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Abstract

A linear group G ≤ GL(V ), where V is a finite vector space, is called 1
2
-transitive if all

the G-orbits on the set of nonzero vectors have the same size. We complete the classification
of all the 1

2
-transitive linear groups. As a consequence we complete the determination of the

finite 3
2
-transitive permutation groups – the transitive groups for which a point-stabilizer

has all its nontrivial orbits of the same size. We also determine the (k+ 1
2
)-transitive groups

for integers k ≥ 2.

1 Introduction

The concept of a finite 3
2 -transitive permutation group – a non-regular transitive group in which

all the nontrivial orbits of a point-stabilizer have equal size – was introduced by Wielandt in
his book [16, §10]. Examples are 2-transitive groups and Frobenius groups: for the former, a
point-stabilizer has just one nontrivial orbit, and for the latter, every nontrivial orbit of a point-
stabilizer is regular. Further examples are provided by normal subgroups of 2-transitive groups;
indeed, one of the reasons for Wielandt’s definition was that normal subgroups of 2-transitive
groups are necessarily 3

2 -transitive.

Wielandt proved that any 3
2 -transitive group is either primitive or a Frobenius group ([16,

Theorem 10.4]). Following this, a substantial study of 3
2 -transitive groups was undertaken by

Passman in [13, 14], in particular completely determining the soluble examples. More recent
steps towards the classification of the primitive 3

2 -transitive groups were taken in [3] and [8].
In [3] it was proved that primitive 3

2 -transitive groups are either affine or almost simple, and
the almost simple examples were determined. For the affine case, consider an affine group
T (V )G ≤ AGL(V ), where V is a finite vector space, T (V ) is the group of translations, and
G ≤ GL(V ); this group is 3

2 -transitive if and only if the linear group G is 1
2 -transitive – that

is, all the orbits of G on the set V ] of nonzero vectors have the same size. The 1
2 -transitive

linear groups of order divisible by p (the characteristic of the field over which V is defined) were
determined in [8, Theorem 6].

The main result of this paper completes the classification of 1
2 -transitive linear groups. In the

statement, by a semiregular group, we mean a permutation group all of whose orbits are regular.

Theorem 1 Let G ≤ GL(V ) = GLd(p) (p prime) be an insoluble p′-group, and suppose G is
1
2 -transitive on V ]. Then one of the following holds:

(i) G is semiregular on V ];

(ii) d = 2, p = 11, 19 or 29, and SL2(5) / G ≤ GL2(p);

(iii) d = 4, p = 13, and SL2(5) / G ≤ ΓL2(p2) ≤ GL4(p).

In (ii) and (iii), the non-semiregular possibilities for G are given in Table 1.
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Table 1: Orbit sizes of 1
2 -transitive groups in Theorem 1(ii),(iii)

pd |G| orbit size on V ] number of orbits
112 600 120 1
192 360 120 3

1080 360 1
292 240 120 7

1680 840 1
134 3360 1680 17

Remarks 1. In conclusion (i) of the theorem, the corresponding affine permutation group
T (V )G (acting on V ) is a Frobenius group, and G is a Frobenius complement (see Proposition
2.1 for the structure of these).

2. In conclusion (ii), F∗pR acts transitively on V ], where R = SL2(5) and F∗p is the group of

scalars in GL(V ), and G = Z0R for some Z0 ≤ F∗p. Here G/ F∗pR (hence is 1
2 -transitive, since in

general, a normal subgroup of a transitive group is 1
2 -transitive).

3. The 1
2 -transitive group G in part (iii) is more interesting. Here G = (Z0R).2 ≤ ΓL2(132),

where R = SL2(5) and Z0 is a subgroup of F∗132 of order 28, and G∩GL2(132) = Z0R has orbits
on 1-spaces of sizes 20, 30, 60, 60.

Combining Theorem 1 with the soluble case in [13, 14] and the p-modular case in [8, Theorem
6], we have the following classification of 1

2 -transitive linear groups. In the statement, for q an
odd prime power, S0(q) is the subgroup of GL2(q) of order 4(q − 1) consisting of all monomial
matrices of determinant ±1.

Corollary 2 If G ≤ GL(V ) = GLd(p) is 1
2 -transitive on V ], then one of the following holds:

(i) G is transitive on V ];

(ii) G ≤ ΓL1(pd);

(iii) G is a Frobenius complement acting semiregularly on V ];

(iv) G = S0(pd/2) with p odd;

(v) G is soluble and pd = 32, 52, 72, 112, 172 or 34;

(vi) SL2(5) / G ≤ ΓL2(pd/2), where pd/2 = 9, 11, 19, 29 or 169.

Together with the results of [3], Corollary 2 completes the solution of an old problem –
namely, the classification of 3

2 -transitive permutation groups. For completeness, we state this
classification here.

Corollary 3 Let X be a 3
2 -transitive permutation group of degree n. Then one of the following

holds:

(i) X is 2-transitive;

(ii) X is a Frobenius group;

(iii) X is affine: X = T (V )G ≤ AGL(V ), where G ≤ GL(V ) is a 1
2 -transitive linear group,

given by Corollary 2;

(iv) X is almost simple: either

(a) n = 21, X = A7 or S7 acting on the set of pairs in {1, . . . , 7}, or

(b) n = 1
2q(q − 1) where q = 2f ≥ 8, and either G = PSL2(q), or G = PΓL2(q) with f

prime.
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Turning to higher transitivity, recall (again from [16]) that for a positive integer k, a permu-
tation group is (k + 1

2 )-transitive if it is k-transitive and the stabilizer of k points has orbits of
equal size on the remaining points. For k ≥ 2 such groups are of course 2-transitive so belong
to the known list of such groups. Nevertheless, their classification has some interesting features
and we record this in the following result.

