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ABSTRACT. A finite transitive permutation group is said to be %—transitive if all the nontrivial orbits of
a point stabiliser have the same size greater than 1. Examples include the 2-transitive groups, Frobenius
groups and several other less obvious ones. We prove that %—transitive groups are either affine or
almost simple, and classify the latter. One of the main steps in the proof is an arithmetic result on
the subdegrees of groups of Lie type in characteristic p: with some explicitly listed exceptions, every
primitive action of such a group is either 2-transitive, or has a subdegree divisible by p.

1. INTRODUCTION

Burnside, in his 1897 book [14, p 192, Theorem IX], investigated the structure of finite 2-transitive
permutation groups. He proved that any such group is either affine or almost simple; in other words,
the group has a unique minimal normal subgroup which is either elementary abelian and regular, or
nonabelian simple. A transitive permutation group G on a set € is said to be %—tmnsitive if all orbits
of G, on Q\{a} have the same size, with this size being greater than 1. For convenience, we also count
Sy as a %—transitive group. A nontrivial, nonregular, normal subgroup of a 2-transitive group has to be
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S-transitive. The term ;-transitive was first used in Wielandt’s book [68], where he extended Burnside’s

proof to show that any %—transitive group is either primitive or a Frobenius group (that is, every two point
stabiliser is trivial). The classification of 2-transitive groups is a notable consequence of the classification
of finite simple groups (see [23, 28, 31, 40, 52|, and [15] for an overview).

In this paper, we obtain two results along the way towards the classification of %-transitive groups.

First, in parallel to Burnside’s structure theorem, we prove
Theorem 1.1. Every finite primitive %—tmnsitive group is either affine or almost simple.

Our second result deals with the almost simple case. A subdegree of a transitive permutation group is
a size of an orbit of the point stabiliser.

Theorem 1.2. Let G be a finite almost simple %—tmnsitz’ve group of degree n on a set . Then one of
the following holds:

(i) G is 2-transitive on €.

(ii) n = 21 and G is A7 or Sy acting on the set of pairs of elements of {1,...,7}; the size of the
nontrivial subdegrees is 10.

(iii) n = %q(q — 1) where g = 27 > 8, and either G = PSLy(q) or G = PT'Ly(q) with f prime; the size
of the nontrivial subdegrees is g + 1 or f(q+ 1), respectively.

Theorem 1.2 is a combination of Theorems 4.1, 5.1(B), 7.2 and 8.1. The examples in parts (ii) and
(iii) can be found in Lemmas 4.3 and 6.2. The groups in (iii) were first investigated in the context of
3-transitivity by McDermott [53], and Camina and McDermott [17]. A characterisation of the groups
in (i) and (iii) as the only %—transitive groups with trivial Fitting subgroup and all two-point stabilisers
conjugate was given by Zieschang [69)].

Affine %—transitive groups will be the subject of a future paper. The soluble case was handled com-
pletely by Passman in [60, 61, 62].

Our proof of Theorem 1.2, in the main case where G has socle of Lie type, uses the following result
concerning the arithmetic nature of subdegrees of such groups.
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TABLE 1. 2-transitive cases for Theorem 1.3

L |©2]  Comment(s)
PSL,(4) 6
Spa(2)" 6
Spy(2) 10
PSL,(9) 6

(9
PSL4(2) 8
2) 8 G=L2

2G2(3)' 9 G=1L.3

TABLE 2. Other exceptions to Theorem 1.3

L [ H Subdegrees Comment(s)
PSU3(5) 50  Ng(A7) 1,7, 42
PSpy(3) 27 Ne(2%.4s) 1,10, 16
G»(2) 36 PSLy(2) 1,7,7.21 G=L

Theorem 1.3. Let G be an almost simple group with socle L of Lie type of characteristic p. Let G act
primitively on a set Q, and let H be the stabiliser of a point. Assume that p divides |H|. Then one of
the following holds:

(i) G has a subdegree divisible by p.
(il) G is 2-transitive on Q: here either G = Spyy(2) for d = 3 with H = OF,(2) and |Q| = 241 (24F1),
or G is detailed in Table 1.
(iii) L =PSLa(q) with ¢ =27 =8, | = 2q(¢— 1), HN L = Dy(y41y, and |G : L| is odd.
(iv) G is detailed in Table 2.

We remark that the examples in Table 1 and lines 2 and 3 of Table 2 are in some sense degenerate as
they arise due to exceptional isomorphisms with either alternating groups or groups of Lie type of different
characteristic, namely PSLy(4) = PSLa(5), Spy(2)’ = PSLy(9) & Ag, PSL4(2) & Ag, PSL3(2) = PSLo(7),
G2(2)" = PSU3(3), G2(3)’ =2 PSLy(8) and PSp,(3) =2 PSU4(2). The conditions G = L.2 and L.3 in lines
6 and 8 of Table 1 are required so that p divides |H]|.

Theorem 1.3 follows from Theorems 5.1(A) and 7.1. Theorem 3.4 in Section 3 is a result of a similar
flavour for general primitive permutation groups.

We shall obtain several consequences of the above results. The first is immediate from Theorems 1.1
and 1.2.

Corollary 1.4. The socle of a primitive %-tmnsitive group s either reqular or %-tmnsitive.

The orbitals of %—transitive groups form Schurian equivalenced non-regular schemes (see [56]), which
form a class of pseudocyclic association schemes. To date, there are not many known constructions of
pseudocyclic schemes, and Theorem 1.2 implies that there are no new examples in this subclass.

In the next result, we call a transitive permutation group strongly %—transitive if all non-principal
constituents of the permutation character are distinct and have the same degree. Theorem 30.2 of [68]
states that strongly %—transitive groups are either abelian and regular, or %—transitive. Hence Theorem

1.2, together with Lemma 6.2, implies the following.

Corollary 1.5. The strongly %—tmnsitive almost simple permutation groups are precisely the groups in

parts (i), (i) and (iii) of Theorem 1.2.

A related notion arose in a paper of Dixon [24]. He defines a QI-group to be a finite transitive
permutation group for which the permutation character is 1+ 6 where 6 is irreducible over the rationals.
All such groups are primitive and strongly %—transitive. Moreover, Dixon reduced their study to the almost
simple case. The groups in (iii) of Theorem 1.2 satisfy the QI-condition if and only if ¢ — 1 = 2/ — 1 is
prime (see [24, Theorem 11]). Hence we have

Corollary 1.6. The almost simple QI-groups which are not 2-transitive are precisely the groups in part
(iii) of Theorem 1.2 with 27 — 1 prime.
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The final consequence concerns a connection between Theorem 1.3 and triple factorizations. These
are factorizations of a group G as a product ABA for subgroups A, B; such factorizations have been of
interest since the paper of Higman and McLaughlin [29] linking them with incidence geometries.

It is an elementary observation that if G is a transitive permutation group with point stabiliser H,
and p is a prime dividing |H|, then all the subdegrees of G are coprime to p if and only if G admits the
triple factorization

G = HN¢g(P)H,
where P is a Sylow p-subgroup of H. Indeed, for ¢ € G\H the condition on the subdegrees implies
that there is an H-conjugate P" of P contained in the two-point stabiliser H N H9. Then P", Ph9™" are
contained in H, hence are H-conjugate, and so hg~*h’ € Ng(P) for some h/ € H, giving g € HNg(P)H.
Hence the subdegree condition implies the triple factorization, and the converse implication is proved by
reversing the argument.

In view of Theorem 1.3, this gives the following result concerning triple factorizations of groups of Lie
type. We denote the set of Sylow p-subgroups of a group G by Syl,(G).

Corollary 1.7. Let G be an almost simple group with socle L of Lie type in characteristic p, and let H
be a mazimal subgroup of G. Assume that p divides |H|. Then G = HNg(P)H for P € Syl,(H) if and
only if G, H are as in Theorem 1.3(ii)-(iv).

We note that in [1, 2] it is shown that there are many more triple factorizations G = HAH with A a
maximal subgroup properly containing Ng(P), where H is a maximal subgroup of order divisible by p
and P € Syl,(H).

2. BASIC LEMMAS

In this section, we provide some of the lemmas that we repeatedly use in the course of this work. Let
G be a transitive permutation group on a set . We refer to || as the degree of G and the orbits of a
point stabiliser as suborbits. Recall from the Introduction the result of Wielandt that a finite %-transitive

permutation group is primitive or a Frobenius group.

Lemma 2.1. Let G be a finite transitive permutation group with a point stabiliser H.

(i) Suppose the degree of G is divisible by r > 1. If G has a subdegree divisible by r then G is not
% -transitive.

(ii) Suppose that H < K < G and in the action of K on the set of right cosets of H, K has a suborbit
of length €. Then G has a suborbit of length ¢.

(iii) Let T be a normal subgroup of G. Let g € G and suppose [T N H : T N H N HY| is divisible by a
positive integer k. Then |H : H N HY| is divisible by k.

(iv) Let p be a prime such that H has a nontrivial normal p-subgroup P. Then G has a subdegree
divisible by p.

Proof. (i) This is clear.

(i) Since K has a suborbit of length ¢, there exists g € K such that |H : H N HY9| = {. Since g € G, it
follows that G has a suborbit of length .

(iii) Consider the group action of G' on the right cosets of H. Since T'N H is a normal subgroup of
H, the orbit lengths of T'N H divide the orbit lengths of H. Therefore, for all ¢ € G, we have that
[TNH:TNHNHY| divides |H : HN HY|.

(iv) There must be some H-orbit A upon which P acts nontrivially. Then as P <1 H, all orbits of P on
A have the same size. It follows that p divides |A|. O

Let G be a transitive permutation group with point stabiliser H. We say that a subgroup Hy of H is
weakly closed in G if whenever H < H for g € G there exists h € H such that Hj = H.

Lemma 2.2. Let G be a transitive permutation group with point stabiliser H and let p be a prime.
Suppose there exists T < H such that
(i) Ne(T) £ H, and
(ii) for all S € Syl,(H), the group (T, S) contains a normal subgroup Hy of H which is weakly closed
in G such that H = Ng(Hy).

Then G has a subdegree which is divisible by p.
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Proof. Let g € Ng(T)\H. Then T < H N HY. Suppose that |H : H9 N H| is coprime to p. Then there
exists S € Syl,(H) such that S < H9N H. Thus HY N H > (S,T) > Hy and so HJ < H. Since Hy is

weakly closed in G, it follows that there exists h € H such that H{l = H}. Thus hg € Ng(Hy) = H.
Hence g € H, a contradiction, and so G has a subdegree divisible by p. |

The next result is commonly known as Tits” Lemma. A proof can be found in [64, (1.6)].

Lemma 2.3. Let L be a quasisimple group of Lie type in characteristic p, and let H be a mazximal
subgroup of L which has index coprime to p and does not contain the unique quasisimple normal subgroup
of L. Then H is a parabolic subgroup.

Lemma 2.4. Let G be a group of Lie type of characteristic p, with p odd. Let G act primitively with
point stabiliser H. Suppose that there exists Hy < H, weakly closed in G and Hy a central product of
quasisimple Lie type groups of characteristic p, excluding types PSL3(q), PSLy(q) (d > 5) and Eg(q).
Assume |G : H| is even. Then G has a subdegree divisible by p.

Proof. Let T be a Sylow 2-subgroup of H. As |G : H| is even, T is not a Sylow 2-subgroup of G and so
Ny (T) < Ng(T). Let Hy be a central product of quasisimple Lie type groups H; of characteristic p, with
each H; subject to the conditions in the lemma. Let S be a Sylow p-subgroup of H. Then |H : (T, S)|
is coprime to p and hence, by Lemma 2.3, for each i, the projection of M := Hy N (T,S) to H; has
image 7;(M) equal to either H; or a parabolic subgroup of H;. By our assumption on H;, each parabolic
subgroup of H; has even index [43]. Since T is a Sylow 2-subgroup of H and Hy < H, it follows that
M contains a Sylow 2-subgroup of Hy, and hence that 7;(M) = H; for each i. Then since M contains a
Sylow p-subgroup SN Hy of Hy, we have M = Hy, so Hy < (T, S). By the maximality of H, Ng(Hy) = H
and hence the result follows from Lemma 2.2. |

Some care is required when applying Lemma 2.4 in the case where Hy is a central product of classical
groups, as factors isomorphic to PSL4(¢) may be hidden due to isomorphisms in the low dimensional
cases. However, by [34, Prop. 2.9.1], if a classical group in characteristic p is isomorphic to PSLy(p/ )k
for some d, p, f and k then d = 2 or 4, and so Lemma 2.4 does apply.

Next we note the following result of Neumann and Praeger [57, Corollary 1].

Lemma 2.5. Let G < Sym(2). If there exists a k-set T' of Q such that there is no g € G withT'YNI' = &
then T' intersects nontrivially a G-orbit of length at most k* — k + 1.

Lemma 2.6. Let G be a permutation group with point stabiliser H, let S be a Sylow p-subgroup of H
for some prime p, and let x € H have order a power of p.

(i) If |SY| > |SH|? — |SH| + 1 then G has a subdegree divisible by p.

(ii) If |2 > |2¢ N H|?* — |2 N H| 4+ 1 then G has a subdegree divisible by p.

Proof. First consider the action of G on S¢. If |SY| > |SH |2 —|SH|+1, it follows from Lemma 2.5 applied
to the action of G on Syl,(G) by conjugation that there exists g € G such that SH N (SH)9 = &. Since
SH is the set of Sylow p-subgroups of H, it follows that H N H9 does not contain a Sylow p-subgroup of
H. Hence the subdegree |H : H N HY| is divisible by p.

Now assume |2¢| > |[z¢ N H|? — |29 N H| + 1. By Sylow’s Theorem, z is contained in some Sylow
p-subgroup S of H, and hence each Sylow p-subgroup of H contains a conjugate of z. By Lemma 2.5
applied to the action of G on itself by conjugation, there exists g € G such that (x“NH)N(zNH)I = @.
Hence S7 N (S#)9 = @ and the argument of the previous paragraph applies. O

We remark that [11, Lemma 9] is a weaker but useful version of Lemma 2.6.

3. THE REDUCTION TO AFFINE AND ALMOST SIMPLE GROUPS

In this section we prove Theorem 1.1, which states that a %—transitive group is either almost simple or
affine. First we consider primitive groups preserving a Cartesian decomposition.

The group Sym(A) wr Sy, acts primitively in its natural product action on the set Q = A* when |A| > 3.
Suppose that G is a primitive subgroup of Sym(A) wr Si in this action. Then the image of G under the
natural homomorphism to Sy is a transitive permutation group K on the set {1,...,k}. Let G; be the
stabiliser in G of 1 in this action. Then G < Sym(A) x (Sym(A)wrSk_1) and so we have a natural
homomorphism 7; : G; — Sym(A) to the first direct factor. Let H = m1(G1) < Sym(A). By [36, (2.2)],
there exists ¢ € Sym(A)¥ Nker(m;) such that G9 < Hwr K and so we may assume that G < Hwr K.
Then G, induces H on the set of first entries of the points of . Since G is primitive on 2, H must be
primitive on A and we refer to H as the primitive component of G relative to the decomposition Q = A,
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Note that it may be possible to write 2 = A" for some r # k and such a decomposition would give rise
to a different primitive component.

Lemma 3.1. Let G be a finite primitive permutation group such that G < H wr Sy acting in product
action on Q = A* with primitive component H on A and k > 2. Let K < Sy, be the image of the natural
homomorphism G — Sj.

(i) If H has a subdegree of length £ on A then G has a subdegree of length £k on Q.
(ii) If K has an orbit of length € on the set of r-subsets of {1,...,k} then G has a subdegree divisible
by 2.

Proof. Let § € A and let o = (4,...,6) € Q. Then G, = GN (HswrSg). Let &' € A\{d} and let
v =(8,6,...,8). Then |[y%=| = |(6')*|k and so part (i) holds.

Let J C {1,...,k} such that |[JX| = £. Let v be the element of Q such that for each j € J we
have (v); = ¢ and for j ¢ J, (7); = d (where (y); denotes the j' coordinate). For o/ € Q, let
©(y) = {i | (/)i # 6}. Then {n(y’) | v/ € v¥} = JK. Moreover, the set of all 7/ € y%= such that
7(y") = J forms a block of imprimitivity for G,, on y“=. Hence part (ii) follows. O

If a primitive group G on a set € cannot be embedded into a wreath product in product action (with
k > 2) then we call G a basic primitive permutation group. One interpretation of the O’Nan-Scott
Theorem for primitive groups is that a basic primitive permutation group is either affine, almost simple
or of diagonal type [16, Theorem 4.6]. By choosing an appropriate representation of € as a Cartesian
power we may assume that the primitive component of a nonbasic primitive permutation group is one of
the following three basic types:

o Affine Type: Here Q = GF(p)* and G = N x Gy where N is the group of all translations and
Gy is an irreducible subgroup of GL(p). If we also insist that G is basic then Gy is a primitive
linear group, that is, does not preserve a nontrivial direct sum decomposition of the vector space.

o Almost Simple Type: Here G is isomorphic to a subgroup of Aut(7") containing Inn(7") for some
nonabelian simple group T'.

e Diagonal Type: Here G has socle N = T* for some nonabelian simple group 7" and k > 2.
Moreover, N, is a full diagonal subgroup of N. Identify T" with Inn(7"). Then €2 can be identified
with T7%-1, and T* < G < A where

A={(a1,...,ap)7 | m € Sk,a1 € Aut(T),a; € Inn(T)a, }
and the action of A on T*~! is given by
(ta, ... tx) @) = (a7 Mt9as,. .., a7 ‘tray)
(s tr)™ = (5 st )
for all (ay,...,ax)m € Aand (t,...,tx) € Inn(T)*~! where t; = 1. Also, either G acts primitively
on the set of simple direct factors of NV, or k = 2 and G fixes each simple direct factor setwise.
Before dealing with groups of diagonal type we need the following lemma.

Lemma 3.2. Let T be a nonabelian simple group and let p be a prime dividing |T|. Then T has a
conjugacy class of size divisible by p.

Proof. Suppose that every conjugacy class in T has size coprime to p. Then every element of T is
centralised by some Sylow p-subgroup of T and so given a Sylow p-subgroup S of T', Cr(S) meets each
conjugacy class nontrivially. Hence in the action of T" on the set of cosets of Cr(S) every element of T'
fixes some coset. Since every transitive group of degree at least 2 has a fixed point free element [16, p.
173], it follows that Cp(S) = T and so S < T. Since T is nonabelian simple it follows that S = 1, a
contradiction. Hence T has a conjugacy class with size divisible by p. (|

Lemma 3.3. Let G be a primitive permutation group of diagonal type and let p be a prime dividing |$|.
Then G has a subdegree divisible by p.

Proof. Let N = T* be the socle of G. Then || = |T|*~! and so p divides |T|. Moreover, Inn(T) <
Go < Aut(T) x S. By Lemma 3.2, we can choose ¢t € T such that |t7] is divisible by p. Then as
I(t,1,..., D)D) = [t7] and Inn(T) <1 G, it follows that G has a subdegree divisible by p. O

Theorem 3.4. Let G be a primitive permutation group on a set 0 and let p be a prime such that p
divides |Q|. Then one of the following holds:

(i) G has a subdegree divisible by p,
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(ii) G is almost simple or affine,

(iii) G < Hwr K acting in product action on = AF with primitive component H such that H is
almost simple, H does not have a subdegree divisible by p and for each r < k, each orbit of K on
r-subsets has size coprime to p.

Proof. Suppose that G does not have a subdegree divisible by p. If G is a basic primitive permutation
group then by Lemma 3.3 and the preceding remarks it follows that G is either almost simple or affine.
If G < Hwr K in product action on Q = A¥ then by our remarks above we may assume that H is affine,
almost simple or of diagonal type. By Lemma 3.1, H does not have a subdegree divisible by p and for
each r < k, each orbit of K on r-subsets has size coprime to p. Lemma 3.3 implies that H is not of
diagonal type and so H is almost simple or affine. Since the wreath product of an affine group with a
subgroup of Sy is an affine group the result follows. O

We can now prove Theorem 1.1.

Proof of Theorem 1.1: Let G be a finite primitive %—transitive group and let p be a prime dividing |€2].
Then G does not have a subdegree divisible by p and so by Theorem 3.4, G is either affine, almost simple
or G < HwrS) acting on A* with H almost simple and k > 2. Suppose the latter holds. Let ¢ be a
subdegree of H on A. Then since G is %—transitive, Lemma 3.1(i) implies that all subdegrees of G have
size fk and that all suborbits of H have length £. Let o = (§,...,6) € A* and let v = (§,0,06,...,6)
for some &' # . Since |[y“~| = ¢k, [26, Theorem 1.1] implies that (H,|A|) is one of (PGLy(7),21),
(PGL2(9),45), (Mo, 45) or (PT'L(9),45). None of these groups is 5-transitive, which implies that G is
also not %—transitive. ]

4. ALTERNATING GROUPS
In this section we prove

Theorem 4.1. The only primitive %—tmnsitive permutation groups with socle A, (n > 5) that are not
2-transitive are the groups A7 and St acting on the set of 2-subsets of a 7 element set.

Let G be an almost simple group with socle A, (n > 5). Then either G is A, or S,, or n = 6 when
there are three further possibilities. We shall handle the latter at the end of the section, so suppose now
that G = A,, or S,,.

The following result on the maximal subgroups of G can be found in [16, §4.6].

