Powers in finite groups and a criterion for solubility

Martin W. Liebeck
Department of Mathematics
Imperial College
London SW7 2AZ, UK
m.liebeck@imperial.ac.uk

Aner Shalev
Institute of Mathematics
Hebrew University
Jerusalem 91904, Israel
shalev@math.huji.ac.il

Abstract

We study the set $G^{[k]}$ of $k^{\text {th }}$ powers in finite groups G. We prove that if $G^{[12]}$ is a subgroup then G must be soluble; moreover, 12 is the minimal number with this property. The proof relies on results of independent interest, classifying almost simple groups G and positive integers k for which $G^{[k]}$ contains the socle of G.

1 Introduction

Powers in groups have been extensively studied in connection with the Burnside problems, powerful p-groups and p-adic analytic groups, and other areas. For a group G and a positive integer k, denote by $G^{[k]}$ the set $\left\{x^{k}: x \in G\right\}$ of $k^{t h}$ powers in G. It is known [6] that if G is a powerful p-group, then $G^{[p]}$ is a subgroup of G; Malcev[8] showed that if G is finitely generated nilpotent, then $G^{[k]}$ always contains a subgroup of finite index in G; see also [3], where $G^{[k]}$ is studied for finitely generated linear groups.

In this paper we study the power subsets $G^{[k]}$ in finite groups in general, and in almost simple groups in particular. One of our main results is the following somewhat surprising solubility criterion.

Theorem 1 Let G be a finite group, and suppose that $G^{[12]}$ is a subgroup of G. Then G is soluble.

Some remarks about this result are in order. First, 12 is the minimal number with this property: we shall see below (Proposition 6) that for every $k<12$ there is an almost simple group G such that $G^{[k]}=\operatorname{soc}(G)$, the socle of G. Secondly, the proof of the theorem shows that the same conclusion holds with 12 replaced by any integer $2^{a} 3^{b}$ with $a \geq 2, b \geq 1$, and there are other numbers which also work (see Section 5). Thirdly, the proof relies on the classification of finite simple groups, and requires a detailed study of power subsets in almost simple groups, which is of some independent interest (see Theorem 7 below). A further consequence of this is the following.

[^0]Theorem 2 Let G be a finite group, and suppose that $G^{[3]}$ and $G^{[4]}$ are both subgroups of G. Then G is soluble.

The next result concerns the set of squares in a finite group. Of course if $G^{[2]}=G$, then G has odd order and hence is soluble by the Feit-Thompson theorem. It turns out that finite groups in which the set of squares is a subgroup need not be soluble; however, their non-abelian composition factors are rather restricted:

Theorem 3 Let G be a finite group such that $G^{[2]}$ is a subgroup. Then the nonabelian composition factors of G are among the groups $L_{2}(q)\left(q\right.$ odd), $L_{2}\left(q^{2}\right)(q$ even) and $L_{3}(4)$.

It is easy to see that if $G^{[k]}$ is a subgroup for all values of k, then G must be nilpotent: indeed, if p is a prime divisor of $|G|$ and k is the p^{\prime}-part of $|G|$, then $G^{[k]}$ must be the unique Sylow p-subgroup of G.

The next result connects general finite groups and non-abelian composition factors as far as power subsets are concerned.

Theorem 4 Let G be a finite group and k a positive integer such that $G^{[k]}$ is a subgroup of G. Then for every non-abelian composition factor T of G, either $T \subseteq$ $\operatorname{Aut}(T)^{[k]}$ or the exponent of T divides k. In particular, if k is odd or has at most two prime divisors, then $T \subseteq \operatorname{Aut}(T)^{[k]}$ for all non-abelian composition factors T.

We now discuss our results on almost simple groups - that is, groups whose socle is a non-abelian simple group. Clearly not all elements of a (non-abelian) simple group are squares. Somewhat surprisingly, it turns out that there are simple groups T in which every element is a square in the automorphism group of T :

Proposition 5 Let T be one of the simple groups $L_{2}(q)$ (q odd), $L_{2}\left(q^{2}\right)$ (q even) or $L_{3}(4)$. Then every element of T has a square root in $\operatorname{Aut}(T)$. Moreover, there is a group G of the form $T .2$ such that $G^{[2]}=T$.

The group G in the conclusion is, in the respective cases, $P G L_{2}(q)$ (q odd), $L_{2}\left(q^{2}\right)\langle\sigma\rangle\left(q\right.$ even, σ a field automorphism of order 2), or $L_{3}(4)\langle\sigma\rangle(\sigma$ a graph-field automorphism). Other results on squares in finite simple groups and their proportion can be found in [7].

Our next result gives further examples for simple groups.
Proposition 6 (i) Let $k=p^{r}>2$ with p prime, and let $T=L_{2}\left(p^{k l}\right)$ for some $l \geq 1$. Then every element of T has a $k^{\text {th }}$ root in $\operatorname{Aut}(T)$. Moreover, if $G=T\langle\sigma\rangle$, where σ is a field automorphism of order k, then $G^{[k]}=T$.
(ii) Let $k=2 p^{r}$ with p an odd prime, and let $T=L_{2}\left(p^{k l / 2}\right)$ for some $l \geq 1$. Then every element of T has a $k^{\text {th }}$ root in $\operatorname{Aut}(T)$. Moreover, if $G=P G L_{2}\left(p^{k l / 2}\right)\langle\sigma\rangle$, where σ is a field automorphism of order $k / 2$, then $G^{[k]}=T$.

Our next theorem shows that there are no further examples of this phenomenon.
Theorem 7 Let T be a finite simple group, and let $k>1$ be a positive integer dividing $|T|$. Suppose $\operatorname{Aut}(T)^{[k]}$ contains T. Then $k=p^{r}$ or $2 p^{r}$ for some prime p. Further, if $k=2$ then $T=L_{2}(q)$ or $L_{3}(4)$ is as in Proposition 5; and if $k=p^{r}>2$ or $k=2 p^{r}$ (p odd), then $T=L_{2}\left(p^{k l}\right)$ or $L_{2}\left(p^{k l / 2}\right)$ is as in Proposition 6.