Proposition 4 Let k ≥ 2 be an integer, and let X be a (k + 1
2 )-transitive permutation group of

degree n ≥ k + 1. Then one of the following holds:

(i) X is (k + 1)-transitive;

(ii) X is sharply k-transitive;

(iii) k = 3 and X = PΓL2(2p) with p an odd prime, of degree 2p + 1;

(iv) k = 2 and one of:

L2(q) / X ≤ PΓL2(q) of degree q + 1;

X = Sz(q), a Suzuki group of degree q2 + 1;

X = AΓL1(2p) with p prime, of degree 2p.

Remarks 1. The sharply k-transitive groups were classified by Jordan for k ≥ 4 and by
Zassenhaus for k = 2 or 3; see [6, §7.6].

2. In conclusion (iv), the groups Sz(q) and AΓL1(2p) are Zassenhaus groups – that is, 2-transitive
groups in which all 3-point stabilizers are trivial (so that all orbits of a 2-point stabilizer are
regular). The groups X with socle L2(q) are all 5

2 -transitive, being normal subgroups of the
3-transitive group PΓL2(q); some are 3-transitive, some are Zassenhaus groups, and some are
neither.

The paper consists of two further sections, one proving Theorem 1, and the other Proposition
4. We offer a few observations on the proof of the main result, Theorem 1. Quite early in the proof
is Lemma 2.3, which permits the use of inductive arguments. In order to use such arguments,
some rather delicate analysis of small-dimensional cases is needed; most of this analysis is carried
out theoretically, but for a few small cases we use computation through Magma [4]. We thank
Eamonn O’Brien for assistance with these Magma computations.

2 Proof of Theorem 1

Throughout the proof, we shall use the following well-known result about the structure of Frobe-
nius complements, due to Zassenhaus.

Proposition 2.1 ([15, Theorem 18.6]) Let G be a Frobenius complement.

(i) The Sylow subgroups of G are cyclic or generalized quaternion.

(ii) If G is insoluble, then it has a subgroup of index 1 or 2 of the form SL2(5)× Z, where Z
is a group of order coprime to 30, all of whose Sylow subgroups are cyclic.

The following result is important in our inductive proof of Theorem 1.

Proposition 2.2 Let R = SL2(5) or A5, let p > 5 be a prime, and let V be a faithful absolutely
irreducible FqR-module, where q = pa. Regard R as a subgroup of GL(V ), and let G be a group
such that R / G ≤ ΓL(V ).

(i) If R is semiregular on V ], then dimV = 2 and R = SL2(5).

(ii) Suppose dimV = 2 and G has no regular orbit on the set P1(V ) of 1-spaces in V . Then
either q ∈ {p, p2} with p ≤ 61, or q = 74.
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(iii) If dimV = 2 and G is 1
2 -transitive but not semiregular on V ], then q = 11, 19, 29 or 169.

Conversely, for each of these values of q there are examples of 1
2 -transitive, non-semiregular

groups G, and they are as in Table 1 of Theorem 1.

Proof. (i) The irreducible R-modules and their Brauer characters can be found in [5], and
have dimensions 2, 3, 4, 5 or 6. For those of dimension 3 or 5, the acting group is R ∼= A5, and
involutions fix nonzero vectors; and for those of dimension 4 or 6, elements of order 3 fix vectors.

(ii) Let dimV = 2, and suppose G has no regular orbit on P1(V ). Assume for a contradiction
that q is not as in the conclusion of (ii). In particular, q > 61 (recall that p > 5).

Write R̄ = R/Z(R) ∼= A5 and Ḡ = G/(G ∩ F∗q). Now NPGL(V )(R̄) = R̄, so it follows that

Ḡ = R̄〈σ〉 for some σ ∈ PΓL(V ) (possibly trivial). Note that if p ≡ ±2 mod 5 then Fp2 ⊆ Fq.
Consider the action of R̄ ∼= A5 on P1(V ). As A5 has 31 nontrivial cyclic subgroups, and each

of these fixes at most two 1-spaces, it follows that R̄ has at least (q − 62)/60 regular orbits on
P1(V ). Since q > 61, R̄ has a regular orbit, and so Ḡ 6= R̄ by our assumption.

Let r be the order of the element σ modulo R̄ (so that Fpr ⊆ Fq). If there is a regular R̄-orbit
∆0 on P1(V ) that is not fixed by σi for any i with 1 ≤ i ≤ r− 1, then Ḡ∆0

= R̄ and so Ḡ〈v〉 = 1
for 〈v〉 ∈ ∆0 and G has a regular orbit on P1(V ), a contradiction. Hence r > 1, and for each
regular R̄-orbit ∆, there is a subgroup 〈σi(∆)〉, of prime order modulo R̄, which fixes ∆ setwise.
Moreover, for 〈v〉 ∈ ∆, there exists x ∈ R̄ such that xσi(∆) fixes 〈v〉. Since there are at least
q − 62 elements of P1(V ) in regular R̄-orbits, it follows that

|
⋃

fixP1(V )(xσ
j)| ≥ q − 62, (1)

where the union is over all x ∈ R̄ and all j dividing r with r/j prime. Let s = r/j for such j,
and let x ∈ R̄. If (xσj)s 6= 1 then (xσj)s ∈ R̄ fixes at most two 1-spaces, and so |fix(xσj)| ≤ 2;
and if (xσj)s = 1, then xσj is PGL(V )-conjugate to a field automorphism of order s, and
|fix(xσj)| = q1/s + 1. Hence (1) implies that

60
∑

s|r,s prime

(q1/s + 1) ≥ q − 62. (2)

Recall that p > 5 and Fpr ⊆ Fq.
Suppose that 6|r. The terms in the sum on the left hand side of (2) with s ≥ 5 add to at

most r(q1/5 + 1), which is easily seen to be less than q1/2 + 1. Hence (2) gives

2(q1/2 + 1) + (q1/3 + 1) ≥ q − 62

60
.

Putting y = q1/6 this yields 120y3 + 60y2 + 242 ≥ y6, which is false for y ≥ 7. Similarly,
when hcf(r, 6) = 1 or 3, we find that (2) fails. Consequently hcf(r, 6) = 2, and (2) gives
2(q1/2 + 1) ≥ (q − 62)/60, which implies that q1/2 ≤ 121. Hence (as p > 5 and q = pa with a
even), either q = p2 or q = 74 or 114. Then further use of (2) gives p ≤ 61 in the former case,
and also shows that q 6= 114. But now we have shown that q is as in (ii), contrary to assumption.
This completes the proof.

