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Abstract. Let G be a finite group and let d(G) be the minimal number of generators
for G. It is well known that d(G) = 2 for all (non-abelian) finite simple groups. We
prove that d(H) ≤ 4 for any maximal subgroup H of a finite simple group, and that this
bound is best possible.

We also investigate the random generation of maximal subgroups of simple and almost
simple groups. By applying a recent theorem of Jaikin-Zapirain and Pyber we show that
the expected number of random elements generating such a subgroup is bounded by an
absolute constant.

We then apply our results to the study of permutation groups. In particular we
show that if G is a finite primitive permutation group with point stabilizer H, then
d(G) − 1 ≤ d(H) ≤ d(G) + 4.

1. Introduction

Let G be a finite group and let d(G) be the minimal number of generators for G. We
say that G is d-generator if d(G) ≤ d. The investigation of generators for finite simple
groups has a rich history, with numerous applications. Perhaps the most well known result
in this area is the fact that every finite simple group is 2-generator. For the alternating
groups, this was first stated in a 1901 paper of G.A. Miller [47]. In 1962 it was extended
by Steinberg [54] to the simple groups of Lie type, and post-Classification, Aschbacher
and Guralnick [2] completed the proof by analysing the remaining sporadic groups. More
generally, if G is an almost simple group with socle T (so that T 6 G 6 Aut(T ) with T a
non-abelian finite simple group) then d(G) = max{2, d(G/T )} ≤ 3 (see [14]).

A wide range of related problems on the generation of finite simple groups has been
investigated in recent years. For instance, we may consider the abundance of generating
pairs: if we pick two elements of a finite simple group G at random, what is the probability
that they generate G? In 1969 Dixon [15] proved that if G = An then this probability
tends to 1 as n→∞, confirming an 1882 conjecture of Netto [48]. This was extended in
[27, 37] to all finite simple groups, as conjectured by Dixon in [15].

Various generalisations have subsequently been studied by imposing restrictions on the
orders of the generating pairs. Here there are some interesting special cases. For example,
the simple groups that can be generated by a pair of elements of order 2 and 3 coincide
with the simple quotients of the modular group PSL2(Z) ∼= Z2 ? Z3, and they have been
intensively studied in recent years (see [39, 41], and also [40, 53] for related results). In
a different direction, in [21] it is proved that every non-trivial element of a finite simple
group belongs to a pair of generating elements, confirming a conjecture of Steinberg [54].
A more general notion of spread for 2-generator groups was introduced by Brenner and
Wiegold [8], and this has been widely studied in the context of finite almost simple groups
(see [10, 9, 22], for example).
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Our understanding of the subgroup structure of the finite simple groups has advanced
greatly in the last 30 years or so (see [30, 31, 36] for an overview). Indeed, almost all
of the above results require detailed information on the maximal subgroups of simple
groups. The main purpose of this paper is to investigate various generation properties of
the maximal subgroups themselves, establishing some new and rather unexpected results.
Our aim is to show that some of the above results for simple groups can be extended, with
some suitable small (and necessary) modifications, to all their maximal subgroups. For
example, just as every finite simple group is 2-generator, our main result states that any
maximal subgroup H can also be generated by very few elements.

Theorem 1. Every maximal subgroup of a finite simple group is 4-generator.

There are infinitely many examples with G simple and d(H) = 4 (see Remarks 4.5 and
5.12, for example), so Theorem 1 is best possible. In fact this theorem follows from a
more general result, stated below, dealing also with maximal subgroups of almost simple
groups.

Theorem 2. Let G be a finite almost simple group with socle G0 and let H be a maximal
subgroup of G. Then d(H ∩G0) ≤ 4, and also d(H) ≤ 6.

It is likely that 4 is also the optimal bound in the more general almost simple situation.

In view of the explicit bounds obtained in Theorem 2, it is natural to investigate the
probabilistic generation of maximal subgroups of simple and almost simple groups, in
analogy with the aforementioned work on the simple groups themselves.

We introduce some relevant background and notation. For a finite or profinite group G
and a positive integer k let P (G, k) denote the probability that k randomly chosen elements
of G generate G (topologically, if G is infinite). A profinite group G is said to be positively
finitely generated (PFG for short) if P (G, k) > 0 for some k. Which finitely generated
profinite groups are PFG? Various examples have been given in the past two decades;
these include prosolvable groups (Mann [45]), groups satisfying the Babai-Cameron-Pálfy
condition [4] on their upper composition factors [6], certain iterated wreath products of
simple groups, etc.

A characterization of PFG groups in terms of maximal subgroup growth has been
obtained in [46]. Let mn(G) denote the number of maximal subgroups of index n in
G. The main result of [46] states that a profinite group G is PFG if and only if mn(G)
grows polynomially with n. Lubotzky [42] provided effective versions of this for finite
groups G. Let ν(G) be the minimal number k such that P (G, k) ≥ 1/e. Up to a small
multiplicative constant, it is known that ν(G) is the expected number of random elements
generating G (see [50] and [42, 1.1]). Define

M(G) = max
n≥2

logmn(G)

log n
.

By [42, 1.2] we have M(G) < ν(G) + 4 for any finite group G.

Remarkable results characterizing PFG profinite groups have been recently obtained by
Jaikin-Zapirain and Pyber [26]. Theorem 1 in that paper provides strong bounds on ν(G)
for G finite. Combining this tool with Theorem 2 above we establish random generation
of all maximal subgroups of almost simple groups. More precisely we have:

Theorem 3. There exists an absolute constant c such that ν(H) ≤ c for any maximal
subgroup H of a finite almost simple group.

More generally, by increasing the constant c in Theorem 3, if necessary, we obtain the
following corollary.
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Corollary 4. For any given ε > 0 there exists an absolute constant c = c(ε) such that
P (H, c) > 1− ε for any maximal subgroup H of a finite almost simple group.

This is essentially best possible because the strong random generation property in the
aforementioned conjecture of Dixon fails to extend to maximal subgroups of simple groups,
so there is no universal constant c such that P (H, c) → 1 as |H| → ∞. For example, the
symmetric group H = Sn−2 is a maximal subgroup of An, and P (H, c) ≤ 1− 2−c for all c.
More generally, many maximal subgroups H have subgroups of bounded index, preventing
P (H, c) from tending to 1 as |H| → ∞ if c is fixed.

The maximal subgroup growth of finite simple groups G has been widely studied, see
[27], [37], [38], culminating in [32] where it is shown that mn(G) ≤ na for any fixed a > 1
and sufficiently large n. Combining Theorem 3 with Lubotzky’s bound on M(G) stated
above, we obtain a polynomial upper bound on mn(H) where H is any maximal subgroup
of an almost simple group.

Corollary 5. There is an absolute constant c such that any maximal subgroup of a finite
almost simple group has at most nc maximal subgroups of index n.

This yields a surprising corollary on second maximal subgroups of almost simple groups
G, which are defined to be the maximal subgroups of maximal subgroups of G.

Corollary 6. There is an absolute constant c such that any finite almost simple group
has at most nc second maximal subgroups of index n.

It is natural to ask whether or not Theorem 2 can be extended to second maximal
subgroups of almost simple groups: is there an absolute constant c such that d(H) ≤ c for
any second maximal subgroup H? The answer to this question appears to depend on a
difficult problem in number theory, namely the existence of infinitely many integers of the
form pk−1 (p a fixed prime) with a prime factor r such that (pk−1)/r = o(k). This open
problem is far beyond the reach of present methods, which only provide prime factors r
of the order of magnitude kc.

To see the connection, let G = L2(pk) and write pk − 1 = rb with r an odd prime. Set
d = b/2 if p is odd, otherwise d = b. Then H = Zkp .Zd has index r in a Borel subgroup
of G, so H is a second maximal subgroup and it is easy to see that d(H) > k/d. In
particular, if there are infinitely many integers pk − 1 with a prime divisor r as above
with b = o(k), then the corresponding second maximal subgroup H of L2(pk) will require
arbitrarily many generators. For example, if p = 2 then this follows if there are infinitely
many Mersenne primes. Similar examples can also be constructed in other small rank
groups of Lie type.

We plan to investigate this further in a future paper on the generation properties of
second maximal subgroups of simple and almost simple groups. More generally, we will
also study the t-maximal subgroups of such groups, where a subgroup H of a group G is
t-maximal if there exists a chain of subgroups H = Ht < Ht−1 < · · · < H1 < H0 = G with
Hi maximal in Hi−1 for all i.

Theorems 2 and 3 also have interesting applications to permutation groups. Recall that
a transitive permutation group G on a set Ω with point stabilizer H is primitive if there
is no non-trivial G-invariant partition of Ω, which is equivalent to the condition that H is
a maximal subgroup of G. The finite primitive groups can be viewed as the basic building
blocks of all finite permutation groups, and they have been studied extensively since the
days of Jordan in the 19th century. A key tool here is the O’Nan-Scott theorem (see [16,
Theorem 4.1.A]), which partitions these groups into several classes. This often provides a
way to reduce a general question about primitive groups to the almost simple case, where
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one can appeal to the Classification theorem and the wealth of information on the maximal
subgroups of almost simple groups.

Let G be a finite primitive permutation group with point stabilizer H. What is the
relationship between d(G) and d(H)? Clearly, we have d(G) ≤ d(H) + 1, since H is a
maximal subgroup of G. For general finite groups G and a maximal subgroup H, d(H) may
be much larger than d(G) – indeed the best upper bound on d(H) is |G : H|(d(G)−1)+1.
It is somewhat surprising that when the core of H in G is trivial, namely when G acts
faithfully on the cosets of H, a much better upper bound holds.

Theorem 7. Let G be a finite primitive permutation group with point stabilizer H. Then

d(G)− 1 ≤ d(H) ≤ d(G) + 4.

Thus d(H) and d(G) are very close in this case. Note that there are many examples of
primitive groups with d(G) arbitrarily large.

Our final result extends Theorem 3 to arbitrary primitive permutation groups, demon-
strating that ν(H) and ν(G) are also very closely related.

Theorem 8. There exist absolute constants 0 < c1 < c2 such that

c1ν(G) < ν(H) < c2ν(G)

for any finite primitive permutation group G with point stabilizer H.

This is the first paper to systematically study the generation of maximal subgroups of
finite simple groups. However, explicit generators of some maximal subgroups of simple
classical and sporadic groups are described in [24, 25] and [7, 57], respectively, with a view
towards practical applications in computational group theory.

In this paper we adopt the notation of [29] for classical groups, so Ln(q) = L+
n (q),

Un(q) = L−n (q), PSpn(q) and PΩε
n(q) denote the simple linear, unitary, symplectic and

orthogonal groups of dimension n over the finite field Fq, respectively. In addition, if G is
a group and n is a positive integer then we write Zn (or just n) and Dn for the cyclic and
dihedral groups of order n, respectively, [n] denotes an arbitrary solvable group of order
n, while Z(G),Φ(G) and Gn represent the centre of G, the Frattini subgroup of G and the
direct product of n copies of G, respectively. Further, (a, b) denotes the greatest common
divisor of the positive integers a and b.

Let us make some remarks on the layout of the paper. First, in Section 2 we record some
preliminary results that we will need in the proof of Theorem 2. Next, in Sections 3 and 4
we prove Theorem 2 for groups with a sporadic and alternating group socle, respectively.
This leaves us to deal with groups of Lie type. In Section 5 we consider the non-parabolic
subgroups of classical groups, and we do likewise for the exceptional groups in Section
6. We complete the proof of Theorem 2 in Section 7, where we deal with the parabolic
subgroups in groups of Lie type. Theorem 3 and Corollary 4 are proved in Section 8, and
the short proof of Corollary 6 is given in Section 9. Finally, Theorems 7 and 8 are proved
in Section 10.
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2. Preliminaries

Here we record a collection of results which we will need in the proof of Theorem 2.
Some of these are new, and may be of independent interest.

Proposition 2.1. The following hold:

(i) If G is a finite almost simple group with socle G0, then

d(G) = max{2, d(G/G0)} ≤ 3,

with equality if and only if G0 = L2m(q) (m ≥ 2), PΩε
2m(q) (m ≥ 5) or PΩ+

8 (q),
where q = q2

0 is odd and Z2 × Z2 × Z2 is an epimorphic image of G/G0.

(ii) If G is a finite group and N is a minimal normal subgroup of G, then

d(G) ≤ d(G/N) + 1.

(iii) If G is a non-cyclic finite group with unique minimal normal subgroup N , then

d(G) = max{2, d(G/N)}.

Proof. Parts (i), (ii) and (iii) are the main theorems of [14], [43] and [44], respectively. �

Remark 2.2. In the proof of Theorem 2 we may (and will) assume that G = HG0 (so H
has trivial core). Indeed, if G 6= HG0 then H is almost simple and the bound in (i) above
implies that d(H) ≤ 3.

Proposition 2.3. Let G be an almost simple group with socle G0, such that G/G0 is
either trivial or has prime order. Then d(G × Za) = 2 for any positive integer a. In
particular, d(Sn × Za) ≤ 2 for all n.

Proof. By Proposition 2.1(i) we have d(G) = 2, say G = 〈x, y〉 and Za = 〈t〉. First suppose
G/G0 has prime order. Without loss, we may assume that G/G0 is generated by yG0.
Set H = 〈(x, t), (y, 1)〉. We claim that H = G × Za. To see this, it suffices to show that
the kernel K of the natural projection map π : H → Za is isomorphic to G. Clearly, K
is isomorphic to a normal subgroup of G, so K ∈ {1, G0, G} since G/G0 has prime order.
However, (y, 1) ∈ K and y ∈ G \ G0, so K = G and we are done. An entirely similar
argument applies if G = G0. �

Proposition 2.4. The following hold:

(i) Let G be a finite group and suppose N is a normal subgroup of G. Then

d(G/N) ≤ d(G) ≤ d(G/N) + d(N).

If also N 6 Φ(G) then d(G) = d(G/N).

(ii) Let G1, G2 be groups such that there is no non-trivial homomorphism from G1

into an image of G2. Then d(G1 ×G2) = max{d(G1), d(G2)}.

Proof. Part (i) is obvious. For (ii), let d = max{d(G1), d(G2)} and note that d ≤ d(G1 ×
G2). Pick generators hi for G1 and ki for G2 (i = 1, . . . , d). Set H = 〈(h1, k1), . . . , (hd, kd)〉.
Let πi (i = 1, 2) be the canonical projection from G1 ×G2 to Gi, and let Ki = H ∩ kerπi.
Then H/Ki

∼= Gi, and there is a canonical homomorphism from H/K1 to H/K1K2, which
is an image of G2. By hypothesis, this homomorphism is trivial, so H = K1K2 and thus
H = G1 ×G2 and d(G1 ×G2) ≤ d. �

In the next result, we set L = {SL2(2),SL2(3),SU3(2)}.

Proposition 2.5. Let p be a prime and let G = L × T , where L =
∏k
i=1 Li is a direct

product of groups Li of Lie type in characteristic p each of which is either quasisimple or
in L, and T is an abelian p′-group. Then the following hold:
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(i) d(G) = max{d(L), d(T )};
(ii) If the groups Li/Z(Li) are pairwise non-isomorphic, and at most one of them is

in L, then d(L) = 2.

