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Abstract

We study the set G[k] of kth powers in finite groups G. We prove that if G[12]

is a subgroup then G must be soluble; moreover, 12 is the minimal number with
this property. The proof relies on results of independent interest, classifying
almost simple groups G and positive integers k for which G[k] contains the
socle of G.

1 Introduction

Powers in groups have been extensively studied in connection with the Burnside
problems, powerful p-groups and p-adic analytic groups, and other areas. For a
group G and a positive integer k, denote by G[k] the set {xk : x ∈ G} of kth powers
in G. It is known [6] that if G is a powerful p-group, then G[p] is a subgroup of G;
Malcev[8] showed that if G is finitely generated nilpotent, then G[k] always contains a
subgroup of finite index in G; see also [3], where G[k] is studied for finitely generated
linear groups.

In this paper we study the power subsets G[k] in finite groups in general, and
in almost simple groups in particular. One of our main results is the following
somewhat surprising solubility criterion.

Theorem 1 Let G be a finite group, and suppose that G[12] is a subgroup of G.
Then G is soluble.

Some remarks about this result are in order. First, 12 is the minimal number
with this property: we shall see below (Proposition 6) that for every k < 12 there
is an almost simple group G such that G[k] = soc(G), the socle of G. Secondly, the
proof of the theorem shows that the same conclusion holds with 12 replaced by any
integer 2a3b with a ≥ 2, b ≥ 1, and there are other numbers which also work (see
Section 5). Thirdly, the proof relies on the classification of finite simple groups, and
requires a detailed study of power subsets in almost simple groups, which is of some
independent interest (see Theorem 7 below). A further consequence of this is the
following.
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Theorem 2 Let G be a finite group, and suppose that G[3] and G[4] are both sub-
groups of G. Then G is soluble.

The next result concerns the set of squares in a finite group. Of course ifG[2] = G,
then G has odd order and hence is soluble by the Feit-Thompson theorem. It turns
out that finite groups in which the set of squares is a subgroup need not be soluble;
however, their non-abelian composition factors are rather restricted:

Theorem 3 Let G be a finite group such that G[2] is a subgroup. Then the non-
abelian composition factors of G are among the groups L2(q) (q odd), L2(q

2) (q
even) and L3(4).

It is easy to see that if G[k] is a subgroup for all values of k, then G must be
nilpotent: indeed, if p is a prime divisor of |G| and k is the p′-part of |G|, then G[k]

must be the unique Sylow p-subgroup of G.

The next result connects general finite groups and non-abelian composition fac-
tors as far as power subsets are concerned.

Theorem 4 Let G be a finite group and k a positive integer such that G[k] is a
subgroup of G. Then for every non-abelian composition factor T of G, either T ⊆
Aut(T )[k] or the exponent of T divides k. In particular, if k is odd or has at most
two prime divisors, then T ⊆ Aut(T )[k] for all non-abelian composition factors T .

We now discuss our results on almost simple groups – that is, groups whose socle
is a non-abelian simple group. Clearly not all elements of a (non-abelian) simple
group are squares. Somewhat surprisingly, it turns out that there are simple groups
T in which every element is a square in the automorphism group of T :

Proposition 5 Let T be one of the simple groups L2(q) (q odd), L2(q
2) (q even)

or L3(4). Then every element of T has a square root in Aut(T ). Moreover, there is
a group G of the form T.2 such that G[2] = T .

The group G in the conclusion is, in the respective cases, PGL2(q) (q odd),
L2(q

2) 〈σ〉 (q even, σ a field automorphism of order 2), or L3(4)〈σ〉 (σ a graph-field
automorphism). Other results on squares in finite simple groups and their proportion
can be found in [7].

Our next result gives further examples for simple groups.

Proposition 6 (i) Let k = pr > 2 with p prime, and let T = L2(p
kl) for some

l ≥ 1. Then every element of T has a kth root in Aut(T ). Moreover, if G = T 〈σ〉,
where σ is a field automorphism of order k, then G[k] = T .

(ii) Let k = 2pr with p an odd prime, and let T = L2(p
kl/2) for some l ≥ 1. Then

every element of T has a kth root in Aut(T ). Moreover, if G = PGL2(p
kl/2)〈σ〉,

where σ is a field automorphism of order k/2, then G[k] = T .

Our next theorem shows that there are no further examples of this phenomenon.