Note that the assumption that k divides $|T|$ can be made without loss of generality, since if $k=a b$ where a divides $|T|$ and $(|T|, b)=1$, then $\operatorname{Aut}(T)^{[k]}$ contains T if and only if $\operatorname{Aut}(T)^{[a]}$ contains T.

The next result is immediate from Theorem 7.

Corollary 8 (i) If T is a finite simple group with $T \neq L_{2}(q), L_{3}(4)$, and k is a positive integer such that $\operatorname{Aut}(T)^{[k]}$ contains T, then k is coprime to $|T|$.
(ii) If G is a finite almost simple group, then $G^{[p]}$ is a subgroup of G for at most one odd prime p dividing $|\operatorname{soc}(G)|$.

The layout of the paper is as follows. Section 2 is devoted to our examples of almost simple groups G with the property that $G^{[k]}$ contains $\operatorname{soc}(G)$ given in Propositions 5 and 6. In Section 3 we show that these are the only such examples, thereby proving Theorem 7, and also deduce Corollary 8. Section 4 is devoted to general finite groups. We start it with the proof of Theorem 4, and use this to deduce Theorems 1, 2 and 3. Finally in Section 5 we investigate the set of numbers k for which the assumption that $G^{[k]}$ is a subgroup implies that G is soluble.

2 Almost simple groups: examples

First we prove Proposition 5. Let T be one of the simple groups in the statement of the proposition. Elements of odd order in T are squares, so we need only handle elements of even order.

First consider $T=L_{2}(q)$ with q odd. Let $G=P G L_{2}(q)$. If $x \in T$ is an element of even order, then its order divides $\frac{1}{2}(q+\epsilon)$ for some $\epsilon \in\{ \pm 1\}$, and there is an element $y \in G$ of order $q+\epsilon$ such that $x \in\left\langle y^{2}\right\rangle$. Hence $G^{[2]}=T$.

Now let $T=L_{2}\left(q^{2}\right)$ with q even, and $G=T\langle\sigma\rangle$ where σ is an involutory field automorphism. For $\alpha \in \mathbb{F}_{q^{2}}$, set

$$
u(\alpha)=\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right)
$$

It is well known that every element of even order in T is conjugate to $u(1)$. For $\alpha \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ we have $(u(\alpha) \sigma)^{2}=u\left(\alpha+\alpha^{\sigma}\right)$. It follows that $u(1)$, and hence all elements of even order, are squares in G, and so $G^{[2]}=T$.

Finally, for $T=L_{3}(4)$ and $G=T\langle\sigma\rangle$ with σ a graph-field automorphism, the conclusion can be checked using [1]. This completes the proof of Proposition 5.

Now we prove Proposition 6. First consider part (i). Let $k=p^{r}, T=L_{2}\left(p^{k l}\right)$ and $G=T\langle\sigma\rangle$ as in the statement. Define $u(\alpha)$ as above, for $\alpha \in F:=\mathbb{F}_{p^{k l}}$. First assume p is odd. Then every element in T of order divisible by p is conjugate to $u(1)$ or $u(\beta)$ with $\beta \in F$ non-square. We have $(u(\alpha) \sigma)^{k}=u(\operatorname{Tr}(\alpha))$, where Tr is the trace $\operatorname{map} F \mapsto F_{p^{l}}$. Since $T r$ is surjective, this shows that $u(1)$ and $u(\beta)$ are both $k^{t h}$ powers in G, as required. Finally, for $p=2$, every element of even order in T is conjugate to $u(1)$, and the same proof applies.

Now consider part (ii). Let $k=2 p^{r}$ with p an odd prime, and let $G=$ $P G L_{2}\left(p^{k l / 2}\right)\langle\sigma\rangle$ be as in the proposition. For $x \in T=\operatorname{soc}(G)$, Proposition 5 shows that $x=y^{2}$ for some $y \in P G L_{2}\left(p^{k l / 2}\right)$. If y has order divisible by p, then y is in
T and has order p, and as in (i), there exists $z \in G$ such that $y=z^{p^{r}}$; the same holds trivially if y has order coprime to p. Hence $x=z^{2 p^{r}}=z^{k}$, and the proof is complete.

3 Almost simple groups: Proof of Theorem 7

We begin with a preliminary result for general finite groups which will be used frequently in the proof.

Lemma 3.1 Let G be a finite group with a normal subgroup T such that G / T is cyclic of order k. Write $G=T\langle\sigma\rangle$ where $\sigma^{k} \in T$. Suppose $y \in G^{[k]} \backslash T^{[k]}$. Then there exists i with $1 \leq i \leq k-1$ such that $y^{\sigma^{i}}$ is T-conjugate to y. In particular, if k is prime then y^{σ} is T-conjugate to y.

Proof. Write $y=x^{k}$. There exist $t \in T$ and $1 \leq i \leq k-1$ such that $x=t \sigma^{-i}$. Observe that

$$
y^{\sigma^{i}}=\left(\left(t \sigma^{-i}\right)^{k}\right)^{\sigma^{i}}=\left(\left(t \sigma^{-i}\right)^{k}\right)^{t}=y^{t} .
$$

The first assertion follows. For the second assertion, choose j such that $\sigma^{i j} \equiv$ $\sigma \bmod T$, and observe that y^{σ} is T-conjugate to $y^{\left(\sigma^{2}\right)^{j}}$, which is T-conjugate to y.

Now we embark on the proof of Theorem 7. Suppose T is a finite simple group and $k>1$ is an integer dividing $|T|$ such that $\operatorname{Aut}(T)^{[k]}$ contains T.

Lemma 3.2 If T is alternating or sporadic, then $T=A_{5}$ or A_{6} and $k=2$.
Proof. Since $\operatorname{Out}(T)$ is 2 or 2^{2} for these groups, k must be 2. Note that $A_{5} \cong L_{2}(5)$ and $A_{6} \cong L_{2}(9)$ appear in the conclusion by Theorem 5 . For $n \geq 7$, $T=A_{n}$ does not occur, since for example permutations of cycle shape $(4,2)$ are not squares in S_{n}. And for T sporadic, one checks using the character tables in [1] that for those groups T which possess outer automorphisms, there are elements in T which have no square root in $\operatorname{Aut}(T)$.