Proof. Part (i) follows from Proposition 2.4(ii), noting that there is no non-trivial ho-
momorphism from SL2(2),SL2(3) or SU3(2) to an abelian p′-group, where p = 2, 3, 2
respectively. Now consider (ii). The hypothesis implies that there is no non-trivial ho-
momorphism from Li to

∏
j 6=i Lj , so Proposition 2.4(ii) and induction show that d(L) =

maxi{d(Li)}. The result follows, using Proposition 2.1(i) and an easy check that the
groups in L are 2-generator. �

Proposition 2.6. Let G be a finite group with a normal subgroup L =
∏k
i=1 Li, a central

product of groups Li each of which is either quasisimple or in L, with at most one group
in L occurring (up to isomorphism).

(i) Suppose that for any i, j such that Li/Z(Li) ∼= Lj/Z(Lj), there exists g ∈ G such
that Lgi = Lj. Then d(G) ≤ d(G/L) + 2.

(ii) If the groups Li/Z(Li) are pairwise non-isomorphic then d(G) ≤ d(G/L) + 1.

Proof. First consider (i). By Proposition 2.5(ii), with two elements we can generate a
product

∏
Lij , one factor for each isomorphism type among the groups Li/Z(Li). Then

d(G/L) further elements generate a group covering G/L, and the transitivity hypothesis
implies that these 2 + d(G/L) elements generate G.

Now let us turn to (ii). Let r = d(G/L) and pick x, x2, . . . , xr ∈ G such that

G = L〈x, x2, . . . , xr〉.

We show that d(L〈x〉) = 2. The result will then follow by adding x2, . . . , xr to two
generators for L〈x〉 to generate G.

By the hypothesis of (ii), conjugation by x fixes each factor Li of L. Consider a factor
Li which is non-solvable (i.e. does not lie in L). By the main theorem of [21], Li has a
conjugacy class Ci such that for any g ∈ Li \ Z(Li), there exists an element of Ci which,
together with g, generates Li. Hence we can find ai ∈ Ci and gi ∈ Li such that

〈ax−1

i , agii 〉 = Li. (1)

By inspection, we can also find such ai, gi ∈ Li when Li ∈ L. Set a = (a1, . . . , ak) and
b = (g1, . . . , gk)x. We claim that 〈a, b〉 = L〈x〉. To see this, observe first that

ab = (ag1x1 , . . . , agkxk ),

and hence 〈a, ab〉 is a subgroup of L whose projection to each factor Li contains 〈ai, agixi 〉,
which by (1) is equal to Li. Since the groups Li/Z(Li) are pairwise non-isomorphic by
hypothesis, it follows that 〈a, ab〉 = L. Hence 〈a, b〉 = L〈x〉, and therefore d(L〈x〉) = 2, as
required. �

Proposition 2.7. Let G be a finite group with a normal subgroup L = L1×L2, where L1

is cyclic and L2 is quasisimple. Then d(G) ≤ d(G/L) + 1.

Proof. We need to show that d(L〈x〉) = 2 for x ∈ G \ L. Since L1 is cyclic, there exists
a1 ∈ L1 such that L1 = 〈a1〉, and using the main theorem of [21] we observe that there exist

a2, g2 ∈ L2 with L2 = 〈ax−1

2 , ag22 〉. Set a = (a1, a2), b = (1, g2)x ∈ L〈x〉. It suffices to show
that K = 〈a, ab〉 = L. Let πi be the projection map from K to Li. Since ab = (ax1 , a

g2x
2 ),

it follows that πi is onto, so L1/K ∩ L1
∼= L2/K ∩ L2. Then K ∩ L2 = L2 is the only

possibility, so K ∩ L1 = L1 and thus K = L as claimed. �
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Proposition 2.8. Let G1 and G2 be almost simple groups, with respective socles L1 and
L2 such that G1/L1 and G2/L2 are cyclic. Then d(G1 ×G2) = 2.

Proof. By Proposition 2.1(i), we have d(Gi) = 2, say Gi = 〈ai, bi〉 with G1/L1 = 〈a1L1〉
and G2/L2 = 〈b2L2〉. By applying [44, Result 1], we may assume b1 ∈ L1 and a2 ∈ L2.
Let a = (a1, a2), b = (b1, b2) and set K = 〈a, b〉.

Let πi : K → Gi be the i-th projection map and observe that each πi is onto, so

G1/K ∩G1
∼= G2/K ∩G2. (2)

Let T = K ∩G1. Since G1 is almost simple, one of the following holds:

(i) T = G1; (ii) T contains L1 but not G1; (iii) T is trivial.

If (i) holds then G1 6 K and (2) implies that K ∩ G2 = G2, so G2 6 K and thus
G1 ×G2 = K is 2-generator. Next consider (ii). Here G1/T is cyclic, so (2) implies that
G2/K ∩G2 is cyclic and thus K ∩G2 contains L2. In particular, K contains L1 ×L2. By
construction, we have (b1, b2) ∈ K and also (b1, 1) ∈ K since we chose b1 ∈ L1. Therefore
(1, b2) ∈ K, so K ∩G2 contains 〈L2, b2〉 = G2, which is a contradiction since T 6= G1.

Finally, suppose (iii) holds. By (2), G2/K ∩ G2 is almost simple so K ∩ G2 is trivial
and thus G1

∼= G2. If G1 is simple then d(G1 × G2) = 2 (by Proposition 2.10 below,
for example), so we may assume G1/L1 = 〈a1L1〉 is non-trivial and thus a1 /∈ L1. The
map φ : G1 → G2 defined by φ(x) = y, where y ∈ G2 is the unique element of G2 with
(x, y) ∈ K, is an isomorphism. However, (a1, a2) ∈ K by construction, so φ(a1) = a2

which is absurd since a1 /∈ L1 but a2 ∈ L2. �

Proposition 2.9. Let G be a 2-generator group and let H be an index-two subgroup of
G. Then d(H) ≤ 3.

Proof. Let G = 〈x, y〉, where x ∈ H and y ∈ G \H. Set J = 〈x, y2, y−1xy〉 and note that
x, y ∈ NG(J), so J is normal in G and G/J = 〈yJ〉 has order at most 2. However, J 6 H
and |G : H| = 2, whence J = H is 3-generator. �

Proposition 2.10. Let G be a finite simple group. Then

hG := max{n | d(Gn) = 2} ≥ k(G)

|Out(G)|

where k(G) is the number of non-identity conjugacy classes of G. In particular, hG ≥ 3
for all G.

Proof. A formula of Philip Hall [23] states that

hG =
φ2(G)

|Aut(G)|
(3)

where φ2(G) denotes the number of ordered pairs (a, b) such that G = 〈a, b〉. By [21,
Corollary], for any 1 6= g ∈ G, there exists h ∈ G such that G = 〈g, h〉. Also G = 〈g, hc〉
for any c ∈ CG(g), and the elements hc are all distinct since CG(g) ∩ CG(h) = 1. Hence

φ2(G) ≥
∑
g∈G#

|CG(g)|

where G# denotes the set of non-identity elements in G. The right hand side is equal to
k(G) |G|, and the conclusion now follows from (3). In particular, if G 6= A5, A6 then the
bound hG ≥ 3 follows immediately. For G = A5 we calculate that hG = 19 via (3), and
similarly hG = 53 for G = A6. �
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Recall that if G is a group of Lie type defined over a field of characteristic p then an
element x ∈ G is semisimple (respectively unipotent) if the order of x is coprime to p
(respectively a power of p).

Proposition 2.11. Let G be a group of Lie type such that one of the following holds:

(i) SLεn(q) 6 G 6 GLεn(q), where n ≥ 2 and G 6= SU3(2);

(ii) G = Spn(q);

(iii) G = Ωε
n(q), where n ≥ 3 and (n, q, ε) 6= (4, 2,+) or (4, 3,+);

(iv) G is a simple group of exceptional Lie type.

Then there exist elements x, y ∈ G such that G = 〈x, y〉, where x is semisimple and y is
unipotent.

Proof. If G is quasisimple then the main result of [21] provides a semisimple element s ∈ G
with the property that for any non-trivial y ∈ G there exists x ∈ sG with G = 〈x, y〉. The
result follows in this case. Direct calculation deals with the non-quasisimple groups SL2(2),
SL2(3) and Sp4(2). (Similarly, it is easy to verify that SU3(2) is a genuine exception.)

Next suppose G = Ω+
4 (q), with q > 3. First assume q is even, so G = SL2(q)× SL2(q).

The cases q = 4, 8 can be checked directly, so assume q ≥ 16. By [21], we have SL2(q) =
〈a1, b1〉 = 〈a2, b2〉, where b1 = b2 are involutions and the ai are regular semisimple elements
of order q + 1. Since q ≥ 16, there are at least two distinct Aut(SL2(q))-classes of regular
semisimple elements of order q + 1, so without loss we may assume a2 6= f(a1) for all
f ∈ Aut(SL2(q)). Set x = (a1, a2) and y = (b1, b2), so x is semisimple and y is unipotent.
Our choice of a1 and a2 ensures that 〈x, y〉 is not a diagonal subgroup of G, so G = 〈x, y〉.
If q > 3 is odd then it suffices to show that PΩ+

4 (q) = L2(q) × L2(q) has the desired
generation property, and an entirely similar argument applies.

Finally, suppose SLεn(q) < G 6 GLεn(q) and {det(x) | x ∈ G} = 〈µ〉 6 F∗, where F = Fq
if ε = +, otherwise F = Fq2 . We may as well assume G/(Z ∩ G) is almost simple, where
Z = Z(GLεn(q)), since the handful of exceptional cases can be checked directly. As before,
we have SLεn(q) = 〈x′, y′〉, where x′ is semisimple and y′ is unipotent. The proof of the
main theorem of [21] (see [21, Table II]) indicates that there exists a semisimple element
x ∈ G such that det(x) = µ and xi = x′ for some i. Therefore G = 〈x, y′〉. �

Corollary 2.12. Let G be a non-abelian finite simple group. Then there exist elements
x, y ∈ G of coprime orders such that G = 〈x, y〉.

Proof. For groups of Lie type, this follows immediately from Proposition 2.11, while An
is generated by the permutations (1, 2)(3, 4) and (α, α+ 1, . . . , n) where α = 1 if n is odd,
otherwise α = 2. Finally, if G is a sporadic group then the result follows from [21, 6.2]. �

In our proof of Theorem 2 we require the following extension of Proposition 2.11 to the
special orthogonal group SO+

4 (q).

Proposition 2.13. Let G = SO+
4 (q) with q ≥ 4. Then there exist elements x, y ∈ G such

that G = 〈x, y〉, where x is semisimple and y is unipotent.

Proof. First assume q is even, so G ∼= SL2(q) o S2 = (SL2(q) × SL2(q))〈τ〉, where τ inter-
changes the two SL2(q) factors. If q ≤ 8 then the result is easily checked via Magma [5],
so let us assume q ≥ 16 and write SL2(q) = 〈a1, b〉 = 〈a2, b〉 with |a1| = |a2| = q + 1,
|b| = 2 and a2 6= f(a1) for all f ∈ Aut(SL2(q)). Set x = (a1, a2) and y = (b, 1)τ . Then
y2 = (b, b) and we deduce that 〈x, y2〉 = SL2(q) × SL2(q) as in the proof of Proposition
2.11. Therefore G = 〈x, y〉.

Now suppose q ≥ 5 is odd. It is sufficient to show that PSO+
4 (q) has the desired

property. First note that PSO+
4 (q) = L2(q)2〈δ〉 = (L1×L2)〈δ〉, where δ = (δ1, δ2) induces
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a diagonal automorphism on each factor. We may assume |δ1| = q − 1 and |δ2| = q + 1.
By considering the subgroup structure of L2(q) it is easy to see that if u ∈ L2(q) has
order (q − 1)/2 or (q + 1)/2 then there exists an element v ∈ L2(q) of order p such that
L2(q) = 〈u, v〉. In particular, we can choose p-elements yi ∈ Li such that Li = 〈δ2

i , yi〉, so
L1×L2 = 〈x2, y〉, where x = (δ1, δ2) is semisimple and y = (y1, y2) is unipotent. Therefore
PSO+

4 (q) = 〈x, y〉 as required. �

Proposition 2.14. Suppose G = Oεn(q) or SOε
n(q), where n ≥ 2. Then either d(G) ≤ 2,

or G = SO+
4 (3) and d(G) = 3.

Proof. If G/Z(G) is almost simple then the result follows from Propositions 2.1(i) and
2.4(i) since d(G/Z(G)) = 2 and Z(G) is the Frattini subgroup of G. The case n = 3 with
q < 4 can be checked directly, while Oε2(q) ∼= D2(q−ε) and SOε

2(q) ∼= Zq−ε.(2, q − 1). It

remains to deal with the case (n, ε) = (4,+). For G = O+
4 (q) we refer the reader to [17, 18],

while Proposition 2.13 handles G = SO+
4 (q) (the case q = 3 can be checked directly). �

Proposition 2.15. Let G be a group such that PΩ+
4 (q) 6 G 6 PGO+

4 (q). Then either
d(G) = 2, or G = PSO+

4 (3) and d(G) = 3.

Proof. In view of Proposition 2.13, we may assume q is odd so G is one of the following:

PSO+
4 (q), PO+

4 (q), PΩ+
4 (q), PGL2(q)2, L2(q)2.S2, PGL2(q)2.S2.

The case q = 3 can be checked directly, so assume q ≥ 5. In the first two cases we may
apply Proposition 2.14, while Proposition 2.11 give the result in the remaining cases. �

3. Sporadic groups

In this section we establish a strong form of Theorem 2 in the case where G0 is a sporadic
simple group.

Proposition 3.1. Let G be an almost simple sporadic group with socle G0 and let H be
a maximal subgroup of G. Then max{d(H), d(H ∩G0)} ≤ 3.

Proof. If G0 6∈ {HN,Fi23,Fi′24,Co1,B,M} then explicit generators for H are given in the
Web-Atlas [57] and the result follows. Next suppose G0 ∈ {HN,Fi23,Fi′24,Co1}. In each
of these cases we use a combination of the information in [57] and direct calculation using
Magma with a suitable permutation representation of G. For example, consider Conway’s
group G = Co1. Now G has 22 conjugacy classes of maximal subgroups, and for 6 of these
subgroups an explicit pair of generators is given in [57]. The remaining possibilities are
the following:

(1) A9 × S3 (2) (D10 × (A5 ×A5).2).2 (3) 36:2.M12

(4) 31+4:Sp4(3):2 (5) 33+4:2.(S4 × S4) (6) 51+2:GL2(5)
(7) 53:(4×A5).2 (8) 72:(3× 2.S4) (9) 22+12:(A8 × S3)
(10) 24+12.(S3 × 3.S6) (11) 52:2.A5 (12) 32.U4(3).D8

(13) (A4 ×G2(4)):2 (14) (A5 × J2):2 (15) (A7 × L2(7)):2
(16) (A6 ×U3(3)):2

In case (1) it is easy to see that d(H) = 2, while Proposition 2.6(ii) gives the same
conclusion in cases (13)–(16). To deal with the remaining subgroups we first construct G
as a permutation group on 98280 points (see [57]). Consider (2). Here H = NG(CG(z)),
where z is a 5B-element (see [13]), so we can easily construct H using the explicit class
representatives given in the Web-Atlas and we quickly obtain two generators for H by
random search. In cases (3)–(10), H contains a suitable Sylow subgroup of G and it is
easy to construct H and verify d(H) = 2 in the same way. Alternatively, we can use
Proposition 2.1 to see that d(H) = 2. For example, in (4) H has a unique minimal normal
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subgroup of order 3, so Proposition 2.1(iii) implies that d(H) = d(34:Sp4(3):2). Similarly,
34 is the unique minimal normal subgroup of 34:Sp4(3):2, so d(H) = d(Sp4(3):2) = 2 by
Proposition 2.1(i). Cases (11) and (12) are entirely similar.