Theorem 7 Let T be a finite simple group, and let k > 1 be a positive integer
dividing |T |. Suppose Aut(T )[k] contains T . Then k = pr or 2pr for some prime p.
Further, if k = 2 then T = L2(q) or L3(4) is as in Proposition 5; and if k = pr > 2
or k = 2pr (p odd), then T = L2(p

kl) or L2(p
kl/2) is as in Proposition 6.
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Note that the assumption that k divides |T | can be made without loss of gener-
ality, since if k = ab where a divides |T | and (|T |, b) = 1, then Aut(T )[k] contains T
if and only if Aut(T )[a] contains T .

The next result is immediate from Theorem 7.

Corollary 8 (i) If T is a finite simple group with T 6= L2(q), L3(4), and k is a
positive integer such that Aut(T )[k] contains T , then k is coprime to |T |.

(ii) If G is a finite almost simple group, then G[p] is a subgroup of G for at most
one odd prime p dividing |soc(G)|.

The layout of the paper is as follows. Section 2 is devoted to our examples
of almost simple groups G with the property that G[k] contains soc(G) given in
Propositions 5 and 6. In Section 3 we show that these are the only such examples,
thereby proving Theorem 7, and also deduce Corollary 8. Section 4 is devoted to
general finite groups. We start it with the proof of Theorem 4, and use this to
deduce Theorems 1, 2 and 3. Finally in Section 5 we investigate the set of numbers
k for which the assumption that G[k] is a subgroup implies that G is soluble.

2 Almost simple groups: examples

First we prove Proposition 5. Let T be one of the simple groups in the statement
of the proposition. Elements of odd order in T are squares, so we need only handle
elements of even order.

First consider T = L2(q) with q odd. Let G = PGL2(q). If x ∈ T is an element
of even order, then its order divides 1

2(q + ε) for some ε ∈ {±1}, and there is an

element y ∈ G of order q + ε such that x ∈ 〈y2〉. Hence G[2] = T .

Now let T = L2(q
2) with q even, and G = T 〈σ〉 where σ is an involutory field

automorphism. For α ∈ Fq2 , set

u(α) =

(
1 α
0 1

)
.

It is well known that every element of even order in T is conjugate to u(1). For
α ∈ Fq2 \ Fq we have (u(α)σ)2 = u(α + ασ). It follows that u(1), and hence all

elements of even order, are squares in G, and so G[2] = T .

Finally, for T = L3(4) and G = T 〈σ〉 with σ a graph-field automorphism, the
conclusion can be checked using [1]. This completes the proof of Proposition 5.

Now we prove Proposition 6. First consider part (i). Let k = pr, T = L2(p
kl)

and G = T 〈σ〉 as in the statement. Define u(α) as above, for α ∈ F := Fpkl . First
assume p is odd. Then every element in T of order divisible by p is conjugate to
u(1) or u(β) with β ∈ F non-square. We have (u(α)σ)k = u(Tr(α)), where Tr is
the trace map F 7→ Fpl . Since Tr is surjective, this shows that u(1) and u(β) are

both kth powers in G, as required. Finally, for p = 2, every element of even order in
T is conjugate to u(1), and the same proof applies.

Now consider part (ii). Let k = 2pr with p an odd prime, and let G =
PGL2(p

kl/2)〈σ〉 be as in the proposition. For x ∈ T = soc(G), Proposition 5 shows
that x = y2 for some y ∈ PGL2(p

kl/2). If y has order divisible by p, then y is in
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T and has order p, and as in (i), there exists z ∈ G such that y = zp
r
; the same

holds trivially if y has order coprime to p. Hence x = z2p
r

= zk, and the proof is
complete.

3 Almost simple groups: Proof of Theorem 7

We begin with a preliminary result for general finite groups which will be used
frequently in the proof.

Lemma 3.1 Let G be a finite group with a normal subgroup T such that G/T is
cyclic of order k. Write G = T 〈σ〉 where σk ∈ T . Suppose y ∈ G[k] \ T [k]. Then
there exists i with 1 ≤ i ≤ k − 1 such that yσ

i
is T -conjugate to y. In particular, if

k is prime then yσ is T -conjugate to y.

Proof. Write y = xk. There exist t ∈ T and 1 ≤ i ≤ k − 1 such that x = tσ−i.
Observe that

yσ
i

= ((tσ−i)k)σ
i

= ((tσ−i)k)t = yt.

The first assertion follows. For the second assertion, choose j such that σij ≡
σ mod T , and observe that yσ is T -conjugate to y(σ

i)j , which is T -conjugate to y.