Proposition 4.2. The mazximal subgroups of G are the intersections with G of the following:
INTRANSITIVE: subgroups Sy X Sp—_p with 1 <k <n/2.
IMPRIMITIVE: subgroups Sy wr S, i, in imprimitive action on {1,...,n}.
PRIMITIVE:

(i) SgwrS, (n=k", k>=5,r>2)in product action on {1,...,n};

(i) AGLa(p) (n=p?);

(iii) Diagonal groups T*.(Out(T) x Si), where T is nonabelian simple, n = |T|F~1;

(iv) Almost simple groups acting primitively on {1,...,n}.

We now embark on the proof of Theorem 4.1. We first treat the case where the point stabiliser in G
is a subgroup of intransitive type.

Lemma 4.3. Let G = A,, or S,, where n > 5, in its natural action on k-sets with k < n/2. Then G is

%—tmnsitive if and only if either k=1, orn =7 and k = 2.

Proof. Let Q be the set of all k-sets of {1,...,n} and let « = {1,...,k} € Q. If k = 1 then G is
2-transitive on  and hence %—transitive. Now assume that & > 2. Then G, has k+ 1 orbits on 2. These
orbits are the sets Q; = {f € Q: |fNal =i} for 0 < i < k. Since for each 4, there are (’f) subsets of a of
size 4, and (Z:]:) subsets in the complement of « of size k — i, it follows that

K\ /n—k
Q;| =
for each 1.

Now [Q_a|/|Qk-1| = (n — k — 1)(k — 1) /4. For G to be Z-transitive this fraction must be equal to

landso(n—k—1)(k—1)=4. Thusn—k—1=1,20r 4 and k — 1 = 4,2, 1 respectively. If k = 5,
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then n = 7, contradicting k < n/2. Also, if k = 3 then n = 6, another contradiction. Thus k = 2 and
n = 7. Moreover, since k = 2 it follows that Qy and Q; are the only orbits of G, on Q\ {a} and so G is
%—transitive in this case.

Now we turn to the case where the point stabiliser is of imprimitive type.

Lemma 4.4. Let G = Ay or Sge, with k, € > 2 and kl > 5, act on the set of partitions of a kl-set
into £ parts of size k. Then G is %—tmnsitz’ve if and only if (k,£) is (3,2). In this situation, G is in fact
2-transitive.

Proof. Let Q@ ={1,...,kl} and Py = {Aq,..., A} be the partition of Q with A; = {(: —1)k+1,...,ik}.
Then
H :=Gp, = ((Sym(A1) x Sym(As) X --- x Sym(Ay)) x Sp) NG = (S, wrSe) NG.
Suppose first that k > 3 and let P = {A;} wherefori=1,...,0 -1, A, ={(i — 1)k +2,...,ik+ 1}
and Ay = {1,({ — 1)k +2,...,kl}. Then HNGp, = (Sx_1 wrCy) NG. Hence |PH| = k*(¢ —1)!. Next let
Ps={{3,4,...,k+2},{1,2,k+3,...,2k},As,...,Ar}. Thus H N Gp, is isomorphic to

(J x (Sp1Se—2)) NG,
where J is the stabiliser in S wr S of the partition
{1,2},{k+1,k+2},{3,...,k},{k+3,...,2k}

of {1,2,...,2k}. If k—2 = 2, then J = Sy Dg, otherwise, J = (Sy X Sg_2)1S2. Hence |PH| =9¢(¢—1)/2
if k=4 or k*(k — 1)%¢(¢ — 1)/8 otherwise. One can check that for £ > 4, this is less than |P¥| and so G
is not %—transitive in these cases. For ¢ = 2,3, equality only holds for £ = 2 and k = 3. In this case G is
2-transitive.

Suppose now that & = 2 and note that £ > 3. Let Py = {{1,4},{2,3},As,...,A¢}. Then HNGp, =
(Dg x Sy wrSy_2) NG and so |PH| = ¢(¢ —1)/2. Now let P5 = {{2,3},{4,5},{6,1},A4,...,Ay}. Then
HNGp, = (55 x (Sawr Se_3)) N G. Hence |PH| = 4¢(¢ — 1)(¢ — 2)/3 and so G is not 3-transitive. O

Given g € S,,, we define the support of g as supp(g) = {i € {1,...,n} | ¥9 # i}. The minimal degree
of a permutation group H is the minimal size of the support of a nontrivial element of H.

Lemma 4.5. Let a,b € S,,. Then |supp([a,d])| < 2|supp(a)].

Proof. Let i € {1,...,n}. If neither ¢ nor "' belong to supp(a), then 4l* = §b7Tab — 7' — i that is,
[a, b] fixes i. The result follows. O

Lemma 4.6. Let G = A, or S, and let H be a primitive subgroup of G not containing A,,.

(i) If n > 26, then the minimal degree of H is at least 11.
(ii) If n < 26, then the transitive action of G on the right cosets of H is either 2-transitive or not
% -transitive.

Proof. Part (i) follows from classical results on primitive groups with small minimal degree (see [68, §15]).
Part (ii) was verified using the primitive groups library in GAP [25]. O

The remaining case in the proof of Theorem 4.1 is that in which a point stabiliser in G is primitive in
the natural action of degree n.

Lemma 4.7. Let G = A, or S, and let H be a primitive subgroup of G such that H does not contain
A, and |H| is even. If the transitive action of G on the set of right cosets of H is 2-transitive, then it is

2
2-transitive.

Proof. By Lemma 4.6, we can assume that n > 26 and the minimal degree of H is at least 11. Let
x = (12345) € A,,. Since H is primitive, and the minimal degree is at least 11, we have © ¢ H. Let
g € HN H*. Then g,g””_1 € H. However, by Lemma 4.5, [g,2] = 1, that is, = centralises g. Hence

Next let y = (12)(34) € A,, and let g € HN HY. Arguing as in the previous paragraph, H N HY =
CH(y) Now |CH(37)| = |H12345HCH($) : H12345| and |CH($) : H12345| is 1 or 5. Furthermore, the size
of Cy(y) is |Cr(y) : Hioz4||571234||Hi9345|. Since |H| is even, it contains an element z of order two with
at least six 2-cycles (for the minimal degree is at least 11). Replacing H by a conjugate if necessary, we
may assume that (12) and (34) are 2-cycles of z, so z € Cy(y). Hence |Cy(y) : Hia34] € {2,4,8}. Thus
|Cr(y)| # |Cr(x)| and so |H : HNH®| # |H : HN HY|. O
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Lemma 4.8. Let p > 5 be an odd prime and let H = AGL1(p) N A,. Then the action of A, on the set
of right cosets of H in A, is %—tmnsitive if and only if p =5 and in that case the action is 2-transitive.

Proof. If p =5 then the action is the 2-transitive action of As of degree 6. If p = 7 a quick calculation
shows that there are suborbits of lengths 7 and 21. Hence we may assume that p > 11. Let x =
(123) € A,. Since H has no nontrivial elements of support at most 6 it follows from Lemma 4.5 that
HNH® = Ch(x). Moreover, |Cr(x)| = |Cu(x) : Hi23||Hi 23| Since no nontrivial element of H fixes
more than one point it follows that |Cg(x)] = 1 or 3. Thus H has an orbit of length p(p — 1)/2 or
p(p—1)/6 on Q. Let g € H have order (p — 1)/2 such that h has two cycles of length (p — 1)/2. Since
(p—1)/2 > 5, there exists y € A, which normalises, but does not centralise, (g). As H is self-normalising
in A, and (g) is maximal in H it follows that H N HY = (g). Thus H has an orbit of length p on the set
of right cosets of H and so A, is not %-transitive. O

We note that an alternative approach to the case where H acts primitively on {1,...,n} would be to
use the result of [11] that the action has a regular suborbit when n > 12 and hence is not 3-transitive.

Proof of Theorem 4.1: Let G = A, or S, be %—transitive but not 2-transitive on the set of cosets of a
maximal subgroup H. Then H is primitive, imprimitive or intransitive of degree n. If H is primitive, then
Lemma 4.7 implies that |H| is odd. By Proposition 4.2 this forces n = p, G = A, and H = AGL;(p)N A,
for some odd prime p. By Lemma 4.8, this action is not %—tmnsitive7 unless p = 5 and in that case it
is 2-transitive. Lemma 4.4 shows that H is not imprimitive. Hence H is intransitive, and Lemma 4.3
implies that G is A7 or S7 acting on 21 points.

It remains to handle the extra possibilities for G when n = 6. Apart from Ag and Sg, the groups with
socle Ag are Myg, PGL2(9) and Aut(Ag). These are easily checked using the Atlas [22]. O

5. CLASSICAL GROUPS: PRELIMINARIES
In this section and the next, we prove

Theorem 5.1. Let G be a finite almost simple primitive permutation group on ) with socle a classical
simple group L of characteristic p. Let H be the stabiliser in G of a point in €.
(A) If G has no subdegrees divisible by p, then either |H| is not divisible by p or one of the following
holds:
(i) L =PSLa(q), q is even, H = Ng(Dy(q41)) and either |G : L| is odd or q = 4.
(i) G = Spyy(2) and H = OF;(2) with d > 3.
(iii) L and H are given in Table 3.

TABLE 3
L 9] H Conditions Subdegrees

Sps(2) 6 Nea(As) 1,5

Sps(2) 10 Ng(C3) 1,9
PSU;3(5) 50  Ng(A7) 1,7,42
PSL2(9) 6 Ng(A4s) 1,5
PSL4(2) 8 Nea(A7) 1,7
PSp,(3) 27 Ng(2%.45) 1,10,16
PSL3(2) 8 C7 X 06 G=1L.2 1, 7

(B) If G is 3-transitive, and not 2-transitive, then (A)(i) holds with ¢ = 2/ > 8 and either G = L or
|G : L| = f is prime.

In the proof of this theorem we shall need some preliminary information on subgroups and conjugacy
classes in classical groups.

Proposition 5.2. Let G = SL4(q),SUa(q), Spy(q) or Q5(q), with d > 3 in the last three cases and q = p’
for some prime p. Let V be the natural module for G. Then there exists a cyclic subgroup T of G
with order given in Table 4 such that (S,T) = G for every Sylow p-subgroup S of G. Moreover, T acts
irreducibly on an (-dimensional subspace W of V' with £ given in Table 4 and trivially on a complement
of W. When G = SUq(q),Spy(q) or Q5(q) we can take W to be nondegenerate.
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TABLE 4

G ]| 7

SLa(q) (¢ =1)/(¢g—1) d

SUa(q), d odd (¢*+1)/(qg+1) d
SU4(q), d > 4 even (@t +1)/(g+1) d—1

Spa(q) g% +1 d
Qa(q),d>30dd (¢ V2+1)/(2,q+1) d—1

Q;(q),d>4 (@ +1)/(2,q+1) d

Qf(q),d>14 (@* 1 +1)/(2,g+1) d—2

Proof. Suppose first that G = SLq(q), Spy(q), ©2; (¢) or SU4(g), with the additional assumption that d is
odd when G = SU4(q). Let T be the intersection of G and a Singer cycle of GL(V'). Then by [6, Table
1], |T| is as given in Table 4 and 7' is irreducible. Let S € Syl (G). By Tits’ Lemma 2.3, all overgroups
of S other than G are contained in parabolic subgroups and hence fix a subspace. So it follows that
(T1,5)=0G.

Suppose next that G = SUy(q) with d > 4 even. Let U be a nondegenerate hyperplane in V' and
let = be a nonsingular vector such that U = (z)*. Since SU;_1(¢) < Gy and d — 1 is odd, it follows
that G has a cyclic subgroup 7T of order (¢~ +1)/(q + 1) which acts irreducibly on U and fixes z. Let
S € Syl (G). If G # (S,T) then (S,T) fixes a totally isotropic subspace W (by Tits Lemma 2.3). Since
T acts irreducibly on U, we have WNU = {0} and so W = (u+ Az) for some nonzero vector u € U and
A € GF(q)\{0}. Since T fixes z, it follows that T fixes u, contradicting T" acting irreducibly on U. Hence
G=(5T).

Next suppose that G = Q4(q) with d and g odd. Let U be a nondegenerate hyperplane upon which the
restriction of the quadratic form is elliptic (i.e. of minus type) and let z be a nonsingular vector such that
U = (z)*. Since Q) ,(¢g) < Gy it follows that G has a cyclic subgroup T of order (¢@~1/24+1)/(2,q+1)
which acts irreducibly on U and fixes z. Let S € Syl,(G). Then by the same argument in the previous
paragraph, (T, S) = G.

Finally, suppose that G = Q‘J{(q), with d > 4. Let U be a nondegenerate subspace of codimension 2
upon which the restriction of the quadratic form is elliptic. Then U+ does not contain any singular nonzero
vectors. Since Q] ,(q) < Gy we have that G contains a cyclic subgroup T of order (%2~ +1)/(2,q+1)
which acts irreducibly on U and trivially on U+. Let S € Syl,(G). If G # (S,T) then (S,T) fixes a
totally singular subspace W (again by Tits’ Lemma 2.3). Since T acts irreducibly on U, it follows that
WNU = {0}. Also WNU* = {0} as U+ does not contain any nonzero singular vectors. Hence either
W = (v+x) or (v+ z,w+y) where v and w are linearly independent vectors of U and (z,y) = U+.
Since T fixes x, it follows that T fixes v, contradicting T being irreducible on U. Hence G = (S,T). O

Lemma 5.3. Let G be a classical group with normal subgroup X as in Proposition 5.2 such that X #
SLa4(q), and let U be a proper nondegenerate subspace of the natural G-module V.. Then p divides |G : Gy|.

Proof. Since GNGL(V) is transitive on U®, we may assume that G < GL(V). As U is nondegenerate, G
fixes the decomposition of V given by U | U+ with U+ also nondegenerate. By [34, Lemma 4.1.1], the
groups induced by Gy on U and U+ contain Sylow p-subgroups of the isometry groups of these spaces.
The p-parts of |GY|, |G5L\ and |G| can be read off from [34, Table 2.1C] and it is easily computed that

L
GTLIGT [p < |Glp- -

Lemma 5.4. Let G and V' be as in Lemma 5.3 of unitary, symplectic or orthogonal type, and let U be a
nondegenerate proper subspace of V' of dimension m > 2. Suppose also that

(1) if G is symplectic then m > 4,

(2) if G is orthogonal then m > 3 and d —m > 2.
Then there exists W € U such that 0 # W NU < U and W NU is nondegenerate. Moreover, p divides
|Gu : Guw|.

Proof. Suppose first that G is not symplectic and, if m,q are both even, suppose also that G is not
orthogonal. Then there exists a nondegenerate proper subspace Y of U with codimension 1. By [34,
Lemma 4.1.1 and Proposition 2.10.6], Gy is irreducible on Y+. (Note that if G is orthogonal then
dim(Y1) > 3.) Thus Gy is not contained in Gy and so there exists g € Gy such that Y < U9 # U.
Hence Y = UNUY. Let W = UY. By [34, Lemma 4.1.1], Gy induces a nontrivial classical group on U
and hence by Lemma 5.3, |Gy : Gu,w/| is divisible by p. (Note that if G is orthogonal then m > 3.)



10 JOHN BAMBERG, MICHAEL GIUDICI, MARTIN W. LIEBECK, CHERYL E. PRAEGER, AND JAN SAXL

Suppose now that G is symplectic, or G is orthogonal with m and g both even. By hypothesis this
implies m > 4. Let Y7 = (e1, f1) < U be a hyperbolic pair and let Y5 = (eq, f4) be a hyperbolic pair in
U+. Then by Witt’s Lemma and [34, Lemma 4.1.1], there exists g € G interchanging Y; and Y3 while
fixing setwise Y;- N U. Then letting W = U9 we have U NW = Y;* N U, a nondegenerate subspace of V.
Hence by Lemma 5.3, |Gy : Gu,w| is divisible by p. O

Next we present a useful lemma concerning the subdegrees of groups of Lie type in parabolic actions.

Lemma 5.5. Let G be an almost simple group with socle L of Lie type in characteristic p. Let P be a
mazximal parabolic subgroup of G. Exclude the following cases:

L = PSL4(q) with G < PT'L4(q)
L =PQ3 (q),m odd, P = Py,_1 or Py,

L=Es(q),P=P (i=1,3,5,6).
Then in its action on the cosets of P, the group G has a unique nontrivial subdegree that is a power of p.

Proof. This follows from [45, 3.9]: except in the excluded cases, the parabolic P~ opposite to P is
G-conjugate to P and the required suborbit is the P-orbit containing P~ . O

Next we present some information on conjugacy class sizes in classical groups.

Definition 5.6. Let = € GL4(q) and V be a d-dimensional vector space over GF(q). Let K be the
algebraic closure of GF(q) and V =V ® K, a d-dimensional vector space over K. Then x acts naturally
on V and we define v(z) to be the codimension of the largest eigenspace of x on V. For x € PGLg(q),
we define v(x) to be v(Z), where & is a preimage of x in GL4(q).

. . (1
We denote the lower triangular matrix (1

(1)) by J2 and we use J5 to denote the block diagonal
matrix with s copies of Js.

When ¢ is even and G is a symplectic or orthogonal group the conjugacy classes of involutions are
described in [4]. When G = Sp,(q), for each odd positive integer s < d/2, there is one class of involutions
with v(z) = s, denoted by bs, while for each even positive integer s < d/2 there are two classes of
involutions with v(z) = s, denoted as and ¢s. By [4, (8.10)], the group SO§(q) meets each of the Sp,(q)-
conjugacy classes of involutions except SO (¢) contains no involutions of type aq/, for d = 0 (mod 4).
Only involutions of type a; or ¢ lie in Q4(g) and the involutions of type b; lie in SOg5(q)\Q5(¢). Moreover,
two involutions of SOg(q) that are conjugate in Sp,(g) are conjugate under an element of Q5(g), except
the a4/o-class in SO (q) which splits into two Qj(q)—classes denoted ag4/2 and a&/z that are fused by
S0, (a)-

Combining [9, Lemma 3.20 and Proposition 3.22] we obtain the following bounds on the lengths of
conjugacy classes. We denote PSL,,(¢) by PSL(¢) and PSU,,(q) by PSL;, (q).

Proposition 5.7. Let G = PSLS(q), PSp,(q) or PQS(q) with ¢ = p/ for some prime p. Let x € G have
order p and let s = v(x). Then |2¢| > fi(d,s,q) with i = 1+ 65, (where &, is the Kronecker delta
function) and f;(d,s,q) as given in Tables 5 and 6.

TABLE 5. Bounds on unipotent conjugacy classes for p odd

G fl (d7 S, q)
PSLZ(Q) m HlaX{qQS(d*S)7 qu}
PSpd(Q) ﬁ IIlaX{qS(d_é‘)7 qu/2}

PQ?(Q) ﬁ rna})({qs(dfsfl)7 qd(sfl)/2}

PQd(Q) %maX{qs(d—s—1)7qd(s—1)/2}

An outer automorphism of a finite simple group of Lie type can be written as the product of an inner
automorphism, a diagonal automorphism, a field automorphism and a graph automorphism. We follow
the conventions of [27, Definition 2.5.13] as to the definition of a field, graph or graph-field automorphism.
In Table 7, these automorphisms are referred to being of type f, g and gf respectively.

Lemma 5.8. Let L = PSLS(q),PSp,(q) or PQ(q) where ¢ = p for some prime p and let x €
Aut(L)\ PGL(V) of prime order r. Then |x*| > h(d,r,q) where h(d,r,q) is as given by Table 7.
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TABLE 6. Bounds on unipotent conjugacy classes for p even

G Conditions x F2(d, 5,9)
PSLZ(Q) [JS, Id_gs] mq2s(d_s)
PSpy(q) Qs %qs(d—s)

bS7CS %qs(d_s'f'l)
PQ;(q) (s,€) # (d/2,+) as 1 sta=s-1)

1 _s(d—s)

Cs lq
PQf(q) s=d/2 a2, “21/2 iqd(dfz)/zl

Is 1,.d%/4

d/2 24

TABLE 7. Bounds on conjugacy classes of outer automorphisms

L Type Conditions h(d, T, q)
(1—¢)/2 |
PSLg(q) f g=gqp, r>2ife=— % <ﬁ) q(d2*1)(1**)*1
1 (1—e)/2 1P dd
g r=2,dodd 5((]%) g3 (@ +d—1)
(1-€)/2
g r=2,d>2even % (q_‘L) q%(dz_d—4)
gf  (rnge)=(2,¢,+),d>2 Lgz®@d
PSpy(q) f q=a BT
9f  (drp)=(4,22), fodd ¢°
PQa(q), d even  f q=4q L@ D=7z
9f (r,q,€) = (2,63, +) iqd(d_l)/‘l
9f (d,r,q,€) = (8,3,¢3,+) %qSG/S
g (d,r,€) = (8,3,4) g1
PQd(q), dq odd f q= qg iqd(d_l)(l_l)/Q
Proof. This is from [9, Lemma 3.48]. .

Lemma 5.9. Let L be one of the groups in the first column of Table 8. Then the number of transvections
in L is given by the second column of Table 8.

TABLE 8. Transvections

L Number of transvections

PSLa(q) (¢ —1)(¢" "= 1)/(g—1)

PSUa4(q) (¢* = (=DM (" = (=) ) /(g +1)
PSpy(q) ¢ -1

6. CLASSICAL GROUPS: PROOF OF THEOREM 5.1

In this section we prove Theorem 5.1. Throughout, G is an almost simple group with socle L =
PSL4(q), PSU4(q), PSp,(q) or PQg(q) acting primitively on a set 2 with H = G, for some a € Q. If
L = PSUg4(q) we assume that d > 3 and (d, ¢) # (3,2). For L = PSp,(q) we have d > 4 and (d, q) # (4,2).
Finally, if L is an orthogonal group we assume that d > 7.