Next suppose G = B is the Baby Monster. The maximal subgroups H of G are listed
in the Web-Atlas; either an explicit pair of generators is given, or H is almost simple and
Proposition 2.1(i) yields d(H) = 2, or H is one of the following:

(1) [235].(S5 × L3(2)) (2) (32:D8 ×U4(3).22).2 (3) [311].(S4 × 2S4)
(4) (S6 × L3(4):2).2 (5) 53.L3(5) (6) (S6 × S6).4
(7) S5 ×M22:2 (8) 52:4.S4 × S5

In each case, it is easy to construct a faithful permutation representation of H (see the
proof of [11, 3.3], for example) and we quickly deduce that d(H) ≤ 3 by random search.

Finally, let us assume G = M is the Monster. A complete list of the conjugacy classes
of maximal subgroups of G is not presently available; to date, some 44 classes have been
identified (see [57] for a convenient list, with the addition of L2(41) – see [49]), and it is
known that any additional maximal subgroup is almost simple with socle L2(13), U3(4),
U3(8) or Sz(8) (see [49]). In particular, Proposition 2.1(i) reveals that each of these
additional possibilities is 2-generator, and of course d(L2(41)) = 2. If H is a representative
of one of the remaining 43 known conjugacy classes of maximal subgroups then an explicit
pair of generators for H is given in [57], with the exception of the following cases:

(1) 2.B (2) 21+24.Co1 (3) 210+16.Ω+
10(2)

(4) 25+10+20.(S3 × L5(2)) (5) 31+12.2.Suz:2

In (1), H = 2.B is quasisimple and thus d(H) = 2 since d(B) = 2. To deal with the cases
labelled (2)–(5) we repeatedly apply Proposition 2.1. For example, if H = 210+16.Ω+

10(2)
then Proposition 2.1(iii) yields

d(H) = d(216.Ω+
10(2)) = d(Ω+

10(2))

and thus d(H) = 2 by Proposition 2.1(i). In the same way, we deduce that d(H) = 2 in
each of the other cases. In particular, every maximal subgroup of M is 2-generator. �

4. Alternating groups

Here we establish Theorem 2 in the case where G0 is an alternating group. We begin
by recalling the O’Nan-Scott theorem.

Theorem 4.1 (O’Nan-Scott). Let G = An or Sn, and let H be a maximal subgroup of
G. Then one of the following holds:

(i) H is intransitive: H = (Sk × Sn−k) ∩G, 1 ≤ k < n/2;

(ii) H is affine: H = AGLd(p) ∩G, n = pd, p prime, d ≥ 1;

(iii) H is imprimitive or wreath-type: H = (Sk o St) ∩G, n = kt or kt;

(iv) H is diagonal: H = (T k.(Out(T )× Sk)) ∩G, T non-abelian simple, n = |T |k−1;

(v) H is almost simple.

The main result of this section is the following:

Proposition 4.2. Let G be an almost simple group with socle G0 = An, and let H be a
maximal subgroup of G. Then max{d(H), d(H ∩ G0)} ≤ 4, with equality only if H is a
diagonal-type subgroup.

Of course, if H is almost simple then Proposition 2.1(i) gives max{d(H), d(H∩G0)} ≤ 3,
so we only need to consider the cases labelled (i)–(iv) in Theorem 4.1. The special case
n = 6 can be checked directly, so we may assume G = An or Sn.
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Lemma 4.3. Proposition 4.2 holds in cases (i), (ii) and (iii) of Theorem 4.1.

Proof. In view of Proposition 2.9 it suffices to show that d(L) ≤ 2, where L = Sk × Sn−k,
AGLd(p) or Sk o St in cases (i), (ii) and (iii) of Theorem 4.1.

First consider L = Sk × Sn−k. Set α = 1 if n − k is odd, otherwise α = 2. Similarly,
define β = 1 if k is odd, β = 2 otherwise. Set x = ((1, 2), x2) and y = (y1, (1, 2)), where
x2 = (α, α+ 1, . . . , n−k) and y1 = (β, β+ 1, . . . , k). Then it is easy to see that L = 〈x, y〉.
For example, if (α, β) = (2, 1) then

yk+1 = ((1, . . . , k), 1), xn−k−1 = ((1, 2), 1), xn−k = (1, (2, . . . , n− k)), yk = (1, (1, 2))

and Sk = 〈(1, . . . , k), (1, 2)〉 and Sn−k = 〈(2, . . . , n − k), (1, 2)〉. If L = AGLd(p) is affine
then L = V :GLd(p), where V is an elementary abelian normal subgroup of order pd. Since
V is the unique minimal normal subgroup of L, and d(GLd(p)) ≤ 2, Proposition 2.1(iii)
yields d(L) ≤ 2.

Finally, suppose L = Sk o St = B.St. Let (ρ1, . . . , ρt;σ) denote a general element of L,
where ρi ∈ Sk and σ ∈ St. Set α = 1 if k is odd, otherwise α = 2. If t = 2 then it is easy
to see that L = 〈x, y〉, where x = ((1, 2), (α, . . . , k); 1) and y = (1, 1; (1, 2)). Next suppose
t ≥ 4 is even. Here L = 〈x, y〉 where

x = ((1, 2), 1, . . . , 1; (2, . . . , t)), y = (1, 1, (α, . . . , k), 1, . . . , 1; (1, 2)).

For example, if k is odd then

xt−1 = ((1, 2), 1, . . . , 1; 1), xt = (1, . . . , 1; (2, . . . , t)), yk = (1, . . . , 1; (1, 2))

and yk+1 = (1, 1, (1, . . . , k), 1, . . . , 1; 1). Similarly, if t ≥ 5 is odd then L = 〈x, y〉 with

x = ((α, . . . , k), 1, . . . , 1; (2, . . . , t)), y = (1, 1, 1, (1, 2), 1, . . . , 1; (1, 2, 3)).

Finally, let us assume t = 3. We claim that L = 〈x, y〉, where x = ((α, . . . , k), 1, 1; (2, 3))
and y = ((1, 2), 1, 1; (1, 3)). First suppose k is odd, so xk = (1, 1, 1; (2, 3)) and xk+1 =
((1, . . . , k), 1, 1; 1). Now

z1 = (xky)3 = ((1, 2), (1, 2), (1, 2); 1), y2 = ((1, 2), 1, (1, 2); 1),

hence z2, z3 ∈ 〈x, y〉, where z2 = z1y
2 = (1, (1, 2), 1; 1) and z3 = zx

k

2 = (1, 1, (1, 2); 1). Now
yz3 = (1, 1, 1; (1, 3)), so 〈xk, yz3〉 ∼= S3 and we are done since z1z2z3 = ((1, 2), 1, 1; 1) ∈
〈x, y〉 and 〈z1z2z3, x

k+1〉 ∼= Sk. A very similar argument applies when k is even. �

We note that there are examples in Lemma 4.3 where max{d(H), d(H ∩G0)} = 3. For
instance, d((S4 × S3) ∩A7) = 3.

Lemma 4.4. Proposition 4.2 holds in case (iv) of Theorem 4.1.

Proof. First assume H = T k.(Out(T )× Sk). Here N = T k is the unique minimal normal
subgroup of H, so Proposition 2.1(iii) yields d(H) = max{2, d(H/N)}. Using Proposition
2.3 it is straightforward to check that d(Out(T )× Sk) ≤ 4 and the result follows.

Now suppose G = An and H is an index-two subgroup of T k.(Out(T ) × Sk). First
assume k ≥ 3. If we consider the action of σ = (1, 2) ∈ Sk on the set Ω of cosets of the
diagonal subgroup D = {(t, . . . , t) | t ∈ T} in T k then σ fixes precisely |T |k−2 points, so
σ induces an even permutation on Ω and thus H = T k.(J × Sk), where J is an index-two
subgroup of Out(T ). As before, T k is the unique minimal normal subgroup of H, so it
suffices to show that d(J × Sk) ≤ 4. According to Proposition 2.1(i) we have d(J) ≤ 3,
so we may as well assume d(J) = 3 since d(Sk) = 2 and d(J × Sk) ≤ d(J) + d(Sk). Set
a1 = (1, 2) and a2 = (α, α + 1, . . . , k), where α = 1 if k is odd, otherwise α = 2. Then
Sk = 〈a1, a2〉 and |a2| is odd. Write J = 〈b1, b2, b3〉. If |b1| is odd then J ×Sk is generated
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C1 Stabilizers of subspaces of V

C2 Stabilizers of decompositions V =
⊕t

i=1 Vi, where dimVi = a
C3 Stabilizers of prime index extension fields of Fq
C4 Stabilizers of decompositions V = V1 ⊗ V2

C5 Stabilizers of prime index subfields of Fq
C6 Normalizers of symplectic-type r-groups in absolutely irreducible representations

C7 Stabilizers of decompositions V =
⊗t

i=1 Vi, where dimVi = a
C8 Stabilizers of non-degenerate forms on V

Table 1. The Ci families

by the elements (b1, a1), (b2, 1), (b3, 1) and (1, a2), otherwise (b1, a2), (b2, 1), (b3, 1) and
(1, a1) do the job. We conclude that d(J × Sk) ≤ 4 and thus d(H) ≤ 4.

Now suppose k = 2. Here σ fixes a coset D(t1, t2) if and only if t2 = t1t with t2 = 1.
Therefore σ has precisely i2(T ) + 1 fixed points on Ω, where i2(T ) is the number of
involutions in T , whence the number ` of 2-cycles of σ on Ω is given by the formula
` = 1

2(|T | − i2(T ) − 1). Consequently, if ` is odd then H ∼= T 2.Out(T ) and thus d(H) =

max{2, d(Out(T ))} ≤ 3. On the other hand, if ` is even then H = T 2.(J ×S2), where J is
an index-two subgroup of Out(T ). As before we get d(H) = max{2, d(J × S2)} ≤ 4. �

Remark 4.5. In case (iv) of Theorem 4.1 there are infinitely many examples with d(H) =
4. For example, suppose T = PΩ+

2m(p2f ), where m ≥ 6 is even and p is an odd prime.
By [33], H = (T × T ).(Out(T ) × Z2) 6 S|T | is a maximal subgroup of A|T |H, where
Out(T ) ∼= D8 × Z2f . Visibly, Z2 × Z2 × Z2 is an epimorphic image of Out(T ), so the
elementary abelian group of order 16 is an image of H and thus d(H) ≥ 4. We conclude
that d(H) = 4. In fact, if m = 6 then H 6 A|T |, so in this way we obtain an infinite
family of pairs (G,H) where G is simple and H is a maximal subgroup with d(H) = 4,
demonstrating the sharpness of the bound on d(H ∩ G0) in Theorem 2. To see that
H 6 A|T | it is sufficient to show that the maps ι, φa : T → T , defined by ι(t) = t−1 and
φa(t) = ta, are even permutations for all involutions a ∈ Aut(T ). Now |T | is divisible by
4, and the information in [20, Table 4.5.1] reveals that |{t ∈ T | t = t−1}| and |CT (a)| are
also divisible by 4 for all involutions a ∈ Aut(T ), whence ι and φa are even permutations
and thus H 6 A|T | as claimed.

5. Classical groups

In this section we prove Theorem 2 for non-parabolic subgroups of classical groups. Let
G be an almost simple classical group over Fq with socle G0 and natural module V , where

q = pf and p is a prime. The main theorem on the subgroup structure of classical groups
is due to Aschbacher. In [1], eight collections of subgroups of G are defined, labelled Ci
for 1 ≤ i ≤ 8, and it is shown that if H is a maximal subgroup of G then either H is
contained in one of these natural subgroup collections, or it belongs to a family of almost
simple subgroups that act irreducibly on V (we use S to denote this additional subgroup
collection). Table 1 provides a rough description of the Ci families. We refer the reader
to [29] for a detailed description of these subgroup collections, and we adopt the notation
therein. We also note that a small additional collection of maximal subgroups arises when
G0 = PΩ+

8 (q) or Sp4(q)′ (q even), due to the existence of exceptional automorphisms in
these cases (see Section 5.4).

It is convenient to postpone the analysis of parabolic subgroups to Section 7, where we
also deal with parabolic subgroups of exceptional groups. Throughout this section we set

H0 = H ∩G0, G̃ = G ∩ PGL(V ), H̃ = H ∩ PGL(V ).
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Proposition 5.1. Theorem 2 holds if H ∈ C3 ∪ C5 ∪ C6 ∪ C8 ∪ S.

Proof. Since d(G/G0) ≤ 3 (see Proposition 2.1(i)) it suffices to show that d(H0) ≤ 3. This
is clear if H ∈ S, so assume H belongs to one of the relevant Ci families. Suppose i 6= 6.
According to [29], in almost all cases H0 has the form Za.A, where A is a 2-generator
almost simple group, whence d(H0) ≤ 3. The few remaining cases are easily dealt with.
For example, if G0 = U4(q), q is odd and H is a C5-subgroup of type O+

4 (q) then [29, 4.5.5]
gives H0 = PSO+

4 (q).2 < PGO+
4 (q), so d(H0) = 2 by Proposition 2.15. Finally, if H ∈ C6

then [29, §4.6] indicates that either H0 = N.A, where N is a minimal normal subgroup of
H0 and A is 2-generator, or H0 = A4 or S4. In the latter situation we have d(H0) = 2,
while Proposition 2.1(ii) yields d(H0) ≤ 3 in the general case. �

5.1. Non-parabolic, reducible subgroups. Here we deal with the non-parabolic sub-
groups in Aschbacher’s C1 family; the relevant cases are listed in [29, Table 4.1.A].

Lemma 5.2. Theorem 2 holds if G0 = PΩε
n(q) and H is of type Oε1m(q) ⊥ Oε2n−m(q).

Proof. Here 1 ≤ m ≤ n/2 and (m, ε1) 6= (n−m, ε2). According to [29, 4.1.6] we have

H0 ∈ {Ωn−1(q), (Ωε1
m(q)× Ωε2

n−m(q)).[2i], (Ωε1
m(q) ◦ Ωε2

n−m(q)).[4]},

where i = 1 or 2, and we may assume (n−m, ε2) 6= (4,+). In particular, if (m, ε1) 6= (4,+)
then Propositions 2.1(i), 2.6(ii) and 2.7 yield d(H0) ≤ 3.