Now we embark on the proof of Theorem 7. Suppose T is a finite simple group
and k > 1 is an integer dividing |T | such that Aut(T )[k] contains T .

Lemma 3.2 If T is alternating or sporadic, then T = A5 or A6 and k = 2.

Proof. Since Out(T ) is 2 or 22 for these groups, k must be 2. Note that
A5
∼= L2(5) and A6

∼= L2(9) appear in the conclusion by Theorem 5. For n ≥ 7,
T = An does not occur, since for example permutations of cycle shape (4, 2) are
not squares in Sn. And for T sporadic, one checks using the character tables in [1]
that for those groups T which possess outer automorphisms, there are elements in
T which have no square root in Aut(T ).

Lemma 3.3 The conclusion of Theorem 7 holds if T = L2(q) or L3(4).

Proof. For L3(4) the result can be checked using [1]. So suppose that T = L2(q)
and that T ⊆ Aut(T )[k] for some k > 1 dividing |T |. Let p be a prime dividing k,
and let pr be the p-part of k.

Assume first that p is odd and does not divide q. Then p divides q − ε with
ε = ±1. Let x ∈ T be an element of order (q− ε)/(2, q− ε). Clearly x 6∈ T [p]. Hence
x ∈ (T 〈σ〉)[p] where σ is a field automorphism of order p. By Lemma 3.1 this implies
that x is T -conjugate to xσ. But this is a contradiction as the only elements of 〈x〉
which are T -conjugate to x are x±1.

If p is odd and divides q, then since T ⊆ Aut(T )[p], there must be an element of
order pr in Out(T ), and hence q = pp

rl for some l ≥ 1.

Now suppose p = 2 and pr = 2r ≥ 4. If q is odd then 4 divides q− ε with ε = ±1
and we let x be an element of order (q − ε)/2. Then x 6∈ T [2], and so x ∈ (T 〈σ〉)[4]
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where σ induces an outer automorphism of order 4; but x is not T -conjugate to xσ

for such an automorphism, so this contradicts Lemma 3.1. If q is even then T has
an outer automorphism of order 2r, so q = 22

rl for some l.

Next assume that p = pr = 2. Then either q is odd, or q is even and T has an
outer automorphism of order 2 so that q = 22l for some l.

From the above, we conclude that one of the following holds:

k = pr, q = pp
rl

k = 2, q odd
k = 2pr, q = pp

rl, p odd

These are precisely the possibilities on the conclusion of Theorem 7.

We assume from now on that T 6= L2(q) or L3(4). Let p be a prime divisor of k,
so that Aut(T )[p] contains T .

Lemma 3.4 The group T is not Ln(q).

Proof. Suppose T = Ln(q). By assumption n ≥ 3 and (n, q) 6= (3, 2), (3, 4).

Assume first that p|q − 1 and p ≥ 3. Let λ ∈ F∗q have order q − 1 and define
x = diag(a(λ, 1), λ−2, 1, . . . , 1)Z ∈ T , where Z is the group of scalars and

a(λ, β) =

(
λ β
0 λ

)
. (1)

For q > 4, the centralizer of x in PGLn(q) consists of elements of the form
diag(a(α, β), γ, A)Z, and x cannot be the pth power of one of these as λ is not
a pth power in F∗q . Hence x is not a pth power in PGLn(q); a similar argument gives

the same conclusion when q = 4. It follows that x must be a pth power in a group
T 〈σ〉, where σ involves a field automorphism of order p (i.e. σ is a product of a
(possibly trivial) diagonal automorphism and such a field automorphism). Then x
is T -conjugate to xσ, by Lemma 3.1. But this is not the case, as can be seen by
consideration of the eigenvalues of x and xσ.

Now assume that p = 2 and q is odd. Let A ∈ GL2(q) be an element of order q2−1
with eigenvalues λ, λq over Fq2 , and define x = diag(A, λ−q−1, 1, . . . , 1)Z ∈ T . By
considering the centralizer of x as above, we see that it is not a square in PGLn(q).
Therefore x must be a square in a group T 〈σ〉 where σ involves an involutory field,
graph or graph-field automorphism of T . A graph automorphism inverts the eigen-
values of x, while an involutory field automorphism sends the eigenvalue , λ−q−1

to , λ−qq0−q0 where q = q20. Hence we see that x cannot be T -conjugate to xσ,
contradicting Lemma 3.1.