(iii) Suppose G is 1
2 -transitive but not semiregular on V ]. If G has a regular orbit on P1(V ),

then it has a regular orbit on V ], which is not possible by the assumption in the previous
sentence. Hence q must be as in the conclusion of part (ii). For these values of q, we use Magma
[4] to construct R ∼= SL2(5) in SL2(q), and for all subgroups of ΓL2(q) normalizing R, compute
whether they are 1

2 -transitive and non-semiregular. We find that such groups exist precisely
when q is 11, 19, 29 or 169, and the examples are as in Table 1.

Note that part (ii) of the proposition follows from [11, Theorem 2.2] in the case where R is
Fp-irreducible on V . We shall need the more general case proved above.

We now embark on the proof of Theorem 1. Suppose that G is a minimal counterexample.
That is,

• G ≤ GLd(p) = GL(V ) is an insoluble, 1
2 -transitive p′-group,
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• G is not semiregular on V ], and G is not as in (ii) or (iii) of the theorem, and

• G is minimal subject to these conditions.

Observe that since G is 1
2 -transitive and not semiregular, it cannot have a regular orbit on V .

The affine permutation group V G ≤ AGL(V ) is 3
2 -transitive on V and not a Frobenius group,

hence is primitive by [16, Theorem 10.4]. It follows that G is irreducible on V .

By [14, Theorem 1.1], G acts primitively as a linear group on V . Choose q = pk maximal
such that G ≤ ΓLn(q) ≤ GLd(p), where d = nk. Write V = Vn(q), G0 = G ∩ GLn(q), K = Fq
and Z = G0 ∩K∗, the group of scalars in G0. Since G is insoluble, n ≥ 2. Also G0 is absolutely
irreducible on V (see [8, Lemma 12.1]), so Z = Z(G0).

Lemma 2.3 Let N be a normal subgroup of G with N ≤ G0 and N 6≤ Z, and let U be an
irreducible KN -submodule of V . Then the following hold:

(i) N acts faithfully and absolutely irreducibly on U ;

(ii) N is not cyclic;

(iii) GU acts 1
2 -transitively on U ];

(iv) if (GU )U is insoluble and not semiregular, and (N (∞), |U |) 6= (SL2(5), q2) with q ∈ {11, 19, 29, 169},
then U = V .

Proof. As G is primitive on V , Clifford’s theorem implies that V ↓ N is homogeneous, so
that V ↓ N = U ⊕U2⊕· · ·⊕Ur with each Ui ∼= U . Hence N is faithful on U ; it is also absolutely
irreducible, as in the proof of [8, Lemma 12.2]. Hence (i) holds, and (ii) follows.

To see (iii), let v ∈ U ], n ∈ N and g ∈ Gv. Then vng = vgn′ = vn′ for some n′ ∈ N . Hence
{vn : n ∈ N} is invariant under Gv. As U is irreducible under N , {vn : n ∈ N} spans U , and
hence Gv stabilises U . Therefore

|G : Gv| = |G : GU | · |GU : Gv|.

As G is 1
2 -transitive this is independent of v ∈ U ], and hence GU is 1

2 -transitive on U ], as in
(iii).

Finally, (iv) follows by the minimality of G.

By [14, Theorem A], Or(G0) is cyclic for each odd prime r, and hence is central by Lemma
2.3(ii). Consequently F (G0) = ZE where E = O2(G0). Moreover [14, Theorem A] also shows
that Φ(E) is cyclic, hence contained in Z, and |E/Φ(E)| ≤ 28.

Now let F ∗(G0) = ZER1 · · ·Rk, a commuting product with each Ri quasisimple (possibly
k = 0).

Lemma 2.4 We have k ≥ 1.

Proof. Suppose k = 0, and write N = F ∗(G0) = ZE. Since V ↓ G is primitive, every
characteristic abelian subgroup of E is cyclic, so E is a 2-group of symplectic type. By a result
of Philip Hall ([2, 23.9]), we have E = E1 ◦ F where E1 is either 1 or extraspecial, and F
is cyclic, dihedral, semidihedral or generalised quaternion; in the latter three cases, |F | ≥ 16.
Since N = F ∗(G0) we have CG0

(N) ≤ N and G0/CG0
(N) ≤ Aut(N). Hence Aut(N) must be

insoluble, and it follows that |E1/Φ(E1)| ≥ 24.

Now E has a characteristic subgroup E0 = E1 ◦ L, where L = C4 if 4 divides |F | and L = 1
otherwise. Then E0 / G. Let U be an irreducible KE0-submodule of V . By Lemma 2.3, E0 is
faithful on U and GU is 1

2 -transitive on U ]. Write H = (GU )U .

Assume that H is soluble. As H is 1
2 -transitive on U ], it is therefore given by [14, Theorem

B], which implies that one of the following holds:

(a) H is a Frobenius complement;
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(b) H ≤ ΓL1(qu), where |U | = qu;

(c) H ≤ GL2(qu) with |U | = q2u, and H consists of all monomial matrices of determinant ±1;

(d) |U | = p2 with p ∈ {3, 5, 7, 11, 17}, or |U | = 34.

In all cases except the last one in (d), it follows (using Proposition 2.1(i) for (a)) that |E0/Φ(E0)| ≤
22, which is a contradiction. In the exceptional case |U | = 34 and |E0/Φ(0E)| = 24. But in this
case any 3′-subgroup of Aut(N) is soluble, and hence G0 is soluble, again a contradiction.

Hence H is insoluble. As H is not a Frobenius complement by Proposition 2.1(ii), it is not
semiregular on U ], and so Lemma 2.3(iv) implies that U = V . Hence E0 is irreducible on V and
so F is cyclic and N = ZE = ZE0. We have |E0/Φ(E0)| ≤ 28 by [14, Theorem A], and hence
|E0/Φ(E0)| = 22m with m = 2, 3 or 4.