Now assume (m, ε1) = (4,+). If q = 2 then H0 = (Ω+
4 (2)×Ωε2

n−4(2)).2 and Proposition

2.11(iii) implies that Ωε2
n−4(2) = 〈x′, y′〉, with x′ semisimple and y′ unipotent. Now Ω+

4 (2) =
〈x, y〉 with |x| = 2 and |y| = 6, so

Ω+
4 (2)× Ωε2

n−4(2) = 〈(x, x′), (y, 1), (1, y′)〉

and thus d(H0) ≤ 4. Similarly, if q = 3 then Ω+
4 (3) = 〈x, y〉 with |x| = |y| = 3, and

Ωε2
n−4(3) = 〈x′, y′〉, with x′, y′ semisimple (this follows from the proof of the main theorem

of [21]). Therefore d(H0) ≤ 4 since Ω+
4 (3) × Ωε2

n−4(3) is generated by (x, x′) and (y, y′).

Finally, if q ≥ 4 then Proposition 2.11(iii) gives Ω+
4 (q) = 〈x, y〉 and Ωε2

n−4(q) = 〈x′, y′〉 with

x, x′ semisimple and y, y′ unipotent, so d(Ω+
4 (q) ◦ Ωε2

n−4(q)) = 2 and thus d(H0) ≤ 4.

It remains to prove that d(H) ≤ 6 when d(G/G0) = 3. Here n is even, ε = + and q = q2
0

is odd. Moreover, G̃/G0 = D8 or Z2×Z2, and it suffices to show that d(H̃) ≤ 5. We quickly

reduce to the case H0 = (Ω+
4 (q)◦Ω+

n−4(q)).[4]. If G̃/G0 = D8 then H̃ = (O+
4 (q)◦O+

n−4(q)).2

and thus d(H̃) ≤ 5 by Proposition 2.14. Now assume G̃/G0 = Z2 × Z2, so

H̃ = (Ω+
4 (q) ◦ Ω+

n−4(q)).[24] = (SO+
4 (q) ◦ SO+

n−4(q)).[22].

Using Propositions 2.11(iii) and 2.13 we may write SO+
4 (q) = 〈x1, y1〉 and SO+

n−4(q) =

〈x2, y2, z〉, where the xi are semisimple and the yi are unipotent. Then SO+
4 (q)×SO+

n−4(q)

is generated by (x1, y2), (y1, x2) and (1, z), so d(H̃) ≤ 5 as required. �

Lemma 5.3. Theorem 2 holds in the remaining non-parabolic C1 cases.

Proof. Suppose G0 = Lεn(q) and H is of type GLεm(q) ⊥ GLεn−m(q). By [29, 4.1.4] we have
H0 = (SLεm(q) ◦ SLεn−m(q)).A with A 6 Zq−ε × Zq−ε, whence d(H0) ≤ 1 + d(A) ≤ 3 via
Propositions 2.6(ii) and 2.7. The other cases are very similar. �
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5.2. Imprimitive subgroups. The members of Aschbacher’s C2 family are the stabilizers
of certain subspace decompositions of the natural G0-module V ,

V = V1 ⊕ V2 ⊕ · · · ⊕ Vt,
where t ≥ 2, dimVi = a for all i, and each Vi is either totally singular, or non-degenerate
with Vi orthogonal to Vj for i 6= j. The relevant subgroups are listed in [29, Table 4.2.A].

Lemma 5.4. Theorem 2 holds if G0 = Lεn(q) and H ∈ C2 is of type GLεa(q) o St.

Proof. Write GLεn(q) = SLεn(q)〈δ〉, and suppose G ∩ PGL(V ) lifts to SLεn(q)〈δi〉 for some

i ≥ 1. According to [29, 4.2.9], H lifts to Ĥ = Â.B, where

Â = SLεa(q)
t.(q − ε)t−1.Z(q−ε)/i.St 6 GLεa(q)

t.St

and B = Zb × Zc (respectively Zbc) if ε = + (respectively ε = −), with b ∈ {1, 2} and c a
divisor of logp q. Set α = 0 if G = G0, otherwise α = 1. Note that B is trivial if α = 0. In
a slight abuse of notation we also write GLεa(q) = SLεa(q)〈δ〉.

If a = 1 then d(H) ≤ 4 + α since Ĥ is generated by (δ, δ−1, 1, . . . , 1) and (δi, 1, . . . , 1),
together with at most 2+α generators for St×B. Now assume a ≥ 2. If (a, q, ε) 6= (3, 2,−)
then Proposition 2.11(i) gives SLεa(q)〈δi〉 = 〈x′, y′〉 with x′ semisimple and y′ unipotent,

so Ĥ is generated by (x′, y′, 1, . . . , 1) and (δ, δ−1, 1, . . . , 1), plus at most 2 + α generators
for St × B. Finally suppose (a, q, ε) = (3, 2,−). Here d(G/G0) ≤ 2 so it suffices to show
that d(H0) ≤ 4. If t = 2 then G0 = U6(2) and direct calculation yields d(H0) = 2 so
let us assume t ≥ 3. Write SU3(2) = 〈x, y〉, where |x| = 4 and |y| = 12, and note that

|δ| = 3. Then Ĥ is generated by (x, δ, δ−1, 1, . . . , 1), (y, 1, . . . , 1), plus two more for St,
hence d(H0) ≤ 4 as required. �

Lemma 5.5. Theorem 2 holds if G0 = PΩε
n(q) and H ∈ C2 is of type Oa(q) o St.

Proof. Here aq is odd. If a = 1 then q = p (see [29, Table 4.2.A]) and H = 2n−α.A, where
α ∈ {1, 2} and A = Sn or An (see [29, 4.2.15]). Since 2n−α is a minimal normal subgroup
of H, Proposition 2.1(ii) yields d(H) ≤ d(A) + 1 = 3.

Now assume a ≥ 3. Since d(G̃/G0) ≤ 2 it suffices to prove that d(H) ≤ 4 when G̃ = G0.
First suppose t is odd, so n is also odd. Write Ωa(q) = 〈x, y〉, where x is semisimple and
y is unipotent (see Proposition 2.11(iii)), and let ρ ∈ SOa(q) be an involution such that

SOa(q) = Ωa(q)〈ρ〉. If G̃ = G0 then d(H) ≤ 4 since H is generated by (x, y, 1, . . . , 1),
(ρ,−ρ,−1, 1, . . . , 1), together with two generators for St × Zb.

Finally, suppose a ≥ 3 and t is even. Here H lifts to Ĥ = A.(St × Zb), where

A ∈ {2t−1 × Ωa(q)
t.2t−1, 2t × Ωa(q)

t.2t−1, 2t−1 × SOa(q)
t, 2t × SOa(q)

t}

and b divides logp q. If G̃ = G0 then A = 2t−1×Ωa(q)
t.2t−1 and for t ≥ 4 we observe that

Ĥ is generated by (x, y, 1, . . . , 1) and (ρ,−ρ,−1, 1, . . . , 1), together with two generators
for St × Zb. Similarly, if t = 2 then d(H0) ≤ 4 since H0 is generated by (x, y), (−1,−1),
(ρ, ρ) and one more for S2. The general t = 2 case is very similar. For example, if
A = 22 × Ωa(q)

2.2 then H is generated by (x, y), (−1, 1) and (ρ, ρ), plus at most two
additional generators for S2 × Zb. �

Lemma 5.6. Theorem 2 holds if G0 = PΩε
n(q) and H ∈ C2 is of type Oε

′
a (q) o St.

Proof. Here a is even and ε = (ε′)t. First assume q is even, so H0 = Ωε′
a (q)t.2t−1.St (see

[29, 4.2.11]). Write Oε
′
a (q) = Ωε′

a (q)〈ρ〉. If a = 2 then Ωε′
a (q) = 〈z〉 is cyclic and H0 is

generated by (z, 1, . . . , 1), (ρ, ρ, 1, . . . , 1) and two more for St. On the other hand, if a ≥ 4

then Proposition 2.11(iii) implies that Ωε′
a (q) = 〈x, y〉 with x semisimple and y unipotent

(note that H is non-maximal if (a, q, ε′) = (4, 2,+) – see [29, Table 3.5.H]), so H0 is
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generated by (x, y, 1, . . . , 1), (ρ, ρ, 1, . . . , 1) and two more for St. In general, d(H) ≤ 6
since d(G/G0) ≤ 2.

Now assume q is odd. Let D and Di denote the discriminants of the defining quadratic
forms corresponding to G0 and Oε

′
a (q), respectively (see [29, p.32]). We note that D1 = Di

for all i, and we write D = � (respectively �) if D is a square (respectively non-square)
in Fq.

First assume D = �, so t is odd and Di = � for all i (see [29, 2.5.11(i)]). Write

POε′
a (q) = Ωε′

a (q)〈ρ〉 and observe that H0 = (2t−1 × Ωε′
a (q)t.2t−1).St (see [29, 4.2.11]). If

a ≥ 4 then Proposition 2.11(iii) gives Ωε′
a (q) = 〈x, y〉 with x semisimple and y unipo-

tent (note that (a, q, ε′) 6= (4, 3,+) since Di = �), so H0 is generated by (x, y, 1, . . . , 1),
(ρ,−ρ,−1, 1, . . . , 1) and two more for St. Therefore d(H0) ≤ 4 and thus d(H) ≤ 6 since

d(G/G0) ≤ 2. Similarly, if a = 2 then Ωε′
a (q) = 〈z〉 and we quickly obtain d(H0) ≤ 4.

Next suppose D = � and Di = �. Here t is even and H0 lifts to (2t−1×Ωε′
a (q)t.2t−1).St.

In particular, if t ≥ 4 and G̃ = G0 then the analysis of the previous paragraph implies
that d(H) ≤ 4, so for any suitable G we deduce that H is 6-generator since d(G̃/G0) ≤ 2.
Similarly, if t = 2 and a ≥ 4 then H0 is generated by (x, y), (ρ, ρ) and one more for S2,
whence d(H0) ≤ 3 and thus d(H) ≤ 6 since d(G/G0) ≤ 3.

Finally suppose D = Di = �, so H0 lifts to Ωε′
a (q)t.22(t−1).St. Write SOε′

a (q) = Ωε′
a (q)〈s〉

and Oε
′
a (q) = SOε′

a (q)〈r〉. First assume t = 2, so a ≥ 4 since we may assume n ≥ 8. If
(a, q, ε′) = (4, 3,+) then G0 = PΩ+

8 (3) and the desired result can be checked directly,
otherwise H0 is generated by (x, y), (r, r), (s, s) and one more for S2, where x and y are
defined as before. To get the general bound in the t = 2 case we may assume d(G/G0) = 3,

so ε = + and PSO+
n (q) < G̃, hence H is generated by (x, y), (r, r), (s, 1) and at most three

more elements. Now assume t ≥ 3. If G̃ = G0 and a = 2 then H is generated by
(z, 1, . . . , 1), (r, rs, s, 1, . . . , 1) and two more for St × Zb; the case a ≥ 4 with (a, q, ε′) 6=
(4, 3,+) is very similar. Finally, suppose t ≥ 3 and (a, q, ε′) = (4, 3,+). Write Ω+

4 (3) =
〈x′, y′〉 with |x′| = |y′| = 3. Then H0 is generated by the elements

((x, 1, . . . , 1); (2, 3)), ((y, 1, . . . , 1); 1), ((r, sr, s, 1, . . . , 1); 1), ((1, . . . , 1); (1, . . . , t)),

so d(H0) ≤ 4 and thus d(H) ≤ 6 since d(G/G0) ≤ 2. �

Lemma 5.7. Theorem 2 holds in the remaining C2 cases.

Proof. Consider the case G0 = PΩε
n(q) with H of type On/2(q)2, where qn/2 is odd.

According to [29, 4.2.16], H = A.Zb where b divides logp q and

A ∈ {SOn/2(q)2, (SOn/2(q)× SOn/2(q)).2, On/2(q) ◦On/2(q), (On/2(q) ◦On/2(q)).2}.

Since d(SOn/2(q)) = d(On/2(q)) = 2 (see Proposition 2.14) we deduce that H0 = SOn/2(q)2

is 4-generator and d(H) ≤ 6 in general. The remaining cases are similar. For example, if
G0 = PSpn(q) and H is of type GLn/2(q).2 (with q odd) then H0 = Z(q−1)/2.PGLn/2(q).2

is 3-generator and the result follows. Similarly, if G0 = Un(q) and H is of type GLn/2(q2).2
(with n ≥ 6) then d(H) ≤ 4 since H = Za.A, where a divides q − 1 and A is an almost
simple group with socle Ln/2(q2). �

5.3. Tensor product subgroups. Next we consider the tensor product subgroups which
comprise Aschbacher’s C4 and C7 collections. The members of C4 are the normalizers of
tensor decompositions V = V1 ⊗ V2 of the natural G0-module, where V1 and V2 are not
similar (see [29, Table 4.4.A]), while the subgroups in C7 are the normalizers of tensor
decompositions of the form

V = V1 ⊗ V2 ⊗ · · · ⊗ Vt,
where t ≥ 2 and the Vi are similar for all i. These subgroups are listed in [29, Table 4.7.A].
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Lemma 5.8. Theorem 2 holds if G0 = PSpn(q) and H ∈ C4 is of type Spn1
(q)⊗Oεn2

(q).

Proof. Here q is odd and n2 ≥ 3. Since d(G/G0) ≤ 2, it suffices to show that d(H0) ≤ 4.
If n2 is odd then H0 = PSpn1

(q)×POn2(q) is clearly 4-generator, so let us assume n2 ≥ 4
is even, in which case

H0 = (PSpn1
(q)× POε

n2
(q)).2 = (PSpn1

(q)× PΩε
n2

(q)).[2i],

where i = 2 or 3 (see [29, 4.4.11]). If (n2, ε) 6= (4,+) then Proposition 2.6(ii) implies that
d(H0) ≤ 4, so assume (n2, ε) = (4,+). If (n1, q) = (2, 3) then G0 = PSp8(3) and it is easy
to check that d(PSp2(3) × PO+

4 (3)) = 2 and thus d(H0) ≤ 3. If n1 = 2 and q ≥ 5 then
H0 = L2(q)3.D8 is 4-generator since d(L2(q)3) = 2 by Proposition 2.10.

Finally, suppose (n2, ε) = (4,+) and n1 ≥ 4. First assume q = 3. Write PSpn1
(3) =

〈x1, y1〉 and PO+
4 (3) = 〈x2, y2〉, where |x1| = 5, |x2| = 2 and |y2| = 6 (such a generating set

for PSpn1
(3) exists by the main theorem of [21]). Then PSpn1

(3) × PO+
4 (3) is generated

by (x1, x2), (y1, 1) and (1, y2), so d(H0) ≤ 4. Finally, if q ≥ 5 then by Propositions 2.11(ii)
and 2.13 we may write PSpn1

(q) = 〈x1, y1〉 and PSO+
4 (q) = 〈x2, y2〉, where the xi are

semisimple and the yi are unipotent. Then PSpn1
(q) × PSO+

4 (q) is generated by (x1, y2)
and (y1, x2), whence d(H0) ≤ 4. �

Lemma 5.9. Theorem 2 holds if G0 = PΩε
n(q) and H ∈ C4 is of type Oε1n1

(q) ⊗ Oε2n2
(q),

where q is odd, ni ≥ 3, and (n1, ε1) 6= (n2, ε2).