Lemma 3.3 The conclusion of Theorem 7 holds if $T=L_{2}(q)$ or $L_{3}(4)$.
Proof. For $L_{3}(4)$ the result can be checked using [1]. So suppose that $T=L_{2}(q)$ and that $T \subseteq \operatorname{Aut}(T)^{[k]}$ for some $k>1$ dividing $|T|$. Let p be a prime dividing k, and let p^{r} be the p-part of k.

Assume first that p is odd and does not divide q. Then p divides $q-\epsilon$ with $\epsilon= \pm 1$. Let $x \in T$ be an element of order $(q-\epsilon) /(2, q-\epsilon)$. Clearly $x \notin T^{[p]}$. Hence $x \in(T\langle\sigma\rangle)^{[p]}$ where σ is a field automorphism of order p. By Lemma 3.1 this implies that x is T-conjugate to x^{σ}. But this is a contradiction as the only elements of $\langle x\rangle$ which are T-conjugate to x are $x^{ \pm 1}$.

If p is odd and divides q, then since $T \subseteq \operatorname{Aut}(T)^{[p]}$, there must be an element of order p^{r} in $\operatorname{Out}(T)$, and hence $q=p^{p^{r} l}$ for some $l \geq 1$.

Now suppose $p=2$ and $p^{r}=2^{r} \geq 4$. If q is odd then 4 divides $q-\epsilon$ with $\epsilon= \pm 1$ and we let x be an element of order $(q-\epsilon) / 2$. Then $x \notin T^{[2]}$, and so $x \in(T\langle\sigma\rangle)^{[4]}$
where σ induces an outer automorphism of order 4 ; but x is not T-conjugate to x^{σ} for such an automorphism, so this contradicts Lemma 3.1. If q is even then T has an outer automorphism of order 2^{r}, so $q=2^{2^{r} l}$ for some l.

Next assume that $p=p^{r}=2$. Then either q is odd, or q is even and T has an outer automorphism of order 2 so that $q=2^{2 l}$ for some l.

From the above, we conclude that one of the following holds:

$$
\begin{aligned}
& k=p^{r}, q=p^{p^{r} l} \\
& k=2, q \text { odd } \\
& k=2 p^{r}, q=p^{p^{r} l}, p \text { odd }
\end{aligned}
$$

These are precisely the possibilities on the conclusion of Theorem 7.

We assume from now on that $T \neq L_{2}(q)$ or $L_{3}(4)$. Let p be a prime divisor of k, so that $\operatorname{Aut}(T)^{[p]}$ contains T.

Lemma 3.4 The group T is not $L_{n}(q)$.
Proof. Suppose $T=L_{n}(q)$. By assumption $n \geq 3$ and $(n, q) \neq(3,2),(3,4)$.
Assume first that $p \mid q-1$ and $p \geq 3$. Let $\lambda \in \mathbb{F}_{q}^{*}$ have order $q-1$ and define $x=\operatorname{diag}\left(a(\lambda, 1), \lambda^{-2}, 1, \ldots, 1\right) Z \in T$, where Z is the group of scalars and

$$
a(\lambda, \beta)=\left(\begin{array}{ll}
\lambda & \beta \tag{1}\\
0 & \lambda
\end{array}\right) .
$$

For $q>4$, the centralizer of x in $P G L_{n}(q)$ consists of elements of the form $\operatorname{diag}(a(\alpha, \beta), \gamma, A) Z$, and x cannot be the $p^{\text {th }}$ power of one of these as λ is not a $p^{t h}$ power in \mathbb{F}_{q}^{*}. Hence x is not a $p^{t h}$ power in $P G L_{n}(q)$; a similar argument gives the same conclusion when $q=4$. It follows that x must be a $p^{t h}$ power in a group $T\langle\sigma\rangle$, where σ involves a field automorphism of order p (i.e. σ is a product of a (possibly trivial) diagonal automorphism and such a field automorphism). Then x is T-conjugate to x^{σ}, by Lemma 3.1. But this is not the case, as can be seen by consideration of the eigenvalues of x and x^{σ}.

Now assume that $p=2$ and q is odd. Let $A \in G L_{2}(q)$ be an element of order $q^{2}-1$ with eigenvalues λ, λ^{q} over $\mathbb{F}_{q^{2}}$, and define $x=\operatorname{diag}\left(A, \lambda^{-q-1}, 1, \ldots, 1\right) Z \in T$. By considering the centralizer of x as above, we see that it is not a square in $P G L_{n}(q)$. Therefore x must be a square in a group $T\langle\sigma\rangle$ where σ involves an involutory field, graph or graph-field automorphism of T. A graph automorphism inverts the eigenvalues of x, while an involutory field automorphism sends the eigenvalue , λ^{-q-1} to , $\lambda^{-q q_{0}-q_{0}}$ where $q=q_{0}^{2}$. Hence we see that x cannot be T-conjugate to x^{σ}, contradicting Lemma 3.1.

This deals with the case where $p \mid q-1$, so assume from now on that p does not divide $q-1$. If $p>2$ the outer automorphisms of T of order p are field automorphisms, while if $p=2$ they are field, graph or graph-field automorphisms.

Assume $p>2$. If $p \mid q$, take $x=\operatorname{diag}\left(a(\lambda, 1), \lambda^{-2}, 1, \ldots, 1\right) Z \in T$ with $|\lambda|=q-1$ as before. Then x is not a $p^{t h}$ power in T, and also is not conjugate to x^{σ} if σ is a field automorphism of order p. And if p does not divide q, choose e minimal such that $p \mid q^{e}-1$ and let

$$
x(\lambda)=\operatorname{diag}\left(\lambda, \lambda^{q}, \ldots, \lambda^{q^{e-1}}\right) \in G L_{1}\left(q^{e}\right) \leq G L_{e}(q)
$$

for $\lambda \in \mathbb{F}_{q^{e}}$. For λ of order $\frac{q^{e}-1}{q-1}$, let $x=\operatorname{diag}\left(x(\lambda), I_{n-e}\right) Z \in T$. The we see as usual that x is not a $p^{t h}$ power in T and is not conjugate to x^{σ} if σ is a field automorphism of order p. This handles the case $p>2$.