This deals with the case where p|q − 1, so assume from now on that p does
not divide q − 1. If p > 2 the outer automorphisms of T of order p are field
automorphisms, while if p = 2 they are field, graph or graph-field automorphisms.

Assume p > 2. If p|q, take x = diag(a(λ, 1), λ−2, 1, . . . , 1)Z ∈ T with |λ| = q − 1
as before. Then x is not a pth power in T , and also is not conjugate to xσ if σ is a
field automorphism of order p. And if p does not divide q, choose e minimal such
that p|qe − 1 and let

x(λ) = diag(λ, λq, . . . , λq
e−1

) ∈ GL1(q
e) ≤ GLe(q)
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for λ ∈ Fqe . For λ of order qe−1
q−1 , let x = diag(x(λ), In−e)Z ∈ T . The we see as usual

that x is not a pth power in T and is not conjugate to xσ if σ is a field automorphism
of order p. This handles the case p > 2.

Finally, let p = 2. As p does not divide q − 1 by assumption, q is even. If q > 4
let x = diag(a(λ, 1), λ−2, 1, . . . , 1)Z ∈ T with |λ| = q − 1 and argue as above. If
q = 2 or 4 and n ≥ 5, let x(λ) ∈ SL3(q) be as above with e = 3 and λ ∈ Fq3 of order
q2+q+1, and define x = diag(x(λ), Jn−3) where Jn−3 is a unipotent Jordan block of
size n− 3. Then x is not a square in T (as Jn−3 is not a square in SLn−3(q)), and x
is not conjugate to xσ for σ an involutory field, graph or graph-field automorphism
of T .

This leaves the cases T = L4(2) and L4(4) (since (n, q) 6= (3, 2), (3, 4) by as-
sumption). The first of these is the alternating group A8 which has already been
handled. And L4(4) has an element x of order 30 of the form diag(a(λ, 1),M) where
λ has order 3 and M ∈ GL2(4) has order 15 and determinant λ; we argue in the
usual way that x is not a square in Aut(T ).

Lemma 3.5 T is not Un(q).

Proof. Suppose T = Un(q). Then n ≥ 3 and (n, q) 6= (3, 2).

The proof is quite similar to the previous lemma. Assume first that p|q + 1
and n ≥ 4. Let x = diag(a(λ, β), λ−2, 1, . . . , 1)Z ∈ T for λ ∈ Fq2 of order q + 1
and suitable β ∈ Fq2 (where a(λ, β) is as in (1) and matrices are taken relative to
a basis with first three vectors e, f, d where e, f are singular, (e, f) = 1 and d is
nonsingular and perpendicular to e, f). If q > 2 we can argue as in the previous
lemma that x is not a pth power in PGUn(q) and is not conjugate to xσ for any
further outer automorphism σ of T of order p. And if q = 2 then p = 3 and we take
x = diag(a(λ, β), λ−1, λ−1, 1, . . . , 1)Z ∈ T with |λ| = 3 and argue similarly.

Now assume p|q+ 1 and n = 3 (so q > 2). Again take x = diag(a(λ, β), λ−2)Z ∈
T , with λ of order q + 1. As usual, x is not a pth power in PGU3(q), and is not
conjugate to xσ for σ a field automorphism unless p = 2 and q = 5. So it remains
to handle T = U3(5) with p = 2; this can be done using [1].

Next assume that p|q. If q > 2, take x = diag(a(λ, β), λ−2, 1, . . . , 1)Z ∈ T with
λ of order q + 1 again and argue as before. And in the case where q = 2, take x =
diag(a(λ, β), λ−1, λ−1, 1, . . . , 1)Z ∈ T with |λ| = 3.

It remains to deal with the case where p divides neither q+ 1 nor q. Then p > 2,
and any outer automorphism of T of order p is a field automorphism. Choose the first
factor in the product (q2−1)(q3+1)(q4−1) · · · (qn−(−1)n) that p divides. If it is qi+1,
take x to be a generator of a cyclic torus of T of type GU1(q

i) < GUi(q) ≤ GUn(q)
(we must intersect this with SUn(q) and factor out Z); and if it is q2i− 1, take x to
be a generator of a cyclic torus of type GL1(q

2i) < GLi(q
2) < GUn(q). Now argue

that x is not a pth power in T and is not conjugate to xσ for σ a field automorphism
of order p.

Lemma 3.6 T is not PSp2n(q).