Proof. If n is odd then 3 ≤ n1 < n2 and H0 = (Ωn1(q) × Ωn2(q)).2 is 2-generator by
Proposition 2.6(ii). Similarly, if n1 ≥ 4 is even and n2 ≥ 3 is odd then H0 = PΩε1

n1
(q) ×

SOn2(q) is 4-generator. In general, if n1 is even and n2 is odd then H = (A×SOn2(q)).Za,
where PΩε1

n1
(q) 6 A 6 PGOε1

n1
(q) and a divides logp q. If (n1, q, ε1) 6= (4, 3,+) then

d(A) = 2 (see Propositions 2.1(i) and 2.15) and thus d(H) ≤ 5, otherwise d(A) ≤ 3 and
again we have d(H) ≤ 5 since a = 1.

For the remainder assume n1 and n2 are even, so ε = +, n1, n2 ≥ 4 and (n2, ε2) 6= (4,+).
According to [29, 4.4.14–16] we have H = A.Za, where a divides logp q and

A = (PSOε1
n1

(q)× PSOε2
n2

(q)).[2i]

with 2 ≤ i ≤ 4. If i = 4 then d(H) ≤ 5 since A = PGOε1
n1

(q) × PGOε2
n2

(q) is 4-generator,
therefore we may assume i ≤ 3 and d(G/G0) ≤ 2. Note that a = 1 and i ≤ 3 if G = G0,
so it suffices to show that d(A) ≤ 4. For now, we will assume (n1, ε1) 6= (4,+).

If i = 2 then d(A) ≤ 4 since Proposition 2.8 yields d(PSOε1
n1

(q)× PSOε2
n2

(q)) = 2. Now
assume i = 3. There are several cases to consider. If both PSOε1

n1
(q) and PSOε2

n2
(q) are

simple then Proposition 2.6(ii) implies that d(A) ≤ 4, as required. Next suppose neither
of these groups are simple, in which case A = L.[25] with L = PΩε1

n1
(q) × PΩε2

n2
(q) and

[25] < D8 ×D8. Such a subgroup of D8 ×D8 is either 3-generator, or

A ∈ {PGOε1
n1

(q)× PΩε2
n2

(q).22,PΩε1
n1

(q).22 × PGOε2
n2

(q)}.
In the former case we get d(A) ≤ 4 as before, otherwise the same conclusion follows
via Proposition 2.1(i). Finally, suppose PSOε1

n1
(q) is simple but PSOε2

n2
(q) is not. Here

A = L.[24] with L as before and [24] < D8×22. The subgroup [24] is either 3-generator, or
A = PΩε1

n1
(q).22×PGOε2

n2
(q); in the former case, Proposition 2.6(ii) implies that d(A) ≤ 4,

while in the latter we get d(A) ≤ 4 by Proposition 2.1(i).

It remains to deal with the case (n1, ε1) = (4,+) with n2 even. Arguing as above, we
quickly reduce to the case

A = (PSO+
4 (q)× PSOε2

n2
(q)).[2i] = (L2(q)× L2(q)× PΩε2

n2
(q)).B

with B a 3-generator subgroup of D8 ×D8. We claim that d(A) ≤ d(B) + 1 ≤ 4.
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To see this, set

L = L2(q)× L2(q)× PΩε2
n2

(q) = L1 × L2 × L3

and write A = L〈x, x2, x3〉, where conjugation by x fixes the two L2(q) factors in L. For
now, let us assume q > 27. By the main theorem of [21] there exist ai, gi ∈ Li such that

Li = 〈ax−1

i , agii 〉 and a2 6= f(a1) for all f ∈ Aut(L2(q)). By arguing as in the proof of
Proposition 2.6(ii) we deduce that d(L〈x〉) = 2 and thus d(A) ≤ 4 as claimed.

Next suppose 3 < q ≤ 27. By [21], there exist a3, g3 ∈ L3 such that L3 = 〈ax−1

3 , ag33 〉
and it is easy to check directly that we can find elements a1, g1 ∈ L1 and a2, g2 ∈ L2 such

that Li = 〈ax−1

i , agii 〉 and a2 6= f(a1) for all f ∈ Aut(L2(q)). For instance, suppose q = 5
and y ∈ L2(q) has order r, where r = 3 or 5. If C is any conjugacy class of elements of
order r in L2(q) then there exists c ∈ C such that L2(q) = 〈y, c〉, so we may take a1 of
order 3 and a2 of order 5. The other cases are very similar. In particular, the previous
argument applies.

Finally, let us assume q = 3, so H = A = L.B as above. Suppose there exists an element
x ∈ B acting non-trivially on L1×L2 so that (L1×L2)〈x〉 6= PSO+

4 (3). Then Proposition
2.15 implies that d((L1 × L2)〈x〉) = 2, say (L1 × L2)〈x〉 = 〈a1, b1x〉, while [44, Result 1]
gives L3〈x〉 = 〈a2, b2x〉 for some a2, b2 ∈ L3. It follows that L〈x〉 = 〈(a1, b1), (a2, b2)x〉,
and by adding two further generators for B we obtain d(H) ≤ 4. It remains to justify the
existence of such an element x ∈ B.

If ε2 = + then the proof of [29, 4.4.14] indicates that there exists an element x =
δ1 ⊗ δ−1

2 ∈ H0, where δ1 induces a non-trivial diagonal automorphism on the PΩ+
4 (3)

factor (see [29, (4.4.20)]). Therefore x ∈ B has the required property. Now assume
ε2 = −. Here the proof of [29, 4.4.15] states that the above element d = δ1 ⊗ δ−1

2 lies in
PSO+

n (3); if it belongs to G0 then we are done, so let us assume otherwise. Let D denote
the discriminant of the defining quadratic form for L3 (see [29, p.32]). By [29, 4.4.15(IV)],
if D = � then there exists x ∈ B swapping the two L2(3) factors, so this element has the
desired property. Now assume D = �. Write V = V1 ⊗ V2, where V1 and V2 denote the
natural modules for PΩ+

4 (3) and PΩ−n2
(3), respectively. Let v ∈ V1 be a non-singular vector

and let rv : V1 → V1 be the reflection in v with respect to the underlying non-degenerate
symmetric bilinear form on V1. By [29, 4.4.13(ii)] we have r = rv ⊗ 1 ∈ PSO+

n (3) \G0, so
x = rd ∈ H0 has the desired property since rvδ1 ∈ PGO+

4 (3) \ PSO+
4 (3). �

Lemma 5.10. Theorem 2 holds if G0 = Lεn(q) and H ∈ C7 is of type GLεa(q) o St.

Proof. Here a ≥ 3 and (a, q, ε) 6= (3, 2,−). Write GLεa(q) = SLεa(q)〈δ〉 and set d =
(δ, δ−1, 1, . . . , 1) ∈ GLεa(q)

t. For now, let us assume that at least one of the following three
conditions do not hold:

t = 2, a ≡ 2 (mod 4), q ≡ −ε (mod 4). (4)

According to [29, 4.7.3], H is a quotient of Ĥ = 〈Xt, d〉.(St×A), where 〈Xt, d〉 6 GLεa(q)
t

and X = SLεa(q)〈δi〉 for some i ≥ 0. In addition, A = Zb×Zc with c ∈ {1, 2} and b a divisor
of logp q (A is trivial if G = G0). By Proposition 2.11(i) we have SLεa(q)〈δi〉 = 〈x, y〉 with

x semisimple and y unipotent, so d(H0) ≤ 4 since 〈Xt, d〉.St is generated by (x, y, 1, . . . , 1),
d and two more for St. In general, d(H) ≤ 5 since St ×A is 3-generator.

Finally, if each of the conditions in (4) hold then H0 is a quotient of Ĥ = 〈X2, d〉, where
X and d are defined as before. Now X = SLεa(q)〈δi〉 = 〈x, y〉 with x semisimple and y
unipotent, so X2 is 2-generator and thus d(H0) ≤ 3. �

Lemma 5.11. Theorem 2 holds if G0 = PΩ+
n (q) and H ∈ C7 is of type Oεa(q) o St.

Proof. Here a ≥ 4 is even, q is odd and (a, ε) 6= (4,+). We will assume ε = + since the
case ε = − is very similar. Write PO+

a (q) = 〈x, y〉 and PGO+
a (q) = PO+

a (q)〈δ〉.
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First suppose t = 2 and a ≡ 2 (mod 4). By [29, 4.7.6] we have H0 = PSO+
a (q)2.[22] and

this is 4-generator since d(PSO+
a (q)2) = 2 by Proposition 2.8. More generally, [29, 4.7.6]

states that

H = PSO+
a (q)2.[2i].(Zb × Zc),

where 2 ≤ i ≤ 4, b ∈ {1, 2} and c divides logp q. If i = 4 then H = PGO+
a (q)2.(Zb ×Zc) is

6-generator by Proposition 2.1(i). Similarly, d(H) ≤ 6 when i = 2 since d(PSO+
a (q)2) = 2.

Finally, suppose i = 3. If b = 1 or c is odd then we quickly deduce that d(H) ≤ 6, so
let us assume b = 2 and c is even. Here q ≡ 1 (mod 4), so [29, (4.7.20)] implies that
H = PO+

a (q)2.2.(Z2 × Zc) and thus d(H) ≤ 5 since H is generated by (x, 1), (y, 1) and at
most 3 more for 2.(Z2 × Zc).

Next suppose t = 3, a ≡ 2 (mod 4) and q ≡ 3 (mod 4). Here H = A.Zb where

A ∈ {PO+
a (q)3.22.3, PO+

a (q)3.22.S3, PGO+
a (q)3.3, PGO+

a (q)3.S3}
and b divides logp q. Now H0 = PO+

a (q)3.22.3 is generated by (x, 1, 1), (y, 1, 1), (δ, δ, 1)
and one more for Z3, so d(H0) ≤ 4 as required. In general, it is easy to see that d(H) ≤ 5.
For example, if A = PO+

a (q)3.22.S3 then H is generated by (x, 1, 1), (y, 1, 1), (δ, δ, 1) and
two more for S3 × Zb.

In the remaining cases we have H = A.(St×Zb), where A = PO+
a (q)t.2t−1 or PGO+

a (q)t,
and b divides logp q. Now, if A = PGO+

a (q)t then d(H) ≤ d(PGO+
a (q)) + d(St × Zb) ≤ 4

so let us assume A = PO+
a (q)t.2t−1. Here d(H) ≤ 5 since H is generated by (x, 1, . . . , 1),

(y, 1, . . . , 1) and (δ, δ, 1, . . . , 1) in A, together with two generators for St × Zb.
We need to work harder to establish d(H0) ≤ 4. Here b = 1, so the case t = 2 is clear.

Now assume t ≥ 3 and let (y1, . . . , yt;σ) denote a typical element of PGO+
a (q)t.St. If t ≥ 5

then H0 is generated by the elements

(x, 1, . . . , 1; 1), (y, 1, . . . , 1; 1), (δ, δ, 1, . . . , 1; (t− 2, t− 1, t)), (1, . . . , 1;σ),

where σ = (1, 2, . . . , α) and α = t if t is even, otherwise α = t− 1.

Next suppose t = 3. We claim that H0 = 〈x1, x2, x3, x4〉, where

x1 = (x, 1, 1; 1), x2 = (y, 1, 1; (1, 3)), x3 = (δ, δ, 1; 1), x4 = (1, 1, 1; (2, 3)).

To see this, let L = 〈x1, x2, x3, x4〉, m = |y| and first observe that

x2m−2
2 · (x4x2)3 = (1, y, 1; 1) ∈ L

and thus (1, y, 1; 1)x4 = (1, 1, y; 1) ∈ L. Therefore x2 · (1, 1, ym−1; 1) = (1, 1, 1; (1, 3)) ∈ L
and the claim follows since H0 = 〈x1, x3, (1, y, 1; 1), (1, 1, 1; (1, 3))〉. Similar reasoning
shows that if t = 4 then H0 is generated by the elements

(x, 1, 1, 1; 1), (y, 1, 1, 1; (1, 4)), (δ, δ, 1, 1; 1), (1, 1, 1, 1; (1, 2, 3, 4)). �

Remark 5.12. Suppose G0 = PΩ+
n (q) and H ∈ C7 is of type O+

a (q) o S2, where a ≡ 2
(mod 4) and q ≡ 1 (mod 4). Then [29, 4.7.6] indicates that

H0 = PSO+
a (q)2.[4] = PO+

a (q)× PO+
a (q) = (PΩ+

a (q)× PΩ+
a (q)).24

(see [29, (4.7.20)]) and thus d(H0) = 4. In this way we obtain an infinite family of examples
(G,H), where G is simple and H is a maximal subgroup of G requiring 4 generators,
demonstrating the sharpness of the bound on d(H ∩G0) in Theorem 2.

Lemma 5.13. Theorem 2 holds in the remaining C4 and C7 cases.

Proof. This is straightforward. For example, suppose G0 = PΩ+
n (q) and H ∈ C7 is of

type Spa(q) o St, where tq is even and (a, q) 6= (2, 2). If t = 2 and a ≡ 2 (mod 4) then
H0 = PSpa(q)

2 is 2-generator, otherwise H = A.(St × Zb), where b divides logp q and

either A = PGSpa(q)
t, or q is odd and A = PSpa(q)

t.2t−1. In the former case we have
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d(H) ≤ d(PGSpa(q)) + d(St ×Zb) ≤ 4 and as above we observe that the same bound also
holds if A = PSpa(q)

t.2t−1. The other cases are very similar. �

5.4. Novelty subgroups. It remains to deal with certain novelty subgroups H of G,
where H0 = H ∩G0 is non-maximal in G0. By [1] and our earlier analysis, we may assume
that one of the following holds:

(a) G0 = Sp4(q)′, p = 2 and G contains a graph automorphism;

(b) G0 = PΩ+
8 (q) and G contains a triality automorphism.

In [1, §14], Aschbacher proves a version of his main theorem which describes the various
possibilities in case (a), but his theorem does not apply in case (b); here the possibilities
were determined later by Kleidman [28]. We record the relevant non-parabolic subgroups
in Table 2. Note that in case (a) we may assume q > 2 since Sp4(2)′ ∼= A6.

G0 type of H conditions
(i) Sp4(q)′ Oε2(q) o S2 q > 2 even
(ii) O−2 (q2).2 q > 2 even
(iii) PΩ+

8 (q) GLε3(q)×GLε1(q)
(iv) O−2 (q2)×O−2 (q2)
(v) [29].SL3(2) q = p > 2

Table 2. Some novelty subgroups

In cases (i) and (ii) it is very easy to check that d(H0) ≤ 3, so let us consider (iii) – (v).

Lemma 5.14. Theorem 2 holds in case (iii) of Table 2.

Proof. It suffices to prove that d(H0) ≤ 4 since G/G0 is a subgroup of S4×Zf containing

a triality (where q = pf ), and such a subgroup is 2-generator. If p = 2 then H0 =
(GLε3(q)×GLε1(q)).2 is clearly 4-generator, so let us assume p is odd. By [28, 3.2.2, 3.2.3],

H0 is a quotient of Ĥ ∼= (Z(q−ε)/2 × A).22, where A is the index-two subgroup of GLε3(q)
containing SLε3(q). Write Z(q−ε)/2 = 〈z〉 and A = 〈x, y〉, where x is semisimple and y is
unipotent (see Proposition 2.11(i)). Then Z(q−ε)/2 × A = 〈(z, y), (1, x)〉, so d(H0) ≤ 4 as
required. �

Lemma 5.15. Theorem 2 holds in cases (iv) and (v) of Table 2.