Finally, let $p=2$. As p does not divide $q-1$ by assumption, q is even. If $q>4$ let $x=\operatorname{diag}\left(a(\lambda, 1), \lambda^{-2}, 1, \ldots, 1\right) Z \in T$ with $|\lambda|=q-1$ and argue as above. If $q=2$ or 4 and $n \geq 5$, let $x(\lambda) \in S L_{3}(q)$ be as above with $e=3$ and $\lambda \in \mathbb{F}_{q^{3}}$ of order $q^{2}+q+1$, and define $x=\operatorname{diag}\left(x(\lambda), J_{n-3}\right)$ where J_{n-3} is a unipotent Jordan block of size $n-3$. Then x is not a square in T (as J_{n-3} is not a square in $S L_{n-3}(q)$), and x is not conjugate to x^{σ} for σ an involutory field, graph or graph-field automorphism of T.

This leaves the cases $T=L_{4}(2)$ and $L_{4}(4)$ (since $(n, q) \neq(3,2),(3,4)$ by assumption). The first of these is the alternating group A_{8} which has already been handled. And $L_{4}(4)$ has an element x of order 30 of the form $\operatorname{diag}(a(\lambda, 1), M)$ where λ has order 3 and $M \in G L_{2}(4)$ has order 15 and determinant λ; we argue in the usual way that x is not a square in $\operatorname{Aut}(T)$.

Lemma 3.5 T is not $U_{n}(q)$.
Proof. Suppose $T=U_{n}(q)$. Then $n \geq 3$ and $(n, q) \neq(3,2)$.
The proof is quite similar to the previous lemma. Assume first that $p \mid q+1$ and $n \geq 4$. Let $x=\operatorname{diag}\left(a(\lambda, \beta), \lambda^{-2}, 1, \ldots, 1\right) Z \in T$ for $\lambda \in \mathbb{F}_{q^{2}}$ of order $q+1$ and suitable $\beta \in \mathbb{F}_{q^{2}}$ (where $a(\lambda, \beta)$ is as in (1) and matrices are taken relative to a basis with first three vectors e, f, d where e, f are singular, $(e, f)=1$ and d is nonsingular and perpendicular to e, f). If $q>2$ we can argue as in the previous lemma that x is not a $p^{\text {th }}$ power in $P G U_{n}(q)$ and is not conjugate to x^{σ} for any further outer automorphism σ of T of order p. And if $q=2$ then $p=3$ and we take $x=\operatorname{diag}\left(a(\lambda, \beta), \lambda^{-1}, \lambda^{-1}, 1, \ldots, 1\right) Z \in T$ with $|\lambda|=3$ and argue similarly.

Now assume $p \mid q+1$ and $n=3$ (so $q>2$). Again take $x=\operatorname{diag}\left(a(\lambda, \beta), \lambda^{-2}\right) Z \in$ T, with λ of order $q+1$. As usual, x is not a $p^{\text {th }}$ power in $P G U_{3}(q)$, and is not conjugate to x^{σ} for σ a field automorphism unless $p=2$ and $q=5$. So it remains to handle $T=U_{3}(5)$ with $p=2$; this can be done using [1].

Next assume that $p \mid q$. If $q>2$, take $x=\operatorname{diag}\left(a(\lambda, \beta), \lambda^{-2}, 1, \ldots, 1\right) Z \in T$ with λ of order $q+1$ again and argue as before. And in the case where $q=2$, take $x=$ $\operatorname{diag}\left(a(\lambda, \beta), \lambda^{-1}, \lambda^{-1}, 1, \ldots, 1\right) Z \in T$ with $|\lambda|=3$.

It remains to deal with the case where p divides neither $q+1$ nor q. Then $p>2$, and any outer automorphism of T of order p is a field automorphism. Choose the first factor in the product $\left(q^{2}-1\right)\left(q^{3}+1\right)\left(q^{4}-1\right) \cdots\left(q^{n}-(-1)^{n}\right)$ that p divides. If it is $q^{i}+1$, take x to be a generator of a cyclic torus of T of type $G U_{1}\left(q^{i}\right)<G U_{i}(q) \leq G U_{n}(q)$ (we must intersect this with $S U_{n}(q)$ and factor out Z); and if it is $q^{2 i}-1$, take x to be a generator of a cyclic torus of type $G L_{1}\left(q^{2 i}\right)<G L_{i}\left(q^{2}\right)<G U_{n}(q)$. Now argue that x is not a $p^{t h}$ power in T and is not conjugate to x^{σ} for σ a field automorphism of order p.

Lemma 3.6 T is not $P S p_{2 n}(q)$.
Proof. Suppose $T=P S p_{2 n}(q)$. Then $n \geq 2$ and $(n, q) \neq(2,2)$.
Assume $p>2$. Then any outer automorphism of T of order p is a field automorphism.

If $p \mid q$, let $A \in S p_{2}(q)$ be an element of order $q+1$, and define $x=\operatorname{diag}\left(A, J_{2 n-2}\right) Z \in$ T, where as before $J_{2 n-2}$ is a unipotent Jordan block of size $2 n-2$. Then $C_{T}(x) \leq$ $\left(S p_{2}(q) \times S p_{2 n-2}(q)\right) / Z$, and since $J_{2 n-2}$ is not a $p^{t h}$ power in $S p_{2 n-2}(q), x$ is not a $p^{\text {th }}$ power in T. Also for a field automorphism σ of order p, x^{σ} is not conjugate to x.