Case m = 4. Suppose first that m = 4, so E1 = 21+8 and dimV = 16. By [14, Lemmas 2.6,
2.10] we have E1 = E0, so that |Z|2 = 2 and G0 ≤ Z ◦ 21+8.Oε8(2) (ε = ±). Also [14, Lemma 2.4]
gives (p2 − 1)2 ≥ 24, hence p ≥ 7, and the proof of [14, Lemma 2.12] gives |G/N | ≥ q8/29. Since
G/N ≤ Oε8(2), it follows that q = 7. Hence G/N is an insoluble 7′-subgroup of Oε8(2) of order
greater than 78/29. Using [5], we see that such a subgroup is contained in one of the following
subgroups of Oε8(2):

26.O−6 (2), 21+8.(S3 × S5) (ε = −)
S3 ×O−6 (2), 26.(S6 × 2), 26.(S5 × S3), (S5 × S5).2 (ε = +)

We now consider elements of order 3 in G. These are elements tk lying in subgroups O−2 (2)k of
Oε8(2) for 1 ≤ k ≤ 4 and acting on the 16-dimensional space V as a tensor product of k diagonal
matrices (ω, ω−1) with an identity matrix of dimension 24−k, where ω ∈ K∗ is a primitive cube
root of 1; there are also scalar multiples ωtk if Z contains ωI. We compute the action of tk on
V and also the class of the image of tk in Oε8(2) in Atlas notation, as follows:

k action of tk on V Atlas notation

1 (ω(8), ω−1 (8)) 3A (ε = −), 3A (ε = +)
2 (1(8), ω(4), ω−1 (4)) 3B (ε = −), 3E (ε = +)
3 (1(4), ω(6), ω−1 (6)) 3C (ε = −), 3D (ε = +)
4 (1(6), ω(5), ω−1 (5)) − (ε = −), 3BC (ε = +)

Hence every element of order 3 in G has fixed point space on V of dimension at most 8. Con-
sidering the above subgroups of Oε8(2), we compute that the total number of elements of order 3
in G is less than 220. If G contains an element of order 3 fixing a nonzero vector in V , then as
G is 1

2 -transitive, every nonzero vector is fixed by some element of G of order 3. Hence V is the
union of the subspaces CV (t) over t ∈ G of order 3, so that

|V | ≤
∑

t∈G,|t|=3

|CV (t)|. (3)

This yields 716 < 220 · 78, which is false.

It follows that G contains no element of order 3 fixing a nonzero vector. So every element of
order 3 in G/N is conjugate to t1.

We now complete the argument by considering involutions in G. Now G certainly contains
involutions which fix nonzero vectors, so arguing as above we have

|V | ≤
∑

t∈G,|t|=2

|CV (t)|. (4)

The group G/N is an insoluble 7′-subgroup of Oε8(2), all of whose elements of order 3 are
conjugates of t1. Using Magma [4], we compute that there are 206 such subgroups if ε = +, and
59 if ε = −. For each of these possibilities for G/N we compute the list of involutions of G and
their fixed point space dimensions. All possibilities contradict (4). For example, when ε = −
the largest possibility for G has 188 involutions with fixed space of dimension 12; 74886 with
dimension 8; and 188 with dimension 4. Hence (4) gives

716 ≤ 188 · (712 + 74) + 74886 · 78,

6



which is false. This completes the proof for m = 4.

Case m = 3. Now suppose m = 3, so that dimV = 8. This case is handled along similar lines
to the previous one. By [14, Lemma 2.9], either |Z|2 = 2 and G0/N ≤ Oε6(2), or 4 divides |Z|
and G contains a field automorphism of order 2 (so that q is a square), and G0/N ≤ Sp6(2). As
G0 is insoluble, its order is divisible by 2 and 3, so p ≥ 5. Also each non-central involution in
G0 fixes a nonzero vector.

Assume now that 7 divides |G|. If 7 divides |G/G0| then q ≥ 57 and we easily obtain a
contradiction using (4); so 7 divides |G0|. Elements of order 7 in G0 act on V as (12, ω, ω2, . . . , ω6)
where ω is a 7th root of 1 in the algebraic closure of Fq (since they are rational in O+

6 (2)). In
particular they fix nonzero vectors, so 1

2 -transitivity implies

|V | ≤
∑

t∈G,|t|=7

|CV (t)|. (5)

The number of elements of order 7 in Sp6(2) is 207360, and hence the number in G0 is at most
(q − 1, 7) · 26 · 207360. Each fixes at most q2 vectors, so (5) gives

q8 ≤ (q − 1, 7) · 26 · 207360 · q2,

which implies that q ≤ 13. Hence q = 5, 11 or 13 (not 7 as G0 is a p′-group). As q is prime, by
the first observation in this case, we have |Z|2 = 2 and G/N ≤ O+

6 (2). But then the number
of elements of order 7 in G is at most 26 · 5760, so (5) forces q = 5. So G/N is an insoluble
5′-subgroup of O+

6 (2), and now we use Magma to see that such a group G is not 1
2 -transitive on

the nonzero vectors of V = V8(5).

Therefore 7 does not divide |G|. It follows that G0/N is contained in one of the following
subgroups of Sp6(2):

O−6 (2), S6 × S3, 25.S6.

As G0 is insoluble and a p′-group, we have p ≥ 7. We now consider elements of order 3 in G.
These are conjugate to elements tk (1 ≤ k ≤ 3) lying in subgroups (O−2 (2))k of Sp6(2), and
acting on V as follows:

t1 : (ω(4), ω−1 (4)),
t2 : (14, ω(2), ω−1 (2)),
t3 : (12, ω(3), ω−1 (3)).