We denote the natural module of G by V and we let {vy,...,v4} be a basis for V' over GF(q) (over
GF(¢?) when L = PSU,(q)). For classical groups with socle other than PSL,4(g) it is often convenient to
use bases specific to the sesquilinear form B and/or quadratic form @, preserved by the group as follows:

e When L = PSp,(q) we call a basis {e1,...,eq/2, f1,..., fas2} such that B(e;,e;) = B(f;, fi) =0
for all ¢ and Ble;, f;) = d;; for all ¢, j, a symplectic basis.

e When L = PSU,(q) with d even we call a basis {e1,...,eqs2, f1,-- ., fa/2} such that B(e;,e;) =
B(f, fi) = 0 for all i and B(e;, fj) = 6, ; for all ¢, j, a unitary basis.
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e When L = PSUg4(q) with d odd, we call a basis {e1,...,e@q—1)/2, f1,-- -, fra—1)/2, ¢} such that
B(e;, e;) = B(fi, fi) = Blei,x) = B(f;,x) =0 for all 4, B(e;, fj) = 0;,; and B(z,x) = 1 a unitary
basis.

e When L = PQf(q), we call a basis {e1,.. . eqs2, f1,..., faj2} where Q(e;) = Q(f;) = 0 and
B(e;, fj) = 6, ; for all 4, j a hyperbolic basis.

e When L = PQ, (q), we call a basis {e1,...,eq/2-1, f1,-- -, faj2—1,7,y} where Q(e;) = Q(fi) =0,
B(ei, fj) = dij, B(ei,x) = Bles,y) = B(fi,x) = B(fi,y) = 0 for all i, j, Q(z) = 1, B(z,y) =1
and Q(y) = ¢ where x? + x + ( is irreducible over GF(q), an elliptic basis.

e When L = PQq(q) with d odd, we call a basis {e1,...,e@—1)/2, f1,-- -, fra—1)/2, } where Q(e;) =
Q(fi) =0, Blei, fj) = 0i,j, Bes,x) = B(es,y) = B(fi,x) = 0 for all 4, j and Q(z) # 0, a parabolic
basis.

The maximal subgroups of the classical groups are described by Aschbacher’s Theorem [3]. They fall
into eight families C; (1 < 4 < 8) of “geometric” subgroups, together with a further class Cy consisting of
almost simple groups in absolutely irreducible representations satisfying certain extra conditions (see [34,
p3]). We shall deal with each case H € C; in a separate subsection below. There are three further cases
where extra possibilities for H have to be considered — those in which G contains a graph automorphism
of L = PSL4(q) or Spy(q) (g even), or a triality automorphism of L = PQg (¢). These are considered at
the end of the section.

Throughout, we shall use the detailed descriptions of the subgroups in the families C; which can be
found in [34, Chapter 4].

6.1. Aschbacher class Cy: Suppose H € C;. Here H is the stabiliser of some subspace U of dimension
m with 1 < m < d/2. If L =PSLy4(q) or U is totally singular, then H has a nontrivial normal p-subgroup
and so by Lemma 2.1(iv), G has a p-subdegree (i.e. a subdegree divisible by p). If G is an orthogonal
group and U is a nonsingular 1-space, then the subdegrees of G are given in [5] or [63, pp.331,332] from
which we see that there is always a p-subdegree. This leaves us to deal with the case where L # PSL4(q)
and U is a nondegenerate subspace of dimension m (with m > 2 if L # PSUy4(q)). Then H also stabilises
U+ which has dimension d —m. Since G acts primitively on 2, it follows that U and U~ are not similar.
Hence if G is not orthogonal then d —m > m, while if G is orthogonal d —m > m, with equality implying
that m is even with the restriction of the quadratic form to U being hyperbolic, while the restriction of
the quadratic form to U™ is elliptic. Note that if G is symplectic, then both d and m are even and so
d —m > 4 in this case, while if G is orthogonal then d — m > 4 and m > 2. Thus by Lemma 5.4, we
can find W € (U+)% such that 0 # WNU* < U+ and W NU* is nondegenerate. Moreover, p divides
|Gy : Gye | Since W+ € UY, Hy = Hyy» and Gy = Gy it follows that G has a p-subdegree. This
proves (A) of Theorem 5.1 in the C; case.

For 3-transitivity, if L # PSLq(g) and U is not totally singular, then p divides |Q2| and so the existence
of a p-subdegree implies that G is not %—transitive. If L # PSL4(q) and U is totally singular, then by
Lemma 5.5, except in the case L # PQ}(g) with d = 2 (mod 4) and dimU = d/2, G has a unique
subdegree which is a power of p. Hence if G is not 2-transitive then G is not %—transitive.

For L = PQ;‘(q) with m = d/2 > 5 odd, let {ei1,...,eqs2, f1,..., fa/2} be a hyperbolic basis for V.
Without loss of generality we may suppose that U = (e1,...,eq/2) and note that a maximal totally
singular subspace W of V is in U” if and only if W N U has even codimension in U. Moreover, as G is
primitive, UY = UL. Thus by [8, Lemma 9.4.2], the subdegrees are

q(m—i)(m—i—Z)/Q [T]q ,
for each i with 0 < i < m and m — i even.! Hence G is not %—transitive.

If L = PSLy4(q) the suborbits are Q; = {W € Q | dim(U N W) = i} for each 4, 0 < i < m. By [8,
Lemma 9.3.2(ii)],

Q] = ¢™ [d;nm]q'

1By [T]q we mean the Gaussian coefficient used to denote the number of i-subspaces in an m-dimensional vector space
over GF(q). We have
mp _ @ =D - (@™ -
o= @1 a-D
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When m = 1, G is 2-transitive. For m > 2,
@l = a[477], L4,
_ (@™ =Dl 1)
(¢—1)(g-1)

is another subdegree. Since || and |©2,,,_1] are not equal, it follows that G has two different subdegrees
and so G is not %—transitive.

6.2. Aschbacher class Cy: Here H is the stabiliser of a decomposition V= Uy & --- @ Uy, where all
dimU; = m, d = mt and t > 1. Roughly speaking H is the wreath product of a classical group on U
with S;. Detailed descriptions of the subgroups in Cs can be found in [34, §4.2]. There are several cases
to consider.

6.2.1. L =PSLg4(q). If t > 2, [33, Theorem 1.4] implies that there exists g € G such that HNHINL = 1.
If |H N L] is divisible by p (which will happen if m > 1) then it follows that G has a subdegree divisible by
p. Moreover, as p divides |Q], it follows that in these cases G is not %—transitive. Thus we may assume,
if ¢ > 2 that p does not divide |[H N L| and m = 1.

Suppose next that m = 1 and that p divides |H|. Then either p divides |H N L| (and hence ¢t = 2), or
H contains a field automorphism of order p. If p divides |H N L| and ¢ = 2, then we must have p = 2.
In this case, let € H N L = Dy(,_1) be an involution. Then [z¢| = ¢* — 1 while [2¢ N H| = ¢ — 1.
Thus by Lemma 2.6(ii), G has an even subdegree. Suppose now that p does not divide |H N L| and H
contains a field automorphism = of order p. Note that p must be odd and d < p. Then Lemma 5.8
implies that [z| > %q(zdg"r’)/g. Since |H N L| is coprime to p, the Sylow p-subgroup of H is cyclic and so
(£)NH = (z). When G = Aut(L) we have |H| = (¢—1)?"'d!f2 and |C (z)| = (¢*/?—1)4"1d! f2. where
q = p/. Thus for all possibilities for G we have [zt N H| < (p—1)|z¥| < (p—1)(g — 1)1/ (¢*/? —1)2-L.
Hence for d > 3 we have [z N H| < 1¢%~! and Lemma 2.6(ii) implies that G has a subdegree divisible
by p. For d = 2, we have |z N H| < q. Moreover, Cr(z) = PSLy(¢'/?) and so in fact [2%| > ¢33/ > ¢2.
Thus Lemma 2.6(ii) again yields a p-subdegree. Since || is divisible by p, it follows that if p divides |H]|
then G is not %—transitive.

Now suppose m = 1 and p does not divide |H|. Then d < p and p is odd. Let V = (v1) & --- @ >
be the decomposition stabilized by H, let v be the decomposition (v + ve) @ (va) @ <v )
§ be the decomposition (v; + v2) @ (v1 — v2) @ (v3) & ... & (vg). Then |YI| = (¢ — 1) ( 1)
|67 = (¢ —1)d(d — 1)/2, and so G is not 3-transitive.

Finally suppose that t =2 and m > 1. Let V = (v1,...,0m) ® (Um41,- - -, V2m) be the decomposition
fixed by H and let v be the decomposition (v1,...,Um—1,Vm+1) B (Vm,VUm+2,.-.,V2m). Then H, fixes
the decomposition (v1,...,Um—1) & (Um) B (Vm41) S (Um+2,- .., V2m). Hence p divides |H : H,| (as Hy,
has a composition factor isomorphic to SL,,(¢q) and (Hy, ), stabilises a decomposition of Uy). Since p

divides [Q|, G is not 3-transitive.

(v

From now on, we suppose that L is not PSLy(q).

6.2.2. t =2 and Uy, Uy are maximal totally singular subspaces: Without loss of generality we may suppose
that Uy = (e1,...,em) and Uz = (f1,..., fm) with m = d/2 such that B(e,, f;) = 6;;. Suppose first that
m > 3 and let Wi = (f1, fa,es...,em). Then U N Wy has codimension 2 in U; and lies in the same
G-orbit as U;. (The only time G may not be transitive on the set of maximal totally isotropic subspaces
is when G is an orthogonal group of plus type. In this case, two maximal totally isotropic subspaces lie in
the same orbit if and only if they intersect in an even codimension subspace.) Let Wa = (eq, €3, f3..., fmn).
Then v = {W1,Ws} € Q. It follows that Hy, w, fixes Uy N W1 = (es,...,en) and Us N W1 = (f1, fa2).
Hence H, fixes the set {(e1,e2),(e3,...,em), (f1,f2),{(f5,...,fm)} and so |H : H,| is divisible by p.
When m = 2, G is not orthogonal and so G is transitive on the set of m-dimensional totally isotropic
subspaces. Thus let Wy = (eq, f2) € UZ. Also let Wy = (ea, f1) and v = {W7, W} € Q. Then H,, fixes
{(e1), (e2), (f1), (f2)} and so p divides |H : H,|. Thus we have found a p-subdegree in all cases and hence
G is also not 3-transitive as [Q] is divisible by p.

6.2.3. G is orthogonal, t = 2 and Uy and Us are nondegenerate, similar but nonisometric subspaces: Here
both ¢ and d/2 are odd. By Lemma 5.4, there exists W; € UF such that {0} # U; N W; # W, and
Uy NW7 is nondegenerate. Let W5 be a nondegenerate subspace complementary to Wi, and isometric to
Us, and let v be the decomposition V = W; @ Wy in 2. Then Hy, , fixes the nondegenerate subspace
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Ui N W of Uy and so p divides |H : H,| (by Lemma 5.3). Since H is not parabolic, p divides || and so
G is not %—transitive.

The remaining cases to consider are where V. = Uy 1L Uy L ... L U; where the U; are isometric
nondegenerate subspaces of dimension m. We break up the analysis as follows.

6.2.4. m > 3, orm = 2 and G is unitary: Here Lemma 5.4 implies that there exists a nondegenerate
subspace W7 of Uy L Us in UlG such that W7 NU; is a proper nondegenerate subspace of U;. In this case,
let Wo = Wit N (U; L Us) and «y be the decomposition V = W; L Wy L. Uz L ... L U;. Then Hy, v,
fixes Uy N W;. Since Hy, y, induces a classical group on U; and U; N W; is nondegenerate, it follows by
Lemma 5.3 that p divides |Hy, v, : Hy,,v,,~| and hence also divides |H : H,|. Since p divides ||, G is
not %—transitive.

6.2.5. m = 2 and G is symplectic: Note that [34, Proposition 6.2.6] implies ¢ # 2. Suppose that
{e1,.-.,€q/2, f1,..., faj2} is a symplectic basis and each U; = (e;, fi). Let v € Q be the decomposi-
tion V = <61,f1 + fa) L (ex +ea, f1) L (es, f3) L ... L (eq,fa). Then H, fixes {(e1),(f1)} while
Spy(q) < H(ffjf‘ll)) Thus G has a p-subdegree and as |(2] is divisible by p, G is not 3-transitive.

6.2.6. m = 2 and G is orthogonal: Here H preserves the decomposition V' =U; L Uy L ... L Uy/p and
the U; are isometric nondegenerate 2-spaces, either all hyperbolic or all elliptic. If each U; is hyperbolic
then V' is hyperbolic and so has a hyperbolic basis {e1,...,eq/2, f1,..., fa/2} and we may suppose that
each U; = (e;, fi). On the other hand, if each U; is elliptic, let U; = (a;, b;) such that Q(a;) = 1,Q(b;) =¢
for some ¢ € GF(q)\{0}, and B(a;,b;) =0 if g is odd and B(a;,b;) = 1 if ¢ is even. Note that if p divides
|H| either p < d/2 or H contains a field automorphism of order p. Moreover, d/2 > 4.

Suppose first that ¢ is even. If each U; is hyperbolic, let W1 = (e1 + €2, f1) and Wa = {eq, f1 + f2).
Then vy =Wy LWy LUs L ... LUy € Qand H, fixes Uy and Uy. Thus 2(‘142) divides |y*| and so G
has an even subdegree. If each U; is elliptic, then

7:<a1,b1+a2—|—a3>J_<a2+b1+b3,b2)J_(ag,b3+b1+b2>J_U4L...J_Ud/2EQ

and H., fixes Uy, Uz and Us. Thus |y] is divisible by 6(d§2) which is even.

Suppose now that ¢ is odd and p < d/2. By [34, Propositions 6.2.9 and 6.2.10], we have ¢ > 5. If each
U; is hyperbolic, let Wy = (eq, f1 + f3), Wa = {e1 + e2 —e3, f2) and W3 = (1 — e3, —fa — f3). If each U;
is elliptic, since ¢ > 5, we can choose A1, A2 € GF(¢)\{0} such that Q(A1a1 + A2b2) = 1 and then there
exists p1, 2 € GF(g)\{0} such that Q(p1a1 + p2b2) = ¢ and B(A1a1 + Aeba, p1ag + pebs) = 0. Then
let W1 = <>\1a1 + Agbg, b1>, W2 = </L1a1 + ,LLQbQ, 0,3> and W3 = <a2, b3> Now for both the hyperbolic and
elliptic case let 8 € Q be the decomposition V. =Wy L Wy L W3 L Uy L ... L Ug/o. Then Hp fixes Uy,
Uy and Us, so 6(dé2) divides |3f|. Thus if p = 3 then G has a subdegree divisible by p. For p > 5, note
that for each pair U; L U;;q, with 4 < i < p—1 and i even, we can find Y;, Y;11 of the same isometry
type as Uy such that Y; L Y11 = U; L U;1q and {Y;, Y41} N{U;, Uis1} = @. Let v be the decomposition
V = W1 1 W2 1 W3 1 Y4 1 }/5 4 ... L1 Y;),l 1 Yp 1 Up+1 1 ... 1 Ud/2- Then HA/ ﬁxes {Ul,UQ,Ug}
and {Uy,Us,...,U,}, so |yH| is divisible by (g) (d£2)7 which is divisible by p.

Suppose now that p > d/2 and H contains a field automorphism = of order p. Note that since
d > 8 this implies that p > 5 and ¢ = p/ > pP. By Lemma 5.8, 2| > 1¢¥@=D2/5 Now |H| <
(2(q + 1))¥2(d/2)!(q — 1) f3 < ¢*¥/*+3 due to the conditions on q. Thus |% N H|?> < |2%| and so by
Lemma 2.6, G has a subdegree divisible by p.

Now since p divides || it follows that if p divides |H| then G is not 3-transitive. If p does not
divide |H| note that p > 5. As above, choose Y7,Y> to be nondegenerate 2-subspaces of (Uy,Us) of
the same isometry type as U; and orthogonal to each other. Let 8/ € Q be the decomposition given
by V=Y, LYy LUs L ... LUy Then (%?) divides [(8')"| and so let £ be the integer such that
(BN = E(dQZ). Now let Y3,Y, be nondegenerate 2-subspaces of (Us, Uy) of the same isometry type as
U; and orthogonal to each other. Then we can choose Y3,Yy so that if 8”7 € Q is the decomposition
V=U LU LYs LYy LUsL... 1L Ugy:;then |(BH| = E(déz). Now let v be the decomposition
V=Y1 1Y, LYs LYy LUsL... LUy Then H, fixes {Uy,Usz,Us,Us} and preserves the partition
{{U1,Us},{Us,Us}}. Thus |y| = 3¢2 (df). Except in the case where d/2 = 4 and ¢ # 2, we have
Iv] # |(8)] and so G is not 3-transitive. When d/2 = 4 and ¢ = 2, note that |[y?| = 12 while for
B introduced previously (and whose definition is still valid for p > d/2), |37] is divisible by 6(3) = 24.
Hence G is not %—transitive in this case either.
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6.2.7. m = 1 and G is orthogonal: According to [34, Table 4.2A], ¢ = p is odd, and so if p divides |H]|
it follows that p < d. Recall that we are assuming d > 7. Let H be the stabiliser of the decomposition
a=(v1) L (v2) L ... L (vg). By the discussion in [34, p100-101] we may assume that B(v;,v;) = 1 for
all i and hence Q(v;) = 27!, Note also that not all orthogonal decompositions of V into nonsingular 1-
spaces may lie in ) as there are two isometry types of nonsingular 1-spaces. Note also that for A € GF(p),

Q(vy + Avz) = Q(v1)(1 4+ A2) and so Q(v1 + Avo) = 0 if and only if A2 = —1. Hence the space

(v1,v2) is {

Suppose first that p divides |H| with p > 5. Then there exist at least three 1-dimensional subspaces
of (v1,v2) upon which the quadratic form has the same parity as it has on (v;). Thus there exist
A1, A2 € GF(p)\{0} such that Q(Aiv1 + A2v2) = Q(v1) and hence there exists g € L mapping v; to
A1v1 + Aavg. Now (Ajvg + Aave)t N (v1, ve,v3) = (101 + pava, v3) for some 1, ua # 0, and this subspace
has a decomposition (z1) L (x2) with Q(z1) = Q(x2) = Q(v1) such that each x; # vs. Note that each
T = Z?Zl &v; with each & # 0. Now

Yy :<>\11)1 + )\2’02> 1 <£C1> 1 <£C2> 1 <)\1’U4 + )\2U5> 1 <M1’U4 + /J21)5> 1.1
(Mvp—1 + Aavp) L (H1vp—1 + povp) L (vpy1)y L ... L (vg) € Q.

Then H, fixes (v3), {(v1), (v2)} and {(v1),..., (vp)} and so |[y#| is divisible by 3(5) (Z), which is divisible
by p.

Suppose next that p = 5. Since d > 7, |H| is divisible by 5. In this case Q(v;) = 27! = 3, which is a
nonsquare. Hence if Q(7) is a nonsquare then (x) € (v;)¢. The nonsquares in GF(5) are 2 and 3. Let
T1 = v1 + 209 +v3, Ty = U1 + Vo + 203, T3 = 207 + Vg + V3 + Vg + 205, T4 = 207 + Vo + v3 + 3vg + 3vs and
x5 = 201 + vo + v3 + 2v4 +v5. Then Q(z1) = Q(x2) = Q(x3) = Q(x5) = 3 and Q(x4) = 2, and so

6= (x1) L (z2) L (w3) L (zg) L (z5) L (vg) L... L (vg) €a®.
Now Hj fixes {(v1), (va), (vs)} and {(v4), (vs)}. Hence 10(£) divides |5%].

Next suppose that p = 3. Since d > 7, |H| is divisible by 3. In this case Q(v;) = 27! = 2, which is a
nonsquare. Let x1 = v +vo +v3+ vy, T2 = V1 — V2 + U5+ Vg, T3 = U3 — V4 + Vs — Vg, T4 = V1 + Vo — U3 — V4,
x5 = —v1 + V2 + v5 + vg and x5 = —v3 + v4 + v5 — vg. Then Q(z;) = 2 for all 4, and so

6= (x1) L (z) L (x3) L (wg) L (z5) L (xg) L (v7) L ... L (vg) € a®.

Now Hj; preserves that partition {{(v1), (ve)}, {(vs), (va)}, {(vs), (vs)}}. Hence 15(2) divides |6%7].

Thus if p divides |H| we have found a p-subdegree and so as p divides |Q|, it follows that G is not
%—transitive. Suppose now that p does not divide |H|. Then p > d and in particular p > 7. Using
A1, A2, u1 and po as before let

5 = <)\1’Ul + )\2U2> 1 </L1U1 +,u21)2> 1L <’l}3> ... L <’Ud> e Q.
Now Hp fixes {(v1), (v2)} and hence |31 | = 2° (g) for some ¢ > 0. Next let
n = (A1v1 + Agv2) L (piv1 + pova) L (Avs + Agva) L (u1vs + pova) L (vs) L ... L (va) € €.