If p does not divide q, let e be minimal such that $p \mid q^{e}-\delta$ for some $\delta= \pm 1$. If $\delta=-1$, let x be a generator of a cyclic torus of T of order $q^{e}+1\left(\right.$ or $\left.\left(q^{e}+1\right) / 2\right)$ in a subgroup of type $S p_{2}\left(q^{e}\right) \leq S p_{2 e}(q)$; and if $\delta=+1$, then e is odd and we let x generate a torus of order $q^{e}-1\left(\right.$ or $\left.\left(q^{e}-1\right) / 2\right)$ in a subgroup of type $G L_{1}\left(q^{e}\right) \leq$ $G L_{e}(q) \leq S p_{2 e}(q)$. Then x is not a $p^{t h}$ power in T and x^{σ} is not conjugate to x for a field automorphism σ of order p.

Now assume $p=2$. Then a non-diagonal involutory outer automophism of T involves a field automorphism or, if $n=2$ and $q=2^{2 k+1}$, a graph automorphism. Let $x=\operatorname{diag}\left(A, J_{2 n-2}\right) Z \in T$ again, and argue as before that x is not a square in T and x^{σ} is not conjugate to x for a field automorphism σ of order 2. Finally, in the case where $n=2$ and $q=2^{2 k+1}$ we need also to observe that x^{σ} is not conjugate to x for σ an involutory graph automorphism; this follows as $x=s u$ with $s=\operatorname{diag}\left(A, I_{2}\right)$ and $u=\operatorname{diag}\left(I_{2}, J_{2}\right)$ a long root element of T, so $x^{\sigma}=s^{\sigma} u^{\sigma}$ with u^{σ} a short root element, hence is not conjugate to x.

Lemma 3.7 T is not an orthogonal group.
Proof. Suppose T is orthogonal, so $T=P \Omega(V)=P \Omega_{2 n+1}(q)(q$ odd, $n \geq 3)$ or $P \Omega_{2 n}^{\epsilon}(q)(n \geq 4, \epsilon= \pm)$.

First assume that $p=2$ and q is odd. Let A be a matrix in $G L_{2}(q)$ of order $q^{2}-1$ with eigenvalues λ, λ^{q} over $\mathbb{F}_{q^{2}}$. With respect to a suitable basis, there is an element $x=\operatorname{diag}\left(A, A^{-T}, \lambda^{q+1}, \lambda^{-q-1}, I\right)$ which lies in a $\operatorname{subgroup} G L_{3}^{*}(q)$ of T (the subgroup of matrices of square determinant in $\left.G L_{3}(q)\right)$. We argue in the usual way that x is not a square in $P \Delta(V)$ (notation of [5]) and is not conjugate to x^{σ} if σ involves an involutory field automorphism.

Now suppose $p=2$ and q is even. In this case we let A be an element of order $q+1$ in $\Omega_{2}^{-}(q)$ and argue in the usual way with an element $x=\operatorname{diag}\left(A, J_{2 n-4}, J_{2}\right)$ in a subgroup $\Omega_{2}^{-}(q) \times \Omega_{2 n-2}^{-\epsilon}(q)$ of T.

Now let $p>2$. If $p \mid q$, let A be an element of order $q+1$ in $\Omega_{2}^{-}(q)$ and let $x=\operatorname{diag}\left(A, J_{2 n-3}, J_{1}\right)$ in a subgroup $\Omega_{2}^{-}(q) \times \Omega_{2 n-2}^{-\epsilon}(q)$. And if p does not divide q, choose e minimal such that $p \mid q^{e}-\delta$ for some $\delta= \pm 1$. If $\delta=-1$, let x be a generator of a cyclic torus of type $\Omega_{2}^{-}\left(q^{e}\right)<\Omega_{2 e}^{-}(q)$, and if $\delta=+1$ (so e is odd), let x generate a cyclic torus of type $G L_{1}\left(q^{e}\right)<G L_{e}(q)<\Omega_{2 e}^{+}(q)$.

With x as in the previous paragraph, we argue in the usual way that x is not a $p^{\text {th }}$ power in T and that x is not conjugate to x^{σ} when $\sigma \in P \Gamma(V)$ (notation of [5]) involves a field automorphism of order p. This completes the proof except in the case where $p=3$ and $T=P \Omega_{8}^{+}(q)$, in which case σ could involve a triality automorphism of T.

So assume finally that $T=P \Omega_{8}^{+}(q)$ and $p=3$.
If $q=3^{a}$, let $x=\operatorname{diag}\left(J_{5}, \lambda, \lambda^{-1}, 1\right)$ lying in a subgroup of type $\Omega_{5}(q) \times \Omega_{3}(q)$, where $\lambda \in \mathbb{F}_{q}$ has order $(q-1) / 2$. Write $x=u s$ with $u=J_{5} \in \Omega_{5}(q)$ and $s=$ $\left(\lambda, \lambda^{-1}, 1\right) \in \Omega_{3}(q)$. Then $x \notin T^{[3]}$ as u is not a cube in T. If σ is an outer automorphism of order 3 involving a triality, then x is not T-conjugate to x^{σ} since
u is not conjugate to u^{σ} (as $u^{\sigma}=J_{4}^{2}$ in a subgroup of type $S p_{4}(q)$); and if σ is a field automorphism then the same conclusion holds since s is not conjugate to s^{σ}.

If q is not a power of 3 , let 3 divide $q-\epsilon(\epsilon= \pm 1)$, let A be an element of order $(q-\epsilon) /(2, q-1)$ in $\Omega_{2}^{\epsilon}(q)$, and let $x=\operatorname{diag}\left(A, J_{4}, J_{2}\right)(q$ even $)$ or $\operatorname{diag}\left(A, J_{5}, J_{1}\right)$ (q odd) lying in a subgroup of type $\Omega_{2}^{\epsilon}(q) \times \Omega_{6}^{\epsilon}(q)$. Now argue as in the previous paragraph.

Lemma 3.8 T is not an exceptional group of Lie type.