Proof. Suppose T = PSp2n(q). Then n ≥ 2 and (n, q) 6= (2, 2).

Assume p > 2. Then any outer automorphism of T of order p is a field automor-
phism.
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If p|q, letA ∈ Sp2(q) be an element of order q+1, and define x = diag(A, J2n−2)Z ∈
T , where as before J2n−2 is a unipotent Jordan block of size 2n− 2. Then CT (x) ≤
(Sp2(q)× Sp2n−2(q))/Z, and since J2n−2 is not a pth power in Sp2n−2(q), x is not a
pth power in T . Also for a field automorphism σ of order p, xσ is not conjugate to
x.

If p does not divide q, let e be minimal such that p|qe − δ for some δ = ±1. If
δ = −1, let x be a generator of a cyclic torus of T of order qe + 1 (or (qe + 1)/2)
in a subgroup of type Sp2(q

e) ≤ Sp2e(q); and if δ = +1, then e is odd and we let
x generate a torus of order qe − 1 (or (qe − 1)/2) in a subgroup of type GL1(q

e) ≤
GLe(q) ≤ Sp2e(q). Then x is not a pth power in T and xσ is not conjugate to x for
a field automorphism σ of order p.

Now assume p = 2. Then a non-diagonal involutory outer automophism of T
involves a field automorphism or, if n = 2 and q = 22k+1, a graph automorphism.
Let x = diag(A, J2n−2)Z ∈ T again, and argue as before that x is not a square in T
and xσ is not conjugate to x for a field automorphism σ of order 2. Finally, in the
case where n = 2 and q = 22k+1 we need also to observe that xσ is not conjugate to x
for σ an involutory graph automorphism; this follows as x = su with s = diag(A, I2)
and u = diag(I2, J2) a long root element of T , so xσ = sσuσ with uσ a short root
element, hence is not conjugate to x.

Lemma 3.7 T is not an orthogonal group.

Proof. Suppose T is orthogonal, so T = PΩ(V ) = PΩ2n+1(q) (q odd, n ≥ 3)
or PΩε

2n(q) (n ≥ 4, ε = ±).

First assume that p = 2 and q is odd. Let A be a matrix in GL2(q) of order
q2 − 1 with eigenvalues λ, λq over Fq2 . With respect to a suitable basis, there is an
element x = diag(A,A−T , λq+1, λ−q−1, I) which lies in a subgroup GL∗3(q) of T (the
subgroup of matrices of square determinant in GL3(q)). We argue in the usual way
that x is not a square in P∆(V ) (notation of [5]) and is not conjugate to xσ if σ
involves an involutory field automorphism.

Now suppose p = 2 and q is even. In this case we let A be an element of order
q + 1 in Ω−2 (q) and argue in the usual way with an element x = diag(A, J2n−4, J2)
in a subgroup Ω−2 (q)× Ω−ε2n−2(q) of T .

Now let p > 2. If p|q, let A be an element of order q + 1 in Ω−2 (q) and let
x = diag(A, J2n−3, J1) in a subgroup Ω−2 (q)×Ω−ε2n−2(q). And if p does not divide q,
choose e minimal such that p|qe−δ for some δ = ±1. If δ = −1, let x be a generator
of a cyclic torus of type Ω−2 (qe) < Ω−2e(q), and if δ = +1 (so e is odd), let x generate
a cyclic torus of type GL1(q

e) < GLe(q) < Ω+
2e(q).

With x as in the previous paragraph, we argue in the usual way that x is not
a pth power in T and that x is not conjugate to xσ when σ ∈ PΓ(V ) (notation of
[5]) involves a field automorphism of order p. This completes the proof except in
the case where p = 3 and T = PΩ+

8 (q), in which case σ could involve a triality
automorphism of T .

So assume finally that T = PΩ+
8 (q) and p = 3.

If q = 3a, let x = diag(J5, λ, λ
−1, 1) lying in a subgroup of type Ω5(q) × Ω3(q),

where λ ∈ Fq has order (q − 1)/2. Write x = us with u = J5 ∈ Ω5(q) and s =
(λ, λ−1, 1) ∈ Ω3(q). Then x 6∈ T [3] as u is not a cube in T . If σ is an outer
automorphism of order 3 involving a triality, then x is not T -conjugate to xσ since
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u is not conjugate to uσ (as uσ = J2
4 in a subgroup of type Sp4(q)); and if σ is a

field automorphism then the same conclusion holds since s is not conjugate to sσ.