Then H, fixes {{(v1), (v2)}, {{v3), (v4)}}. Hence |n¥| is divisible by 3(1) = (g) (d —2)(d —3)/4. One of
d—2or d— 3 is an odd number at least 5, and hence |n’| # [37|. Thus G is not 3-transitive.

elliptic when ¢ =3 (mod 4)
hyperbolic when ¢ =1 (mod 4)

6.2.8. m =1 and G is unitary: Let H be the stabiliser of the decomposition V' = (v1) L (vg) L ... L (vg).
By the discussion on [34, p100-101] we may assume that B(v;,v;) = 1 for all ¢ and by [34, Proposition
429, HNL = ((g+ 1% 1/(qg+ 1,d)).S4. Thus if p divides |H| either p < d or H contains a field
automorphism of order p. Suppose first that p = 2. Then B(v; + v + v3,v1 + v2 + v3) = 1 and
(v1,v9,v3) N (V1 +v2+v3)" = (V1 +vg, va+v3). Both vy +vy and ve+wv3 are singular. Since (vq +vg, vo+v3)
is nondegenerate, there exist nonsingular x1, s € (v1 + va, v2 + v3) with x; € 302l Note that for i = 1,2,
Xy 7é V1, V2, V3. Thus

B:<1}1+’U2+’U3>J_<(E1>J_<(E2>J_<’U4>J_...J_<"Ud>€Q.

Moreover, Hpg fixes (v1,v2,vs). Hence (g) =d(d—1)(d—2)/6 divides |3H|. If d is even, or d = 1 (mod 4),

it follows that G has an even subdegree. If d =3 (mod 4) and d > 3, let
v={(v1 +vy+uv3) L {x1) L {xa) L (vg+vs+ve) L (y1) L (yo) L (v7) L ... L {vg)€Q,

where y1, Yo are nonsingular elements of (v + vs, vs +vg). Then |y#| is divisible by IO(g)7 which is even.
Hence if d > 3, G has a subdegree divisible by p = 2. Now let d = 3 and let x € H N L be an involution.
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Then by Lemma 5.9, |z%| = (¢ — 1)(¢® + 1) while |z N H| = 3(¢ + 1). Hence for ¢ > 8, Lemma 2.6
implies that G has an even subdegree. If ¢ = 4, a MAGMA calculation shows that L has a subdegree
equal to 150. Hence for all even ¢ > 4, G has an even subdegree (note that (d,q) # (3,2)).

Next suppose that p is odd and p < d. In (vy, v, v3), we have (v; + v2)* = (v; — vo,v3). Then there
exist A\, u € GF(¢?)\{0} such that v; — vy + Avz and v; — vy + pws are nonsingular and B(v; — vg +
uvs, v1 — vy + Avg) = 0. Then

(1) v = (v +v2) L (v —va+ Avg) L (v1 —vg + pws) L (va) L ... L (vg) € Q.

Now H, fixes {(v1), (v2)} and (v3), and if g € H, maps vy to £v; then g maps vy to vs. Hence 3(¢+ 1)(‘;)
divides |[y#|. Thus if p = 3 we have found a p-subdegree. If p > 5, let

0 =(v1 +v9) L (01 —wg + Avg) L (v1 —vg + pvz) L (vg +v5) L
(va—ws) Lo L (vpo1 +vp) L (vp—1 —vp) L (Upg1) L ... L (vg) € Q.

Then (%) (Z) is divisible by p and divides |§7].

Finally, suppose that p > d and H contains a field automorphism x of order p. Note that p > 5
and ¢ > p? > d!. By Lemma 5.8, |2%| > Q(Qil)q(‘ldk(‘))/‘:’ > W=10)/5 a5 4 < ¢1/5. Now |H| <
(q+ 1) tdI2f < (g + 1) 1g? < (29)71q? < ¢U9+2/3, Hence |2%| > |2¢ N H|? for d > 5. For d = 4, we
see that |H| < (¢ + 1)%48f < ¢®384f < ¢* as ¢ > 5°. Since |2%| > ¢'° we also have [z%| > |z N H| in
this case. Finally, for d = 3 we have |H| < (¢ + 1)?12f < %q212f < ¢*3/5 as both p and f are at least
5. Since |z%| > ¢?%/5 in this case we also have that || > |#¢ N H|?. Hence for all values of d, Lemma
2.6 yields a p-subdegree.

Now p divides |Q| and so if p divides |H|, G is not 3-transitive. If (|H|,p) = 1 then p is odd and p > d.
Let 8 = (v1 +v2) L (v1 —w2) L (v3) L ... L (vg) € Q. If g € Hg then g can interchange v, and vs, but
if g :v1 = Ay then g : vy = Ava. Thus |87] = (¢ + 1)(%). For v defined in (1) we have already seen
that |y#| is divisible by 3(g + 1)(;) (the definition of v and |y| do not depend on the condition p < d).
Thus if d > 3, then G is not 3-transitive. If d = 3, we see that |H, N L| = 2 and so 3(q +1)?/(q + 1,3)
divides [y]. Since (d, q) # (3,2), it follows that [y # |37 | and so G is not 3-transitive.

6.3. Aschbacher class C3: Here H is the stabiliser of an extension field structure of V' as a b-dimensional
vector space over GF(¢%) where d = ab and a is prime. The subgroups are described in detail in [34,
§4.3].

Lemma 6.1. Ifb> 1 then G has a p-subdegree and G is not %-tmnsitive.

Proof. Suppose first that if G is orthogonal then H is not unitary. By hypothesis, b > 2 and if G is
orthogonal, [34, Table 4.3.A] implies that b > 3. Since a # 1 it follows that H is insoluble. Let T be a
GF(q)-subfield subgroup of H. Choose a GF(¢*) basis for V and let W be the GF(g)-span of this basis.
Then we can choose T' to preserve the decomposition V.= W ® GF(¢%). Since GF(q%) is a-dimensional
over GF(q), we can find an element of G\ H which preserves this tensor decomposition and centralises
T. Hence Ny (T) < Ng(T). Let S be a Sylow p-subgroup of H. Then (S,T) contains the weakly closed
normal subgroup H(>®) of H and so Lemma 2.2 implies that G has a p-subdegree.

Next we suppose L = PQZid(q) and H is a unitary group of dimension d. By Proposition 5.2, Hy = H(>)
has a cyclic subgroup 7' such that for S € Syl,(H), we have Hy < (S,T). Now T fixes a nondegenerate
GF(q?)-hyperplane and acts trivially on its perp. Thus T fixes a GF(g)-subspace of codimension 2 and
acts trivially on its perp. Hence Ny (T) < Ng(T) and so Lemma 2.2 implies that G has a subdegree
divisible by p.

Since |Q| is always divisible by p and G has a p-subdegree, it follows that G is not %—transitive. ]

It remains to deal with the case where b = 1. This only occurs where L = PSL3(¢) and d is prime.
First we deal with the case where (d, q) = (2,2/). Recall that a transitive group is strongly %—transitive
if all non-principal constituents of the permutation character are distinct and have the same degree.

Lemma 6.2. Let G be a group with socle PSLy(q), where ¢ = 2f >4, and let H be a mazimal subgroup
of G with HN L dihedral of order 2(q + 1). Consider the action of G of degree q(q — 1)/2 on the set of
cosets of H.

) G has no even subdegrees if and only if the index |G : L| is odd.

) G is strongly %—tmnsitz’ve if and only if either G = L or [ is prime.
) G is %—tmnsitive if and only if either G = L or f is prime.

) G is 2-transitive if and only if ¢ = 4.
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The nontrivial character degrees and the nontrivial subdegrees of the examples in (2) and (3) are g + 1
when G =1L and (¢+ 1)f when G = L.f.

Proof. We work with characters of L — the character theory for the groups PSLa(q) is very well known,
and so is the action of the outer automorphisms on the irreducible characters (see, eg, [24, p500]). We
supply details for completeness.

There are precisely k = (¢ — 2)/2 irreducible characters of L of degree ¢ + 1. We denote these by x;.
The permutation character of our action of L is m =1+ x1 + -+ - + X% : to check that the multiplicity of
each x; is 1, it is enough by Frobenius reciprocity to check that the sum of x;(h) over h € H N L equals
2(g + 1); this is clear, since the value of x; on the ¢ + 1 involutions is 1, and on all nontrivial elements
of order dividing ¢ + 1 is 0. The assertion now follows by comparing the degrees of m and the character
sum on the right. It now follows that L is always strongly %—transitive, and hence %-transitive, with rank
k + 1 and the nontrivial subdegrees are all g + 1.

We now consider the outer automorphisms of L. The outer automorphism group is cyclic of order
f, and we can choose the representative ¢ of the generating coset of the group of inner automorphisms
in the automorphism group in the usual way as the generator of the group of automorphisms induced
by the Galois group of the field GF(q). The elements of L that we have not mentioned yet have orders
dividing ¢ — 1 and are conjugate to powers of the diagonal matrix a with diagonal entries p, p~!, where
p is a primitive element of GF(q). Then y,(a’) = €7 + e~% where € is a primitive complex (g — 1)*® root
of unity. The action of o takes a to a2, and its action on the set {x1,..., X%} is equivalent to the action
of the generator of the Galois group sending p to p?.

All the assertions now follow easily, noting in addition that the number of orbits of any outer auto-
morphism of L on the set of nontrivial (H N L)—orbits in this action equals the number of orbits on the
set {X1,---, Xk}

(1) If |G : L] is odd, all subdegrees of G are odd, since this is true of L and the outer automorphisms
present in G have odd order. Hence G has no even subdegrees.

If |G : L] is even, an involutory outer automorphism in G will act nontrivially on the set {x1,...,Xx}
and hence will fuse two of the L-suborbits, so G will have an even subdegree.

(2) and (3). If f is prime, o will act semiregularly on the set {x1,...,Xxx}, whence G is strongly
%—transitive and hence also %—transitive.

(4) When ¢ = 4 we have PSLy(4) =2 PSL3(5) and the action is 2-transitive of degree 6.

Conversely, if G is %—transitive, then o must be semiregular on the set of (H N L)—orbits, whence it
must be semiregular also on the set {x1,..., X%}, and hence as a Galois automorphism of GF(q). It
follows that f is a prime. |

We remark that it is not hard to find an explicit G-invariant correspondence between the set of orbitals
of the action of L on the sets of H-cosets and GF(q), making the action of o quite explicit. This was done
in much more generality by Inglis [32] (note that PSLy(q) = Spy(¢) and the maximal dihedral subgroups
of PSLy(g) are the orthogonal groups O3 (q)).

Before dealing with the remaining cases we need to set up some notation. By [34, Proposition 4.3.6],
HNL=CyxCqwhere £ = (¢ —¢€)/((g—¢€)(d,qg—€)). Suppose first that ¢ = +. Then we can identify V'
with GF(¢%). Let u be a primitive element of GF(q?). Define the maps p: £ > Euand ¢ : €+ €% on V.
Both are GF(g)-linear and (i, ¢) = Cya_y x Cy. Then H N L is the image in PSLy(q) of the intersection
of (u,¢) with SLy4(g). Note that £ = ¢ if and only if £ € GF(q) and so 1 is an eigenvalue of ¢ with
multiplicity 1. For ¢ = — we have d > 3, and we identify V with GF(¢??) and let u € GF(¢??) have
order ¢% + 1. We then define the maps p: & — & and ¢ : € — €9° on V which are both GF(g?)-linear

d

and preserve the Hermitian form B(&1,&2) = Tr2a_4a(&1€5 ). Then (u, ¢) = Cyayq x Cq and H N L is
the image in PSUg4(q) of the intersection of (u, ¢) with SUg(g). Moreover, 1 is an eigenvalue of ¢ with
multiplicity 1. Indeed, for both values of €, ¢ — 1 is the characteristic polynomial of ¢ and so for d # p,
each d' root of unity occurs as an eigenvalue with multiplicity 1. When d = p, the element ¢ has Jordan
form J,.

We first look for p-subdegrees. Recall Definition 5.6 of v(z) for an element x € PGL4(q).

Lemma 6.3. Let G be an almost simple group with socle L = PSL5(q) and H be as above with (d,q) #
(2,27). If p divides |H| and G has no subdegrees divisible by p then G is the 2-transitive group L3(2).2
of degree 8 as in line 7 of Table 3.

Proof. Suppose first that d > 3 and that p divides |H|. Then either p = d or H contains a field
automorphism, graph automorphism or graph-field automorphism of order p. If p = d then p is odd and
we let © = ¢ € HNL have order p. Since ¢ has Jordan form J,, we have v(z) = d—1. Thus by Proposition
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5.7, 2% > qu(dﬂ) > ¢M4=D=3_ Since |[H N L| < ¢**' it follows from Lemma 2.6(ii) that if
p =d > 5 then G has a subdegree divisible by p. For d = p = 3, [9, Lemma 3.18 and Lemma 3.20] implies
that |z%| = q(¢® — 1)(¢® — €) while we have that |[zL' N H| < 2(¢? + eg+1). Thus except for (g,€) = (3,+),
Lemma 2.6(ii) yields a subdegree divisible by p = 3. For ¢ = 3, a MAGMA [7] calculation shows that
the subdegrees for L = PSL3(3) are {1,13%,39%}. Thus we may assume that d # p and H contains a
field, graph or graph-field automorphism x of order p. Now Nayu(r)(H) = Crga_1y/(g—1) ¥ (Cqr x C2) or
Clgi+1)/(g+1) X C2qgf for € = + or — respectively. It follows that |z¢ N H| < ¢*. Now by Lemma 5.8,
29 > 1g(@*=3)/2, Thus for d > 5, || > |z N H|? and so by Lemma 2.6(ii), G has a p-subdegree. This
leaves the cases d = 3 and d = 2.

Let d =3. Then p=2orp > 5 Let H= NpGry(q)(H). For p > 5, we have that x is a field

1—e)/2

automorphism and so Lemma 5.8 implies that [2&| > 3 (ﬁ>( )/ q(4d2*9)/5 > ¢*2/5 > ¢*. Now
Cg(w) = C /o peqirnyr ¥ C3 and there is only one conjugacy class of subgroups of H of order p. Thus
2N H| < (p—1)(¢> +eq+1)/(¢*? + eq/P + 1) < (p — 1)2¢*>72/P < ¢%. Hence 2% > |2 N H|? and
Lemma 2.6(ii) yields a p-subdegree. So we now assume that p = 2. If z is a field automorphism of order 2
then € = + and so Lemma 5.8 implies [z%| > 1¢3 while we have [2¢ N H| < (¢*+q+1)/(¢+¢"/*+1) < q.
Thus Lemma 2.6(ii) again gives a p-subdegree. If z is a graph-field automorphism then e = + and by [34,
Proposition 4.8.5], Cr(z) < PGUz(¢'/?). Hence |z%| > |L|/| PGUs(¢'/?)| = ¢*/%(¢*/>—~1)(¢+1)/(3,q—1).
Moreover, Cg(z) = Cyszyq x C3. Hence |2¢ N H|?> < (¢%/2 — 1)? < |2€| and so by Lemma 2.6(ii), G
has a subdegree divisible by p. Finally, let = be a graph automorphism of order 2. By [4, (19.9)],
Cr(x) = PSO3(q) and so |zF| = ¢*(¢* — €)/(3,q — €). Moreover, |9 N H| < ¢*> + €q+ 1 and so for
q > 8or (q€) = (4,—), Lemma 2.6(ii) implies that G has a subdegree divisible by p . This leaves us to
consider G = PSL3(2).2 of degree 8, and primitive groups of degree 960 with socle L = PSL3(4) (note
that (¢,€) # (2,—)). The first has subdegrees 1 and 7 and so does not have an even subdegree. A
MacMmaA [7] calculation shows that all groups in the second case with an even order point stabiliser have
an even subdegree.

Finally we deal with the case where d = 2 and so L = PSLy(gq). Recall that ¢ = pf is odd. If p divides
|H| then H contains a field automorphism z of order p and in particular, p divides f. Then Cp(z) =
PSL(¢'/?) and so [29| > ¢373/P > ¢*. Moreover, letting H = Ny (z)(H) we have [H| = 2(q+1)f and
|C5(z)| = 2(¢/P + 1) f. Since the Sylow p-subgroup of H is cyclic, it contains a unique conjugacy class
of subgroups of order p and so [z N H| < (¢"~'/7 —¢'=2/? ... 4 1)(p — 1) < q. Thus Lemma 2.6(ii)
implies that G has a subdegree divisible by p. O

1 q

To deal with %—transitivity7 we first need the following lemma.

Lemma 6.4. Let p and d be primes with d odd and let ¢ = p? for some positive integer f. Then d does
not divide y = (¢* — €)/((q¢ — €)(q — €,d)) for e = +1

Proof. By Fermat’s Little Theorem, d divides ¢! — 1. Suppose that d divides y. Then d divides ¢% — e
and so divides ¢¢ — eq?~! = ¢971(q — €). Since d divides y it is coprime to ¢ and so d divides q — e. If
q = ad + ¢ (mod d?) then using the Binomial expansion we see that for each r, ¢" = (¢)" + rad(e)" !
(mod d?). Hence (¢% —€)/(q —€) = d + ead + €2ad + - - - + e(d — 1)ad (mod d?) = d + ead(d(d — 1)/2))
(mod d?) = d (mod d?). Thus d does not divide (¢? — €)/((q — €)(q — ¢, d)). O

Lemma 6.5. Let G be an almost simple group with socle L = PSL5(q) and H be as above with (d,q) #
(2,27). Then G is not 3-transitive unless L = PSL3(2) acting 2-transitively of degree 8.

Proof. Since p divides || in all cases, if G has a p-subdegree then G is not %—transitive. Thus by Lemma
6.3, we are left to consider the case where p does not divide |H|. In particular, if d > 3 then p # d. We
note that if (d, e, q) = (3,+,2) then L = PSLy(7) acting 2-transitively of degree 8, so assume we are not
in this case.

Suppose first that d > 3 with p # d. Now for d > 3, we have H N L = Cy x Cq where ¢ =
(¢® —€)/((q — €)(¢ — €,d)). Note that for M < Cy with M nontrivial, Lemma 6.4 implies that |M]| is
coprime to d and so as H = Ng(M) it follows that if M < H N HY then g € H. Thus for all g € G\H,
either HNHYNL =Cygor HNHYNL = 1. Now for d # p, ¢ is a semisimple element with 1 as
an eigenvalue with multiplicity 1. Thus Cp,(¢) is not contained in H, and so there exists g € L such
that H N HINL = (¢) = Cy, that is, there exists a subdegree of length ¢, which by Lemma 6.4 is not
divisible by d. Thus it is sufficient to find a subdegree divisible by d. Since v(¢) = d — 1, [9, Proposition

d—1
3.36] and [27, Theorem 4.2.2(j)] imply that [¢¢] > (#’1) qd=1 > %q(d_1)2 > ¢@=D*=1 On the
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other hand, [¢¢ N H| < |[HNL| < ¢%.d = ¢*H°8(D L g¢Hloe(d) Hence for d > 5, |¢%] > [¢¢ N H|?
and so by Lemma 2.6(ii), G has a subdegree divisible by d. For d = 3 and ¢ = 4+ we have ¢ > 4 and
|09| > 24¢° while |99 N H| < (¢* + ¢ + 1).2. It follows that [¢C| > [¢© N H|? and so by Lemma 2.6(ii),
2
G has a subdegree divisible by d = 3. For ¢ = —, note that ¢ > 4 and so |¢)G| > % (q%) q° > %q5.
Now [¢% N H| < (¢ — ¢+ 1)2 and so for ¢ > 7, |¢%| > |¢¢ N H|?>. For ¢ = 5, we actually have
|p% N H| < (¢% — ¢+ 1)2/3 which is sufficient to show |¢¢| > [¢¢ N H|2. Thus for ¢ > 5, Lemma 2.6
yields a subdegree divisible by d. For L = PSUj3(4), a MAGMA [7] calculation shows that the subdegrees
of L are 1,13° and 3938, Thus G is not %—transitive in this case also.

Suppose now that d = 2 and ¢ is odd. Then H N L = Dg4. Suppose first that (¢ +1)/2 is odd. Then
|H| and |Q| are even. Let € H N L have order 2. Then |2%| = ¢(¢ + 1)/2 while [2¢ N H| = (¢ + 1)/2.
It follows from Lemma 2.6(ii) that G has an even subdegree and so G is not 3-tramsitive. Suppose
now that (¢ + 1)/2 is even. Then H is the centraliser of an involution and for each g € G\H we have
LNHNHI=1,Cy or C2. Now H N L contains (q+ 3)/2 involutions and so each involution is contained
in (¢ + 3)/2 conjugates of H. The number of conjugates of H containing an involution of H N L is at
most (g +3)%/4. Then since there are q(q — 1)/2 conjugates of H and q(q —1)/2 > (q +3)?/4 for ¢ > 11,
it follows that in these cases there exists ¢ € G\H such that H N H9 N L = 1, and hence a subdegree
divisible by ¢ + 1. A MAGMA [7] calculation verifies the existence of such a subdegree for ¢ = 7. Since
g+ 1 does not divide |2 — 1 it follows that G is not 3-transitive. O

6.4. Aschbacher class C4: Here H is the stabiliser in G of a tensor product structure V = U ® W where
dim(U) = a, dim(W) = b and d = ab with a,b > 2 and U and W are not isometric. Detailed descriptions
of the subgroups are given in [34, §4.4]. We note that by [51, Lemma 3.7], if g = (g1, 92) € GL(U)QGL(W)
then v(g) > max{ar(ga),bv(g1)}, with v as in Definition 5.6. Moreover, if g; has order p and go = 1 then
v(g) = bv(g1) and similarly, if go has order p and g1 = 1 then v(g) = av(g2).

