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Abstract

We prove that for certain positive integers k, such as 12, a normal subgroup
of a finite group which consists of kth powers is necessarily soluble. This gives
rise to new solubility criteria, and solves an open problem from [2].

1 Introduction

For a group G and a positive integer k, denote by G[k] the set {xk : x ∈ G} of kth

powers in G. Define a positive integer k to be nice if k is a multiple of one of the
following numbers:

2ap, where a > 1 and p is a prime divisor of 22
a+1 − 1

2 · 3ap, where a ≥ 1 and p is an odd prime divisor of 33
a ± 1

3a · 5p, where a ≥ 1 and p is an odd prime divisor of 33
a ± 1.

Note that the smallest few nice numbers are multiples of 12, 20, 42, 68, 78, 105.

Theorem 1 Let G be a finite group, and suppose N is a normal subgroup of G
contained in G[k] for some nice integer k. Then N is soluble.

Corollary 2 Let k be a nice integer, and suppose G is a finite group such that G[k]

contains a subgroup H of index c in G. Then G has a soluble normal subgroup of
index dividing c!

Indeed, the core of H is the required normal subgroup, by Theorem 1. Corollary
2 is in the same spirit as [1], where certain infinite groups G with the property that
G[k] contains a subgroup of finite index in G are studied.

Corollary 3 Suppose k is a nice integer and G is a finite group such that Aut(G)[k]

contains Inn(G). Then G is soluble.

This follows immediately from Theorem 1: since Inn(G) is normal in Aut(G) the
theorem implies that Inn(G) is soluble, hence so is G.
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In [2], some solubility criteria for finite groups are established, and Theorem 1
implies some of them. For example if G[12] is a subgroup of G, then Theorem 1
implies that G[12] is soluble, and since G/G[12] is also soluble (by Burnside’s paqb

theorem), G is also soluble, which is [2, Theorem 1].

Theorem 1 is proved via the following two results.

Proposition 4 Let k be a positive integer, and suppose that there is no non-abelian
finite simple group T such that (Aut(T ))[k] contains T . Then any normal subgroup
of a finite group which consists of kth powers is soluble.

Proposition 5 A number k is nice if and only if there is no non-abelian finite
simple group T such that (Aut(T ))[k] contains T .

A main problem posed in [2, Section 4] is the characterization of positive integers
k with the property that finite groups G for which G[k] is a subgroup are all soluble.
Our last result solves this problem.

Theorem 6 For a positive integer k, the following two conditions are equivalent.

(i) Every finite group G such that G[k] is a subgroup is soluble.

(ii) Either

(a) k is an odd number of the form 3a5bm, where a, b ≥ 1 and (m, 32·3
a − 1) 6= 1,

or

(b) k is an even number which is not one of the following:

(α) a multiple of exp(T ), the exponent of some finite non-abelian simple
group T

(β) 2 · 3a ·m, where a ≥ 0 and (m, 3(32·3
a − 1)) = 1

(γ) 2a ·m, where a ≥ 2 and (m, 2(22
a+1 − 1)) = 1.

2 Proof of Theorem 1

Proof of Proposition 4

Let k be as in the statement of the proposition, and suppose G is a minimal
counterexample. So G has an insoluble normal subgroup N consisting of kth powers.
LetM be a minimal normal subgroup ofG. ThenNM/M is soluble. IfM1 is another
minimal normal subgroup of G, then G embeds in G/M×G/M1 and so N is soluble,
a contradiction. Hence M is the unique minimal normal subgroup of G and M ≤ N .
Moreover M is non-abelian (otherwise N would be soluble), so CG(M) = 1, M = T r

for some non-abelian simple group T , and G embeds in Aut(M) = Aut(T ) o Sr.
By the choice of k, (Aut(T ))[k] does not contain T , and so there exists t ∈

T \ Aut(T )[k]. We claim that the element n = (t, 1, . . . , 1) ∈ T r = M is not a
kth power in G. To see this, suppose n = xk where x = (x1, . . . , xr)σ with each
xi ∈ Aut(T ) and σ ∈ Sr. Then σk = 1. If σ(1) = 1 then t = xk1, contradicting the
fact that t is not a kth power in Aut(T ). So σ has a cycle (1 i2 · · · is) with s ≥ 1.
Calculating the coordinates of xk in positions 1 and is, we get t = x1xi2 · · ·xis and
1 = xisx1 · · ·xis−1 , a contradiction.

It follows from the claim that that G[k] does not contain M , which is a contra-
diction since M ≤ N ⊆ G[k]. This completes the proof.
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Proof of Proposition 5

The main tool for this proof is the following result from [2].

Theorem 7 ([2, Propositions 5,6 and Theorem 7]) Let T be a finite simple group,
and let m > 1 be a positive integer dividing |T |. Suppose Aut(T )[m] contains T .
Then m = pr or 2pr for some prime p. Further, if m = 2 then T = L2(q) (q odd),
L2(q

2) (q even) or L3(4); and if m = pr > 2 or m = 2pr (p odd), then T = L2(p
ml)

or L2(p
ml/2), respectively. Conversely, Aut(T )[m] contains T for all such T and m.

We embark on the proof of Proposition 5.