Proof. Again, it suffices to show that d(H0) ≤ 4. According to [28, 3.3.1], in (iv) we have

H0 = NG0(S) ∼= (D2l ×D2l).2
2,

where S is a Sylow r-subgroup of G0 for an odd prime r dividing q2 + 1, and l = (q2 +
1)/(2, q − 1) is odd. Now D2l = 〈x, y〉 with |x| = l and |y| = 2, hence D2l × D2l is 2-
generator and thus d(H0) ≤ 4. As explained in [28, §3.4], in (v) we have H0 = NG0(P ),
where P < G0 is a 2A-pure group of order 8 which centralizes an orthogonal decomposition
of the natural G0-module into 1-dimensional non-degenerate subspaces. More precisely,
by [28, 3.4.2(ii)] we have H0

∼= [29].SL3(2). It is straightforward to explicitly construct H0

as a subgroup of PΩ+
8 (3) and we quickly deduce that d(H0) = 2. �

6. Exceptional groups

In this section we complete the proof of Theorem 2 for non-parabolic subgroups of groups
of Lie type. Let G be an almost simple group with socle G0, an exceptional group of Lie
type over Fq, and let H be a maximal subgroup of G. Write Ḡ for the corresponding
simple adjoint algebraic group over the algebraic closure F̄q, and let σ be a Frobenius
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morphism of Ḡ such that G0 = Ḡ′σ. Recall that Ḡσ = Inndiag(G0), the group generated
by all inner and diagonal automorphisms of G0. As before, we define H0 = H ∩G0. Since
d(G/G0) ≤ 2 (see Proposition 2.1(i)), it suffices to prove that d(H0) ≤ 4. In this section
we assume that H is not a parabolic subgroup; we will deal with these in the next section.

According to [35, Theorem 2], the possibilities for H0 are as follows. In part (iv) below,
F ∗(H0) denotes the generalized Fitting subgroup of H0.

Proposition 6.1. One of the following holds:

(i) H0 is almost simple;

(ii) H0 = NG0(Dσ), where D is a connected reductive subgroup of Ḡ of maximal rank,
not a maximal torus; the possibilities are listed in [34, Table 5.1];

(iii) H0 = NG0(Tσ), where T is a maximal torus of Ḡ; the possibilities are listed in [34,
Table 5.2];

(iv) F ∗(H0) is as in [35, Table III];

(v) H0 = NG0(E), where E is an elementary abelian group given in [12, Theorem
1(II)].

In case (i), d(H0) ≤ 3 by Proposition 2.1(i), so we need only consider cases (ii)–(v).

Lemma 6.2. Theorem 2 holds in case (iv) of Proposition 6.1.

Proof. According to [35, Table III], the possibilities for NḠσ(H0) are as follows:

G0 NḠσ(H0)
E8(q) A× PGLε3(q).2, G2(q)× F4(q), A×G2(q)2.2, A×G2(q2).2
E7(q) A2, A×G2(q), A× F4(q), G2(q)× PGSp6(q)

Eε6(q) PGLε
′

3 (q).2×G2(q)
F4(q) A×G2(q)

where A = PGL2(q) (note that there are also conditions on q for the groups in the table to
ensure that all factors are non-solvable). Using Proposition 2.6 we deduce that d(H0) ≤ 4
in all cases. �

Lemma 6.3. Theorem 2 holds in case (v) of Proposition 6.1.

Proof. By [12, Theorem 1(II)], one of the following holds:

G0 NḠσ(H0)
E8(q) 53.SL3(5), 25+10.SL5(2)
E7(q) (22 × PΩ+

8 (q).22).S3 (q odd)
Eε6(q) 33+3.SL3(3)
F4(q) 33.SL3(3)
G2(q) 23.SL3(2)
2G2(q) 23.7

For G0 6= E7(q) it is immediate that d(H0) ≤ 3 in all cases. For G0 = E7(q), factoring
out the normal 22 we obtain the almost simple group PΩ+

8 (q).S4, which is 2-generated by
Proposition 2.1(i). The S3 acts faithfully on the normal 22, so d(H0) ≤ 3. �

Lemma 6.4. Theorem 2 holds in case (ii) of Proposition 6.1.

Proof. Here NḠσ(H0) is given in [34, Table 5.1]. In Table 3 we summarise enough in-
formation to give what we want. In each case H0 has a normal subgroup K as indi-
cated, and K is a central product

∏
Hi ◦ T , where each Hi is either quasisimple or in

{SL2(2), SL2(3),SU3(2)}, and T is an abelian p′-group. In the table, we use the following



GENERATION AND RANDOM GENERATION 21

G0 K NḠσ(H0)/K

E8(q) D8(q), A1(q)E7(q), A−4 (q2), 3D4(q)2, cyclic
3D4(q2), A−2 (q2)2, A−2 (q4)
Aε8(q), Aε2(q)Eε6(q), Aε4(q)2, A−4 (q2) e.2, e.2, g.4, h.4
D4(q)2, D4(q2) d2.(S3 × 2), S3 × 2
Aε2(q)4 e2.GL2(3)
A1(q)8 d4.AGL3(2)

E7(q) A1(q)D6(q), A1(q3).3D4(q), A1(q7) cyclic
Aε2(q)Aε5(q), Eε6(q) ◦ (q − ε) de.2, e.2
Aε7(q) i.(2× 2/f)
A1(q)3D4(q) d3.S3

A1(q)7 d4.L3(2)
Eε6(q) A1(q)Aε5(q), 3D4(q)× (q2 + εq + 1), cyclic

Dε
5(q) ◦ (q − ε)

A2(q2)A−ε2 (q), Aε2(q3) j.2, e.3
Aε2(q)3 e2.S3

D4(q) ◦ (q − ε)2 d2.S3

F4(q) A1(q)C3(q), B4(q), 3D4(q), cyclic
B2(q)2 (p = 2), B2(q2) (p = 2)
D4(q), Aε2(q)2 S3, e.2

2F4(q) A−2 (q), 2B2(q)2, B2(q) cyclic
A−2 (q) k.2

G2(q) A1(q)2, Aε2(q) cyclic
3D4(q) A1(q)A1(q3), Aε2(q) ◦ (q2 + εq + 1) d, l.2
2G2(q) A1(q) 2

Table 3. Maximal rank subgroups

notation: d = (2, q − 1), e = (3, q − ε), f = (4, q − ε)/d, g = (5, q − ε), h = (5, q2 + 1),
i = (8, q − ε)/d, j = (3, q2 − 1), k = (3, q + 1), l = (3, q2 + εq + 1).

Now d(H0) ≤ d(H0/K)+2 by Proposition 2.6(i), and H0/K is either equal to the group
NḠσ(H0)/K in the right hand column of the table, or has index dividing 2 or 3 in this for
G0 = E7(q) or Eε6(q). It is clear that all such groups are 2-generated, except possibly in
the following cases:

G0 H0/K
E8(q) 22.(S3 × 2), 32.GL2(3), 24.AGL3(2)
E7(q) 22.S3, 23.L3(2)
Eε6(q) 3.S3, 2.S3

However a check using Magma verifies that each of these groups, except possibly 3.S3

in the last row, is also 2-generated. In the remaining case, G0 = Eε6(q) with e = 3,
K = Aε2(q)3 and H0/K ∼= 3.S3. If (q, ε) = (2,−) then the Atlas [13] indicates that
H0/K ∼= Z3×S3 which is 2-generator, so the usual argument applies. Now assume q > 2.
Now H0 contains a subgroup K.3 = K〈x〉, where x induces a diagonal automorphism of
order 3 on each factor Aε2(q) of K. Pick elements a1, a2, a3 of different prime orders in
Aε2(q). By [21] there exist b1, b2, b3 such that 〈ai, bi〉 = Aε2(q) for each i. Then the two
elements (a1, a2, a3) and (b1, b2, b3)x generate K〈x〉. As H0/K〈x〉 ∼= S3, it follows that
d(H0) ≤ 4. �

Lemma 6.5. Theorem 2 holds in case (iii) of Proposition 6.1.
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Proof. Here H0 = NG0(Tσ), where Tσ and Wσ := NG0(Tσ)Tσ/Tσ are as in Table 4. In the
table we set ε = ±1, while W (X) denotes the Weyl group of the root system of type X.

G0 Tσ Wσ

E8(q) (q − ε)8 W (E8)
(q4 + εq3 + q2 + εq + 1)2 5× SL2(5)
(q2 + εq + 1)4 2.(3×U4(2))
(q2 + 1)4 (4 ◦ 21+4).A6.2
(q4 − q2 + 1)2 12 ◦GL2(3)
q8 + εq7 − εq5 − q4 − εq3 + εq + 1 Z30

E7(q) (q − ε)7 W (E7)
Eε6(q) (q − ε)6 W (E6)

(q2 + εq + 1)3 31+2.SL2(3)
F4(q) (q − ε)4 W (F4)
(p = 2) (q2 + εq + 1)2 3× SL2(3)

(q2 + 1)2 4 ◦GL2(3)
q4 − q2 + 1 Z12

2F4(q) (q + 1)2 GL2(3)
(q + ε

√
2q + 1)2 4 ◦GL2(3)

q2 + ε
√

2q3 + q + ε
√

2q + 1 Z12

G2(q) (q − ε)2 D12

(p = 3) q2 + εq + 1 Z6
3D4(q) (q2 + εq + 1)2 SL2(3)

q4 − q2 + 1 Z4
2G2(q) q + 1, q + ε

√
3q + 1 Z6, Z6

2B2(q) q − 1, q + ε
√

2q + 1 Z2, Z4

Table 4. Normalizers of maximal tori

First assume G0 = E8(q). We claim that d(H0) ≤ 1 + d(Wσ). To see this, take
t ∈ Tσ of maximal order, and d := d(Wσ) further elements h1, . . . , hd generating H0

modulo Tσ. If r is a prime dividing the order of t, then by inspection we see that Wσ

acts irreducibly on Ωr := Ω1(Or(Tσ)). Since Ωr contains a power of t it follows that
Ωr 6 〈t, h1, . . . , hd〉. Repeating this argument withH0/Ωr, we see that Tσ 6 〈t, h1, . . . , hd〉,
and hence H0 = 〈t, h1, . . . , hd〉. This proves the claim. Now a check using Magma shows
that all of the groups Wσ are 2-generated, and so by the claim, d(H0) ≤ 3, giving the
result for G0 = E8(q).

The argument is similar for the other types. The only slight difference occurs for
G0 = E7(q) (with q odd) or Eε6(q) (with q − ε divisible by 3), where the irreducibility
assertion for Wσ on Ωr does not necessarily hold for r = 2 or 3, respectively. For E7(q) we
have NG0(Tσ) = ((q − ε)7/2).Wσ and NḠσ(Tσ) = (q − ε)7.Wσ, and the previous argument
still goes through, as we can choose the element t so that Ωr 6 〈t, h1, . . . , hd〉. The same
observation also applies in the relevant Eε6(q) cases. �

7. Parabolic subgroups

Let G be an almost simple group with socle G0 of Lie type. In this section we complete
the proof of Theorem 2 by handling the case where H is a maximal parabolic subgroup of
G. Write H0 = H ∩G0 = QR, where Q is the unipotent radical and R a Levi subgroup.
Denote by Pij... the parabolic subgroup obtained by deleting nodes i, j, . . . from the Dynkin
diagram of G0. By the maximality of H, one of the following holds:
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(a) H0 = Pi for some i;

(b) G0 is of type An, Dn, E6, F4 (p = 2), B2 (p = 2) or G2 (p = 3), G contains a graph
automorphism τ , and H0 = Pij where nodes i, j are interchanged by τ ;

(c) G0 is of type D4, G contains a triality automorphism, and H0 = P134.

Lemma 7.1. Let H0 = QR be as above, and exclude case (c), together with the following
cases:

p = 2 : G0 = Cn(q), F4(q), 2F4(q), G2(q), 2B2(q)
p = 3 : G0 = G2(q), 2G2(q).

Then d(H0) ≤ 1 + d(R).

Proof. We refer to [3] for the structure of parabolic subgroups. Note that, owing to the
cases excluded in the hypothesis, G0 is not special, in the terminology of [3].

First assume G0 is untwisted and H0 = Pi for some i. Then by [3, Theorem 2(a)], Q/Q′

is an irreducible FqR-module. Hence if we generate R with d elements r1, . . . , rd, and add
one more non-identity element u ∈ Q \Q′, then r1, . . . , rd, u generate Pi modulo Q′. But
Q′ 6 Φ(Q), so Q′ 6 Φ(Pi) and thus r1, . . . , rd, u generate Pi, giving the conclusion.

Now assume that G0 is twisted, of type 2An,
2Dn or 2E6. In the first case consider the

covering group Ĝ0 = SUm(q) (where m = n+ 1). The Levi subgroup

R̂ ∼= {(A,B) ∈ GLi(q
2)×GUm−2i(q) | det(B) = det(A)q−1},

where H0 = Pi, and [3] (or direct matrix calculation) shows that Q/Q′ has the structure

of the R̂-module Vi ⊗ Vm−2i + V
(q)
i ⊗ V ∗m−2i, where Vi, Vm−2i are the natural modules for

the factors of R̂. As the two composition factors are non-isomorphic R̂-modules, we can
choose a vector uQ′ ∈ Q/Q′ lying in no proper R̂-invariant subspace. The conclusion now
follows as in the previous paragraph. A similar argument works for the 2Dn and 2E6 cases:
for 2Dn, the only parabolic for which Q/Q′ is reducible is Pn−1, in which case R contains
a subgroup of index (2, q− 1) of GLn−1(q) and Q/Q′ ∼= Vn−1 +V ∗n−1; and for 2E6, Q/Q′ is
again the sum of at most two non-isomorphic irreducible R-modules. In all cases there is
a vector uQ′ ∈ Q/Q′ lying in no proper R-invariant subspace, and the conclusion follows.

Next suppose G0 = 3D4(q). Let R0 denote the semisimple part of R. If H0 = P2 then

R0 = A1(q3) and Q/Q′ is an irreducible R-module V2⊗V (q)
2 ⊗V (q2)

2 , giving the conclusion
in the usual way. And if H0 = P1 then R contains A1(q) ◦ (q3 − 1) and again Q/Q′ is an
irreducible R-module (of dimension 6).

In view of the exclusions in the hypothesis, the only remaining cases to consider are
those where G0 is of type An, Dn or E6, and G contains a graph automorphism. The
maximal parabolics in G for which Q/Q′ is a reducible R-module are Pi,n−i (for An), Pn−1

(for Dn) and P16, P35 (for E6). For these, [3] shows that Q/Q′ is a sum of two irreducible
R-modules, and the conclusion follows as before. �

Lemma 7.2. Under the hypotheses of Lemma 7.1, we have d(H0) ≤ 4.

Proof. Write H0 = QR as above. In view of Lemma 7.1, it suffices to show that d(R) ≤ 3.