Proof. Suppose T is an exceptional simple group of Lie type over \mathbb{F}_{q}. Exclude $G_{2}(2)^{\prime}=U_{3}(3)$ and ${ }^{2} G_{2}(3)^{\prime}=L_{2}(8)$.

Assume first that $p>2$. Then the only outer automorphisms of T of order p are field automorphisms, together with diagonal (and field-diagonal) automorphisms when $p=3, T=E_{6}^{\epsilon}(q)$ and $3 \mid q-\epsilon$.

If $p \mid q$, then except for $T={ }^{2} G_{2}(q)$, there is a fundamental $A=S L_{2}(q)$ in T, with centralizer D (where $D=E_{7}(q), D_{6}(q), A_{5}^{\epsilon}(q), C_{3}(q), A_{1}(q)$ or $A_{1}\left(q^{3}\right)$, according as $T=E_{8}(q), E_{7}(q), E_{6}^{\epsilon}(q), F_{4}(q), G_{2}(q)$ or ${ }^{3} D_{4}(q)$ respectively). Let $s \in A$ be an element of order $q+1$, and let $u \in D$ be a regular unipotent element. Define $x=s u$. Then $C_{T}(x) \leq A D$, and so x is not a $p^{t h}$ power in T (as u is not a $p^{t h}$ power in $D)$. Also x is not conjugate to x^{σ} for σ a field automorphism of order p, so this completes the proof in this case, except for $T={ }^{2} G_{2}(q)$.

For $T={ }^{2} G_{2}(q), p=3, q=3^{2 k+1}>3$, we require a more detailed argument. Adopting the notation of [2, Table 2.4], T has a Sylow 3-subgroup $P=\{x(t, u, v)$: $\left.t, u, v \in \mathbb{F}_{q}\right\}$ of order q^{3} and exponent 9 , where

$$
x(t, u, v) \cdot x\left(t^{\prime}, u^{\prime}, v^{\prime}\right)=x\left(t+t^{\prime}, u+u^{\prime}+t^{\prime} t^{3 \theta}, v+v^{\prime}-t^{\prime} u+\left(t^{\prime}\right)^{2} t^{3 \theta}\right)
$$

θ being the map $t \rightarrow t^{3^{k}}$. Then $Z(P)=\left\{x(0,0, v): v \in \mathbb{F}_{q}\right\}$. If $y=x(1,0,0)$ then y has order 9 (so is not a cube in T), $y^{3} \in Z(P)$ and $C_{T}(y)=\langle y\rangle Z(P)$ (see [9]). If σ is an outer automorphism of T of order 3 , then it is a field automorphism and we can take it to act on P as $x(t, u, v) \rightarrow x\left(t^{\sigma}, u^{\sigma}, v^{\sigma}\right)$. Suppose y is a cube in $T\langle\sigma\rangle$, say $y=(x \sigma)^{3}$ with $x \in T$. Then $x \sigma \in C_{T\langle\sigma\rangle}(y)=\langle y\rangle Z(P)\langle\sigma\rangle$, so $x=y^{k} x(0,0, v)$ for some integer k and $v \in \mathbb{F}_{q}$. But then since y centralizes $x(0,0, v)$ we have $(x \sigma)^{3}=y^{3 k} x\left(0,0, v^{1+\sigma+\sigma^{2}}\right)$ which has order dividing 3 , so cannot equal y. Hence y is not a cube in $T\langle\sigma\rangle$, completing the proof in this case.

Now assume p does not divide q (still with $p>2$). Postpone the case where $p=3, T=E_{6}^{\epsilon}(q)$ and $3 \mid q-\epsilon$. From [4, Section 2], we check that with a few exceptions (listed below), there is a cyclic maximal torus of T of order divisible by p. If we take x to be a generator of this torus, then x is not a $p^{t h}$ power in T, and is not conjugate to x^{σ} if σ is a field automorphism of order p. The exceptions are as follows:

T	$E_{7}(q)$	$E_{6}(q)$	${ }^{2} E_{6}(q)$	$F_{4}(q)$	${ }^{2} G_{2}(q)$
p	q_{4}, q_{8}	q_{6}	q_{3}	q_{4}	q_{2}

Here q_{i} denotes a primitive prime divisor of $q^{i}-1$. For the $T=E_{7}(q)$ case, take x to be an element of order $\frac{q^{4}-1}{q-1}$ or $\frac{q^{4}+1}{2, q-1)}$ in a subsystem subgroup $A_{3}(q)$ or $D_{4}(q)$ in the respective cases $p=q_{4}, q_{8}$. If $x=y^{p}$ for some $y \in T$ then y lies in a maximal torus; but we see from [4] that there is no maximal torus in which x is a $p^{t h}$ power. Hence x is not a $p^{t h}$ power in T. And if σ is a field automorphism of order p, then
from the action of σ on $A_{3}(q)$ or $D_{4}(q)$, we see that x is not conjugate to x^{σ}. The cases $T=E_{6}^{\epsilon}(q)$ are handled similarly by taking x to be an element of order $\frac{q^{6}-1}{q-\epsilon}$ in a subgroup $A_{5}^{\epsilon}(q)$. Finally, in the $F_{4}(q)$ and ${ }^{2} G_{2}(q)$ cases we take x of order $\frac{q^{4}-1}{(2, q-1)}$ or $\frac{q+1}{2}$ in a maximal torus of the form $\langle x\rangle \times(2, q-1)$.

Now consider the postponed case where $p=3, T=E_{6}^{\epsilon}(q)$ and $3 \mid q-\epsilon$. In a subsystem subgroup $A_{1}(q) A_{5}^{\epsilon}(q)$, take an element $x=y z$, where $y \in A_{1}(q)$ has order $q-\epsilon$ and z is a regular unipotent element in $A_{5}^{\epsilon}(q)$. If $T .3$ denotes the group generated by inner and diagonal automorphisms of T, then $C_{T .3}(x)=\langle y\rangle U$ where U is a unipotent group, so x is not a cube in T.3. Also x is not conjugate to x^{σ} when σ involves a field automorphism of order 3 .

