# Power sets and soluble subgroups 

Martin W. Liebeck<br>Department of Mathematics<br>Imperial College<br>London SW7 2AZ<br>UK

Aner Shalev<br>Institute of Mathematics<br>Hebrew University<br>Jerusalem 91904<br>Israel


#### Abstract

We prove that for certain positive integers $k$, such as 12 , a normal subgroup of a finite group which consists of $k^{t h}$ powers is necessarily soluble. This gives rise to new solubility criteria, and solves an open problem from [2].


## 1 Introduction

For a group $G$ and a positive integer $k$, denote by $G^{[k]}$ the set $\left\{x^{k}: x \in G\right\}$ of $k^{t h}$ powers in $G$. Define a positive integer $k$ to be nice if $k$ is a multiple of one of the following numbers:
$2^{a} p$, where $a>1$ and $p$ is a prime divisor of $2^{2^{a+1}}-1$
$2 \cdot 3^{a} p$, where $a \geq 1$ and $p$ is an odd prime divisor of $3^{3^{a}} \pm 1$
$3^{a} \cdot 5 p$, where $a \geq 1$ and $p$ is an odd prime divisor of $3^{3^{a}} \pm 1$.
Note that the smallest few nice numbers are multiples of $12,20,42,68,78,105$.
Theorem 1 Let $G$ be a finite group, and suppose $N$ is a normal subgroup of $G$ contained in $G^{[k]}$ for some nice integer $k$. Then $N$ is soluble.

Corollary 2 Let $k$ be a nice integer, and suppose $G$ is a finite group such that $G^{[k]}$ contains a subgroup $H$ of index $c$ in $G$. Then $G$ has a soluble normal subgroup of index dividing c!

Indeed, the core of $H$ is the required normal subgroup, by Theorem 1. Corollary 2 is in the same spirit as [1], where certain infinite groups $G$ with the property that $G^{[k]}$ contains a subgroup of finite index in $G$ are studied.

Corollary 3 Suppose $k$ is a nice integer and $G$ is a finite group such that $\operatorname{Aut}(G)^{[k]}$ contains $\operatorname{Inn}(G)$. Then $G$ is soluble.

This follows immediately from Theorem 1: since $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$ the theorem implies that $\operatorname{Inn}(G)$ is soluble, hence so is $G$.

[^0]In [2], some solubility criteria for finite groups are established, and Theorem 1 implies some of them. For example if $G^{[12]}$ is a subgroup of $G$, then Theorem 1 implies that $G^{[12]}$ is soluble, and since $G / G^{[12]}$ is also soluble (by Burnside's $p^{a} q^{b}$ theorem), $G$ is also soluble, which is [2, Theorem 1].

Theorem 1 is proved via the following two results.
Proposition 4 Let $k$ be a positive integer, and suppose that there is no non-abelian finite simple group $T$ such that $(\operatorname{Aut}(T))^{[k]}$ contains $T$. Then any normal subgroup of a finite group which consists of $k^{\text {th }}$ powers is soluble.

Proposition 5 A number $k$ is nice if and only if there is no non-abelian finite simple group $T$ such that $(\operatorname{Aut}(T))^{[k]}$ contains $T$.

A main problem posed in [2, Section 4] is the characterization of positive integers $k$ with the property that finite groups $G$ for which $G^{[k]}$ is a subgroup are all soluble. Our last result solves this problem.

Theorem 6 For a positive integer $k$, the following two conditions are equivalent.
(i) Every finite group $G$ such that $G^{[k]}$ is a subgroup is soluble.
(ii) Either
(a) $k$ is an odd number of the form $3^{a} 5^{b} m$, where $a, b \geq 1$ and $\left(m, 3^{2 \cdot 3^{a}}-1\right) \neq 1$, or
(b) $k$ is an even number which is not one of the following:
$(\alpha)$ a multiple of $\exp (T)$, the exponent of some finite non-abelian simple group $T$
( $\beta$ ) $2 \cdot 3^{a} \cdot m$, where $a \geq 0$ and $\left(m, 3\left(3^{2 \cdot 3^{a}}-1\right)\right)=1$
$(\gamma) 2^{a} \cdot m$, where $a \geq 2$ and $\left(m, 2\left(2^{2^{a+1}}-1\right)\right)=1$.