Suppose k > 1 is an integer which is nice. Assume for a contradiction that there
exists a non-abelian simple group T such that Aut(T )[k] contains T . Then Aut(T )[m]

contains T for any divisor m of k, so we may assume that k is one of the numbers
2ap, 2 · 3ap, 3a · 5p as in the definition of nice numbers.

Consider k = 2ap with a > 1 and p a prime divisor of 22
a+1 − 1. Certainly

4 divides |T |, so Theorem 7 implies that T = L2(2
4l) for some l. This is then

divisible by 23, so if a ≥ 3, Theorem 7 gives T = L2(2
23l′) for some l′. Repeating

this argument, we see that T = L2(2
2al′′) for some l′′. But then p divides |T |, and

Aut(T )[p] contains T , which is a contradiction by Theorem 7.

Now consider k = 2 · 3ap, where a ≥ 1 and p is an odd prime divisor of 33
a ± 1.

Since Aut(T )[2] contains T , Theorem 7 gives T = L2(q) or L3(4). In particular
3 divides |T |, so again by Theorem 7, T = L2(3

3l), and arguing as before, T =
L2(3

3al′). Then p divides |T |, giving a contradiction by Theorem 7.

Finally, consider k = 3a ·5p, where a ≥ 1 and p is an odd prime divisor of 33
a±1.

If 3 does not divide |T | then T is a Suzuki group; but then 5 divides |T | and Aut(T )[5]

contains T , contrrary to Theorem 7. Hence 3 divides |T | and so T = L2(3
3l). Now

argue as in the previous paragraph. This proves one implication in Proposition 5,
and already establishes Theorem 1.

For the converse implication of Proposition 5, assume that k > 1 is not nice. We
need to find a non-abelian simple group T such that Aut(T )[k] contains T .

First consider the case where k is odd. If (k, 3) = 1, one can see using Dirichlet’s
theorem on primes in arithmetic progession that there is a prime p > 3 such that
T = L2(p) has order coprime to k, hence T [k] = T . And if (k, 5) = 1 then there is
a large prime p such that the Suzuki group T = 2B2(2

p) has order coprime to k,
giving the same conclusion. Hence we may assume that 15 divides k. Let k = 3a5bm
with m coprime to 15. As k is not nice we have (m, 33

a ± 1) = 1. Then the group
T = L2(3

3a) has order coprime to 5bm and hence satisfies T ⊆ Aut(T )[k] by Theorem
7.

Now assume k is even and divisible by 4, and write k = 2am with m odd. As
k is not nice, (m, 22

a+1 − 1) = 1. Then by Theorem 7, we have T ⊆ Aut(T )[k] for
T = L2(2

2a).

Finally, assume k = 2l with l odd. If (k, 3) = 1 then we can find a prime p > 3
such that l is coprime to the order of T = L2(p), and then T ⊆ Aut(T )[k] by Theorem
7. So assume 3 divides k and write k = 2 · 3am with m coprime to 6. As k is not
nice, (m, 33

a ± 1) = 1. But then T ⊆ Aut(T )[k] for T = L2(3
3a). This completes the

proof of Proposition 5.
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3 Proof of Theorem 6

As in [2], define a positive integer k to be good if it satisfies condition (i) of Theorem
6, and bad otherwise.

First let k be an odd integer. If k is coprime to 3 or 5, then as above, there
is a simple group T = L2(p) or 2B2(q) of order coprime to k, and then T [k] = T ,
showing that k is bad. So assume k = 3a5bm with a, b ≥ 1 and m coprime to 15.
If (m, 33

a ± 1) = 1 then T = L2(3
3a) has order coprime to 5bm, and also by [2,

Proposition 6], G = T 〈σ〉 satisfies G[k] = T for a field automorphism σ; hence k
is bad. On the other hand, if (m, 33

a ± 1) 6= 1 then we claim that k is good. For
suppose G is a finite group such that G[k] is a subgroup, and suppose G has a non-
abelian composition factor T . By [2, Theorem 4], we have T ⊆ Aut(T )[k]. Hence
we can use Theorem 7 as before to see that T must be L2(3

3al) for some l. But if
p is a prime divisor of (m, 33

a ± 1), then p divides |T |, so T ⊆ Aut(T )[p], which is a
contradiction by Theorem 7. Hence G is soluble and so k is good, proving the claim.

We have now shown that the odd good numbers are precisely those in (a) of
Theorem 6.

Now let k be even. Of course if k is a multiple of the exponent exp(T ) of a simple
group T , then k is bad.

Assume that 4 divides k, and write k = 2am with a ≥ 2 and m odd. If (m, 22
a+1−

1) = 1 then for T = L2(2
2a), the group G = T 〈σ〉, where σ is a field automorphism

of order 2a, satisfies G[k] = T (see [2, Proposition 6]), so k is bad. On the other
hand, if (m, 22

a+1 − 1) 6= 1, then the argument given above for odd numbers shows
that k is good.

Finally, assume that k = 2l with l odd. If l is coprime to 3 then there is a
prime p > 3 such that L2(p) has order coprime to l, and G = PGL2(p) satisfies
G[k] = L2(p) (see [2, Proposition 5]), so k is bad. Now assume 3 divides l, and
write k = 2 · 3a · m with m coprime to 6. If (m, 32·3

a − 1) = 1, then the group
G = L2(3

3a)〈σ〉 satisfies G[k] = T ; and otherwise, the usual argument shows that k
is good. This completes the proof of Theorem 6.
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