This completes the case where $p>2$. Now suppose $p=2$. Note that $T \neq{ }^{2} B_{2}(q)$, ${ }^{2} G_{2}(q)$ or ${ }^{2} F_{4}(q)(q>2)$ as these have no outer automorphisms of order 2.

Assume q is odd. For $T=E_{8}(q), F_{4}(q),{ }^{3} D_{4}(q)$ or $G_{2}(q)\left(q \neq 3^{k}\right)$, take x to be a generator of a cyclic maximal torus of even order (which exists by [4]), and argue as usual that x is not a square in T and is not conjugate to x^{σ} for σ an involutory field automorphism. The other groups $E_{7}(q), E_{6}^{\epsilon}(q), G_{2}(q)\left(q=3^{k}\right)$ possess diagonal or graph automorphisms of order 2 , so require a little more care.

For $T=E_{7}(q)$ we work in a subsystem subgroup $A_{2}(q) A_{5}(q)$. This has normalizer $N=A_{2}(q) A_{5}(q) .2$ in the inner-diagonal group $T .2$. The outer involution acts diagonally on the $A_{5}(q)$ factor and as an inner automorphism on $A_{2}(q)$. Take an element x in the factor $A_{2}(q) \cong S L_{3}(q)$ of order $q^{2}-1$. Then $C_{T .2}(x) \leq N$, so we see that x is not a square in $T .2$. Also x is not conjugate to x^{σ} when σ involves an involutory field automorphism, so this case is done.

For $T=E_{6}^{\epsilon}(q)$, take x to be an element of order $q^{4}-1$ in a subsystem subgroup $A_{4}^{\epsilon}(q) \cong S L_{5}^{\epsilon}(q)$. No torus in T has an element of order $2\left(q^{4}-1\right)$ (see [4]), so x is not a square in T. If σ is a graph automorphism of T, it acts as a graph automorphism on a suitable subgroup $A_{4}^{\epsilon}(q)$, and hence we see that x is not conjugate to x^{σ}. Also x is not conjugate to x^{σ} when σ involves an involutory field automorphism.

Now consider $T=G_{2}(q)$ with $q=3^{k}$. Let $q \equiv \epsilon \bmod 4$ with $\epsilon= \pm 1$. There is a subgroup $A_{1} \tilde{A}_{1}$ in T, a commuting product of two $S L_{2}(q)$'s where A_{1} is generated by long root groups and \tilde{A}_{1} by short root groups. Let $x=u s$ with $u \in A_{1}$ of order 3 and $s \in \tilde{A}_{1}$ of order $q-\epsilon$. Then $C_{T}(x) \leq A_{1} \tilde{A}_{1}$, and hence we see that $x \notin T^{[2]}$. If σ is an involutory outer automorphism of T involving a graph automorphism, then x^{σ} is not T-conjugate to x (since the long root element u is not conjugate to the short root element u^{σ}); and if σ is a field automorphism then the same conclusion holds as s^{σ} is not conjugate to s.

Now assume that q is even (still with $p=2$). Use [1] for the case where $T={ }^{2} F_{4}(2)^{\prime}$. Since we have ruled out T of type ${ }^{2} B_{2}$ or ${ }^{2} F_{4}$, this leaves T of type $E_{8}, E_{7}, E_{6}^{\epsilon}, F_{4}, G_{2}$ or ${ }^{3} D_{4}$. For all but the E_{6}^{ϵ} and F_{4} cases we can argue exactly as for the $p \mid q$ case done above for $p>2$. For E_{6}^{ϵ} and F_{4} there are graph automorphisms to take into account.

In the case where $T=E_{6}^{\epsilon}(q)$, in a subsystem subgroup $A_{1}(q) A_{5}^{\epsilon}(q)$ take $x=u s$ where $u \in A_{1}(q)$ is an involution and $s \in A_{5}^{\epsilon}(q)$ an element of order $\frac{q^{6}-1}{q-\epsilon}$. Then $C_{T}(x)=C_{A_{1}(q)}(u)\langle s\rangle$, so x is not a square in T. Also a graph automorphism σ normalizing $A_{1}(q) A_{5}^{\epsilon}(q)$ acts as a graph automorphism on $A_{5}^{\epsilon}(q)$, hence inverts x, so x is not T-conjugate to x^{σ}. And x is not conjugate to x^{σ} when σ involves an involutory field or graph-field automorphism.

Finally, consider $T=F_{4}(q)$. In a subsystem subgroup $A_{2}(q) A_{2}(q)$ take $x=u s$, where u is a regular unipotent element of the first factor, and s an element of order $q^{2}+q+1$ in the second. Since $C_{T}(s)=A_{2}(q)\langle s\rangle, x$ is not a square in T. For σ a graph automorphism, $x^{\sigma}=u^{\sigma} s^{\sigma}$ is not conjugate to x, as u and u^{σ} are not conjugate, one being regular in a long root A_{2}, the other in a short root A_{2}. And as usual, x is not conjugate to x^{σ} when σ is an involutory field automorphism. This completes the proof.

4 General finite groups

First we prove Theorem 4. Let G be a finite group and suppose $G^{[k]}$ is a subgroup of G. The proof is by induction on $|G|$. Let N be a minimal normal subgroup of G. Then $(G / N)^{[k]}$ is a subgroup, hence by induction its non-abelian composition factors satisfy the conclusion of the theorem. If N is abelian then the theorem follows. So we may assume that $N=T^{r}$ for some non-abelian simple group T. It suffices to show that either $T \subseteq \operatorname{Aut}(T)^{[k]}$ or the exponent of T divides k. Assume the contrary, and let $t \in T \backslash \operatorname{Aut}(T)^{[k]}$.

Let $\bar{G}=G / C_{G}(N)$. Then \bar{G} embeds in $\operatorname{Aut}(N)=\operatorname{Aut}(T) 乙 S_{r}$. We identify N with its image in \bar{G}.