Suppose G has an element of order 3 which fixes nonzero vectors in V , so that (3) holds. We
argue as in the previous case that q is not a cube, so 3 does not divide |G/G0|. In O−6 (2), the
numbers of elements conjugate to t1, t2, t3 are 240, 480, 80 respectively. Hence, if G0/N ≤ O−6 (2)
then (3) gives

q8 ≤ 24 · 480q4 + 26 · 80q2 + 23 · 240q4 + 25 · 480q2 + 27 · 80q3

where the last three terms are only present if 3 divides |Z|. This gives q = 7. Similarly q = 7 is
the only possibility if G0/N is contained in S6×S3 or 25.S6. But now we compute using Magma
that such groups G are not 1

2 -transitive on the nonzero vectors of V = V8(7).

Thus all elements of order 3 in G are fixed point free on V ], and hence G0/N is an insoluble
7′-subgroup of Sp6(2), all of whose elements of order 3 are conjugate to t1. We compute that
there are 10 such subgroups, and for each of them, (4) implies that q = 7 is the only possibility:
for example, the largest possible G0 has 60 (resp. 3526, 60) involutions with fixed point spaces
on V of dimension 6 (resp. 4, 2), so (4) yields

q8 ≤ 60q6 + 3526q4 + 60q2,

hence q = 7. Finally, we compute that none of the possible subgroups G is 1
2 -transitive on the

nonzero vectors of V = V8(7).

Case m = 2. Now suppose m = 2, so that dimV = 4. Then G0/N is an insoluble subgroup of
Sp4(2), so is isomorphic to S6, A6, S5 or A5.
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Assume that G0/N is A6 or S6. Then 4 divides |Z| (so divides q − 1). Elements of G0 of
order 3 are conjugate to tk (k = 1, 2) lying in Sp2(2)k; and t1 acts on V as (ω(2), ω−1 (2)), t2 as
(12, ω, ω−1). By assumption G0 contains elements in both classes, so (3) yields

q4 ≤ 24 · 40q2 + 2 · 24 · 40q + 2 · 22 · 40q2,

where the last two terms are present only if 3 divides |Z| (hence also q−1). Since 4 divides q−1,
we conclude that q = 13 or 17 in this case.

Now assume G0/N is A5 or S5. As G is a p′-group, p ≥ 7. We compute that G0 has at most
230 involutions, so (4) gives q4 ≤ 230q2, whence q ≤ 13.

Thus in all cases, we have q = 7, 11, 13 or 17. We now compute that none of the possibilities
for G is 1

2 -transitive on the nonzero vectors of V = V4(q). This completes the proof of the
lemma.

Lemma 2.5 Either |E/Φ(E)| ≤ 22, or |E/Φ(E)| = 24 and p = 3.

Proof. The result is trivial if E ≤ Z, so suppose this is not the case. Let N = ZE / G,
and let U be an irreducible KN -submodule of V . By Lemma 2.3, N is faithful on U and GU is
1
2 -transitive on U ]. Write H = (GU )U .

Assume first that H is insoluble. Now H is not semiregular on U ] (as it is not a Frobenius
complement by Proposition 2.1, having N ∼= NU as a normal subgroup), so Lemma 2.3(iv)
implies that U = V . But then N = ZE is irreducible on V , which forces k = 0, contrary to
Lemma 2.4.

Hence H is soluble. As it is 1
2 -transitive on U ], it is therefore given by [14, Theorem B]; the

list is given under (a)-(d) in the proof of Lemma 2.4. In all cases except the last one in (d), it
follows that |E/Φ(E)| ≤ 22; in the exceptional case |U | = 34 and |E/Φ(E)| = 24. Hence the
conclusion of the lemma holds.

Lemma 2.6 If Ri / G, then Ri = SL2(5) and V ↓ Ri = U l, a direct sum of l copies of an
irreducible KRi-submodule U of dimension 2.

Proof. Suppose R := Ri / G. By Lemma 2.3, V ↓ R = U l with U irreducible and (GU )U
1
2 -transitive. If (R,dimU) = (SL2(5), 2) then the conclusion holds, so suppose this is not the
case. If RU is semiregular then R is a Frobenius complement, so R ∼= SL2(5); but then dimV
must be 2 by Proposition 2.2(i), which we have assumed not to be the case. Therefore RU is not
semiregular, and so U = V by Lemma 2.3(iv). In particular F ∗(G0) = ZR.

At this point we wish to apply [11, Theorem 2.2]: this states that, with specified exceptions,
any p′-subgroup of GLd(p) that has a normal irreducible quasisimple subgroup, has a regular
orbit on vectors. In order to apply this, we need to establish that our quasisimple normal
subgroup R of G acts irreducibly on V , regarded as an FpR-module. To see this, we go back to
the proof of Lemma 2.3, letting N := R / G. Taking U ′ to be an irreducible FpR-submodule of
V , that proof shows that R is faithful on U ′, and that GU ′ is 1

2 -transitive on U ′. Hence by the

minimality of G, either U ′ = V (which is the conclusion we want), or GU
′

U ′ is semiregular or as in
(ii) or (iii) of Theorem 1. In the semiregular case, Proposition 2.1 implies that R = SL2(5) and
U ′ is a 2-dimensional R-module over some extension K of Fp, and this holds in (ii) and (iii) of
Theorem 1 as well. However this can only happen if dimK V = 2 , contradicting our assumption
that (R,dimU) 6= (SL2(5), 2). Hence U ′ = V , as desired.

Now we apply [11, Theorem 2.2] which determines all the possibilities for G not having a
regular orbit on V ; these are

(1) the case with R = Ac (c < p) and V the deleted permutation module of dimension c − 1,
and

(2) the cases listed in Table 2 (note that in column 4 of row 14 of the table, G18 and G9 denote
groups of orders 18 and 9).