First consider classical groups. It is convenient to replace G0 by the corresponding
classical linear group SLn(q), Spn(q), etc.

For G0 = SLn(q) we have H0 = Pi or Pi,n−i. In the first case R = (SLi(q) ×
SLn−i(q)).(q − 1), and d(R) ≤ 3 by Proposition 2.6 (if i 6= n − i) and by Proposition
2.10 (if i = n− i). In the second case we have

R = {(A,B,C) ∈ GLn−2i(q)×GLi(q)
2 | det(ABC) = 1}.
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If i = 1 then d(R) ≤ 3 by Proposition 2.6, so assume i > 1. By Proposition 2.11, there
are semisimple elements x, y and unipotent elements u, v such that

GLn−2i(q) = 〈x, u〉, GLi(q) = 〈y, v〉.

Furthermore we may take it that det(x) = det(y) = µ, a generator of F∗q . Define the
following elements r, s, t ∈ R:

r = (x, y−1, v), s = (x−1, v, y), t = (u, y−1, y).

We claim that r, s, t generate R. Indeed, observe first that by taking suitable powers of
these elements we see that 〈r, s, t〉 contains (1, 1, v), (1, v, 1) and (1, y−1, y), hence contains
all elements (1, B,C) with det(BC) = 1. It also contains (u, 1, 1) and (x, y−1, 1). Hence
it contains SLn−2i(q)× SLi(q)

2 and maps onto Z2
q−1, proving the claim.

Next, if G0 = SUn(q) and H0 = Pi, then R = (SLi(q
2)×SUn−2i(q)).(q

2−1), and we see
that d(R) ≤ 3 using Proposition 2.6. Similarly, if G0 = Spn(q) (so q is odd by hypothesis),
we have R = GLi(q)×Spn−2i(q) and once again we can use Proposition 2.6 (or Proposition
2.10 when i = n− 2i = 2).

Now consider G0 = Ωε
n(q), with n ≥ 7. By hypothesis, if n is odd then q is odd. If q is

even then R = GLi(q)× Ωε
n−2i(q), and it is easy to see that d(R) ≤ 3 using Propositions

2.6 and 2.10, as usual. So assume q is odd. Then

R = {(A,B) ∈ GLi(q)× SOε
n−2i(q) | det(A)θ(B) is a square in Fq},

where θ : SOε
n−2i(q) → F∗q/(F∗q)2 denotes the spinor norm map (see [29, p.29]). If i = 1,

then R is a cyclic extension of Ωε
n−2(q), giving the conclusion by Proposition 2.6. If i > 1

and n− 2i > 4 or n− 2i ∈ {0, 1, 3}, then R is a cyclic extension of SLi(q)×Ωε
n−2i(q) and

we can again use Proposition 2.6 (or Proposition 2.10 when (n, i) = (7, 2)).

It remains to handle the cases where n = 2m is even and i = m− 2 or m− 1. First let
i = m−2. Then R 6 GLm−2(q)×SOε

4(q) and R is a cyclic extension of SLm−2(q)×Ωε
4(q).

If m > 4, or (m, ε) = (4,−), we can use Proposition 2.4(ii) to see that the latter group
is 2-generator, giving the result. So suppose m = 4 and ε = +. If q ≤ 3 we check the
result directly by computation, so take q > 3. By Propositions 2.11 and 2.13, there are
semisimple elements x, y and unipotent elements u, v such that

GL2(q) = 〈x, u〉, SO+
4 (q) = 〈y, v〉.

Let r = (x, y), s = (u, v), t = (x, y−1), all elements of R. One easily checks that r, s, t
generate R, giving the conclusion. Finally, if i = m− 1 we have R 6 GLm−1(q)× SOε

2(q)
and we use a similar argument: write GLm−1(q) = 〈x, u〉 and SOε

2(q) = 〈z〉, and see that
R is generated by the three elements (x, z), (x−1, z) and (u, 1).

This completes the proof for classical groups. Now consider exceptional groups. Assume
G0 6= Eε6(q) or 3D4(q). Then by hypothesis, G0 is untwisted and H0 = Pi for some i. The
Levi subgroup R = R0J , where R0 (the semisimple part of R) is the group generated by
all fundamental root subgroups U±αj with j 6= i, and J is a Cartan subgroup. Thus R0

is a central product
∏
Lj of total semisimple rank r − 1, where r is the rank of G0 and

each Li is either quasisimple or in {SL2(2), SL2(3)}. It follows that R is a cyclic extension
of R0. Moreover, inspection of the Dynkin diagrams of exceptional types shows that the
groups Lj/Z(Lj) are pairwise non-isomorphic, and hence R is 2-generator by Proposition
2.6(ii), giving the conclusion.

If G0 = 3D4(q) then R is a cyclic extension of A1(q) or A1(q3), so d(R) ≤ 2 by Proposi-
tion 2.6. Finally, let G0 = Eε6(q). First suppose ε = + and H0 = Pi. If i 6= 4 the argument
of the previous paragraph goes through; and if i = 4 then R0 = A1(q)A2(q)2. This is
easily checked to be 2-generator if q ≤ 3, and can be seen to be also 2-generator if q > 3,
using Propositions 2.4(ii) and 2.10. Hence d(R) ≤ 3.
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It remains to consider the cases where ε = −, or ε = + and H0 = P16, P35. For ε = −
and H0 = P2 or P4 we have R = R0J , a cyclic extension of R0 = 2A5(q) or A1(q)A2(q2);
then d(R0) = 2 by Proposition 2.4(ii), so d(R) ≤ 3, as required. The remaining parabolics
are as follows:

(i) P16 (ε = +), P1 (ε = −): R0 = Dε
4(q);

(ii) P3 (ε = −): R0 = A2(q)A1(q2);

(iii) P35 (ε = +): R0 = A2(q)A1(q)2.

In all cases, d(R/R0) ≤ 2. It follows using Proposition 2.6(ii) that d(R) ≤ 3 in cases (i)
and (ii). As for (iii), we use a slight variation of the argument in the proof of Proposition
2.6(ii) to show that d(R) ≤ 3. First we check by computation that the conclusion holds
for q ≤ 5, so assume q > 5. Let R0 = L1L2L3 with L1, L2

∼= A1(q) and L3
∼= A2(q),

and let x ∈ R \ R0. As in Proposition 2.6, the aim is to show that d(R0〈x〉) = 2. As
x lies in the Levi subgroup R, it fixes all factors of R0, inducing an inner or diagonal
automorphism on each. Using the subgroup structure of L2(q), it is easy to see that
if z ∈ L2(q) has order r1 = (q − 1)/d, where d = (2, q − 1), and C is any L2(q)-class
of elements of order r1 then there exists c ∈ C such that L2(q) = 〈z, c〉. Similarly for
elements of order r2 = (q + 1)/d. Therefore, there exist ai, gi ∈ Li (i = 1, 2) such that

ai has order ri and Li = 〈ax−1

i , agii 〉. Pick a3, g3 ∈ L3 as in the proof of Proposition 2.6,

and let a = (a1, a2, a3), b = (g1, g2, g3)x ∈ R0〈x〉. Then 〈a, ab〉 projects surjectively onto
each factor Li, and since a1, a2 have different orders it follows that 〈a, ab〉 = R0. Hence
〈a, b〉 = R0〈x〉, showing that d(R0〈x〉) = 2, as required. Hence d(R) ≤ 3. �

Lemma 7.3. We have d(H0) ≤ 4 in the excluded p = 2, 3 cases of Lemma 7.1.

Proof. The cases under consideration are G0 of type Cn, F4,
2F4, G2,

2B2 (all with p = 2),
and G2,

2G2 (with p = 3).

Consider G0 = Cn(q) with q even. If H0 = Pi = QR, then R = GLi(q)×Sp2n−2i(q) and
we can see that d(R) = 2 using Proposition 2.11. AlsoQ/Q′ has twoR-composition factors,
and we deduce that d(H0) ≤ 4, as required. The only other case occurs when G0 = C2(q),
G contains a graph automorphism and H0 is a Borel subgroup. Here R = (q − 1)2 and
Q/Q′ ∼= (Fq)2, generated by two root groups modulo Q′ with R acting as a full group of
scalars on each root group, so again d(H0) ≤ 4.

Next consider G0 = F4(q), q even. If G contains no graph automorphism of G0, then we
may take H0 = P1 or P2 (since P3, P4 are images of these under a graph automorphism);
and if G contains a graph automorphism, H0 = P14 or P23. If q = 2 then we can use
the explicit permutation representation of degree 69888 for G0 provided in the Web-Atlas
[57] to check that d(H0) = 2 in all cases, so we may assume q ≥ 4. Write H0 = QR as
before. Since q is even, G0 is special in the terminology of [3], and Q/Q′ is no longer
necessarily irreducible. Nevertheless, Q/Q′ still has a filtration by FqR-modules, and it is
routine to use the commutator relations given in [51, p.404] to calculate its composition
factors. In the table below we record these according to their high weights, where R0 is
the semisimple part of R:

H0 R0 R0-composition factors of Q/Q′

P1 C3(q) 001, 100
P2 A1(q)A2(q) 1⊗ 20, 1⊗ 01, 0⊗ 02
P14 C2(q) 10, 01, 002

P23 A1(q)2 1⊗ 0, 0⊗ 1

Hence, we can certainly find two elements u1, u2 ∈ Q such that u1Q
′, u2Q

′ do not both
lie in a proper R-invariant subgroup of Q/Q′. As usual, it follows that d(H0) ≤ 2 + d(R).
Finally, we see that d(R) = 2 in the usual way, so d(H0) ≤ 4 as required.
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Next consider G0 = 2F4(q)′. If q = 2 we check that d(H) = 2 using Magma and
the Web-Atlas [57], so assume q > 2. Write H0 = QR as usual, so that R0 = SL2(q) or
2B2(q). The structure of H0 is given by [19, §10]. When R0 = SL2(q) we have |Q/Q′| = q2,
and Q/Q′ is the natural module for R0; and when R0 = 2B2(q), Q/Q′ has order q5 and
composition factors of dimensions 1 and 4 as R0-modules. Hence as before, d(H0) ≤
1 + d(R), and now the usual argument gives the conclusion.

Next let G0 = G2(q). Here we use the commutator relations for G2 given in [52, p.443].
First assume that H0 = QR = P1 or P2. If p = 2 then for the short parabolic P2 (i.e. R0

a short A1(q)), Q/Q′ is an irreducible R-module, while for the long parabolic P1, Q/Q′ is
an extension of a trivial module by an irreducible 2-dimensional R-module. And if p = 3
then for both P1 and P2, Q/Q′ is an extension of an irreducible 2-dimensional R-module
by a twist of itself. Hence as usual we see that d(H0) ≤ 2 + d(R). Since d(R) = 2 the
result follows.

Now suppose G0 = G2(q), p = 3, H0 = QR is a Borel subgroup and G contains a graph
automorphism. From the commutator relations one checks that Q/Q′ is generated by 3
root groups modulo Q′. Also R = (q − 1)2 acts as a full group of scalars on each of the
root groups and it follows in the usual way that d(H0) ≤ 4.

Finally, for G0 = 2G2(q) or 2B2(q), we see from [56], [55] that |Q/Q′| = q and R = Zq−1

acts faithfully on Q/Q′, so again the usual argument goes through. �

Next we deal with the last excluded case of Lemma 7.1.

Lemma 7.4. Suppose that G0 = D4(q), G contains a triality automorphism, and H0 =
P134. Then d(H0) ≤ 4.

Proof. We check this for q ≤ 3 using Magma, so let us assume q > 3. Working with
G0 = Ω+

8 (q) and H0 = QR as usual, we have

R = {(A,α, β) ∈ GL2(q)× F∗q × F∗q | det(A)αβ is a square in Fq},

whence d(R) ≤ 3 by Proposition 2.10. As a module for R0 = SL2(q) we have Q/Q′ =
V1 + V2 + V3, a sum of three copies of the natural module, where the Vi are generated by
the following root groups:

V1 = 〈U1000, U1100〉Q′, V2 = 〈U0010, U0110〉Q′, V3 = 〈U0001, U0101〉Q′.

One checks that the vector U1000(1)U0010(1)U0001(1)Q′ generates Q/Q′ under the action
of R. Hence d(H0) ≤ 4. �

The proof of Theorem 2 for parabolic subgroups is completed by

Lemma 7.5. If H is a maximal parabolic subgroup of the almost simple group G, then
d(H) ≤ 6.

Proof. We have already proved that d(H0) = d(H ∩ G0) ≤ 4, so the result is automatic
if d(G/G0) ≤ 2. Hence we may assume that d(G/G0) = 3. The possibilities for G are
described in Proposition 2.1(i): G0 = L2m(q), PΩε

2m(q) (m ≥ 5) or PΩ+
8 (q), with q odd and

square, and G/G0 has an image 23. As before, write H = QR, where Q is the unipotent
radical and R a Levi subgroup. As in Lemma 7.1 we have d(H) ≤ 1 + d(R), so we need
to show that d(R) ≤ 5.

If G0 = L2m(q) then H = Pi,2m−i or Pm and we argue in similar fashion to the proof
of Lemma 7.2. Writing I = PGL2m(q), we have d(G/G ∩ I) ≤ 2, so it is enough to show
that d(R ∩ I) ≤ 3. For Pi,2m−i we have

R ∩ I = {(A,B,C) ∈ GL2m−2i(q)×GLi(q)
2 | det(ABC) ∈ 〈µk〉},



GENERATION AND RANDOM GENERATION 27

modulo scalars, for some k (recall that µ is a generator of F∗q). As in the proof of Lemma
7.2, write GL2m−2i(q) = 〈x, u〉 and GLi(q) = 〈y, v〉, where det(x) = det(y) = µ. One
checks that R ∩ I is generated by the three elements (x, yk−1, v), (xk−1, v, y), (u, y, yk−1).
This gives the result for Pi,2m−i, and the Pm case is similar.

Next consider G0 = PΩε
2m(q) (m ≥ 5). Here G/G0 is a 3-generator subgroup of D8×Zf

where q = pf (see Proposition 2.1(i)). Let I = POε
2m(q) = G0.2

2. Then I is normal in
Aut(G0) and Aut(G0)/I ∼= Z2 × Zf , so it is enough to show that d(G ∩ I) ≤ 3.

There are five possibilities for the group G ∩ I: they are G0, I, PSOε
2m(q), G0〈r1〉 and

G0〈r2〉, where r1, r2 are reflections in non-singular vectors of square, non-square norm,
respectively. We deal with each of these possibilities in similar fashion to the proof of
Lemma 7.2. We have R 6 GLi(q) × Oε2m−2i(q) (modulo scalars). Write GLi(q) = 〈x, u〉
with x semisimple and u unipotent. Then we can find generators a, b, c for the projection
of R to Oε2m−2i(q) such that (x, a), (u, b), (1, c) generate R.

Finally consider G0 = PΩ+
8 (q). If there is no triality automorphism involved in G, then

G/G0 6 D8 × Zf and we argue as above. Otherwise, G/G0 is a subgroup of S4 × Zf
containing a triality, and such a subgroup is 2-generator. This completes the proof. �

This completes the proof of Theorem 2 for parabolic subgroups. Moreover, in view of
the results of the previous sections, Theorem 2 is now proved.