We claim that the element $n=(t, 1, \ldots, 1) \in T^{r}=N$ is not a $k^{t h}$ power in \bar{G}. To see this, suppose $n=x^{k}$ where $x=\left(x_{1}, \ldots, x_{r}\right) \sigma$ with each $x_{i} \in \operatorname{Aut}(T)$ and $\sigma \in S_{r}$. Then $\sigma^{k}=1$. If $\sigma(1)=1$ then $t=x_{1}^{k}$, contradicting the fact that t is not a $k^{t h}$ power in Aut (T). So σ has a cycle $\left(1 i_{2} \cdots i_{s}\right)$ with $s \geq 1$. Calculating the coordinates of x^{k} in positions 1 and i_{s}, we get $t=x_{1} x_{i_{2}} \cdots x_{i_{s}}$ and $1=x_{i_{s}} x_{1} \cdots x_{i_{s-1}}$, a contradiction.

It follows that $G^{[k]}$ is a normal subgroup of G which does not contain N. Hence $G^{[k]} \cap N=1$. Therefore all $k^{t h}$ powers in N are trivial, which means that k is divisible by the exponent of T. This contradicts our assumption on T, and completes the proof of the first assertion of Theorem 4. The last assertion follows using Burnside's $p^{a} q^{b}$ theorem.

Finally we deduce Theorems 1,2 and 3 . Suppose G is a finite group such that $G^{[k]}$ is a subgroup, where k divides 12 . Then Theorem 4 shows that $T \subseteq \operatorname{Aut}(T)^{[k]}$ for every composition factor T of G.

If $k=2$ then Theorem 7 shows that the non-abelian composition factors of G are among the groups $L_{2}(q)(q$ odd $), L_{2}\left(q^{2}\right)(q$ even $)$ and $L_{3}(4)$, proving Theorem 3.

Now assume that both $G^{[3]}$ and $G^{[4]}$ are subgroups of G. Suppose G is not soluble, and let T be a non-abelian composition factor. Since all non-abelian simple groups have order divisible by 4 , Theorem 7 shows that $T=L_{2}(q)$ with q even. Then T has order divisible by 3 , so Theorem 7 now gives a contradiction. Hence G is soluble, proving Theorem 2.

Finally, assume that $G^{[12]}$ is a subgroup of G. If T is a non-abelian composition factor, then $T \subseteq \operatorname{Aut}(T)^{[12]} \subseteq \operatorname{Aut}(T)^{[4]}$, so again Theorem 7 gives $T=L_{2}(q)$ with q even. But then 12 divides $|T|$, so Theorem 7 gives a contradiction. Hence G is soluble, and Theorem 1 is proved.

5 Good and bad numbers

Define a positive integer k to be good if the assumption that $G^{[k]}$ is a subgroup implies that G is soluble, and bad otherwise. We observed in the Introduction that 12 is the minimal good number.

Proposition 5.1 The following numbers are good:
(i) $2^{a} p^{b}$ with $a \geq 2, b \geq 1$ and $p \in\{3,5,17\}$;
(ii) 105 .

Proof. We copy the proof of Theorem 1. Let k one of the numbers in (i) or (ii) and suppose $G^{[k]}$ is a subgroup of G. Assume G has a non-abelian composition factor T. Then $T \subseteq \operatorname{Aut}(T)^{[k]}$ by Theorem 4. For k as in (i), Theorem 7 implies that $T=L_{2}\left(2^{4 r}\right)$ for some r; but then $|T|$ is divisible by the primes $p \in\{3,5,17\}$, so Theorem 7 gives a contradiction. Finally, assume $k=105$. If $|T|$ is divisible by 3 , then Theorem 7 implies that $T=L_{2}\left(3^{3 r}\right)$; but then $|T|$ is divisible by 7 and Theorem 7 gives a contradiction. And if $|T|$ is coprime to 3 , then T is a Suzuki group; then 5 divides $|T|$ and once again Theorem 7 gives a contradiction.

Proposition 5.2 The following numbers are bad:
(i) p^{a} and $2 p^{a}$ with p prime;
(ii) numbers coprime to 6 ;
(iii) $3^{a} p^{b}$ with $p>3$ prime and $a, b \geq 1$.

Proof. (i) This is clear from Proposition 6.
(ii) Let k be coprime to 6 . Using Dirichlet's theorem on primes in arithmetic progression, one can see that there is a prime $p>3$ such that $T=L_{2}(p)$ has order coprime to k. Then $T^{[k]}=T$, which shows that k is bad.
(iii) Let $k=3^{a} p^{b}$ as in (iii). If $p \neq 5$ then k is coprime to the order of one of the Suzuki groups $S z(8)$ or $S z(32)$, so k is bad. And if $p=5$ then p does not divide the order of $T=L_{2}\left(3^{3^{a}}\right)$, so Proposition 6 shows that there is a group G with socle T such that $G^{[k]}=T$.

It follows quickly that 20 is the smallest even good number greater than 12 , and 105 is the smallest odd good number.

References

[1] J.H.Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.
[2] D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple K-groups. Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998.
[3] E. Hrushovski, P.H. Kropholler, A. Lubotzky and A. Shalev, Powers in finitely generated groups, Trans. Amer. Math. Soc. 348 (1996), 291-304.
[4] W.M. Kantor and A. Seress, Prime power graphs for groups of Lie type, J. Algebra 247 (2002), 370-434.
[5] P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser. no. 129, Cambridge University Press, 1990.
[6] A. Lubotzky and A. Mann, Powerful p-groups, I: Finite groups, J. Algebra 105 (1987), 484-505.
[7] M.S. Lucido and M.R. Pournaki, Elements with square roots in finite groups, Algebra Colloq. 12 (2005), 677-690.
[8] A.I. Malcev, Homomorphisms onto finite groups, Ivanov Gos. Ped. Inst. Uchen. Zap. Fiz. Mat. Nauki 8 (1958), 49-60.
[9] H.N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.

[^0]: The authors are grateful for the support of an EPSRC grant. The second author acknowledges the support of grants from the Israel Science Foundation and ERC.

 2010 Mathematics Subject Classification: 20D10, 20E07, 20D06