Case (1) In this case G = Z0H where Z0 is a group of scalars and H = Ac or Sc, and
V = {(α1, . . . , αc) ∈ Fcp :

∑
αi = 0}. If v1 = (1,−1, 0, . . . , 0) and v2 = (1, 1,−2, 0, . . . , 0), one
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Table 2: Groups in case (2) of the proof of Lemma 2.6

G/Z n q Gv ≤ m
A5 3 11 C2 3
S5 4 7 C2 3
S6 5 7 C2 5
A6.2 4 7 C3 2
A6 3 19, 31 C2, C2 5, 3
A7 4 11 C3 7
L2(7) 3 11 C2 3
L2(7).2 3 25 C2 3
U3(3).2 7 5 C2 7
U3(3).2 6 5 S3 4
U4(2) 4 7 −− −−
U4(2) 5 7, 13, 19 S4, V4, C2 5, 5, 5
U4(2).2 6 7, 11, 13 D12, V4, C2 5, 5, 5
U4(2) 4 13, 19, 31, 37 G18, G9, C3, C2 4, 2, 2, 3
U4(3).2 6 13, 19, 31, 37 W (B3), S3 × C2, V4, C2 5, 5, 5, 5
U5(2) 10 7 V4 3
Sp6(2) 7 11, 13, 17, 19 C3

2 , V4, C2, C2 7, 7, 7, 7
Ω+

8 (2) 8 11, 13, 17, 19, 23 W (B3), S4, S3, V4, C2 7, 7, 7, 7, 7
J2 6 11 S3 4

checks that the sizes of the G-orbits containing v1 and v2 are c(c−1)|Z0|
(2,|Z0|) and 3|Z0|

(
c
3

)
respectively.

These are not equal for any c ≥ 5, contradicting 1
2 -transitivity.

Case (2) In the case where G/Z = U4(2) and (n, q) = (4, 7), G has two orbits on 1-spaces of
sizes 40 and 360 (see [12]), and so cannot be 1

2 -transitive on V ]. In each other case in Table 1,
[11, Theorem 2.2] gives the existence of a vector v with stabiliser Gv contained in a subgroup as
indicated in column 4 of the table; and examination of the corresponding Brauer character of G
of degree n in [5] gives the existence of another vector u with stabiliser Gu containing an element
of order m, as indicated in column 5. It follows in all cases that G is not 1

2 -transitive.

Lemma 2.7 We have k = 1.

Proof. Suppose k > 1. Assume first that Ri / G for all i. Then N := R1R2 / G; moreover
N is not a Frobenius complement by Proposition 2.1, so is not semiregular on V ], and hence
Lemma 2.3(iv) shows that N is irreducible on V . Now Lemma 2.6 implies that

N = R1R2 = SL2(5)⊗ SL2(5) ≤ G ≤ ΓL4(q).

Let V = U ⊗W be a tensor decomposition preserved by N , with dimU = dimW = 2. If q 6= p
or p2 with p ≤ 61, and also q 6= 74, then Proposition 2.2 shows that the group induced by G/Z
on 1-spaces in U has a regular orbit, and the same for W . Pick 〈u〉 and 〈w〉 in such orbits
(u ∈ U,w ∈ W ). Then G〈u⊗w〉 ≤ Z and so Gu⊗w = 1. Hence G has a regular orbit on V ], a
contradiction. And if q = p, p2 or 74, then

G ≤ Z · (SL2(5)⊗ SL2(5)).a = Z ·R1R2.a ≤ ΓL4(q),

where a divides 4. Here G0 = Z · R1R2. Let u1, u2 be a basis of U and w1, w2 a basis of W .
Writing matrices relative to these bases, define RT2 = {AT : A ∈ R2}. Then by [8, Lemma 4.3],
for the vector v = u1 ⊗ w1 + u2 ⊗ w2 we have

(G0)v = {B ⊗B−T : B ∈ R1 ∩RT2 }. (6)

There is only one conjugacy class of subgroups SL2(5) in GL2(q), so we can choose bases ui, wi
such that R1 = RT2 ; then for the corresponding vector v the order of (G0)v is divisible by 60. On
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the other hand there are bases for which R1∩RT2 has order dividing 20, giving a vector stabilizer
in G of order coprime to 3. This contradicts 1

2 -transitivity.

Thus not all the Ri are normal subgroups of G. Relabelling, we may therefore take it that
G permutes l factors R1, . . . , Rl transitively by conjugation, where l > 1. Let N = R1 . . . Rl.
Lemma 2.3(iv) implies that N is irreducible on V , so that k = l and F ∗(G0) = ZN . Now [1,
(3.16), (3.17)] implies that N preserves a tensor decomposition V = V1 ⊗ · · · ⊗ Vk with dimVi
independent of i, N ≤

⊗
GL(Vi) and G ≤ NΓL(V )(

⊗
GL(Vi)) = (GL(V1) ◦ · · · ◦GL(Vk)).Sk.〈σ〉

with σ a field automorphism acting on all factors.

Let G1 be the kernel of the natural map from G to Sk, so that G1 = G ∩ B where B =
(GL(V1) ◦ · · · ◦ GL(Vk)).〈σ〉. There is a map φ : G1 → PΓL(V1) which has image normalizing
the simple irreducible group T := R1/Z(R1).

Just as in the second paragraph of the proof of Lemma 2.6, N acts irreducibly on V , regarded
as an FpN -module. It follows that R1 acts irreducibly on V1, regarded as an FpR1-module: for if
W1 is a proper nonzero FpR1-submodule of V1, then by the transitivity of G on the Ri, there is a
proper nonzero FpRi submodule Wi of Vi for each i, and then W1⊗· · ·⊗Wl is an FpN -submodule
of V , contradicting the FpN -irreducibility of V .

As in the proof of Lemma 2.6, this means that we can apply [11, Theorem 2.2] to the action
of G1φ on V1. This shows that one of the following holds:

(a) G1φ has a regular orbit on the 1-spaces of V1;

(b) T and V1 are among the exceptions indicated in (1) and (2) of the proof of Lemma 2.6;

(c) (T, dimV1) = (A5, 2).