If q is not a power of 3, let 3 divide q − ε (ε = ±1), let A be an element of order
(q − ε)/(2, q − 1) in Ωε

2(q), and let x = diag(A, J4, J2) (q even) or diag(A, J5, J1)
(q odd) lying in a subgroup of type Ωε

2(q) × Ωε
6(q). Now argue as in the previous

paragraph.

Lemma 3.8 T is not an exceptional group of Lie type.

Proof. Suppose T is an exceptional simple group of Lie type over Fq. Exclude
G2(2)′ = U3(3) and 2G2(3)′ = L2(8).

Assume first that p > 2. Then the only outer automorphisms of T of order p
are field automorphisms, together with diagonal (and field-diagonal) automorphisms
when p = 3, T = Eε6(q) and 3|q − ε.

If p|q, then except for T = 2G2(q), there is a fundamental A = SL2(q) in T , with
centralizer D (where D = E7(q), D6(q), A

ε
5(q), C3(q), A1(q) or A1(q

3), according
as T = E8(q), E7(q), E

ε
6(q), F4(q), G2(q) or 3D4(q) respectively). Let s ∈ A be an

element of order q+1, and let u ∈ D be a regular unipotent element. Define x = su.
Then CT (x) ≤ AD, and so x is not a pth power in T (as u is not a pth power in
D). Also x is not conjugate to xσ for σ a field automorphism of order p, so this
completes the proof in this case, except for T = 2G2(q).

For T = 2G2(q), p = 3, q = 32k+1 > 3, we require a more detailed argument.
Adopting the notation of [2, Table 2.4], T has a Sylow 3-subgroup P = {x(t, u, v) :
t, u, v ∈ Fq} of order q3 and exponent 9, where

x(t, u, v) · x(t′, u′, v′) = x(t+ t′, u+ u′ + t′t3θ, v + v′ − t′u+ (t′)2t3θ),

θ being the map t → t3
k
. Then Z(P ) = {x(0, 0, v) : v ∈ Fq}. If y = x(1, 0, 0) then

y has order 9 (so is not a cube in T ), y3 ∈ Z(P ) and CT (y) = 〈y〉Z(P ) (see [9]). If
σ is an outer automorphism of T of order 3, then it is a field automorphism and we
can take it to act on P as x(t, u, v) → x(tσ, uσ, vσ). Suppose y is a cube in T 〈σ〉,
say y = (xσ)3 with x ∈ T . Then xσ ∈ CT 〈σ〉(y) = 〈y〉Z(P )〈σ〉, so x = ykx(0, 0, v)
for some integer k and v ∈ Fq. But then since y centralizes x(0, 0, v) we have

(xσ)3 = y3kx(0, 0, v1+σ+σ
2
) which has order dividing 3, so cannot equal y. Hence y

is not a cube in T 〈σ〉, completing the proof in this case.

Now assume p does not divide q (still with p > 2). Postpone the case where
p = 3, T = Eε6(q) and 3|q − ε. From [4, Section 2], we check that with a few
exceptions (listed below), there is a cyclic maximal torus of T of order divisible by
p. If we take x to be a generator of this torus, then x is not a pth power in T , and
is not conjugate to xσ if σ is a field automorphism of order p. The exceptions are
as follows:

T E7(q) E6(q)
2E6(q) F4(q)

2G2(q)

p q4, q8 q6 q3 q4 q2

Here qi denotes a primitive prime divisor of qi − 1. For the T = E7(q) case, take x

to be an element of order q4−1
q−1 or q4+1

2,q−1) in a subsystem subgroup A3(q) or D4(q) in
the respective cases p = q4, q8. If x = yp for some y ∈ T then y lies in a maximal
torus; but we see from [4] that there is no maximal torus in which x is a pth power.
Hence x is not a pth power in T . And if σ is a field automorphism of order p, then
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from the action of σ on A3(q) or D4(q), we see that x is not conjugate to xσ. The

cases T = Eε6(q) are handled similarly by taking x to be an element of order q6−1
q−ε in

a subgroup Aε5(q). Finally, in the F4(q) and 2G2(q) cases we take x of order q4−1
(2,q−1)

or q+1
2 in a maximal torus of the form 〈x〉 × (2, q − 1).