By [34, Table 4.4A] the possibilities for G and H are as follows:

(1) G with socle PSLg(q) and H of type GL,(q) ® GLy(g) with a < b,

(2) G a unitary group and H of type U,(q) ® Up(q) with a < b,

(3) G a symplectic group and H of type Sp,(q) ® Os(¢q) with ¢ odd and b > 3 and a > 2,

(4) G of type O and H of type Sp,(q) ® Sp,(q) with 2 < a < b,

(5) G an orthogonal group and H of type Og'(q) ® O;*(q) with ¢ odd, a,b > 3 and (a,€;) # (b, €2).

Suppose first that L = PSL5(q) and let ¢ = (1,x2) € H of order p such that v(x) = 1. Thus
v(g9) = a < b and so if h € ¢ N H then h = (1,z;) for some x; € PSL{(q) of order p with v(z;) = 1.
Since a < d/2, Proposition 5.7 implies that |¢%| > %qua(d_‘” > ¢2¢* (=D~ while by Lemma 5.9
g NH| = (¢" — (") ("' — ()" 1) /(g — €) < ¢**~ . Since b > 3, it follows from Lemma 2.6(ii) that G
has a subdegree divisible by p.

Next suppose that G is a symplectic group and H is of type Sp,(¢) ® O;(q) with ¢ odd and b > 3.
Let g = (v,1) € H of order p with v(z) = 1. Then v(g) = b > 3 and by Proposition 5.7, |g%| >
4(q‘il)qb(“b_b) > ¢*°(@=1)=2_ Gipce O5(q) does not contain any unipotent elements with v(y) = 1, if
a > b/2 then |g¢ N H| is the number of transvections in Sp,(q). Thus by Lemma 5.9, |¢¢ N H| < ¢°.
Since a > 2, it follows from Lemma 2.6 that G has a p-subdegree. If a < b/2, then H has a weakly closed
normal subgroup Hy 2 POj(q). By Proposition 5.2, Hy contains a cyclic subgroup T such that for any
Sylow p-subgroup S of H we have Hy < (T, S). If e = + then T centralises a 2-subspace of W and hence
a 2a-subspace of V. Thus Ny (T) < Ng(T). If e = —, then T acts irreducibly on W and preserves a
direct sum decomposition of V into a totally singular subspaces of V' each with dimension b. Now T is
irreducible on each subspace in the decomposition and |T| is at most ¢"/?2 + 1. Thus T is centralised by
an element of order ¢ — 1 which also fixes this decomposition and is not in H. Thus by Lemma 2.2, G
has a subdegree divisible by p.

Next suppose that G is of type OT and H is of type Sp,(q) ® Sp,(¢) with a < b. Let g = (1,z) € H of
order p where v(z) = 1. Then v(g) = aand h € g°NH if and only if h = (1,z;) for some z; € 25P+(9) with
v(z1) = 1. By Proposition 5.7, |¢%| > %q“(d*‘kl) > ¢%°(0=1)=a=4 while by Lemma 5.9, 19 N H| < ¢".
Since b > 4, Lemma 2.6(ii) implies that G has a subdegree divisible by p except when (a,b) = (2,4).
In this case, [3, (15.1)] implies that H is conjugate under a triality automorphism to the stabiliser of a
nondegenerate 3-space when ¢ is odd, while when ¢ is even H is conjugate to a subgroup of the stabiliser
of a nonsingular 1-space. Hence we have already seen that there is a subdegree divisible by p.

Finally suppose that G is an orthogonal group and H is of type O5(q) ® O;*(q) with ¢ odd, a,b > 3
and (a,e1) # (b,e2). We may assume that a < b. Let g = (1,x2) € H of order p where v(z) = 2.
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Then v(g) = 2a and if a < b then h € ¢g© N H if and only if h = (1,z) for some z; € 29°@ with
v(z1) = 2. By Proposition 5.7, [g%| > S(CﬂH)qQ“(“b_Q“_l) > g?elab=2a=1)=3 " while by [9, Proposition
3.22], [¢¢ N H| < 2¢**=* < ¢?*=3. Since a,b > 3, it follows from Lemma 2.6(ii) that G has a subdegree
divisible by p. It remains to consider the case a = b and €; # €3. Note this implies that a is even. If
(x1,72) € g¢ N H then v(x;) € {0,2}. Thus [¢¥ N H| < ¢**~5. Again, as a = b > 4, Lemma 2.6(ii) yields
a p-subdegree.

In all cases we have found a p-subdegree and so as p divides ||, G is not %—transitive.

6.5. Aschbacher class Cs: Here H is the stabiliser of a subfield structure for a subfield GF(qp) where
q = g with r a prime. Descriptions of these groups can be found in [34, §4.5].

Suppose first that H is of the same Lie type as G and we initially exclude the cases where L = PSLy(q)
and PSUs(q) with H of the form PSL2(3) and PSU3(2) respectively. Note also that if d = 2 then gg # 2.
Then H has a weakly closed normal subgroup H, which is an insoluble classical group. By Proposition
5.2, there exists a cyclic subgroup T' of order given by Table 4, with ¢ replaced by gg such that given
a Sylow p-subgroup S of H, Hy < (T,S). Moreover, T is centralised by the subgroup T of G given by
Proposition 5.2. Hence Ny (T') < Ng(T) and so by Lemma 2.2, G has a subdegree divisible by p.

Now let L = PSLs(q) and go = 3. Let # € H be a transvection. Then |29 > 1(¢*> — 1) while
|#¢ N H| < 8. Tt follows from Lemma 2.6(ii) that when ¢ > 27, the group G has a subdegree divisible by
p. When ¢ = 9, a Magma [7] calculation verifies that there is a subdegree of size 6. For L = PSUs(q), ¢
even, and H N L = PSU3(2) = 32 : Qg, let x € HN L be an involution. Note also that r is odd [34, §4.5],
so ¢ > 8. Then |#% N H| = 9 while by Proposition 5.7, [z%| > ¢°/(2(¢ + 1)?) > 202. Hence by Lemma
2.6(ii), G has a subdegree divisible by p = 2.

Next suppose that H is of a different Lie type to G. Then by [34, Table 4.5A] the possibilities are:

o L =PSUy(q) and H of type O5(q) with € € {+, —, 0} and ¢ odd.
e L =PSUy4(q) and H of type Spy(q).
e L =PQ}(¢q) and H of type O; (¢'/?).

Then if q is odd and H is not of type O3(3) or O (3), H contains a weakly closed normal subgroup Hy
which is a nonlinear classical group and by [43], |G : H| is even. Hence by Lemma 2.4, G has a subdegree
divisible by p.

If L = PSU3(3) and H N L = PSO3(3) we see from [22, pl4] that H is not maximal in G. Similarly,
for L = PSU4(3) and H N L = PSO; (3).2, [22, p52] shows that H is not maximal in G.

Next suppose that L = PSUy(q) for ¢ even and H = PSp,(q) (see [34, Proposition 4.5.6]). By
Proposition 5.2, H has a cyclic subgroup 7' of order ¢%/2 + 1 such that H = (S,T) for any Sylow 2-
subgroup S of H. Now T is self-centralising in H but we claim that 7 is contained in a torus T of order
¢ —1in L. If d/2 is odd one can see this by viewing T' < Sp,(¢%/?) < GUq(¢%?) < GUy(q): there is a
torus T of order ¢¢ — 1 in GUy(¢%?) containing T, and the Spy(¢%/?) is in Sp,(q) < GUy(q); and if d/2 is
even then if one takes an element in GUy(q) of order a primitive prime divisor? of ¢¢ — 1, its centralizer
in Sp,(q) is T and its centralizer in GU4(q) is T. Thus in both cases, Ny (T) < Ng(T) and so by Lemma
2.2, G has a subdegree divisible by p.

Finally suppose L = PQ}(q) for ¢ even and H = PQ;(ql/z) (see [34, Proposition 4.5.10]). By
Proposition 5.2, H has a cyclic subgroup 7' of order ¢%/* + 1 such that H = (S,T) for any Sylow 2-
subgroup S of H. Now a Singer cycle of order (¢/2)%/2 + 1 is Q5 ((¢*/?)%?). Moreover, Q0 (¢) has a
Cs-subgroup Q3 (¢%/?), which is a torus of order ¢%/2 — 1, and this contains Q; ((¢'/?)%?), which is the
original Singer cycle. Since d > 8 it follows that T is self-centralising in € (¢) but not in G. Thus
Ny (T) < Ng(T) and so by Lemma 2.2, G has a subdegree divisible by p.

In all cases we have found a p-subdegree and |Q| is divisible by p. Hence G is not %—transitive.

6.6. Aschbacher class Cs: Here H is the normaliser of a symplectic-type r-group. Descriptions can be
found in [34, §4.6].

First we deal with the case where d = 2. Here H N L = A4 or Sy. Moreover, ¢ = p > 5 and so p does
not divide |H|. We note first that if p =5 or 7 then G is 2-transitive and so we assume that ¢ > 11. Let
x € H have order 3 and note that 3 divides either ¢—1 or ¢+ 1. Then |2¢| = ¢(¢+1) while [z¢ N H| = 8.
Hence by Lemma 2.6(ii), G has a subdegree divisible by 3. Let S be a Sylow 3-subgroup of H. Then
Nu(S) < S3 while S3 < Dy—e < Ng(S). Thus there exists g € G\H such that S < H N HY and so G

3

also has a subdegree not divisible by 3, showing that G is not 5-transitive.

2A primitive prime divisor of ¢ — 1 is a prime divisor of g% — 1 that does not divide ¢* — 1 for any i < d.
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For d > 2 and L = PSL{(q), there are two types of Cg subgroups: those of type r1™2™.Sp,, (r) for
r odd, ¢ = € (mod r) and d = ™, and those of type (4 o 21*2™).Sp,, (2) for ¢ = p = ¢ (mod 4) and
d = 2™. In the first case, ¢ = p/ where f is the smallest integer such that p/ = e (mod r). By [34,
Propositions 4.6.5], if H is of the first type then

[ 32.Qs d=3and g=ed or €7 (mod 9)
HNL= { 2™ Sp,,, (1) otherwise

If H is of type (4 0 2172m). Sp, (2), then by [34, Proposition 4.6.6],

2% Ag d=4and p=¢€5 (mod 8)

k= { 22™ Sp,,.(2) otherwise

Suppose first that H is of type (4 o 21+2™).Sp, (2). Since ¢ = p, p divides |H| if and only if p
divides |H N L|. Suppose then that p divides |H N L| and € H N L has order p. If m > 4, then
[9, Lemma 6.3] implies that v(z) > 4. Then by Proposition 5.7, |z¢| > mqs(d_"‘) > 2",
Now |[HNL|* < 24m*+6m and so |z%| > |#¥ N H|?. Thus by Lemma 2.6(ii), G has a p-subdegree. For
m = 3, [9, Lemma 6.3] implies that v(z) > 2 and so |2¢| > W’(q_‘_l)q‘l(d*z) > @271 = 21 Also
H N L=258ps(2) and so for ¢ > 7, we have |2%| > |z N H|?. Thus Lemma 2.6(ii) once again yields a
p-subdegree. It remains to consider (e,d,q) = (+,8,5) or (—,8,3). When ¢ = 3, GAP [25] calculations
show that H N L contains precisely 143360 elements 2 of order 3 with v(z) = 5. By Proposition 5.7, for
such an element = we have |2L| > 337 > |2’ N H|? and so Lemma 2.6 implies the existence of a subdegree
divisible by p = 3. When g = 5, GAP [25] calculations show that there is a regular suborbit and hence
one divisible by p = 5. (In both the p = 3 and 5 cases we can construct H N L using the algorithm
outlined in [30, Section 9]. To find the existence of a regular suborbit we simply choose random elements
g € L until we find one with H N H9 N L = 1.) Finally, if m = 2 note that H N L < 2%.Sp,(2), and so if
|H N L| is divisible by p then either ¢ = + and p = 5, or ¢ = — and p = 3. For L = PSL4(5), we have
H N L=2%A6 and using MAGMA [7] we see that the subdegrees for L are

1,162, 30, 80, 962, 120, 160, 240°, 320, 360, 480°, 9603, 1152%°, 1440'°, 19202, 28802%%, 5760°

Thus L, and hence G, has a subdegree divisible by p = 5. For L = PSU4(3), a MAGMA [7] calculation
shows that the subdegrees for L are 30, 96, 120 and 320. Thus we have found a subdegree divisible by 3.

To show that G is not %—transitive, note that H has a normal 2-subgroup and so Lemma 2.1(iv) implies
that G has an even subdegree. By [43], || is even and hence G is not 3-transitive.

Next suppose that H is of type 772™.Sp,, (r). Now ¢ = p/ where f is the smallest integer such
that p/ = € (mod r). Hence f divides r — 1. It follows that if p divides |H| then p divides |H N L|.
Let x € HN L have order p. If (r,m) = (3,1) then the divisors of |H N L| imply that p = 2. Hence
(e,9) = (+,4) or (—,2). The latter is not possible as we have excluded PSU5(2). For L = PSL3(4), a
MAGMA [7] calculation shows that the subdegrees are {1,723, 182 9} which include subdegrees divisible
by 3. Thus we may assume that d > 5 and so by [9, Lemma 6.3], v(x) > 2. Hence by Proposition
5.7, |2 > ¢*" 12, Now HN L < r?™.Sp,,.(r) and so [2¢ N H|2 < r*™ 6™ Now r < ¢+ 1 so
|2¢ N H|? < ¢8"+12m_ Thus for r > 11, Lemma 2.6(ii) yields a p-subdegree. For r = 7, note that ¢ > 8
and so |2%| > |2 N H|? for all values of m. Hence Lemma 2.6(ii) then yields a p-subdegree. For r = 5 we
have ¢ > 4 and we see that [2%| > |2 N H|? except when (¢, m) = (4,1). In this case HNL = 52. Spy(5),
which contains a unique conjugacy class of involutions. Moreover, such involutions have centraliser Sp,(5)
in HN L. Hence |z9 N H|? = 5* < || and Lemma 2.6(ii) again yields a p-subdegree. Finally, suppose
that 7 = 3 and note that d > 5 implies that m > 2. If ¢ > 4 then |2¢| > 443" 12 > 34m®+6m -, |2¢ N H|?
and so Lemma 2.6(ii) yields a p-subdegree. If ¢ = 2 then Lemma 2.6(ii) yields a p-subdegree except
in the case where m = 2. In this case H N L = 3*.Sp,(3) and L = PSUg(2). Then Sp,(3) contains
a central element of order 2 and 90 elements of order 2 whose —1 eigenspace has dimension 2. Hence
|2€ N H| < 3*+90.32. Thus |29 N H|? < 2%* < |2] and so by Lemma 2.6(ii), G has a subdegree divisible
by p = 2.

We now consider %—transitivity. For ¢ even we have just shown that we can always find an even
subdegree. Since || is even this implies that G is not %—transitive. Hence we may assume that ¢ is
odd. Suppose first that d = r = 3 and ¢ = €4,¢7 (mod 9). Here H N L = 32.Qg. Let x € HN L be
an involution. Then |z N H| = 9. There is a unique conjugacy class of involutions in PSL§(q) and
|zX| = ¢?(¢® + eq +1). Since L # PSU3(2), it follows that |¢%| > |9 N H|? and so Lemma 2.6(ii) implies
that there is an even subdegree. By [43], |€)] is even and so G is not 2-transitive.
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Ifd >3, ord =3 and g = ¢ (mod 9), note that by Lemma 2.1(iv), G has a subdegree divisible by
r. The order of L is divisible by (¢ — €)?=2 and hence divisible by r?~2. Moreover, since ¢ = ¢ (mod 7),
(¢" — €)/(q — €) is also divisible by r. Hence for each term ¢*" — 1 with ¢ even we get an extra r dividing
|L| and for each term ¢'" — e with i odd we also get an extra r dividing |L|. Since d = ™ it follows that
|L| is divisible by r™"=2p7""" = ¢7"+7" " =2 On the other hand the largest power of r dividing |H N L|
is 7™m°+2m_ Hence || is divisible by r and so G is not 3-transitive.

Next suppose that L = PSp,(q) where ¢ = p and d = 2™ > 4 and H is of type 2'72™.05 (2).
Suppose that p divides |H|. Then p divides |H N L| and so let z € H N L have order p. We first suppose
that m > 4 and so by [9, Lemma 6.3] we have that v(z) > 4. Then by Proposition 5.7, it follows that
EX 1)(]4(‘1 4) > 2" =18 By [34, Proposition 4.6.9], HNL = 22™. 03,,(2).c where c = 1if p = £3
(mod 8) and c=2if p==41 (mod 8). Hence

m—1
|HmL|_2c 122m2m(m 1) 2m+1 H 221_ <22m2+m+2
i=1

Thus [H N L|? < ¢*@m*+m+2)/3 < |zL| for m > 5. For m = 4, explicitly calculating |H N L| also yields
|H N L|? < |2%]|. Hence there is a p-subdegree by Lemma 2.6(11)

When m = 3 we have that |H N L| divides 2'3.3%.5 and so p = 3 or 5. Thus H N L = 25.Q5 (2). When
p =3, a MAGMA [7] calculation shows that H N L contains 5120 elements x of order 3 such that v(z) = 5.
Thus by Proposition 5.7, |z%| > %321 and so by Lemma 2.6(ii), G has a subdegree divisible by 3. For
p =5, a MAGMA [7] calculation shows that H N L contains 82944 elements of order 5 and for each such
element z, v(z) = 6. Thus by Proposition 5.7, |2“| > 5;5%° and so by Lemma 2.6(ii), G has a subdegree
divisible by 5.

For m = 2, |H N L| divides 27.3.5 and so p = 3 or 5. Hence HN L = 2%.Q; (2). When p =5 a MAGMA
[7] calculation shows that the subdegrees for L are

1,10, 40,80, 120, 1602, 1922, 240, 320, 480, 960>

of which many are divisible by p = 5. When p = 3 we see that the subdegrees of L are 1, 16 and 10, none
of which are divisible by 3; this is an example in line 6 of Table 3 of Theorem 5.1(A).

Finally suppose that L = PQ (¢) where ¢ = p and H is of type 2,7*".05, . (2). Suppose that p divides
|H|. Then p divides |H N L| and so let x € HN L have order p. By [3 p512], if m = 3 such subgroups are
conjugate under a triality automorphism to the stabiliser of a 1-space decomposition and so this case has

already been dealt with in Section 6.2. Thus we may assume that m > 4. Then by [9, Lemma 6.3] we

have that v(x) > 4. Then by Proposition 5.7 it follows that |2%| > s(qi1)q4(d_4_l) > ¢2" =23 By [34,

Proposition 4.6.9], H N L = 2?™.Q7 (2).c where ¢ = 1 if p = £3 (mod 8) and ¢ = 2 if p = +1 (mod 8).
Thus [H N L|2 < 24m°H4m+2 o pA@m*+mt1)/3 126 for m > 5. For m = 4 and ¢ > 5, explicitly
calculating |H N L| also yields |[H N L|? < |2%]. Thus we have found p-subdegrees except in the case
where m = 4 and ¢ = p = 3. Since Q7 (2) contains 365120 elements of order 3, H N L contains at most
28 times this number. Thus |z N H|? < |2%| and we have once again found a p-subdegree.

To show that G is not 2-transitive when L = PSp,(q) or PQJ (¢), note that Lemma 2.1(iv) implies
that G has an even subdegree and by [43], |©] is even.

6.7. Aschbacher class C;: Here H is the stabiliser of a tensor product decomposition V = U; ® Us ®
-+ ® Uy where each U; has dimension m and d = m! with ¢ > 2. Descriptions of the groups can be found
in [34, §4.7].
Suppose first that L = PSLg(q) or PQ(g) with the additional assumption that if L is an orthogonal
group then each Uj is also orthogonal. Then |H N L| < | GL,,(q)|'! < qtm2t! < qgmt. By [34, Tables 3.5A
and 3.5E], m > 3 and when G is orthogonal ¢ is odd. Let z = ([Js, I;n—3], Im, . - ., Im) € H N L, where

Jz =

O~ =

0
1
1

= O O

Then v(z) = 2m'~! and so by Proposition 5.7, |z%| > q%(qmt@mtfl_l)ﬂ) = ¢ @mT=1)/2-3 Now
6m! < m'(2m'~! —1)/2 -3 if and only if 6 < (2m'~! —1)/2. Thus for ¢t > 3 or t = 2 and m > 7 we have
that || > |H N L|? and so by Lemma 2.6 we have a subdegree divisible by p. For ¢t = 2 we in fact have
that |[HNL| < 2¢*™" < g™+ and |2¢| > g™ m*(2m=1)/2-3 anq so |2¢| > |HOL\2 for m > 5 For m =3
we have [z¢] > ¢®%/2 and for m = 4 we have |z%| > ¢°3. Using |Os(q)| < ¢* and |05(q)| < ¢” we are then
able to show that in the remaining orthogonal cases we also have |2“| > |H N L|?. For L = PSLy4(q)
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note that by Proposition 5.7 we actually have |2%| > ¢*26 and this yields [“| > |H N L|?. Finally, for
L = PSLy(q), consider the element x = ([J2,1],I3) € HN L. Then v(x) = 3 and by Proposition 5.7 we
have [2%| > ¢®*. Now if y € % N H then either y = (g1, g2) where g; € GL3(¢) and is a transvection
or the identity, or y = (9,9 )0 where ¢ € GL3(¢) and o interchanges the two factors of the tensor
decomposition. Hence by Lemma 5.9 we have |29 N H| < (¢°)% +¢° < 2¢*° < ¢!!. Thus [2%] > |zE N H|?
and so by Lemma 2.6 there exists a subdegree divisible by p.