## 2 Proof of Theorem 1

## Proof of Proposition 4

Let $k$ be as in the statement of the proposition, and suppose $G$ is a minimal counterexample. So $G$ has an insoluble normal subgroup $N$ consisting of $k^{t h}$ powers. Let $M$ be a minimal normal subgroup of $G$. Then $N M / M$ is soluble. If $M_{1}$ is another minimal normal subgroup of $G$, then $G$ embeds in $G / M \times G / M_{1}$ and so $N$ is soluble, a contradiction. Hence $M$ is the unique minimal normal subgroup of $G$ and $M \leq N$. Moreover $M$ is non-abelian (otherwise $N$ would be soluble), so $C_{G}(M)=1, M=T^{r}$ for some non-abelian simple group $T$, and $G$ embeds in $\operatorname{Aut}(M)=\operatorname{Aut}(T)$ 亿 $S_{r}$.

By the choice of $k,(\operatorname{Aut}(T))^{[k]}$ does not contain $T$, and so there exists $t \in$ $T \backslash \operatorname{Aut}(T)^{[k]}$. We claim that the element $n=(t, 1, \ldots, 1) \in T^{r}=M$ is not a $k^{t h}$ power in $G$. To see this, suppose $n=x^{k}$ where $x=\left(x_{1}, \ldots, x_{r}\right) \sigma$ with each $x_{i} \in \operatorname{Aut}(T)$ and $\sigma \in S_{r}$. Then $\sigma^{k}=1$. If $\sigma(1)=1$ then $t=x_{1}^{k}$, contradicting the fact that $t$ is not a $k^{t h}$ power in $\operatorname{Aut}(T)$. So $\sigma$ has a cycle $\left(1 i_{2} \cdots i_{s}\right)$ with $s \geq 1$. Calculating the coordinates of $x^{k}$ in positions 1 and $i_{s}$, we get $t=x_{1} x_{i_{2}} \cdots x_{i_{s}}$ and $1=x_{i_{s}} x_{1} \cdots x_{i_{s-1}}$, a contradiction.

It follows from the claim that that $G^{[k]}$ does not contain $M$, which is a contradiction since $M \leq N \subseteq G^{[k]}$. This completes the proof.

## Proof of Proposition 5

The main tool for this proof is the following result from [2].
Theorem 7 ([2, Propositions 5,6 and Theorem 7]) Let $T$ be a finite simple group, and let $m>1$ be a positive integer dividing $|T|$. Suppose $\operatorname{Aut}(T)^{[m]}$ contains $T$. Then $m=p^{r}$ or $2 p^{r}$ for some prime $p$. Further, if $m=2$ then $T=L_{2}(q)(q$ odd $)$, $L_{2}\left(q^{2}\right)$ ( $q$ even) or $L_{3}(4)$; and if $m=p^{r}>2$ or $m=2 p^{r}$ ( $p$ odd), then $T=L_{2}\left(p^{m l}\right)$ or $L_{2}\left(p^{m l / 2}\right)$, respectively. Conversely, $\operatorname{Aut}(T)^{[m]}$ contains $T$ for all such $T$ and $m$.

We embark on the proof of Proposition 5.
Suppose $k>1$ is an integer which is nice. Assume for a contradiction that there exists a non-abelian simple group $T$ such that $\operatorname{Aut}(T)^{[k]}$ contains $T$. Then $\operatorname{Aut}(T)^{[m]}$ contains $T$ for any divisor $m$ of $k$, so we may assume that $k$ is one of the numbers $2^{a} p, 2 \cdot 3^{a} p, 3^{a} \cdot 5 p$ as in the definition of nice numbers.