Now consider the postponed case where p = 3, T = Eε6(q) and 3|q − ε. In a
subsystem subgroup A1(q)A

ε
5(q), take an element x = yz, where y ∈ A1(q) has

order q − ε and z is a regular unipotent element in Aε5(q). If T.3 denotes the group
generated by inner and diagonal automorphisms of T , then CT.3(x) = 〈y〉U where U
is a unipotent group, so x is not a cube in T.3. Also x is not conjugate to xσ when
σ involves a field automorphism of order 3.

This completes the case where p > 2. Now suppose p = 2. Note that T 6= 2B2(q),
2G2(q) or 2F4(q) (q > 2) as these have no outer automorphisms of order 2.

Assume q is odd. For T = E8(q), F4(q),
3D4(q) or G2(q) (q 6= 3k), take x to be a

generator of a cyclic maximal torus of even order (which exists by [4]), and argue as
usual that x is not a square in T and is not conjugate to xσ for σ an involutory field
automorphism. The other groups E7(q), E

ε
6(q), G2(q) (q = 3k) possess diagonal or

graph automorphisms of order 2, so require a little more care.

For T = E7(q) we work in a subsystem subgroup A2(q)A5(q). This has normal-
izer N = A2(q)A5(q).2 in the inner-diagonal group T.2. The outer involution acts
diagonally on the A5(q) factor and as an inner automorphism on A2(q). Take an
element x in the factor A2(q) ∼= SL3(q) of order q2 − 1. Then CT.2(x) ≤ N , so we
see that x is not a square in T.2. Also x is not conjugate to xσ when σ involves an
involutory field automorphism, so this case is done.

For T = Eε6(q), take x to be an element of order q4− 1 in a subsystem subgroup
Aε4(q)

∼= SLε5(q). No torus in T has an element of order 2(q4−1) (see [4]), so x is not
a square in T . If σ is a graph automorphism of T , it acts as a graph automorphism
on a suitable subgroup Aε4(q), and hence we see that x is not conjugate to xσ. Also
x is not conjugate to xσ when σ involves an involutory field automorphism.

Now consider T = G2(q) with q = 3k. Let q ≡ ε mod 4 with ε = ±1. There is a
subgroup A1Ã1 in T , a commuting product of two SL2(q)’s where A1 is generated
by long root groups and Ã1 by short root groups. Let x = us with u ∈ A1 of order
3 and s ∈ Ã1 of order q− ε. Then CT (x) ≤ A1Ã1, and hence we see that x 6∈ T [2]. If
σ is an involutory outer automorphism of T involving a graph automorphism, then
xσ is not T -conjugate to x (since the long root element u is not conjugate to the
short root element uσ); and if σ is a field automorphism then the same conclusion
holds as sσ is not conjugate to s.

Now assume that q is even (still with p = 2). Use [1] for the case where
T = 2F4(2)′. Since we have ruled out T of type 2B2 or 2F4, this leaves T of type
E8, E7, E

ε
6, F4, G2 or 3D4. For all but the Eε6 and F4 cases we can argue exactly as

for the p|q case done above for p > 2. For Eε6 and F4 there are graph automorphisms
to take into account.

In the case where T = Eε6(q), in a subsystem subgroup A1(q)A
ε
5(q) take x = us

where u ∈ A1(q) is an involution and s ∈ Aε5(q) an element of order q6−1
q−ε . Then

CT (x) = CA1(q)(u)〈s〉, so x is not a square in T . Also a graph automorphism σ
normalizing A1(q)A

ε
5(q) acts as a graph automorphism on Aε5(q), hence inverts x,

so x is not T -conjugate to xσ. And x is not conjugate to xσ when σ involves an
involutory field or graph-field automorphism.
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Finally, consider T = F4(q). In a subsystem subgroup A2(q)A2(q) take x = us,
where u is a regular unipotent element of the first factor, and s an element of order
q2 + q + 1 in the second. Since CT (s) = A2(q)〈s〉, x is not a square in T . For
σ a graph automorphism, xσ = uσsσ is not conjugate to x, as u and uσ are not
conjugate, one being regular in a long root A2, the other in a short root A2. And
as usual, x is not conjugate to xσ when σ is an involutory field automorphism. This
completes the proof.

4 General finite groups

First we prove Theorem 4. Let G be a finite group and suppose G[k] is a subgroup
of G. The proof is by induction on |G|. Let N be a minimal normal subgroup of G.
Then (G/N)[k] is a subgroup, hence by induction its non-abelian composition factors
satisfy the conclusion of the theorem. If N is abelian then the theorem follows. So
we may assume that N = T r for some non-abelian simple group T . It suffices to
show that either T ⊆ Aut(T )[k] or the exponent of T divides k. Assume the contrary,
and let t ∈ T \Aut(T )[k].

