·

nn

(n/2)n/2
· 1

2n/2

=
√

2
1.1 ·

1
en/2
· nn/2 ≥ nn/2e−n/2.

This completes the proof.

Proposition 4.8. For any ε > 0 there exists N = N(ε) such that, if n ≥ N ,

and C1, C2 are conjugacy classes of G = Sn satisfying |C1|, |C2| ≤ |G|
1
4
−ε,

then |C1C2| ≥ (|C1||C2|)1−ε.

In particular, Theorem 1.3 holds for conjugacy classes in Sn.

Proof. We will first show that there exists N0 = N0(ε), such that if

n ≥ N0 and C ⊂ G = Sn is a class of support s satisfying |C| ≤ |G|
1
4
−ε,

then s ≤ n
2 .

Let C be such a class. By Lemma 4.7 and (10),

1√
πn

n
s
2 e−

s
2 ≤ |C| ≤ |G|

1
4
−ε = (n!)

1
4
−ε ≤

(
1.1
√

2πn · nne−n
) 1

4
−ε
.

Thus
1√
πn

(n
e

) s
2 ≤

(
1.1
√

2πn
) 1

4 ·
(n
e

)n
4
−nε

,

and so (n
e

) s
2
−n

4
+nε
≤ cn

5
8 ,

where c = 1.1
1
4 2

1
8π

5
8 . Suppose s ≥ n+1

2 . Then s
2 −

n
4 ≥

1
4 , so(n

e

) 1
4

+nε
≤ cn

5
8 ,

and (n
e

)nε
≤ ce

1
4n

3
8 ≤ 3n

3
8 ,

which is a contradiction for n ≥ N0(ε). Hence s ≤ n
2 for n ≥ N0.

Now let C1, C2 be classes as in the statement of the proposition, with
supports s1, s2. By the above s1, s2 ≤ n

2 , so we can take N = N(ε) as in

Proposition 4.6. Then if n ≥ max {N,N0} we have |C1C2| ≥ (|C1| |C2|)1−ε.
This completes the proof.

We finally turn to alternating groups, proving
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Lemma 4.9. Proposition 4.8 holds for conjugacy classes in G = An.

Proof. If π ∈ An then πAn = πSn or
∣∣πAn∣∣ = 1

2

∣∣πSn∣∣. Also if s ≤ n/2,
then πAn = πSn . So the results leading to the proof of Proposition 4.8 can
easily be adjusted to handle G = An.

This completes the proof of Theorem 1.3 for alternating groups G = An
in a somewhat stronger form: it suffices to assume that the normal subsets
have size at most |G|1/4−ε and that n ≥ N(ε).

5 Final deductions

Deduction of Theorem 1.1

Let ε > 0 and let δ > 0 be as in the conclusion of Theorem 1.2. Theorem
1.1 of [10] states that there is an absolute constant c such that for every
nontrivial normal subset A of a finite simple group G, we have Am = G for
any m ≥ c log |G|

log |A| . Define b = d cδ e.

Now let A be a normal subset of a finite simple group G. If |A| ≥ |G|δ
then the previous paragraph shows that Ab = G. Otherwise, Theorem 1.2
shows that |A2| ≥ |A|2−ε. This completes the proof.

Deduction of Corollary 1.4

We argue by induction on k ≥ 2. The case k = 2 is Theorem 1.3. Suppose
k ≥ 3. By induction, given ε > 0 and 2 ≤ m < k, there exists δ(ε,m) > 0
such that if A1, . . . , Am ⊆ G are normal subsets with |Ai| ≤ |G|δ(ε,m) then
|A1 · · ·Am| ≥ (|A1| · · · |Am|)1−ε.

Define δ(ε, k) = min{δ(ε/2, 2)/(k − 1), δ(ε/2, k − 1)}.
Now let δ = δ(ε, k) and suppose A1, . . . , Ak are normal subsets of G of

size at most |G|δ. By induction it follows that

|A1 · · ·Ak−1| ≥ (|A1| · · · |Ak−1|)1−ε/2.

Note that |A1 · · ·Ak−1| ≤ |G|(k−1)δ ≤ |G|δ(ε/2,2), and so the case k = 2 yields

|A1 · · ·Ak| ≥ (|A1 · · ·Ak−1||Ak|)1−ε/2 ≥ ((|A1| · · · |Ak−1|)1−ε/2|Ak|)1−ε/2,

which is at least (|A1| · · · |Ak|)1−ε. The result follows.

Deduction of Theorem 1.5
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The proof is virtually the same as that of Theorem 1.3. As in Lemma 2.3,
since every conjugacy class in a simple algebraic group G has dimension at
least r = rank(G), we need only consider classical groups of large dimension.
So let G = SLn(K), Spn(K) or SOn(K) where K is algebraically closed and
n is large, and define a := a(G) = 1, 1

2 or 1
2 , respectively. Let x ∈ G and

define s = ν(x) as in Section 3. The proof of Lemma 3.1 gives

2as(n− s− 1) ≤ dimxG ≤ as(2n− s+ 1),

and there are similar dimensional analogues of Lemma 3.2, Lemma 3.3 and
Proposition 3.4, with the same proofs. For x1, x2 ∈ G with si = ν(xi) <

n
4

we can define y = x1 ∗ x2 as before, and ν(y) = s1 + s2 as in Lemma 3.5.
Now the theorem follows as in the proof of Lemma 3.6.
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