Consider $k=2^{a} p$ with $a>1$ and $p$ a prime divisor of $2^{2^{a+1}}-1$. Certainly 4 divides $|T|$, so Theorem 7 implies that $T=L_{2}\left(2^{4 l}\right)$ for some $l$. This is then divisible by $2^{3}$, so if $a \geq 3$, Theorem 7 gives $T=L_{2}\left(2^{2^{3} l^{\prime}}\right)$ for some $l^{\prime}$. Repeating this argument, we see that $T=L_{2}\left(2^{2^{a} l^{\prime \prime}}\right)$ for some $l^{\prime \prime}$. But then $p$ divides $|T|$, and $\operatorname{Aut}(T)^{[p]}$ contains $T$, which is a contradiction by Theorem 7 .

Now consider $k=2 \cdot 3^{a} p$, where $a \geq 1$ and $p$ is an odd prime divisor of $3^{3^{a}} \pm 1$. Since $\operatorname{Aut}(T){ }^{[2]}$ contains $T$, Theorem 7 gives $T=L_{2}(q)$ or $L_{3}(4)$. In particular 3 divides $|T|$, so again by Theorem $7, T=L_{2}\left(3^{3 l}\right)$, and arguing as before, $T=$ $L_{2}\left(3^{3^{a} l^{\prime}}\right)$. Then $p$ divides $|T|$, giving a contradiction by Theorem 7 .

Finally, consider $k=3^{a} \cdot 5 p$, where $a \geq 1$ and $p$ is an odd prime divisor of $3^{3^{a}} \pm 1$. If 3 does not divide $|T|$ then $T$ is a Suzuki group; but then 5 divides $|T|$ and $\operatorname{Aut}(T)^{[5]}$ contains $T$, contrrary to Theorem 7 . Hence 3 divides $|T|$ and so $T=L_{2}\left(3^{3 l}\right)$. Now argue as in the previous paragraph. This proves one implication in Proposition 5, and already establishes Theorem 1.

For the converse implication of Proposition 5, assume that $k>1$ is not nice. We need to find a non-abelian simple group $T$ such that $\operatorname{Aut}(T)^{[k]}$ contains $T$.

First consider the case where $k$ is odd. If $(k, 3)=1$, one can see using Dirichlet's theorem on primes in arithmetic progession that there is a prime $p>3$ such that $T=L_{2}(p)$ has order coprime to $k$, hence $T^{[k]}=T$. And if $(k, 5)=1$ then there is a large prime $p$ such that the Suzuki group $T={ }^{2} B_{2}\left(2^{p}\right)$ has order coprime to $k$, giving the same conclusion. Hence we may assume that 15 divides $k$. Let $k=3^{a} 5^{b} m$ with $m$ coprime to 15 . As $k$ is not nice we have $\left(m, 3^{3^{a}} \pm 1\right)=1$. Then the group $T=L_{2}\left(3^{3^{a}}\right)$ has order coprime to $5^{b} m$ and hence satisfies $T \subseteq \operatorname{Aut}(T)^{[k]}$ by Theorem 7.

Now assume $k$ is even and divisible by 4 , and write $k=2^{a} m$ with $m$ odd. As $k$ is not nice, $\left(m, 2^{2^{a+1}}-1\right)=1$. Then by Theorem 7, we have $T \subseteq \operatorname{Aut}(T)^{[k]}$ for $T=L_{2}\left(2^{2^{a}}\right)$.

Finally, assume $k=2 l$ with $l$ odd. If $(k, 3)=1$ then we can find a prime $p>3$ such that $l$ is coprime to the order of $T=L_{2}(p)$, and then $T \subseteq \operatorname{Aut}(T)^{[k]}$ by Theorem 7. So assume 3 divides $k$ and write $k=2 \cdot 3^{a} m$ with $m$ coprime to 6 . As $k$ is not nice, $\left(m, 3^{3^{a}} \pm 1\right)=1$. But then $T \subseteq \operatorname{Aut}(T)^{[k]}$ for $T=L_{2}\left(3^{3^{a}}\right)$. This completes the proof of Proposition 5.