Next suppose that L = PSp,(q) or PQ}(¢q) with each U; a symplectic space. Then |H N L| <
|Sp,, (q)[ft! < gm*+mit/2 < g2 Let x = ([J2, In—2),Im, .-, Im) € H N L have order p. Now

tfl_l) _ qmt—l(mt_mt—l_l)_z

v(z) = m!~! and so by Proposition 5.7, [z%| > q%qmtfl(mt_m Now

dmt < mt=tmt —mi=t —1)—2ift > 3and m > 3, or t = 2 and m > 6. Hence for these values
of m and t we have |2%| > |H N L|> and so by Lemma 2.6 there is a subdegree divisible by p. By
[34, Table 3.5C], if t = 2 then L = P} (g). Since d > 8 in this case it follows that m # 2. When
(m,t) = (4,2) we in fact have that |H N L| < ¢! while [2%| > ¢*? and so we can again use Lemma 2.6 to
find a subdegree divisible by p. We are left to consider the case where m = 2 and t = 3. By [34, Tables
3.5C and 3.5E] we have that L = PSpg(q) when ¢ is odd and PQJ (¢) when ¢ is even. However, when
q is even [3] implies that H is not maximal in G. Hence ¢ is odd. Then Proposition 5.7 implies that
|2¢| > ¢*° while |[H N L| < 6¢° < ¢''. Hence |2*| > |H N L|? and Lemma 2.6 implies the existence of a
subdegree divisible by p.

This leaves us to consider the case where L = PSUy(q). By [34, Table 3.5B] we have m > 3.
Let © = ([J3,J7" %, Ipm,...,I,n) € HN L. Then v(x) = 2m'~' and so by Proposition 5.7, |z¢| >
gtm' Tt m2mt =4 am® T (m=2)=4 Noreover, |[HNL| < | GU,y, (q)[t] < g(m”Fm)t+tlogst o gdm’ Ny
8mt < 4m?~2(m—2)—4 if and only if 8 < 4m!~?(m—2). Thus for t > 3 or t = 2 and m > 5 we have that
|zL| > |H N L|2. For t = 2 we in fact have that |H N L| < 22" +m) < 2(m*+m)+1 apg |G| > g2m°—4
and hence |z%| > |H N L|? for m > 3. Hence Lemma 2.6 implies that there is a subdegree divisible by p.

In all cases we have found a subdegree divisible by p and so as p divides || (Lemma 2.3) it follows
that G is not %—transitive.

6.8. Aschbacher class Cg: Here H is a classical group on V. Descriptions can be found in [34, §4.8].
If L # PSL4(q) then the only cases which occur are for L = PSp,(¢q) (¢ even) with H an orthogonal
group. When ¢ = 2 and d > 6 the two actions (of Sp,(2) on cosets of O;E(Q)) are 2-transitive, as in
Theorem 5.1(A)(ii). For (d,q) = (4,2), then the action of Sp,(2)’ on the cosets of OF(2) N Sp,(2)’ is
also 2-transitive and we have lines 1 and 2 of Table 3 of Theorem 5.1(A). For ¢ > 2, from the proof of
[41, Prop. 1] there is a unique suborbit of length (¢¢ — €)(¢?~! + ¢€) and (g — 2)/2 of length ¢?~1(¢? — e).
Hence there is a p-subdegree and G is not %—transitive.

For L. = PSL4(q) first we deal with the cases where H is soluble. These are SU3(2) < SL3(4),
SO3(3) < SL3(3), SOF (3).2 < SL4(3). Tt is not difficult to find the subdegrees directly by computer for
L in these cases:

G H Subdegrees for L

SL3(4) SUs(2) 1,9, 183, 728
SL3(3) SO5(3) 1,3,42, 6,128, 24°
SL4(3) SOF(3).2 1,9, 182, 242, 32, 363, 482, 725, 144°, 192, 288!7, 576°

We see that in each example above, G has a subdegree divisible by p, and G is not %—transitive.
Moreover, any overgroup will also have an even subdegree and a subdegree divisible by p, so will not be
%—transitive.

From now on we may assume that H is insoluble. Let S be a Sylow p-subgroup of G. By Proposition
5.2, we can find a cyclic subgroup 7" of H which is either irreducible on V, or acts irreducibly on a
hyperplane or codimension 2 subspace and trivially on the perp, such that (S,T) contains a weakly
closed normal subgroup of H. Moreover, we easily see that Ny (T) < Ng(T) and so Lemma 2.2 implies
that there is a subdegree divisible by p. Since |Q2] is divisible by p, it follows that G is not %—transitive.

6.9. Cy groups. We use the following theorem of Burness, Guralnick and Saxl [10].

Theorem 6.6. Let G be an almost simple classical group with socle L and let H € Cg. Moreover, we
suppose that L is not isomorphic to an alternating group and the action of G on the set of right cosets
of H is not permutation isomorphic to a classical group acting on the set of right cosets of a C;-subgroup
with 1 < i < 8. Then either the action of G on the set of cosets of H has a regular suborbit or (L, HN L)
is given by Table 9.
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We note that since G is not a Frobenius group, the existence of a regular suborbit implies that G is
not %—transitive. Moreover, if p divides |H| then the regular suborbit has length divisible by p.

The Cg-subgroups excluded by hypothesis from Theorem 6.6 are listed in [10, Table 2]. When the
action of G is isomorphic to a classical group with a C;-action for i < 8, the classical group has the
same characteristic as G, so %—transitivity and the existence of a subdegree divisible by p has already
been determined in the previous sections. When L is isomorphic to an alternating group, since Section 4
has already considered when such groups can be %—transitive, it remains to check for p-subdegrees. The
actions under consideration here are when L = PSL3(9) of degree 6 on the set of cosets of Ng(As), and
L = PSL4(2) of degree 8 on the cosets of Ng(A7). Both groups are 2-transitive and the unique nontrivial

subdegree is not divisible by p. These provide the examples in lines 4 and 5 of Table 3 in Theorem 5.1(A).

TABLE 9. Cgy actions without a regular suborbit

L HNL Subdegrees of L
Q7(q) Ga(q),q=¢ (mod 4), e==+1 ¢®—1,¢%(¢® +¢), (¢ —4 —€)/4 times ¢>(¢° + 1),
(q —2+¢€)/4 times ¢3(¢® — 1)
Q7(q) G2(q), g even ¢° 1, q/2 times (> —1), (q - 2)/2 times ¢*(¢* +1)
PSp,(q), g even  Sz(q) (¢ — 1)(q +1), 2 times 3q(q — 1)(¢* + 1),
(g —2)/2 times ¢ (q +1),
(¢ £ v/2q)/4 times ¢*(¢ — 1)(¢ £ v/2q + 1)
PSL;(4) Ag 1,10,45
PSL,(19) As 1,6,20,30
PSLy(11) As 1,10
PSUs(2) PSU4(3).2 1,567, 840
Mo 1,77,231,1155,1232, 2640, 6160, 9240
PSUL(3) PSLs(4) 1,56, 105
A; 1,105,140, 2102, 630
PSU;(5) Ag.2 1,12,90, 72
A 1,7,42
PSL3(2) 1,142,21,28, 563, 84%, 168
PSU3(3) PSL3(2) 1,721
Spe(2) S1o 1,210, 1575, 5600, 5670
Sp(2) PSU3(3).2 1,56,63
0,2 Ase subdegrees include 130767436800, 290594304000,

435891456000, 653837184000, 871782912000,
1307674368000, 2615348736000, 3487131648000,
5230697472000, 10461394944000

075(2) Aqs subdegrees include 3603600, 14414400, 16216200,
21621600, 28828800, 32432400, 43243200,
48648600, 64864800, 86486400, 97297200, 129729600,
194594400, 259459200, 389188800, 518918400,
778377600, 1556755200

07,(2) Ay 1,462, 25202, 5775, 30800, 62370

PO (3) OF (2) 1,9603, 3150, 22400

Of (2) Ag 1,84, 315, 560

Q:(3) So 1,126, 315, 560, 1680, 25202, 4320, 5670, 7560
Spe(2) 1,288, 630, 2240

It remains to consider the actions listed in Table 9. The subdegrees for the infinite families are given
in [41, Proposition 2] and [37, Theorem A], and we see that there are subdegrees divisible by p and that
G is not %—transitive. For the remaining cases, the subdegrees were calculated using MAGMA and are
given in Table 9. The table shows that there are p-subdegrees in all cases where p divides |H| except for
L = PSUs3(5) acting on A7, which is in line 3 of Table 3 of Theorem 5.1(A). Moreover, none of the groups
are %-transitive.

6.10. Graph automorphisms. When L = PSL4(q), Sp4(¢) (g even) or PQg (¢) and G contains a graph
automorphism (a triality in the latter case), there are extra maximal subgroups which we need to consider,
and we do so in this section.
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6.10.1. Linear groups. When L = PSL4(q) and G contains a graph automorphism there are two extra
classes of subgroups that we need to consider.

First let © be the set of all pairs {U, W} of complementary subspaces of V' with dim(U) = m < d/2.
Let z = {{v1,...,0m), (Umt1,---,04)} € Q and H = G,. Then H N PT'Ly(q) is the stabiliser of the
decomposition (v1, ..., Vm) B (Vmt1,---sVd). NoW ¥ = {{(Umt1s- -y V2m), (V1y- oy Uy UVamt1, .- Vd) } €
and H, NPTLy(q) is the stabiliser of the decomposition (v1, ..., Vm) B (Um+1, - .-, V2m) B (Vam+1, - - - Vd)-
Hence |H : H,| is divisible by p and as p divides ||, it follows that G is not 3-transitive.

Finally, let m < d/2 and let 2 be the set of pairs of subspaces (U, W) of complementary dimensions
with dim(U) =m and U < W. By Lemma 5.5, there is a unique subdegree which is a power of p. Since
G is not 2-transitive, it is not %—transitive.

6.10.2. 4-dimensional symplectic groups. When ¢ is even, Sp,(q) has a graph automorphism which in-
terchanges totally isotropic 1-spaces and totally isotropic 2-spaces. Since Sp,(2)’ = Ag we have already
checked for %—transitivity in this case. It is straighforward to check that for all primitive groups with socle
Sp4(2)’ the only ones with no even subdegrees are those of degrees 6 and 10, and these correspond to H
being an orthogonal group, that is, we have the examples in lines 1 and 2 of Table 3 in Theorem 5.1(A).
From now on we assume that ¢ > 2. Aschbacher [3] gives three further classes of maximal subgroups of
a group G with socle L = PSp,(q) for ¢ > 2 even, and containing a graph automorphism. These are as

follows:

(1) Cyp: stabilisers of pairs {U, W} of subspaces of V such that U is a totally isotropic 1-space and
W is a totally isotropic 2-space containing U.

(2) Ng(X) where X is the stabiliser in Oj[ (q) of anondegenerate 2-space; here N1(X) = Dy(g41) wr Sa.

(3) NG(qu+1): here HNL = qu+1 X Cy.

If H € Cf, then H has a normal 2-subgroup and so by Lemma 2.1(iv), G has an even subdegree.
However, || is odd so to show that G is not %—transitive we find two distinct subdegrees as follows. Let
{e1,e2, f1, fo} be a symplectic basis for V' and suppose that H is the stabiliser of x = {{e1), (e1,e2)}.
Then

<€17€2) _ Al O
Leres) = {( e ) [\1, % € GF(q)\{0}, 1t € GF(q)}.
Let y = {(e2), (e1,e2)}. Then |G, : Gyy| = 2¢q as G, can no longer interchange (e1) and (e1, ez). Next
let z = {(e1 +e2),{e1 +ea, f1 + f2)}. If g € L., maps e; to A\e; and e to pey + Ages we must have that
Ao = A1+ p. Thus ¢ — 1 divides | L, : L,,| and hence also |Gy, : G| Since ¢ > 2 it follows that G is not
%—transitive.

Next suppose that H = Ng(X) where X is the stabiliser in O (¢) of a nondegenerate 2-space. Now
Of (g) contains an involution y = [JZ] where the two Jordan blocks are hyperbolic 2-spaces and also an
involution z = [J3] where the two Jordan blocks are elliptic 2-spaces. Both y and z are of type cy in
the notation of [4]. Hence by Proposition 5.7 we can always choose an involution € H N L such that
|29 > 1¢°. Now H N L = Dy(yr1)wr S which contains at most (¢ + 1)> +2(¢+1) = (¢ +1)(¢ + 3)
involutions. Since ¢ > 2, it follows from Lemma 2.6(ii) that G has an even subdegree. Since [Q] is even,
G is not %—transitive.

Finally suppose that H = Ng(X) where X = Cp244. Here H N L is contained in the extension field
subgroup Spy(¢?).2 and H N L = Cyg241 ¥ C4. Let € HN L be an involution. Then z is an involution
of Spy(¢?). Letting {e1, f1} be a symplectic basis for V over GF(¢?) we may assume that = interchanges
e; and f1. If B:V x V — GF(¢?) is the GF(¢?)-alternating form preserved by H N L then we can
take B = Trp2_,, 0B : V x V — GF(q) to be the GF(g)-alternating form. Given p € GF(¢*)\ GF(q)
we have Tr(u?) # 0. Thus as an element of Sp,(q) we have that v(z) = 2 and = maps pe; to pfi
with B(uey, ufi) = Tr(u?) # 0. Hence by [4, (7.6)], = is of type cz. Thus Proposition 5.7 implies that
|z%| > 14¢°. Since [¢ N L| = ¢* + 1, Lemma 2.6(ii) implies that G has an even subdegree. Since |Q| is
even, (G is not %—transitive.

6.10.3. 8-dimensional orthogonal groups. The group L = Pﬂg(q) has a graph automorphism of order
three which permutes the set of totally singular 1-spaces and the two classes of maximal totally singular
4-spaces. Any automorphism of G that induces a permutation of order three on the corresponding three
classes of subgroups is called a triality automorphism. If G is an almost simple group with socle L and
contains such a triality automorphism then there are several extra families of maximal subgroups that
we need to consider. These are given in [35] and are as follows. We let d = (2,¢ — 1).

(1) Giu.x,wy where U is a totally singular 1-space, X and W are totally singular 4-spaces with
dim(XNW)=3,and U < X NW.
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(2) No(Ga(a))-

(3) Ng(Ny), where Nj is the intersection of the stabiliser in L of an anisotropic 2-space with the
normaliser in L of an irreducible SU4(q). The preimage of Ny in QF (¢) is (3Cq41 % & GUs(q)).2¢.

(4) Ng(N2), where Ny is the intersection of the stabiliser in L of a hyperbolic line {eq, f1) and the
stabiliser in L of a decomposition of V into two totally singular 4-spaces containing e; and f
respectively. Moreover, ¢ # 2. The preimage of N in QF (¢) is (éCq,l X éGLg(q)).Tl.

(5) NG(Ng) where N3 = (D%(qz_‘_l) X D%(q2+1)).22.

(6) Ng(Ng), where Ny = [2°] x PSL3(2) and ¢ = p > 3. (We use [2°] to denote an unspecified group
of order 2°.) When ¢ = &3 (mod 8) these have odd index.

If H is as in case (1) then by Lemma 5.5, G has a unique subdegree which is a power of p. Hence G
is not %-transitive.

If H is as in case (2) then H N L = Ga(q) < PQ7(q) < L. Tt was seen in Table 9, that PQ7(q) in its
action on cosets of G2(q) has a subdegree divisible by p and so by Lemma 2.1(ii), so does L and hence G
also. Hence G is not 3-transitive (since p divides |9).

If H is as in case (3), note that Ny = LN H < R < L, where R is a 4-dimensional unitary group
whose matrices have entries from GF(g?). Moreover, the action of R on the set of cosets of Ny in R is the
primitive action of R on nondegenerate 1-spaces over GF(g?). We have already seen in Section 6.1 that
this action of R has a subdegree divisible by p and so by Lemma 2.1(ii), L, and hence G, has a subdegree
divisible by p. Since p divides || it follows that G is not %—transitive.

For H in case (4), note that N, = LN H < R < L, where R is the stabiliser in L of a hyperbolic line.
Moreover, the action of R on the set of cosets of Ny is equivalent to the primitive action of Og‘ (g) on
decompositions of a 6-dimensional vector space into complementary totally singular 3-spaces. We have
already seen in Section 6.2 that this action of R has a subdegree divisible by p and so be Lemma 2.1(ii),
L, and hence G, has a subdegree divisible by p. Since p divides |Q] it follows that G is not %—transitive.

For H in case (5), by [35, Proposition 3.3.1], H N L = N3. If p divides |H|, either p = 2, or p is
odd and H contains an outer automorphism of order p. Suppose first that p = 2 and let x € H N L be
an involution. Then by Proposition 5.7 and the fact that x is not of b-type, |2&| > %qlo. Since H N L
contains at most (¢? + 1)?.4 involutions it follows from Lemma 2.6(ii) that for ¢ > 8, G has a subdegree
divisible by p = 2. For ¢ = 4, a MAGMA [7] calculation shows that H N L contains only 391 involutions
while there is an involution z € H N L such that |z¥| = 16707600. Lemma 2.6(ii) then yields a subdegree
divisible by p. For ¢ = 2, a similar calculation reveals that H N L contains 55 involutions and contains an
involution x such that x1 = 3780. Again, Lemma 2.6(ii) yields a subdegree divisible by p. Next suppose
that p is odd and H contains an outer automorphism x of order p. Then by Lemma 5.8, |2¢| > éql‘l,
while |29 N H| < [LN H|(p—1) < 4q(¢®> + 1)2. Thus Lemma 2.6(ii) implies that G' has a subdegree
divisible by p. Since || is divisible by p this implies that if |H| is divisible by p then G is not 3-transitive.

If |H| is coprime to p (still with H as in (5)) then p is odd, and p # 3 as H contains a triality. Let
x € HN L be an involution. We see in the proof of [35, Proposition 3.3.1] that N3 is a subgroup of
(25 (¢) x 5 (g))-22, the stabiliser in L of a pair {W, W} for some elliptic 4-space W. Thus we can
choose x such that = acts nontrivially on both W and W+ and so v(z) > 2. Then by [9, Proposition

3.37), |z%] > 4(q1+1)q13. Now |H N L| = (¢* +1)%2.4 and so as p > 3, Lemma 2.6(ii) implies that G has an

even subdegree. Since | is even, it follows that G is not 3-transitive.

Finally suppose that H is as in case (6). Here L = PQg (p) with p > 3 a prime and H N L =
[29] x PSL3(2). It follows from [34, Proposition 3.4.2] that H N L < R < L where R = PQJ(2). A
MAGMA [7] calculation shows that the subdegrees of R acting on the cosets of H N L in R are

{1,14%,28,1682, 224, 4482, 512}

and by Lemma 2.1(ii) these are also subdegrees of L acting on 2. Thus G is not 3-transitive. Moreover,

2
if p divides |H| then p =3 or 7 and G has a subdegree divisible by p.

7. EXCEPTIONAL GROUPS OF LIE TYPE
In this section we prove Theorems 1.2 and 1.3 for almost simple groups of exceptional Lie type.

Theorem 7.1. Let G be an almost simple group with socle an exceptional group of Lie type in charac-
teristic p. Suppose that G acts primitively on a set Q with point stabiliser H, and assume p divides |H|.
Then one of the following holds:

(1) G has a subdegree which is divisible by p.
(2) L=Go(2), |Q =28 and H = Ng(3'2). (Here the subdegrees are 1, 27.)
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TABLE 10. Bounds for unipotent class sizes in exceptional groups

G bounds for |ug\ bounds for |uG|

Es(q) ¢°° <|uf] <2¢°® [uC] > ¢”

Er(q)  ¢** < uf| <24 [u€| > ¢

Eg(q)  q*(¢®—1) < Ju§| < 2¢* [u€| > ¢

Fy(q) ' < [uS] < 246 [uC| > ¢

Galq) |ufl=¢° -1 [uC| > (¢° — 1)(¢* — 1)
Fi(g) [ul]=(+D(@+1)(@P-1) [uC>q¢3(q—1)
Dalq) |uG] > ¢*(¢* —1) [u®| > ¢'

Galg) [u§|=(*+1)(g—1) -

*Ba(q) [u§|= (" +1)(¢g—1) -

G Jug| <
As(g) 247"
Bn(q) 294n_4
Cn(q) q2n
Di(q) 2¢*"°

(3) L =Gy(2), |2 =36, H=PSL3(2) and G = L. (Here the subdegrees are 1, 7, 7, 21.)
(4) L =%G2(3), |9 =9, H= Ng(2%) and G = ?G5(3). (Here the subdegrees are 1, 8.)

Theorem 7.2. If G is an almost simple group of exceptional Lie type which is %—tmnsitive but not
2-transitive on a set Q, then G = %G2(3)" of degree 28.

Note that %G2(3)" = PSL2(8) so this case is recorded in part (iii) of Theorem 1.2.

In this section we will use Lie notation for classical groups instead of the notation used previously,
for example L, (q) denotes PSL,(¢) and U, (q) denotes PSU,,(¢). We also use Alt,, and Sym,, to denote
the alternating and symmetric group of degree n to avoid confusion with the group A,(q) of Lie type.
Moreover, for a group G of Lie type we use W(G) to denote the Weyl group of G and Gy to denote the
socle of G. For a finite group X, soc(X) denotes the socle of X.

7.1. Preliminary lemmas. As the simple groups G2(2)" and %G(3)’ are the classical groups PSUj3(3)
and PSL4(8) respectively, we have already considered them in the analysis for %—transitive groups. The
assertions about their subdegrees divisible by p can be easily verified. From now on we will exclude the
simple groups G(2)" and %G2(3)’. In the next few results we also exclude 2Fy(2)" — this is dealt with
separately in Lemma 7.7.