Let Ḡ = G/CG(N). Then Ḡ embeds in Aut(N) = Aut(T ) o Sr. We identify N
with its image in Ḡ.

We claim that the element n = (t, 1, . . . , 1) ∈ T r = N is not a kth power in Ḡ. To
see this, suppose n = xk where x = (x1, . . . , xr)σ with each xi ∈ Aut(T ) and σ ∈ Sr.
Then σk = 1. If σ(1) = 1 then t = xk1, contradicting the fact that t is not a kth power
in Aut(T ). So σ has a cycle (1 i2 · · · is) with s ≥ 1. Calculating the coordinates of xk

in positions 1 and is, we get t = x1xi2 · · ·xis and 1 = xisx1 · · ·xis−1 , a contradiction.

It follows that G[k] is a normal subgroup of G which does not contain N . Hence
G[k]∩N = 1. Therefore all kth powers in N are trivial, which means that k is divisible
by the exponent of T . This contradicts our assumption on T , and completes the
proof of the first assertion of Theorem 4. The last assertion follows using Burnside’s
paqb theorem.

Finally we deduce Theorems 1, 2 and 3. Suppose G is a finite group such that
G[k] is a subgroup, where k divides 12. Then Theorem 4 shows that T ⊆ Aut(T )[k]

for every composition factor T of G.

If k = 2 then Theorem 7 shows that the non-abelian composition factors of G
are among the groups L2(q) (q odd), L2(q

2) (q even) and L3(4), proving Theorem
3.

Now assume that both G[3] and G[4] are subgroups of G. Suppose G is not
soluble, and let T be a non-abelian composition factor. Since all non-abelian simple
groups have order divisible by 4, Theorem 7 shows that T = L2(q) with q even.
Then T has order divisible by 3, so Theorem 7 now gives a contradiction. Hence G
is soluble, proving Theorem 2.

Finally, assume that G[12] is a subgroup of G. If T is a non-abelian composition
factor, then T ⊆ Aut(T )[12] ⊆ Aut(T )[4], so again Theorem 7 gives T = L2(q) with
q even. But then 12 divides |T |, so Theorem 7 gives a contradiction. Hence G is
soluble, and Theorem 1 is proved.
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5 Good and bad numbers

Define a positive integer k to be good if the assumption that G[k] is a subgroup
implies that G is soluble, and bad otherwise. We observed in the Introduction that
12 is the minimal good number.

Proposition 5.1 The following numbers are good:

(i) 2apb with a ≥ 2, b ≥ 1 and p ∈ {3, 5, 17};
(ii) 105.

Proof. We copy the proof of Theorem 1. Let k one of the numbers in (i) or
(ii) and suppose G[k] is a subgroup of G. Assume G has a non-abelian composition
factor T . Then T ⊆ Aut(T )[k] by Theorem 4. For k as in (i), Theorem 7 implies
that T = L2(2

4r) for some r; but then |T | is divisible by the primes p ∈ {3, 5, 17},
so Theorem 7 gives a contradiction. Finally, assume k = 105. If |T | is divisible
by 3, then Theorem 7 implies that T = L2(3

3r); but then |T | is divisible by 7 and
Theorem 7 gives a contradiction. And if |T | is coprime to 3, then T is a Suzuki
group; then 5 divides |T | and once again Theorem 7 gives a contradiction.

Proposition 5.2 The following numbers are bad:

(i) pa and 2pa with p prime;

(ii) numbers coprime to 6;

(iii) 3apb with p > 3 prime and a, b ≥ 1.

Proof. (i) This is clear from Proposition 6.

(ii) Let k be coprime to 6. Using Dirichlet’s theorem on primes in arithmetic
progression, one can see that there is a prime p > 3 such that T = L2(p) has order
coprime to k. Then T [k] = T , which shows that k is bad.

(iii) Let k = 3apb as in (iii). If p 6= 5 then k is coprime to the order of one of the
Suzuki groups Sz(8) or Sz(32), so k is bad. And if p = 5 then p does not divide the
order of T = L2(3

3a), so Proposition 6 shows that there is a group G with socle T
such that G[k] = T .

It follows quickly that 20 is the smallest even good number greater than 12, and
105 is the smallest odd good number.
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