Assume first that (a) holds and (c) does not. So G1φ has a regular orbit on 1-spaces in V1. Let
〈v〉 be a 1-space in such an orbit. Write also v for the corresponding vector in the other Vi, and
let H be the stabiliser (G1)v⊗···⊗v. Then H fixes the 1-space 〈v〉 ⊗ · · · ⊗ 〈v〉, so by the choice of
v, we have H ≤ Z, the group of scalars in G. Hence in fact H = 1. It follows that Gv⊗···⊗v has
order dividing k!. Also, assuming Ri 6∼= SL2(r), there is an involution ri ∈ Ri\Z fixing a nonzero
vector ui ∈ Vi, and hence we see that Gu1⊗···⊗uk

has order divisible by 2k. However 2k does not
divide k! so this is impossible. For Ri ∼= SL2(r) we have dimVi > 2 (as we are assuming (c) does
not hold), and use a similar argument with an element of order 3 fixing a vector (which can be
seen to exist from the character table of SL2(r) in [7]).

Now consider case (b), where T, V1 are as in (1) or (2) of the proof of Lemma 2.6. For T, V1

as in Table 2 (apart from U4(2) in dimension 4), let v, u ∈ V1 be as in the last paragraph of the
proof of Lemma 2.6, and let C be the group in the fourth column of Table 2 and m the integer in
the fifth. Then (G1)v⊗···⊗v is isomorphic to a subgroup of Ck, so that Gv⊗···⊗v has order dividing
|C|kk!. On the other hand (G1)u⊗···⊗u has order divisible by mk. Since G is 1

2 -transitive, this
implies that mk divides |C|kk!, which is not the case.

The remaining cases in (b) are: T = Ac (c < p), V1 the deleted permutation module; and
T = U4(2), V1 = V4(7). In the latter case T has two orbits on 1-spaces in V1 with stabilizers of
orders 72 and 648; so as above G has a vector stabiliser of order dividing 72kk! and another of
order divisible by 648k−1, a contradiction. Now suppose T = Ac (c < p) and V1 is the deleted
permutation module, which we represent as {(x1, . . . , xc) ∈ Fcp :

∑
xi = 0}. By Bertrand’s

Postulate (see [9]) we can choose a prime r such that c
2 < r < c. Let v1, v2 be the following

vectors in V1:
v1 = (1r,−r, 0c−r−1), v2 = (1r−1, 1− r, 0c−r).

Then Gv1⊗···⊗v1 has order divisible by rk, while Gv2⊗···⊗v2 has order dividing mkk!, where
m = (r−1)!(c− r)! (note that 1− r 6= 1 in Fp, since p > c). Hence rk divides k!, a contradiction.

Finally consider case (c). Here dimVi = 2 and Ri ∼= SL2(5); this case requires a special
argument. Since R1 is Fp-irreducible on V1, we must have q = p or p2, and hence G ≤ Z ·
(SL2(5)⊗ · · · ⊗ SL2(5)).Sk.〈σ〉 with σ of order 1 or 2. Write s = [k2 ]. As in the argument after
(6), there is a vector v ∈ V1 ⊗ V2 whose stabilizer in SL2(5)⊗ SL2(5) contains a diagonal copy
of SL2(5). Tensoring v with the corresponding vectors in V3⊗V4, . . . , V2s−1⊗V2s (and a further
vector in Vk if k is odd), we see that there is a vector in V with stabilizer in G of order divisible
by 60s. On the other hand there is a 1-space 〈w〉 in V1 with stabilizer in SL2(5)/Z(SL2(5)) of
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order dividing 2, 3 or 5. Then |Gw⊗···⊗w| divides tkk!|σ| for some t ∈ {2, 3, 5}. Thus 60[k/2]

divides tkk!|σ|. This is impossible unless k is odd, t = 5 and there is no 1-space in V1 with
stabilizer of order dividing 2 or 3. The latter can only hold if q ≡ 3 mod 4 and q ≡ 2 mod 3.
This implies that q = p and σ = 1, so that 60(k−1)/2 divides 5kk!. In particular 2k−1 divides k!,
which is a contradiction for k odd.

We can now complete the proof of Theorem 1. By Lemmas 2.6 and 2.7, we have F ∗(G0) =
ZER1 where R1 = SL2(5) and E = O2(G0). Note that p > 5 since G is a p′-group, and so
Lemma 2.5 shows that |E/Φ(E)| ≤ 22. Also by Lemma 2.6 we have V ↓ Ri = U l, a direct sum
of l copies of an irreducible KRi-submodule U of dimension 2.

Suppose E 6≤ Z, so that E/Φ(E) = 22. Write N = F ∗(G0). Proposition 2.1 shows that N is
not a Frobenius complement; hence Lemma 2.3 shows that N is irreducible on V . Let W be an
irreducible KE-submodule of V . By Lemma 2.3, E is faithful on W (so dimW = 2) and GWW is
a soluble 1

2 -transitive group. Such groups are classified in [14, Theorem B]. From this it follows
that one of the following holds:

(a) GWW is a Frobenius complement (so E is generalised quaternion);

(b) relative to some basis of W we have GWW = S0(q), the group of monomial 2× 2 matrices of
determinant ±1;

(c) |W | = p2 with p ∈ {7, 11, 17}.

In case (c), q = p; also p 6= 7, 17 as SL2(5) 6≤ GL2(p) for these values. Hence V = U⊗W = V4(p)
with p = 11, and a Magma computation shows that there is no such 1

2 -transitive group G in this
case.

In case (a), GWW ≤ Z ·SL2(3) < GL2(q); and in (b), GWW = Z ·22 < Z ·SL2(3).2 < GL2(q). In
either case it follows that V = U ⊗W and G ≤ Z · (SL2(5)⊗ (SL2(3).2)) < GL2(q)⊗GL2(q) <
GL4(q). Write Ḡ = GZ/Z, so that Ḡ ≤ A5 × S4.

We saw in the proof of Proposition 2.2 that at least q − 62 of the elements of P1(U) lie in
regular orbits of A5. Similarly, at least q−32 elements of P1(W ) lie in regular orbits of S4. Hence
if q > 61 then, picking 〈u〉 ∈ P1(U) and 〈w〉 ∈ P1(W ) in regular orbits, we see that u⊗w lies in
a regular orbit of G on V ]. This is a contradiction, since G is 1

2 -transitive but not semiregular.
Hence q ≤ 61. Now a Magma computation shows that no 1

2 -transitive groups arise in cases (a)
and (b) as well.