The next two lemmas give bounds for the sizes of certain unipotent classes in groups of Lie type. The
first follows from the determination of unipotent classes in exceptional groups of Lie type (see [54, 55],
and [47] for complete information), and the second from elementary calculations in classical groups.

Lemma 7.3. Let G = G(q), ¢ = p® be a simple exceptional group of Lie type. Let u, be a long root
element of G, and let u be a non-identity unipotent element of G which is not a long root element (or a
short root element when (G,p) = (Fy(q),2) or (Ga(q),3)). Then bounds for the sizes of the classes u&
and u are given in Table 10.

Lemma 7.4. Let G = G(q), ¢ = p® be a simple classical group, and let uy be a long root element of G.
Upper bounds for the size of the class u$ are given in Table 11. Moreover, if p = 2 and G = SO, (q)
(n > 2, e = %), then the number of reflections in G is ¢"1(¢" — €).

Lemma 7.5. Let G = G(q), ¢ = p* be a simple exceptional group of Lie type. Suppose p > 2 and there
18 an outer automorphism ¢ of G of order p. Then one of the following holds:

(i) ¢ is a field automorphism with centralizer G(q"/?);

(ii) G = 3D4(q), p =3 and ¢ is a graph automorphism with centralizer Go(q) or q°.A1(q).

Proof. This follows from [27, Section 4.9]. O
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TABLE 12. Socles in Lemma 7.6(iii)

Go possibilities for soc(H)
Ga(q) Ailg)(p=T7)
3D4(q) Ga(q), A5(q)
Fy(q)  Ai(g) (p=13), Gz(q) (p="7), Ai1(q)G2 (q)( >3,q25)
E§(q)  A5(q) (p=5), Gaq) (p #7), Calq) (p = 3), Fa(q)
Aé(q)G (@) ((g,€) # (2,-))
Ez(q)  Ai(q) (2 classes,p > 17, 19) 5(q) (p = 5), Ai(@)Ai(q) (p = 5),
A1(q)G2(q) (p =2 3,4 = 5), Aiq ) Fi(q) (g 2 4), G2(q)C3(q)
Ex(q) AlEQ; (3 classes p > 23,29, 31) ( ) (p 2) ), A1(q)A5(q) (p = 5),
5 b
(9)

We shall need the following result concerning the maximal subgroups of exceptional groups of Lie type.
This is an amalgamation of results from several papers, taken from [50, Theorem 8], where references can
be found. In part (vii), G’ denotes a simple algebraic group over GF(q) of the same type as G, and ¢ a
Frobenius morphism of G such that Gy = G*,.

Lemma 7.6. Let G be an almost simple group with socle Gy = G(q) (¢ = p*) an exceptional group of
Lie type over GF(q), and let H be a mazimal subgroup of G. Then one of the following holds.
() H is parabolic.

ii) H is a subgroup of mazimal rank, given by [46].

ii) soc(H) is as in Table 12.

) H=G(qo), a subgroup of the same type as G (possibly twisted), over a subfield GF(qy) of GF(q).

) Hisa local subgroup, given by [21, Theorem 1].

(vi) Go = Es(q), p > 5, and HN Gy = PGLa(q) x Symy or (Alts x Altg).22.

(vii) Go = Es(q ) E:(q), E§(q) or Fu(q), and soc(H) = H(r), a group of Lie type over GF(r),
where v = p’. Moreover rank(H(r)) < irank(G); and either r < 9, or H(r) = A$(16), or
H(r) € {A1(r), %Ga(r), ®Ba(r)}. Finally, H(r) is not of the form M., where M is a o-stable
subgroup of positive dimension in G.

(viii) soc(H) is a simple group that is not a group of Lie type of characteristic p, and the possibilities

for soc(H) are given by [49].

7.2. Classifying p-subdegrees. In this section we prove Theorem 7.1. Let G be an almost simple group
with socle Gy = G(q) (¢ = p*) an exceptional group of Lie type in characteristic p. Let G act primitively
on a set £, let H = G, where « € 2, and suppose that p divides |H|. Now H is a maximal subgroup of
G. We treat the various possibilities for H given by Lemma 7.6.

We first deal with 2F,(2)’.

Lemma 7.7. Theorem 7.1 holds when Go = 2Fy(2)’.

Proof. The subdegrees for all the primitive actions of ?F(2)" were determined by GAP [25] calculations
and are given in Table 13. In each case there is an even subdegree. By [22, p74] the only maximal
subgroup of 2F(2), not arising from a maximal subgroup of 2F(2)’ is C13 x C1a. The subdegrees of this
action are 1,13, 26,390, 7837 528 and 156453, O

From now on assume that Gy # 2F4(2)’. In view of Lemma 2.6(ii), in proving Theorem 7.1 we may
assume that for any non-identity p-element v € H, we have
(2) [uC| < |u® N HJ?.
Lemma 7.8. Theorem 7.1 holds if H is a parabolic subgroup of G.
Proof. This holds by Lemma 2.1(iv). O

The next two lemmas deal with the proof of Theorem 7.1 in the case where H is a subgroup of maximal
rank, as in (ii) of Lemma 7.6. The lists of maximal subgroups of maximal rank can be found in Tables
5.1 and 5.2 of [46]: the subgroups in Table 5.2 are normalizers of maximal tori in G, and those in Table
5.1 are not. It is convenient to handle these cases separately.
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TABLE 13. Subdegrees of primitive actions of 2Fy(2)’

Degree Subdegrees

351 126, 224

351 126, 224

364 12, 108, 243

364 12, 108, 243

378 52, 117, 208

378 52, 117, 208

2808 56, 63,842, 2522 504, 1512
3159 14, 64,168, 2242, 448% 672
3888 782,913, 1823, 3642, 5462, 1092
7371 18,322 64,723 964, 1442, 28814 5764

TABLE 14. Subgroups of maximal rank

Gy possibilities for H°
Es(q) A1(q)E7(q), Ds(q), Ag(a), AS(q)Eg(q),
D4(Q)23 D4(q2)7 3D4(Q)27 3D4(q2)7
A5(q)?, 2A4(q?), As(q)*, *Az(q?)?,
2A5(q*), A1(q)®
Eq(q) E§(q) - (g —€), A1(q)Dg(q), AS(q), As(q)A5(q),
A1(q)® Da(a), A1(¢*) *Da(a), A1(q)", A1(q")
E§(q) A1(q)As(q), A5(q)?, A2(q®) A7 (q), As(¢?),
Dy(q) - (q =€), *Da(q) - (¢*> +eq+ 1), D5(q) - (¢ —€)
Fy(q) A1(q)Cs(q), Ba(q), Da(q), *Da(q), A5(q)*
Bs(q)? (g even), Ba(q?) (¢ even)
G2(q) A1(q)*, As(q)
Fu(q) (¢ > 2) | 2A2(q), *B2(q)?, B2(q)
3Da(q) Ai(q)A1(q?), A5(q) - (¢ +eq +1)
°Ga(q) (g >3) | Ai(q) x 2

Lemma 7.9. Theorem 7.1 holds if H is a subgroup of mazximal rank which is not the normalizer of a
mazximal torus.

Proof. Here H is as in [46, Table 5.1]. We list the possibilities for H in Table 14; for notational convenience
each subgroup is recorded via a subgroup H° of small index in H.

Suppose first that Go # 2Fy(q) or %G2(q) and H® does not contain a long root element of G. The only
such cases are:

2A4(q?), Da(q?), *Da(q?), *A2(q?)?, *A2(q*)

® Eg(q) :

All of these cases are easily dealt with as follows. For the Eg(q) or Er(q) cases observe that for a
non-root unipotent element v € H® we have |[u®| > ¢°2 or ¢°? respectively by Lemma 7.3, and so we
have [u%| > [u“ N H|? even if we use the total number of unipotent elements of H as an upper bound
for |[u® N H|; the conclusion follows by Lemma 2.6(ii). For the E§(q) case, observe that H® = A5(q?)
arises from a subsystem subgroup A3 of the algebraic group Es, and hence a transvection u in HY lies
in the unipotent class labelled by the Levi 34; in Es, and we have [u®| > ¢%° (see [54]), hence again
|u®| > |[u¥ N H|?. And for the Fy(q) case the same argument applies, using an element v € H° in the
class A A, of Fy (for which [u®| > ¢*® by [65]).

Suppose now that none of the cases in (3) holds (still excluding Gy = 2F4(q) or %G2(g)). Then H°
contains a long root element wu, of G. Using [39, 1.13], we see that if u is any element of u$ N H then
one of the following holds:

(i) u is a long root element of one of the quasisimple factors of H°
(i) p =2, H° has a factor D¢ (q), and u is a reflection in a subgroup D¢ (q).2 of H.
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Lower bounds for |u$| are given by Lemma 7.3, and upper bounds for [u§ N H| follow from Lemmas 7.3
and 7.4. We find from these that

[ug] > |ug N H?,

except in the following cases:

Go = Es(q), H® = A1(q)Er(q)

Go = Ex(q), H® = E§(q) - (¢ — €) or A1(q)Ds(q)
Go = E§(q), H* = D5(q) - (¢ —¢)

Go = Fi(q), H° = Bu(q), Da(q) or ®Da(q)

Go = Gs(q), H° = As(q)

Hence by Lemma 2.6(ii) we may assume that one of these cases holds.

Consider the case where Gy = Eg(q), H® = A1(q)E7(q). If we let T be a subsystem subgroup 2Eg(q) of
H, then O (T) contains a subgroup 245 (q) not lying in H, so Ng(T) £ H. Also for any Sylow p-subgroup
S of H, (T, S) contains the factor E;(q) of H° by Lemma 2.3. Hence G has a subdegree divisible by p,
by Lemma 2.2.

Next let Go = E7(q), H® = E§(q)- (¢ —¢) or A1(¢)Ds(q). In the latter case we take T to be a subgroup
2A5(q) of the Dg factor; then Cq(T) contains a subgroup 24s(q) not lying in H, and the argument of
the previous paragraph applies. And when HY = E§(q) - (¢ — ¢€), define T to be a subgroup Fy(q) of
H°, and note that C(T') contains a subgroup A;(q) (see [48, 4.6]), whereas Cy(T) does not, provided
(g,€) # (2,—). Thus with this exception, Lemma 2.2 again gives the conclusion. If (¢,€¢) = (2,—), then
G = E;(2), H = 3.%E4(2).S3. Choose a subsystem subgroup 7' = D4(2) of H. From [46, Table 5.1] we see
that |[Ng (T)/T| = 223%, while |[Ng(T)/T| = 2*3*. Hence Ng(T) £ H. Moreover T lies in no parabolic
subgroup of H, and hence (S,T) contains 3.2Eg(2) for any Sylow 2-subgroup S of H, by Lemma 2.3.
Now Lemma 2.2 gives the conclusion.

Now let Go = E§(q), H° = D5(q) - (¢ — €). For € = — take T to be a maximal torus of order (q + 1)°
in H (or of index (3,¢+ 1) in this), and apply Lemma 2.2 with the characteristic p. Now suppose € = +,
H° = Ds(q) - (¢ — 1). If ¢ is odd then H = Cg(t) for some involution ¢t € G. There is a subgroup
D = Dy(q) of H such that Z(D) = (t,u), where u is a conjugate of ¢t. Then Cy(t,u) is a 2-point
stabiliser and the subdegree |H : Cy(t,u)| is divisible by p, as required. If ¢ is even, note that G contains
a graph automorphism, since otherwise H lies in a parabolic subgroup. Let T be a maximal torus in H
of order (¢° — 1)(q — 1) (or of index (3,q — 1) in this), lying in an A5 Levi subgroup. This torus is not
normalized by a graph involution of D5(q), whereas N (T')/T does contain a involution (see [19]). Hence
N¢g(T) € H, and so T lies in a 2 point stabiliser H N HY for some g € G. If the subdegree |H : H N HY|
is odd, then H N HY must contain the derived subgroup of an A4(q)-parabolic of H. However such a
parabolic is not normalized by a graph involution of Ds(q), so since H contains such a graph involution,
it follows that |[H : H N HY| is even anyway.

When Go = Fy(q), H° = By(q), D4(q) or *Dy(q), we take T = (q + 1)%, 2A2(q) or Az(q) respectively.
In the first case T is a maximal torus and Ng(T') induces W (Fy) on T, so Ng(T) € H; and in the second
and third cases Ng(T') contains 2A5(q)? or Az(q)?, so again Ng(T) £ H. Now the conclusion follows
from Lemma 2.2.

When Gy = G2(q), H° = A5(q), the subdegrees are given by [41, Proposition 1] for e = —, and by [42,
6.8] for € = 4, and there is a subdegree divisible by p.

Finally, we need to handle the cases where Gy = 2Fy(q) or Ga(q). Consider the first case 2Fy(q).
Here ¢ > 8 (as we have already dealt with the ¢ = 2 case), and H" = 245(q), Ba(q)? or Ba(q). Let u
be an involution in HY, and when H® # 24,(q) take u to be a non-root involution. Then by Lemma
7.4 we have |[u®| > ¢%(¢> — 1), and also |[u®| > ¢**(q — 1) when H® # 2A45(q). If io(H) denotes the
number of involutions in H, then by [38, 1.3] we have iy(H) < 2(¢® + ¢*), 4(¢® + ¢*)? or 2(¢° + ¢°) in
the respective cases for H?. Hence we see that |[u®| > iy(H)? > |[u® N H|?, giving the conclusion by
Lemma 2.6(ii). Finally, if Go = %Ga(q), H° = 2 x La(q), then for an element u € H® of order 3 we have
[u¥| = 3q(¢® +1)(q — 1) (see [67]), while [u® N H| = ¢* — 1, so again Lemma 2.6(ii) gives the result. [

Lemma 7.10. Theorem 7.1 holds if H is the normalizer of a maximal torus.

Proof. Here H is as in [46, Table 5.2]. If p does not divide |H N G|, then H contains an outer automor-
phism u of order p, and bounds for |u®| are given by Lemma 7.5. Otherwise, p divides |H N Gy| (and in
particular p divides |W(G)|), and it is clear from the action on the adjoint module L(G) that H contains
a non-identity p-element u which is not a long root element of G; bounds for |u“| are given in Lemma
7.3. We may assume by Lemma 2.6(ii) that |H| > [u“|'/2, and so from the above bounds, we see that H



THE CLASSIFICATION OF ALMOST SIMPLE %—TRANSITIVE GROUPS 31

is as in the following table (recall that we are assuming that Gy # 2Fy(2)’ in view of Lemma 7.7):

Go HnN GO q

Eq(q) 37~W(E7) q=2

E§(q)  ((¢+1)°/(3,q+1)).W(Ee) q=2o0r3, e=—
73.(3142.SLy(3)) g=2e=+

Fi(q)  7%.(3 x SLa(3)) q=2

*Ba(q) (¢—1)2, (g£+2q+1)4

Consider the case where Gy = E;(q),q = 2 and H = 3".W(E;). Here H has an element z of order 8.
Inspection of [55] shows that the smallest class of elements of order 8 in G is the class labelled D4(a1),
which has size greater than ¢°*/6. However |H| = 37|W (E7)| < 23* < 247/1/6, a contradiction.

The cases in the table with Gy = E§(q) are handled similarly, using an element of order 8 in H (if
g =2,e = —), an element of order 4 (if ¢ = 2,e = +), an element of order 9 (if ¢ = 3), and [54] for the
classes of G. Likewise, for G = Fy(q), ¢ = 2, we use an element of order 4 in H, together with [22] for
the classes.

Finally, in the case where Go = 2Bz(q), pick an element u of order 2 or 4 in H and observe using 7.3
that [u® N H| < [u®|'/2. This completes the proof. O

Lemma 7.11. Theorem 7.1 holds if H is as in Lemma 7.6(iii).

Proof. Here Hy = soc(H) is as in Table 12. In all cases H contains a unipotent element « which is not
a long root element. By Lemma 7.3 and our assumption that |u%| < [u® N H|? < |H|?, we see that H is
as in the following table:

Go possibilities for Hy

Es(q) Gz( )Fa(q)

Ez(q)  G2(q)C: ( ), A1(q)Fulq )

Eg(q)  Fa(g), C ( ) (g odd), A3(q)G2(q)
Fy(q) 1(q) q) (g odd), Ga(q) (p=17)
°Da(q) Ga(q), A ( )

Suppose first that Go # 3D4(q). The cases (Go, Ho) = (E§(q), Ca(q)) (p > 2) and (Fy(q),G2(q)) (p=17)
are covered by Lemma 2.4. In all other cases H contains a long root element u, of G, and using [39,
1.13], we see that uS N H consists of long root elements of H. Now a check using Lemma 7.3 shows that,
excluding the case (E§(q), Fu(q)), we have |uS| > [u§ N H|?, a contradiction. In the exceptional case
Go = E§(q), Hy = Fy(q), and we take a subsystem subgroup 7 = ®Dy4(q) of H. Then T is centralized by
an element of order ¢®> + eg+ 1 in G not in H, so Ng(T) £ H. Now the conclusion follows from Lemma
2.2.

Suppose finally that Go = 3D4(q). If Hy = G2(q), let T be a subsystem subgroup SL3(q) of Hy. Then
Ng(T) £ H as G has an element of order ¢?> + ¢ + 1 centralizing T, so the result follows from Lemma
2.2. Now consider Hy = A5(q). We may assume that p = 2 by Lemma 2.4. Let u € Hy be an involution
which is not a long root element of G, so that |u®| > ¢'¢ by Lemma 7.3. Then |u® N H| is certainly no
more than the total number of involutions in Hy, which is at most 2(¢° + ¢*) by [38, 1.3]. Hence again
[uC| > |u® N H|?. O

Lemma 7.12. Theorem 7.1 holds if H is as in Lemma 7.6(iv).

Proof. Here H has socle Hy = G(qop), a group of the same type as G (possibly twisted) over a subfield
GF(qo) of GF(q). We take T to be a maximal torus of H as in the following table (for the existence of
T, see [18]). The table also gives a primitive prime divisor (go), of ¢§ — 1 that divides |T:

Hy 1] (o), dividing |7

)

Es(q0) 46— 40 +495—d +49 —d+1 (q0)30

E7(q0) (g6 — g5 +1)(q0 +1) (g0)18

E§(q0) qf+eqp+1 (90)9 (€ = +), (q0)1s (¢ = —)
Fi(q) q—a5+1 (90)12

G2(q0) G+ q+1 (90)3

Fulqo) @+ 268 +qo+v2q + 1 (q0)12

*Da(q0) ¢ —a5+1 (90)12

G2(q0) qo++Ba+1 (90)6

*Ba(q0)  qo + v/2q0 + 1 (90)4
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In all cases T lies in a maximal torus of G which centralizes it, the order of which is given by [18], and hence
we see that Co(T) £ H with the following exceptions: Hy = %G2(3) < G2(3) and Hy = 2F4(2) < Fy(2).
Moreover the divisor (go), of |T'| shows that T" is not contained in any parabolic subgroup of Hy. Hence,
apart from in the above exceptional cases, the conclusion follows from Lemma 2.2. As for the exceptional
cases: when Hy = %G2(3) < Go(3), take T = 23, a Sylow 2-subgroup of Hy, and apply Lemma 2.2; and
when Hy = 2F(2) < Fy(2), take T = 3172, a Sylow 3-subgroup of Hy. O

Lemma 7.13. Theorem 7.1 holds if H is as in Lemma 7.6(v) or (vi).

Proof. Here H is either a local subgroup given by [21, Theorem 1], or one of the subgroups in 7.6(vi).
If u is an element of order p in H, it is easy using Lemma 7.3 to check that |H|? < |u®]| except in the
following cases:

Gy HnNGy

G>(3) 23.SL3(2)
2E6(2) U3(2) X G2(2)
E7(3) L2(3) X F4(3)

E7(q) (g odd) (22 x Dy4(q).22).53

The last case is dealt with using Lemma 2.4, and the second and third cases are handled as in the proof
of Lemma 7.11.

When Gy = G2(3) and H NGy = 23.SL3(2), a GAP [25] calculation shows that the subdegrees for Gy
are 14,64, 168, 2242, 448* and 672. 0

Lemma 7.14. Theorem 7.1 holds if H is as in Lemma 7.6(viz).

Proof. Here Gy is Es(q), E7(q), E§(q) or F4(q)7 and soc(H) = H(r), a group of Lie type over GF(r),
where 7 = p’. Moreover rank(H(r)) < srank(G); and either r < 9, or H(r) = AE(16), or H(r) €
{A;(r), 2Ga(r), 2Ba(r)}. Regard Gy as G’ , where o is a Frobenius morphism of the simple algebraic
group G over GF(q) of the same type as G.

Assume that p is odd. Now |G : H| is even by [43], so by Lemma 2.4 we may assume that H(r) is
Aa(r) or Ay(r) (the latter only if Gy = Es(g)). Moreover H(r) contains no long root element of G by
[48], so if 1 # uw € H(r) is a unipotent element, then our assumption [u® N H|? > |u®|, together with
Lemma 7.3, leaves only the possibility

H(T) = Ag(g) < F4(3) = GO.

o

However A(9) has an element of order 3* + 32 4 1, whereas F4(3) has no torus divisible by this number
(see [18]), so A2(9) £ Fy(3).

Now counsider p = 2. Suppose first that H(r) contains a long root element u, of G. If r > 2
we argue as in [38, p.437] (fourth paragraph) that there is a subgroup M of positive dimension in G
such that H(r) = M., contrary to Lemma 7.6(vii). Hence r = 2 and soc(H) = H(2). Moreover,
elements of uS N H(2) are root elements of H(2) by [66, Theorem 1], so using Lemma 7.3 we see that
|u$ N H(2)|]? < [u&|, contrary to assumption.

