M2PM2 Algebra II Problem Sheet 8

1. Let V be a finite-dimensional vector space over a field F, and $T: V \to V$ a linear map. Let m(x) be a minimal polynomial for T (i.e. a monic polynomial in F[x] of smallest possible degree such that m(T) = 0).

(i) Prove that m(x) is unique (i.e if $m_1(x), m_2(x)$ are min polys for T, then $m_1 = m_2$).

(ii) Prove that if p(x) is a polynomial over F such that p(T) = 0, then m(x) divides p(x).

2. (a) Let A be a square matrix over \mathbb{C} with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Prove that the minimal polynomial of A is $\prod_{i=1}^{k} (x - \lambda_i)^{r_i}$, where r_i is the size of the largest λ_i -block in the JCF of A. (b) List all the possible JCFs for a matrix that has characteristic polynomial $(x + 1)^5(x + 2)^3(x - 2)^4$ and minimal polynomial $(x + 1)^3(x + 2)(x - 2)^3$.

3. Calculate the minimal polynomials of the matrices $\begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$.

- **4.** Let A be an $n \times n$ matrix over \mathbb{C} .
 - (i) Prove that A is diagonalisable iff its minimal poly has no repeated roots.
 - (ii) Suppose that $A^k = I$ for some positive integer k. Prove that A is diagonalisable.
- 6. Let V be a vector space, and V_1, V_2 subspaces of V. Prove that the following are equivalent: (1) $V = V_1 \oplus V_2$,
 - (2) dim $V = \dim V_1 + \dim V_2$ and $V_1 \cap V_2 = \{0\}$.

7. Let V be a vector space over a field F, and $T: V \to V$ a linear map. Suppose $f(x), g(x) \in F[x]$ are coprime polynomials (i.e. their hcf is 1) such that f(T)g(T) = 0. Prove that

$$V = \operatorname{Ker}(f(T)) \oplus \operatorname{Ker}(g(T)).$$

(*Hint*: there are polys s(x), t(x) such that sf + tg = 1, hence $s(T)f(T) + t(T)g(T) = I_V$, the identity linear map on V. Apply both sides of this equation to a vector $v \in V$.)

8. Deduce Proposition 20.4 of lectures from Q7 using induction on k: if $T: V \to V$ has characteristic poly $\prod_{i=1}^{k} (x - \lambda_i)^{a_i}$, where $\lambda_1, \ldots, \lambda_k$ are the distinct evalues, then $V = V_1 \oplus \cdots \oplus V_k$, where $V_i = \text{Ker}(T - \lambda_i I)^{a_i}$.

9. (a) Let $A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}$, and define $T: V \to V$ by T(v) = Av, where $V = \mathbb{C}^3$. Find a Jordan basis of V is a phasia R such that [T] is a JCE matrix

basis of V, i.e. a basis B such that $[T]_B$ is a JCF matrix.

(b) Let V be the vector space of polynomials over \mathbb{C} of degree at most 5, and define linear maps S and $T: V \to V$ by

$$S(p(x)) = p'(x), \ T(p(x)) = p''(x) \quad \text{for all } p(x) \in V.$$

Find Jordan bases of V for S and T.

(c) Let
$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
, and define $T : V \to V$ by $T(v) = Av$, where $V = \mathbb{C}^4$. Find

subspaces V_1, V_2 such that $V = V_1 \oplus V_2$, each V_i is *T*-invariant, and T_{V_i} has only one eigenvalue. Hence find a Jordan basis of V, i.e. a basis B such that $[T]_B$ is a JCF matrix.