Thus we finally have F ∗(G0) = ZR1 with R1 = SL2(5) and V ↓ R1 = U l, dimU = 2. Here
G/Z is A5 or S5, so l = 1. Now Proposition 2.2(iii) shows that q = 11, 19, 29 or 169 and G is as
in conclusion (ii) or (iii) of Theorem 1. This is our final contradiction to the assumption that G
is a minimal counterexample.

This completes the proof of Theorem 1.

3 Proof of Proposition 4

Let k ≥ 2 and suppose that X is a (k + 1
2 )-transitive permutation group of degree n. Assume

that X is not k-transitive. We refer to [10, §2] for the list of 2-transitive groups, and to [6, §7.6]
for a discussion of sharply k-transitive groups.

The proposition is trivial if X is An or Sn, so assume this is not the case. Then k ≤ 5, as there
are no 6-transitive groups apart from An and Sn. Apart from An and Sn, the only 5-transitive
groups are the Mathieu groups M12 and M24, and the only 4-transitive, not 5-transitive, groups
are M11 and M23. The groups M11 and M12 are sharply 4- and 5-transitive respectively; and in
M23, a 4-point stabilizer has orbits of size 3 and 16, so that M23 is not 4 1

2 -transitive and also
M24 is not 5 1

2 -transitive. This gives the proposition for k = 4 or 5.

Next let k = 3. Then X is a 3-transitive but not 4-transitive group, hence is one of the
following: AGLd(2) (degree 2d); 24.A7 (degree 24); M11 (degree 12); M22 or M22.2 (degree
22); or a 3-transitive subgroup of PΓL2(q) (degree q + 1). The affine groups here are not 3 1

2 -
transitive, as a 3-point stabilizer fixes a further point. Neither are M11, M22 or M22.2 as 3-point
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stabilizers have orbits of size 3,6 or 3,16. Finally, suppose that X is a 3-transitive subgroup of
PΓL2(q). There are two possible sharply 3-transitive groups here, namely PGL2(q) and a group
M(q2

0) := L2(q2
0).2 with q = q2

0 and q odd, which is an extension of L2(q2
0) by a product of a

diagonal and a field automorphism. Assuming that X is not one of these, it must be the case that
a 3-point stabilizer Xαβγ = 〈φ〉, where φ is a field automorphism. Since X is 3 1

2 -transitive, 〈φ〉
acts semiregularly on the remaining q− 2 points, so any nontrivial power of φ must fix exactly 3
points. It follows that q = 2p with p prime, and φ has order p, which is the example in conclusion
(iii) of Proposition 4.

Now suppose that k = 2. Consider first the case where X is almost simple, and let T =
soc(X). When T is not L2(q), Sz(q) or 2G2(q), the arguments in [10, §3] show that a 2-point
stabilizer Xαβ has orbits of unequal sizes on the remaining points, contradicting 2 1

2 -transitivity.
The groups with socle L2(q) are in conclusion (iv) of Proposition 4. If T = 2G2(q) (of degree
q3 + 1), then Xαβ has order (q − 1)f , where f = |X : T | is odd, and Xαβ is generated by an
element x of order q − 1 and a field automorphism of odd order f . This group has a unique
involution x(q−1)/2 which fixes q + 1 points. It follows that some nontrivial orbits of Xαβ have
odd size and some have even size, contrary to 2 1

2 -transitivity. Now consider T = Sz(q), of degree
q2 + 1. If X = T then it is a Zassenhaus group, and is in (iv) of the proposition. Otherwise,
X = 〈T, φ〉 where φ is a field automorphism of odd order f , say, and φ fixes q2

0 + 1 points, where

q = qf0 . For suitable α, β we have Xαβ = 〈x, φ〉, where x has order q− 1, and 〈x〉 has q+ 1 orbits
of size q− 1. Now φ fixes points in some of these orbits, so by 2 1

2 -transitivity it must fix a point
in each of them. But |fix(φ| = q2

0 + 1 < q + 1, which is a contradiction.

Finally, suppose X is affine (with k = 2). Write X = T (V )X0 ≤ AGL(V ), where n = |V |,
T (V ) is the translation subgroup, and X0 ≤ GL(V ). We refer to [10, §2(B)] for the list of
possibilities for the transitive linear group X0. If X0 . SLd(q) (n = qd, d ≥ 2), Spd(q)

′ (n =
qd, d ≥ 4) or G2(q)′ (n = q6), the arguments in [10, §4] show that for some v ∈ V ], X0v has
nontrivial orbits of unequal sizes. In cases (6-8) of [10, §2(B)], we have X0 .SL2(5), SL2(3), 21+4

or SL2(13), and n ∈ {34, 36, 52, 72, 112, 192, 232, 292, 592}; in each case n − 2 is coprime to the
order of a 2-point stabilizer X0v, so it follows by 2 1

2 -transitivity that X0v = 1. In other words,
X must be sharply 2-transitive, as in conclusion (ii) of the proposition.

It remains to deal with the case where X ≤ A := AΓL1(q) (n = q). Here A01 consists of field
automorphisms, so if we pick v ∈ Fq such that v lies in no proper subfield of Fq, then A01v = 1.
Hence by 2 1

2 -transitivity, all 3-point stabilizers in X are trivial – that is, X is a Zassenhaus group.
It is well known that the non-sharply 2-transitive Zassenhaus groups in the 1-dimensional affine
case are just AΓL1(2p) with p prime, as in (iv) of the proposition. This is easy to see: we have
X01 = 〈φ〉, where φ is a field automorphism, and this acts semiregularly on Fq \ {0, 1}; hence, as
argued at the end of the k = 3 case above, q = 2p with p prime and X = AΓL1(2p), as required.

This completes the proof of Proposition 4.
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