Finally, assume that p = 2 and H(r) contains no long root element of G. We may assume that Gy #
Fy(2) by [59]. Let u € H(r) be an involution. Then [u% N H(r)| < i2(H(r)), the number of involutions
in H(r), so by assumption we have iy(H(r)) > [u®|"/2. By [38, 1.3] we have iy(H) < 2(rM + rM=1),
where M = dimG — N, N being the number of positive roots in the root system of G (and M is half
this number when H (r) is of type 2Fy, Gy or ?By). Also lower bounds for [u®| by Lemma 7.3. One now
checks that the only possibilities for H(r) satisfying the inequality i (H) > [u®|"/? and also having order
dividing |G| are as follows:

Go H(r)

Eg(2) Cu(8), Di(8)

E7(2) C3(8), A5(8)

E§(2)  A5(8), Az(4), C2(8), A2(16), A5(8), G2(4)
Eg(4) C3(8)

Fy(4)  A5(16)

Fi(q) Ai(¢")

In most of these cases it is easy to use [18] to produce an element of large order in H(r) which does not
divide the order of a maximal torus of Gg: for example, D§(8) has an element of order 2° + 1, so cannot
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lie in Fg(2), and so on. The possibilities which do not succumb to this argument are:

Go = E§(2): H(r) = A5(8), Ga(4)
GO = F4(4) : H(’l”) = A;(lG)

For Gy = E§(2) and H(r) = A5(8) we calculate io(Aut(H(r)) precisely and check that it is less than
231/2 hence less than [u®|'/2. And for H(r) = G(4), observe that H(r) has a subgroup SLs3(4); this
centralizes a 3-element of G, from which we see that it is a subsystem group, hence contains long root
elements of Gy, contrary to assumption. The case with Gy = F(4) does not arise as Us(¢?) £ F4(q) by
[46, 4.5]. This completes the proof. O

Lemma 7.15. Theorem 7.1 holds if H is as in Lemma 7.6(viii).

Proof. Here Hy = soc(H) is a simple group not in Lie(p). The possibilities for H, are given by [49,
Theorem 2]. In every case one checks that all prime divisors of |Out(Hp)| also divide |Hy|; hence the fact
that p divides |H| implies that p divides |Hy|.

Suppose first that Hy contains a long root element u, of G. Then p = 2 by [48, 6.1]. Theorem 1 of
[66] gives a list of possible isomorphism types for Hy, and identifies u,, as a root involution for each type.
Combining this with [49], we see that Hy = Ag, Jo or Figy and |[u$ N H| = 45, 315 or 3510 respectively.
Now the bound [u$ N H|? > |u®|, together with Lemma 7.3, reduces us to the following possibilities:

Hy Go
JQ G2(4) or F4(2)
Fioo 2E6(2)

If (Ho,Go) = (J2,G=2(4)) then G has rank 3 and degree 416 (see [22, p.97]), so has an even subdegree;
and J; does not occur as the socle of a maximal subgroup of Fy(2) or its automorphism group by [59].
For (Hy,Go) = (Fiaa, ?E6(2)), let T be a subgroup of H of order 11. Then Cq(T) € H and (T, S) = Hy
for any Sylow 2-subgroup S of Hy, so Lemma 2.2 gives the conclusion.

Now suppose that Hy contains no long root element of G. Let u € Hy be an element of order p. Then
|u® N H|? > [u®], so using [49] and the lower bound for |u®| in Lemma 7.3 (and also the known lists
of maximal subgroups for Gg of type 2Fy, Ga, *D4, G2, ?Bs), we see that G, Hy are as in the following
table:

Go Hy r

2E6(2) Fizg, 97(3), J37 A12 117 137 [35}7 [35]
Fy(3)  °Da(2) [2"%]

Fy(2)  L4(3), Jo, Aro 13, [33}7 [34]
G2(4)  L2(13) 7

Ga(3)  L(13) 7

(Recall that we already eliminated Go = ?F4(2)" in Lemma 7.7 and the case (Go, Ho) = (G2(4), J2) was
done in the previous paragraph.) For the remaining cases we choose a subgroup T of Hy as in the table
and apply Lemma 2.2. ([

7.3. Proof of %-transitivity. Here we prove Theorem 7.2. Let G be an almost simple group of excep-
tional Lie type with socle Go = G(q) (¢ = p*), and suppose that G acts primitively on a set 2 with point
stabiliser H = G,.

(A) Assume first that p divides |Q}|. If p divides |H| then by Theorem 7.1, G has a subdegree divisible
by p, so cannot be %—transitive. Now consider the case where H is a p’-group, that is, has order coprime
to p. By Lemma 7.6 this means that one of the following holds:

(i) H is a maximal torus normalizer (as in Lemma 7.6(ii));
(ii) H is a maximal local subgroup (as in Lemma 7.6(v));
(ili) Go = Es(q) and H NGy = (Alts x Altg).2? (as in Lemma 7.6(vi));
(iv) soc(H) is a simple group that is not a group of Lie type of characteristic p (as in Lemma 7.6(viii)).
Consider case (i). Here H is as in [46, Table 5.2]. The fact that p does not divide |H| implies that G
is of type Es, E7, E§ or ®°Dy and p > 5,11,5 or 3 respectively. Moreover, one checks that there is a prime
r < 5 which divides both |H| and |G : H|. Let s € H be a (semisimple) element of order 7. Then by [38,
4.2], we have [s%| > ¢*'2,¢°%, ¢®! or ¢'% respectively. A glance at [46, Table 5.2] shows that |H|? is much
less than |s%|. Hence by Lemma 2.6(ii), G has a subdegree divisible by r. Since r divides |G : H| = ||,
it follows that G is not %—transitive on €.



34 JOHN BAMBERG, MICHAEL GIUDICI, MARTIN W. LIEBECK, CHERYL E. PRAEGER, AND JAN SAXL

Now consider case (ii). Here H is as in [21, Theorem 1], so as H is a p’-group, one of the following
possibilities holds:

Go HnNGy P

Ga(p) 2°.L3(2) p=5Horp>11
Fu(p) 3°.L3(3) p=5

E§(p)  [3°]Ls(3) p=5

Es(p®) [2Y9].L5(2) p=1l,a=1

53.L3(5) p=7,a<2

For G of type Eg or E§ we use the argument of the previous paragraph, taking r = 2. For G = Fy(p) we
also use this argument with r = 2, noting that |s“ N H| is at most the number of involutions in H, which
is 351, while |s%| > p'6 by [38, 4.2]. Finally for G = G(p), 3 divides |H| and |G : H|, and H has 224
elements of order 3, so Lemma 2.6(ii) gives a subdegree divisible by 3 unless p = 5. When p = 5, G has
base 2 [12, Table 12] and so is not 3-transitive.

Case (iii) is easily dealt with using the above argument with r = 2.

Finally consider case (iv). Here the possibilities for Hy are given by [49] (and also the known lists of
maximal subgroups for Gy of type ?Fy, Ga, 3Dy, °Ga, ?Bs). In all cases both |H| and |G : H| are divisible
by 2. Taking an involution s € H, it is easy to check that |H|? < |s“| with the following exceptions:
Hy = 3D4(2) < Fy(5) and Hy = U3(3) < G2(5). However in these exceptional cases one checks that
ia(H)? < || (where iy(H) is the number of involutions in H). Hence 2.6(ii) shows that there is an even
subdegree in all cases, and so G is not %—transitive.

(B) Now assume that p does not divide [©2|. Then H is a parabolic subgroup. By Lemma 5.5, except in
the cases where Gy = Eg(q) and H = P; (i = 1,3,5,6), G has a unique nontrivial suborbit of size a power
of p, and hence is not %—transitive provided it is not 2-transitive (which does occur when Gy = 2By(q)
or XG(q)). Finally, consider the case Gy = Eg(q). We can take H = P; or P (the others are images of
these under the graph automorphism). The subdegrees of G on cosets of P; are given in [44], and are
not equal.

It remains to consider the action of Eg(q) with point stabiliser P3. Working in the algebraic group with
the usual labelling of the root system, we have P; = QL with unipotent radical Q and Levi subgroup L,
where

6
Q= <Ua o= cio,c3 > 0>, L= (Usa,, T |i=1,2,4,5,6),
i=1

where T' is a maximal torus. Let ng € Ng(T) project to the longest element wqy of the Weyl group
W (Es). Recall that wg acts on the root system as the negative of the graph symmetry. We calculate the
intersection P N P53 along the lines of [20, 2.8]. Observe that

LALY™ = {(Usa, T|i=1,2,4,6),

QNL™ = (Uy|a=as,ass, 34,013, 0134, 01234),
LNQ™ = (Us|a=—as5,—ous, —045, —0i56, —0t456, —(2456) s
QNQE™ =1
where we use the notation «;;.. = «a; + a; + ---. It follows that P3 N P3® = U (LN L™) =

Ui2.(A1 A1 AoTy), where Upy is a unipotent group of dimension 12. Taking fixed points of a Frobe-
nius morphism and returning to the finite group Gy = Eg(q), we see that in its action on Ps, there is a
subdegree equal to

(" -1)(¢* - 1)(* - 1)(¢* —1)*(¢g—1)
q17(q3 _ 1)(q2 _ 1)2<q _ 1)2
=¢"(@+1)(¢" - 1)/(qg—1).

This subdegree does not divide |G : Ps| — 1, so this action is not %—transitive.
This completes the proof of Theorem 7.2.

|P3 : Pgﬂpgno|:

8. SPORADIC GROUPS

In this section we prove

Theorem 8.1. Fvery almost simple %—tmnsitive primitive permutation group with socle a sporadic group,
s doubly transitive.
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TABLE 15. Non-base two actions of large sporadic groups

G point stabiliser H m = hef(|H|,n —1) Comment
Th 3D4(2).3 1
25.L5(2) 8
Fisg 2.Figg — rank 3, subdegrees 3510, 28160
PO (3).93 — rank 3, subdegrees 28431, 109200
97(3) X Sg — Og(H) 7é 1
Sps(2) 5
31+8.21+6.31+2.254 3
22.Ug(2).2 22.7.11
21 Mo 46
Coy Coq — rank 4, subdegrees 4600, 46575, 47104
3.5uz.2 11
003 23
Us(2).53 1
22+12.(A8 X 53) 2
24+12.(Sg X SSG) 2
21 Moy 46
218,05 (2) 2
Jy 21 Moy 4
21112 3 Moy, 6
210 1,5(2) 1
Fil, Fliog - rank 3, subdegrees 31671, 275264
2.Fi99.2 1
(3 x PQJ(3).3).2 1
37.07(3) 1
250(2) 1
3110 U5(2).2 3
2 Moy 46
Fi24 (2 X 22.U6(2)).Sg 11
BM  2.2Eg(2).2 - O2(H) #1
(22 x Fy(2)).2 - Os(H) #£1
29116 Sp(2) 4
22+10+20.(M22.2 X Sg) 2
21422 Co, 46
Fliog 3
Th 31
M 2.BM - O2(H) #£1

Let G be an almost simple primitive permutation group with socle a sporadic group L and point
stabiliser H. The base two permutation representations of such groups G were determined in [13] and
[68]. Such groups are not Frobenius groups and so are not %—transitive. Hence we only need to consider
those actions which are not base two. The non-base two actions of all nineteen sporadic groups of order
up to |Ly| and their automorphism groups are given in Table 16. We were able to compute all the
subdegrees for these actions, and these are listed in Table 16. This gives much more information than we
actually need, but might be interesting to the reader.

For the eight almost simple sporadic groups larger than Ly, the non-base two primitive actions are as
in Table 15. In the third column of the table, with a few exceptions, we give the highest common factor
m of the numbers |H| and n — 1, where n is the degree |G : H|. If G is 3-transitive, the subdegree must
divide m. When G = Fig3 and H = 3182146 3142 99, it follows that the subdegree is 3. However, a
simple MAGMA [7] calculation finds subdegrees of length greater than 3. In all other cases in the table, H
is insoluble and so the subdegree must be at least 5. However, it is clear in all these cases that H has no
transitive action of degree at least 5 and dividing m, hence G cannot be %—transitive. In the exceptional
cases in the table where m is not given, the fourth column either gives the subdegrees, or states that
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O,(H) # 1 for some prime p. In the latter cases we check that p does not divide n — 1, hence G is not
3_transitive.

2
This completes the proof of Theorem 8.1.

Table 16: Nontrivial subdegrees of some of the sporadic almost simple groups
where the respective action does not have a base of size 2.

G H Subdegrees
My Mo 10
Lo(11) 11
My : 2 18, 36
S5 15, 20, 30
M2 My 11
Ag.22 20, 45
La(11) 112,55, 66
32 : AGL2(3) 12,27,72,108
2% S5 102,15, 302,603,120
21+4 . g5 6,16,24,322, 482 963
42 : Dyo 6,16,24,322,482, 963
Mi2.2  3'2: Dg 6,182,27,543,1086
J1 La(11) 11,12,110,132
Moo L3(4) 21
24 : Ag 16, 60
Ay 70,105
24 : S5 30, 40, 160
23 : L3(2) 7,42,112,168
Mjio 30,45, 180, 360
Lo(11) 552,66, 165, 330
Ja Us(3) 36,63
3.46.2 36,108,135
21+4 . Aj 10, 322, 80, 160
22+4 . (3 x S3) 12,32, 96, 1922
Ay x As 15,20, 24, 180, 240, 360
As X D1g 12,25, 50, 602, 1002, 1502, 300
J2.2 L3(2):2x2 21,282, 42,842,168, 3362
Mo3 Moo 22
L3(4):2 42,210
24 Ay 112,140
Ag 15,210, 280
M 65,330, 792
24:(3x A5):2 20, 60, 90, 160, 4803
HS Moo 22,77
Us(5) : 2 175
L3(4):2 42,105, 280, 672
Ss 28,105, 336, 630
24 .S 15, 32,90, 120, 160, 192, 240, 240, 360, 960, 1440
43 : L3(2) 28, 64,112, 336, 448, 8962, 1344
M, 55,132, 165,495, 660, 792, 1320, 1980
4.2*.85 30, 80, 128, 480, 640, 960, 1536, 1920
HS2 (2 x 46.2.2).2 24, 30, 45, 72, 180, 288, 3605, 7202, 14404, 28802
J3 L2(16) : 2 85,120,510, 680, 1360, 1360, 2040
J3.2 L2(16) : 4 85,120,510, 680, 2040, 2720
(3 x M1g):2 80, 135, 180, 540, 720, 10802, 14403, 21607
Moy Mag 23
Moo : 2 44,231
24 : Ag 30, 280, 448
Mo : 2 495,792
26 :3.56 90, 240, 1440
L3(4) : S3 63,210,630, 1120
26 . (L3(2) x S3) 42,56,1008, 2688
Lo(23) 2532, 2764, 5062, 759, 1012°, 15183, 3036°
McL U4 (3) 112,162
Mo 330,462, 1232
Us(5) 252, 750, 2625, 3500
31+4 . 2.5¢ 90, 1215, 2430, 11664
3% Mg 30, 60, 162, 810, 16203, 3645, 5832
L3(4):2 112,2103, 1120, 1260, 25202, 33602, 4032
2.4g 210, 2240, 5040, 6720, 8064

24 Ay 112, 140, 210, 420, 672, 16802, 2240, 33602, 5040



McL.2
He

Ru

Suz

Suz.2

O'N
O'N.2
Cos

Coo

Flioo

Figo.2

HN

Ly

THE CLASSIFICATION OF ALMOST SIMPLE %—TRANSITIVE GROUPS 37

M11 X 2
Spa(4): 2
22.L3(4).S3

26 : 3.8
2F4(2)
26.U5(3).2

(22 x Sz(8)) : 3
2348 . 1,3(2)

Us(5):2
21+4+6 g,
Ga(4)

3.U4(3).2

Us(2)
2116.1U4(2)

35 M1

Jo 1 2

2446 344

(A4 X L3(4)) :2

2248 1 (A5 x S3)
M12 H (2 X 2)

L3(7): 2
4.L3(4): 2
McL : 2
HS
Ua(3).(2.2)
Moa3

3% : (2 x M11)
2.5pg(2)
Us(5) : S3
3144 . 454
24 Ag

Us(2) : 2

210 Moo 1 2
McL

2148 : Spe(2)
HS:2

(2% x 2116). Ag
Us(3) : Dg
24+10 (85 x S3)

Ma3

2.Us(2)

Q7(3)

QF(2): 53

210 . Moo

26 : Spg(2)

(2 x 2148) 1 (Us(2) : 2)
Us(3):2 X S3

2F4(2)’

25+8 : (Sg X AG)

3146 . 93+4 .32 . 9
35:(2x Uy(2):2)
G2(3): 2

Aio

2.HS.2

Us(8) : 3

G2(5)
3.McL : 2

165, 2202, 660, 7922, 990, 1320, 1980%, 39604, 5280, 7920°

1362, 425, 1360

105, 720, 8402, 1344, 4480

90, 120, 384, 9602, 1440, 2160, 28802, 5760, 11520

1755, 2304

63,756, 20163, 161282, 21504, 24192, 48384, 55296

455, 3640, 5824, 291202, 58240, 873602, 116480
28,672,896, 2688, 3584, 4096, 10752, 143362

28672, 430082, 57344, 86016, 114688

126, 350, 2520, 5250, 7875, 10500, 126002, 157503, 18000, 21000, 63000°, 126000
30, 240, 480, 640, 38402, 4096, 5120, 76802, 10240, 12288, 15360, 30720, 614406, 122880
416, 1365

280, 486, 8505, 13608

891, 1980, 2816, 6336, 20736

54,360, 1728, 5120, 9216, 17280, 46080, 55296

165,891, 26732, 2916, 160382, 17820, 400952, 53460

200, 315, 630, 1800, 3150, 126002, 16800, 20160, 252002, 50400, 1008002

60, 480, 1536, 1920, 61442, 20480, 230402, 46080, 92160, 184320

224, 315, 420, 12602, 1680, 2520, 15120, 201602, 26880

302402, 40320, 60480, 80640, 1209602, 1612802

30, 40, 48, 480, 6402, 9602, 1536, 2048, 3072, 51202, 76803,

102402, 153605, 307202, 61440%, 921603, 122880

264, 495,792,990, 1760, 2640, 2970, 5280, 7920, 118803, 158402, 19008,

316803, 4752010, 63360, 950405, 1900806

5586, 6384, 52136, 58653

448,630, 1120, 2240, 4480, 20160°, 230402, 403202, 80640%*, 16128014

275

352,1100, 4125, 5600

224,324, 1680, 45362, 8505, 18144

253,506, 1771, 7590, 8855, 14168, 15456

495, 2673, 32076, 40095, 53460

630, 1920, 8960, 30240, 48384, 80640

525, 2625, 3500, 6000, 21000, 23625, 31500, 630002, 1260002, 189000

180, 360, 3645, 7290, 14580, 29160, 58320%, 69984, 349920

70, 840, 8962, 960, 11202, 19202, 26882, 44804, 67202, 8960, 100802, 134407, 17920,
268806, 32256, 40320%, 537608, 806402, 1612802

891, 1408

462, 2464, 21120, 22528

275, 2025, 7128, 15400, 22275

1008, 1260, 14336, 40320

3850, 4125, 44352, 61600, 132000, 231000

15,210, 1680, 1920, 2520, 134402, 20160, 35840, 161280, 344064, 430080

840, 1134, 1680, 8505, 9072, 19440, 1814403, 2041202, 217728, 408240

90, 120, 160, 480, 640, 720, 2880, 38402, 57602, 7680, 153603, 16384, 230402, 409602, 46080,
921602, 184320, 2457602, 3686402, 737280, 983040

506, 17712, 5313, 7590, 15456, 17710, 283362, 30360, 53130, 60720, 70840, 850082, 141680,
170016, 212520%, 283360, 4250402, 510048, 850080

693, 2816

3159, 10920

1575, 22400, 37800

154, 1024, 3696, 4928, 11264, 42240, 78848

135, 1260, 2304, 8640, 10080, 45360, 143360, 2419202

270, 360, 1024, 1152, 4320, 34560, 40960, 46080, 691202, 138240, 368640, 442368
560, 1680, 1701, 2520, 17010, 68040, 81648, 907202, 136080, 544320, 612360

1755, 11700, 14976, 832002, 140400, 187200, 374400, 449280, 2246400

48,180, 480, 1536, 57602, 7680, 8640, 11520, 245762, 69120, 73728, 81920,

138240, 1843202, 552960, 983040, 1105920

Only some of the subdegrees 432, 1296, 2187, 5184, 8748, 10368, 34992, 46656, 69984,
139968, 279936, 314928, 419904, 559872, 839808, 1259712, 2519424

Only some of the subdegrees 360, 486, 2916, 6561, 8640, 19440, 38880, 58320, 104976,
131220, 262440, 524880, 699840, 1049760, 1574640

Only some of the subdegrees 702, 1456, 2808, 5824, 13104, 19656, 22113, 26208, 39312,
52416, 157248, 176904, 202176, 235872, 353808, 471744, 530712, 943488, 1415232,
2830464, 4245696

462, 25202, 10395, 16632, 30800, 69300, 1663202, 311850, 362880

1408, 2200, 5775, 35200, 123200, 277200, 354816, 739200

1539, 14364, 255363, 68096, 131328, 2298242, 6128644, 689472, 7879682, 55157762
19530, 968750, 2034375, 5812500

15400, 534600, 1871100, 7185024
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