## 3 Proof of Theorem 6

As in [2], define a positive integer $k$ to be good if it satisfies condition (i) of Theorem 6 , and bad otherwise.

First let $k$ be an odd integer. If $k$ is coprime to 3 or 5 , then as above, there is a simple group $T=L_{2}(p)$ or ${ }^{2} B_{2}(q)$ of order coprime to $k$, and then $T^{[k]}=T$, showing that $k$ is bad. So assume $k=3^{a} 5^{b} m$ with $a, b \geq 1$ and $m$ coprime to 15 . If $\left(m, 3^{3^{a}} \pm 1\right)=1$ then $T=L_{2}\left(3^{3^{a}}\right)$ has order coprime to $5^{b} m$, and also by [2, Proposition 6], $G=T\langle\sigma\rangle$ satisfies $G^{[k]}=T$ for a field automorphism $\sigma$; hence $k$ is bad. On the other hand, if $\left(m, 3^{3^{a}} \pm 1\right) \neq 1$ then we claim that $k$ is good. For suppose $G$ is a finite group such that $G^{[k]}$ is a subgroup, and suppose $G$ has a nonabelian composition factor $T$. By [2, Theorem 4], we have $T \subseteq \operatorname{Aut}(T)^{[k]}$. Hence we can use Theorem 7 as before to see that $T$ must be $L_{2}\left(3^{3^{a} l}\right)$ for some $l$. But if $p$ is a prime divisor of $\left(m, 3^{3^{a}} \pm 1\right)$, then $p$ divides $|T|$, so $T \subseteq \operatorname{Aut}(T)^{[p]}$, which is a contradiction by Theorem 7 . Hence $G$ is soluble and so $k$ is good, proving the claim.

We have now shown that the odd good numbers are precisely those in (a) of Theorem 6.

Now let $k$ be even. Of course if $k$ is a multiple of the $\operatorname{exponent} \exp (T)$ of a simple group $T$, then $k$ is bad.

Assume that 4 divides $k$, and write $k=2^{a} m$ with $a \geq 2$ and $m$ odd. If ( $m, 2^{2^{a+1}}-$ 1) $=1$ then for $T=L_{2}\left(2^{2^{a}}\right)$, the group $G=T\langle\sigma\rangle$, where $\sigma$ is a field automorphism of order $2^{a}$, satisfies $G^{[k]}=T$ (see [2, Proposition 6]), so $k$ is bad. On the other hand, if $\left(m, 2^{2^{a+1}}-1\right) \neq 1$, then the argument given above for odd numbers shows that $k$ is good.

Finally, assume that $k=2 l$ with $l$ odd. If $l$ is coprime to 3 then there is a prime $p>3$ such that $L_{2}(p)$ has order coprime to $l$, and $G=P G L_{2}(p)$ satisfies $G^{[k]}=L_{2}(p)($ see $[2$, Proposition 5]), so $k$ is bad. Now assume 3 divides $l$, and write $k=2 \cdot 3^{a} \cdot m$ with $m$ coprime to 6 . If $\left(m, 3^{2 \cdot 3^{a}}-1\right)=1$, then the group $G=L_{2}\left(3^{3^{a}}\right)\langle\sigma\rangle$ satisfies $G^{[k]}=T$; and otherwise, the usual argument shows that $k$ is good. This completes the proof of Theorem 6 .

## References

[1] E. Hrushovski, P.H. Kropholler, A. Lubotzky and A. Shalev, Powers in finitely generated groups, Trans. Amer. Math. Soc. 348 (1996), 291-304.
[2] M.W. Liebeck and A. Shalev, Powers in finite groups and a criterion for solubility, Proc. Amer. Math. Soc., to appear.


[^0]:    The authors are grateful for the support of an EPSRC grant. The second author acknowledges the support of Advanced ERC Grant 247034, an ISF grant 754/08, and the Miriam and Julius Vinik Chair in Mathematics which he holds.

    2010 Mathematics Subject Classification: 20D10, 20E07, 20D06