8. Random generation

Recall that if G is a finite group then we denote by ν(G) the minimal number k such
that the probability that G is generated by k random elements is at least 1/e. By an
observation of Pak [50], this coincides (up to a small multiplicative constant) with the
expected number of random elements generating G. It is known that there exists an
absolute constant c such that ν(G) ≤ c for any finite simple group G (indeed, by the main
theorem of [37], ν(G) = 2 if |G| is sufficiently large). Here we establish Theorem 3, which
provides an extension of this result to maximal subgroups of almost simple groups.

In addition to Theorem 2, the main ingredient in the proof of Theorem 3 is a remarkably
explicit bound on ν(G) due to Jaikin-Zapirain and Pyber, which applies to any finite
group G. In order to state this result, we first require some notation. For a non-abelian
characteristically simple group A, let rkA(G) be the maximal number r such that a normal
section of G is the direct product of r chief factors of G isomorphic to A. In addition, let
`(A) be the minimal degree of a faithful transitive permutation representation of A.

Theorem 8.1 ([26, Theorem 1]). There exist absolute constants 0 < α < β such that for
any finite group G

α

(
d(G) + max

A

{
log(rkA(G))

log(`(A))

})
< ν(G) < βd(G) + max

A

{
log(rkA(G))

log(`(A))

}
,

where A runs through the non-abelian chief factors of G.

Let G be an almost simple group and let H be a maximal subgroup of G. By Theorem
2 we have d(H) ≤ 6, so in order to prove Theorem 3 it suffices to show that

δ(H) := max
A

{
log(rkA(H))

log(`(A))

}
(5)

is bounded above by an absolute constant, where A runs through the non-abelian chief
factors of H.

Lemma 8.2. Let G be a finite almost simple group and let H be a maximal subgroup of
G. Then H has at most three non-abelian chief factors.
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Proof. Let G0 be the socle of G and let γ(H) denote the number of non-abelian chief
factors of H. If H is solvable or almost simple then γ(H) ≤ 1, so assume otherwise. If G0

is a sporadic group then the possibilities for H are conveniently recorded in the Web Atlas
[57] and it is easy to check that γ(H) ≤ 2. If G0 is an alternating group then the maximal
subgroups of G are described by the O’Nan-Scott theorem (see Theorem 4.1), and the
same conclusion quickly follows. For example, if H is of type Sk o St then γ(H) ≤ 2, with
equality if and only if k, t ≥ 5.

Now assume G0 is a classical group. Here H belongs to one of the eight Ci families that
arise in Aschbacher’s theorem on the subgroup structure of classical groups (see Table 1
and [1]). If H ∈ C3 ∪ C5 ∪ C6 ∪ C8 then the bound γ(H) ≤ 2 is clear. Similarly, if H ∈ C4

then γ(H) ≤ 2 unless G0 = PΩ+
n (q) and H is of type O+

4 (q)⊗Oεn/4(q) with q ≥ 5 odd, in

which case γ(H) ≤ 3. Next suppose H is a reducible subgroup in the C1 collection. If H

is non-parabolic then either γ(H) ≤ 2, or H is of type O+
4 (q) ⊥ Oε

′
n−4(q) with q ≥ 4 and

γ(H) ≤ 3. Similarly, if H is a parabolic subgroup of G then by inspecting the structure
of H given in [29, Section 4.1] we deduce that γ(H) ≤ 2 unless G0 = PΩ+

n (q) and H is
of type Pn/2−2 (with q ≥ 4), or G0 = Ln(q) and H is of type Pm,n−m with 2 ≤ m < n/2
and (m, q) 6= (2, 2), (2, 3). In both of these cases it is clear that γ(H) ≤ 3, as required.
Finally, suppose H ∈ C2 ∪ C7. If H is a C2-subgroup of type O+

4 (q) o St with t ≥ 5 and
q ≥ 4 then up to isomorphism the collection of non-abelian chief factors of H is either
{At,L2(q)2t} or {At,L2(q)t,L2(q)t}, so γ(H) ≤ 3. In each of the remaining cases, it is
easy to see that γ(H) ≤ 2. For example, if H is of type O+

4 (q) o S2 then H contains an
element interchanging the two factors of type O+

4 (q), so either L2(q)2 is a minimal normal
subgroup of H (and thus γ(H) = 2), or L2(q)4 has this property, in which case γ(H) = 1.

Finally, let us assume G0 is an exceptional group of Lie type. The possibilities for H are
described in Proposition 6.1 (in addition to the parabolic subgroups), and by inspection
we see that γ(H) ≤ 3. �

Remark 8.3. There are examples with γ(H) = 3. For instance, if G = PΩ+
4m(q) and H

is a C4-subgroup of type O+
4 (q)⊗Om(q), where qm is odd and q ≥ 5, then

H ∼= L2(q)× L2(q)× SOm(q)

(see [29, 4.4.17]), so the non-abelian chief factors of H are L2(q), L2(q) and Ωm(q).

Corollary 8.4. Let H be a maximal subgroup of a finite almost simple group. Then
δ(H) < 1.

Proof. By Lemma 8.2 we have rkA(H) ≤ 3 for every non-abelian chief factor A of H. Since
`(A) ≥ 5, the result follows. �

By combining Corollary 8.4 with Theorems 2 and 8.1 we obtain the following corollary,
which completes the proof of Theorem 3.

Corollary 8.5. Let G be an almost simple group and let H be a maximal subgroup of
G. Then ν(H) < 6β + 1, where β is the absolute constant appearing in the statement of
Theorem 8.1.

Finally, let us turn to Corollary 4. For a finite group G and a positive integer k recall
that P (G, k) denotes the probability that k randomly chosen elements of G generate G,
so ν(G) is the minimal number k such that P (G, k) ≥ 1/e. Let Q(G, k) = 1− P (G, k) be
the complementary probability, so

Q(G, k) =
|{(x1, . . . , xk) ∈ Gk | 〈x1, . . . , xk〉 6= G}|

|G|k

and we see that Q(G, kc) ≤ Q(G, c)k for all positive integers k and c.
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Fix ε > 0 and let c be the positive integer in the statement of Theorem 3. Let H be a
maximal subgroup of an almost simple group, and let k be the minimal positive integer
such that (1− 1/e)k < ε. Then

Q(H, kc) ≤ Q(H, c)k ≤ (1− 1/e)k < ε

and thus P (H, kc) > 1− ε. This completes the proof of Corollary 4.

9. Maximal subgroup growth

Let G be a group and let mn(G) denote the number of maximal subgroups of index
n in G. Recall that G has polynomial maximal subgroup growth if mn(G) ≤ nc for all
n, where c is some constant. For example, finite simple groups have this property in the
strong sense that there exists an absolute constant c such that mn(G) ≤ nc for all n and
all finite simple groups G. In fact, the main theorem of [32] establishes an even stronger
result, namely that if G is simple then mn(G) ≤ na for any fixed a > 1 and sufficiently
large n.

A second maximal subgroup of a group G is a maximal subgroup of a maximal subgroup
ofG. Letm2

n(G) denote the number of second maximal subgroups of index n inG. Our aim
here is to show that m2

n(G) grows polynomially when G is almost simple, proving Corollary
6. To do this, we combine Corollary 5 with the following lemma, which establishes the
analogous property for maximal subgroups.

Lemma 9.1. There exists an absolute constant c such that any finite almost simple group
has at most nc maximal subgroups of index n.

Proof. This quickly follows from Theorem 8.1. Let G be an almost simple group and let
n be a positive integer. Since d(G) ≤ 3 and δ(G) = 0 (see Proposition 2.1(i) and (5)), the
upper bound in Theorem 8.1 yields ν(G) < 3β and thus mn(G) ≤ n3β+4 by [42, 1.2].

For completeness we also give an alternative, more elementary argument, which is in-
dependent of Theorem 8.1. Write

mn(G) = αn(G) + βn(G)

where αn(G) (respectively βn(G)) denotes the number of maximal subgroups of index n in
G with trivial core (respectively, non-trivial core). Note that βn(G) = mn(G/G0), where
G0 is the socle of G. By [27, 37, 39] we have αn(G) = o(n2) (in fact better bounds hold).
We deduce that αn(G) ≤ nc1 for some absolute constant c1. In addition, by considering the
various possibilities for G0, we see that every subgroup of G/G0 is a 3-generator solvable
group of derived length at most 3. Therefore, the number of subgroups of index n in
G/G0 is at most nc2 for some absolute constant c2, so mn(G/G0) ≤ nc2 and the result
follows. �

The proof of Corollary 6 is an easy combination of Lemma 9.1 and Corollary 5. Indeed,
if G is almost simple and H is a second maximal subgroup of G of index n, then there
exists a divisor a of n and a maximal subgroup M of G of index a containing H, such that
H is a maximal subgroup of M of index n/a. This yields

m2
n(G) ≤

∑
a|n

ac1(n/a)c2 ≤ nc1+c2+1,

where c1 and c2 are the absolute constants in Lemma 9.1 and Corollary 5, respectively.
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10. Primitive permutation groups

In this final section we prove Theorems 7 and 8. Let G be a primitive permutation
group on a finite set Ω with point stabilizer H = Gα. By the O’Nan-Scott theorem (see
[16, Theorem 4.1A]), one of the following holds:

(i) G is almost simple;

(ii) G has a regular minimal normal subgroup N ;

(iii) G is of simple diagonal type;

(iv) G is of product type: here G 6 J o Sl acting with product action on a Cartesian
product Ω = Γl, where J is primitive on Γ of almost simple or simple diagonal
type. Moreover, T l is the socle of G, where T is the socle of J .

Note that if (ii) fails to hold then G has a unique minimal normal subgroup.

10.1. Proof of Theorem 7. The lower bound d(G) − 1 ≤ d(H) is trivial since H is
maximal in G. To establish the upper bound, we consider each of the above four cases in
turn. In case (i) we have d(Gα) ≤ 6 by Theorem 2, and the conclusion of Theorem 7 follows.
In case (ii), G = GαN with N ∩Gα = 1, so G/N ∼= Gα and thus d(Gα) = d(G/N) ≤ d(G).

Now consider case (iii). Let B be the socle of G. Then B ∼= T k and Bα ∼= T , where
T is a non-abelian simple group and k ≥ 2. Moreover G = GαB, so G/B ∼= Gα/Bα.
Since Bα ∼= T , it is a minimal normal subgroup of Gα, whence d(Gα) ≤ d(Gα/Bα) + 1 by
Proposition 2.1(ii). Hence

d(Gα) ≤ d(Gα/Bα) + 1 = d(G/B) + 1 ≤ d(G) + 1.

Finally, let us consider case (iv). Suppose first that J is almost simple, with socle T , and
let B = T l be the socle of G. As above, G/B ∼= Gα/Bα, and this group acts transitively
on the l factors in B. Let γ ∈ Γ and take α = (γ, . . . , γ) ∈ Γl = Ω. Then Bα = T lγ .
Since Gα/Bα acts transitively on the l factors of Bα, it follows that Gα is generated by
Tγ together with coset representatives of generators of Gα/Bα, and hence

d(Gα) ≤ d(Tγ) + d(Gα/Bα) = d(Tγ) + d(G/B) ≤ d(Tγ) + d(G).

The result follows since d(Tγ) ≤ 4 by Theorem 2.

Now suppose that (J,Γ) is of simple diagonal type. As before, let T and B be the socles
of J and G, respectively. Let γ ∈ Γ and set α = (γ, . . . , γ) ∈ Γl = Ω. Then T = Sk with
S ∼= Tγ non-abelian simple, and B = T l = Skl. As above, G/B ∼= Gα/Bα acts transitively

on the l factors in B = T l, whence

d(Gα) ≤ d(Tγ) + d(Gα/Bα) = d(S) + d(G/B) ≤ d(G) + 2

and the proof of Theorem 7 is complete.

10.2. Proof of Theorem 8. We begin with a couple of preliminary lemmas. Our first
result follows immediately from the definition of δ(G) (see (5)).

Lemma 10.1. Let G be a finite group and let N be a minimal normal subgroup of G.
Then δ(G/N) ≤ δ(G) < δ(G/N) + 1.

Lemma 10.2. Let G be a finite primitive permutation group with point stabilizer H. Then

δ(G)− 1 < δ(H) < δ(G) + 1.

Proof. We consider each of the primitive groups of type (i)–(iv) in turn. In case (i),
δ(G) = 0 and the result follows from Lemma 8.2. In (ii), G has a minimal normal
subgroup N such that G/N ∼= H, so in this case the result follows from Lemma 10.1. For
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the remainder we may assume (ii) fails to hold, in which case G has a unique minimal
normal subgroup.

If G is of simple diagonal type then the socle of G is of the form B = T k for a non-
abelian simple group T and again the result follows from Lemma 10.1 since G/B ∼= H/T ,
where B (respectively T ) is a minimal normal subgroup of G (respectively H).

Finally, let us assume G is of product type as in (iv), so G 6 J o Sl has the product
action on Ω = Γl, and J 6 Sym(Γ) is primitive of almost simple or simple diagonal type.
Let T denote the socle of J . Then B = T l (the socle of G) is a minimal normal subgroup
of G and we have G/B ∼= H/(H ∩ B). If J is of simple diagonal type then H ∩ B is a
minimal normal subgroup of H and the result follows via Lemma 10.1 as before.

Now assume J is almost simple. As in the proof of Theorem 7 we have H = Gα
with α = (γ, . . . , γ) ∈ Γl = Ω, and H ∩ B = Bα = (Tγ)l. Since G/B ∼= H/(H ∩ B)
acts transitively on the l factors in B, it follows that any non-abelian chief factor of H
occurring as a section of H ∩B is of the form L/K × · · · ×L/K (l factors), where L/K is
a non-abelian chief factor of Tγ . By Lemma 8.2 there are at most 3 possibilities for L/K,
so δ(H) < δ(H/(H ∩B)) + 1 and the desired result quickly follows. �

Corollary 10.3. Let G be a finite primitive permutation group with point stabilizer H.
Then

ν(H) < βα−1ν(G) + 4β + 1 and ν(G) < βα−1ν(H) + β + 1,

where α and β are the absolute constants in the statement of Theorem 8.1.

Proof. This is an easy application of Theorems 7 and 8.1, together with Lemma 10.2. For
the first bound,

ν(H) < βd(H) + δ(H) < β(d(G) + 4) + δ(G) + 1 ≤ βα−1 · α(d(G) + δ(G)) + 4β + 1

since we may assume β > 1, and the result follows since the lower bound in Theorem
8.1 gives α(d(G) + δ(G)) < ν(G). To establish the second bound we use the fact that
d(G) ≤ d(H) + 1, so

ν(G) < βd(G) + δ(G) < β(d(H) + 1) + δ(H) + 1 ≤ βα−1 · α(d(H) + δ(H)) + β + 1

and once again the result follows by applying the lower bound in Theorem 8.1. �

Theorem 8 follows immediately from Corollary 10.3. Indeed, since ν(G), ν(H) ≥ 1, we
deduce that

(βα−1 + β + 1)−1ν(G) < ν(H) < (βα−1 + 4β + 1)ν(G).
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