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Abstract

The Steinberg tensor product theorem is a fundamental tool for study-
ing irreducible representations of simple algebraic groups over fields of
positive characteristic. This paper is concerned with extending the result,
replacing the target group SL(V ) by an arbitrary simple algebraic group.

1 Introduction

Let K be an algebraically closed field of characteristic p > 0, and let X be a
simple, simply connected algebraic group over K. The Steinberg tensor product
theorem [15] is fundamental to the analysis of irreducible rational representa-
tions of X. In this paper we establish similar results for morphisms from X into
simple algebraic groups of arbitrary type.

Steinberg’s theorem shows that if φ : X → SL(V ) is an irreducible rational

representation, then we can write V = V
(q1)
1 ⊗ ∙ ∙ ∙ ⊗ V

(qk)
k , where the Vi are

restricted KG-modules and the qi are distinct powers of p. The result can be
reformulated in terms of a factorization of φ:

X → X × ∙ ∙ ∙ ×X → GL(V ),

where the first map is a twisted diagonal map x→ (x(q1), ..., x(qk)), where x(qi)

denotes the image of x under a standard Frobenius qi-map and the second map
restricts to a completely reducible representation on each simple factor, with
restricted composition factors. Under the assumption q1 < ... < qk, one has
a uniqueness result as well. With the above formulation the result extends to
completely reducible representations.

The first author is grateful for the hospitality of the University of Oregon, where part of
this work was carried out. The second author acknowledges the support of an NSF grant and
of an EPSRC Visiting Fellowship
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Our goal is to generalize this result, replacing the target group SL(V ) by
an arbitrary simple algebraic group G, assuming p is a good prime for G. The
extension to classical groups is relatively minor. On the other hand, obtaining
such a result for exceptional groups is much deeper and the results rest on the
analysis of subgroups of exceptional groups along with results from [14].

The formulation requires two ingredients: a generalization of the usual no-
tion of complete reducibility and a suitable analog for the notion of a restricted
representation. We shall develop intrinsic versions of these concepts.

Throughout the paper, G denotes a connected simple algebraic group over
an algebraically closed field K of characteristic p which is assumed to be a good
prime for G. (Recall that this means p > 2 for groups of type Bn(n ≥ 2), Cn(n ≥
2), Dn(n ≥ 4) and p > 3 for exceptional groups, except E8, where p > 5.)

The following notion was introduced by Serre.

Definition. A subgroup D < G is called G-completely reducible (G-cr for
short), if whenever D is contained in a parabolic subgroup P of G, it is contained
in a Levi subgroup of P .

For G = SL(V ) this notion agrees with the usual notion of complete re-
ducibility. In fact, if G is any of the classical groups then the notions coincide,
although for symplectic and orthogonal groups this requires our assumption that
p is a good prime for G.

Complete reducibility of representations and the notion of G-cr subgroups
have been the focus of several recent articles. The following result provides
conditions which guarantee that certain subgroups satisfy the G-cr condition.
In particular, the result shows that this quite often the case when G is an
exceptional group.

G-cr Theorem (McNinch [11], Liebeck-Seitz [7]). Let X be a connected
simple subgroup of G. Then X is G-cr if either of the following hold:

(i) G is classical with natural module V , and p ≥ dimV
rank(X) .

(ii) G is of exceptional type and p > 7.

In particular, if p ≥ h(G), the Coxeter number of G, then all closed, connected
simple subgroups of G are G-cr.

We remark that [7] establishes results stronger than what is asserted in (ii)
above. The characteristic requirements depend on the pair (G,X); for example
p > 7 is needed only when G = E7, E8 with X of rank 1 or 2.

We next aim at a suitable notion of a restricted morphism. A few preliminary
remarks are required. If X is a simple, simply connected algebraic group and
φ : X → G is a morphism, then φ lifts to a morphism φ̂ : X → Ĝ, where Ĝ is
the simply connected cover of G.

Next, we extend the usual notion of irreducible restricted representation
by defining a (not necessarily irreducible) representation X → GL(V ) to be
restricted if all composition factors are restricted.
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If G is of classical type, by the natural Ĝ-module we mean the usual classical
module (of high weight λ1). We allow more than one natural module in a few
cases. For G = An, we also allow the dual of the usual module and for G = D4
we define as natural each of the three 8-dimensional modules of high weights
λ1, λ3, λ4. Also, B2 has two natural modules, of dimensions 4 and 5, because
of the isomorphism B2 ∼= C2; likewise A3 ∼= D3 has two natural modules of
dimensions 4, 6.

Definition. Let X be simple and simply connected. A morphism φ : X → G
is restricted if either of the following holds:

(i) X = SL2, and composing φ with the adjoint representation of G, all
weights of a maximal torus of X are at most 2p− 2.

(ii) X 6= SL2 and X
φ̂
→ Ĝ → GL(V ) is a restricted representation, where

V is a natural Ĝ-module if G is of classical type and V = L(Ĝ) if G is of
exceptional type.

Condition (i) says that φ(X) is a good A1 in the sense of [14]. For classical
groups these are just A1’s which have restricted action on the natural Ĝ module.
The definition in (ii) does not depend on the natural module chosen in those
cases where there is more than one natural module (see Lemma 5.1).

The next result provides a more uniform criterion for a restricted morphism.

Restricted Morphism Theorem Let X be simple and simply connected, and
let φ : X → G be a morphism such that the image φ(X) is G-cr. Then φ is
restricted if and only if CG(φ(X))

0 = CG(dφ(L(X)))
0.

A connected simple subgroup of G is called restricted if it is the image of a
restricted morphism. (So with this definition, the good A1’s of [14] are also called
restricted A1’s of G.) We extend this to semisimple groups X and morphisms
φ : X → G, by saying that φ is restricted if its restriction to each simple factor
is restricted.

We now state our generalization of the Steinberg tensor product theorem.
In the following we fix X with an Fp-structure and corresponding Frobenius
p-power maps. The morphism x→ x(q) refers to the Frobenius q-power map.

Theorem 1 Let G be a simple algebraic group over K in good characteristic p.
Assume X is a simply connected, simple algebraic group over K and φ : X → G
is a nontrivial morphism with image group G-cr. Then there is a unique integer
k, unique powers qi of p with q1 < . . . < qk, and unique morphisms ψ and μ,

such that φ factors X
ψ
→ X × ∙ ∙ ∙ ×X

μ
→ G, where ψ(x) = (x(q1), ..., x(qk)) and

μ is restricted with finite kernel.

Theorem 1 can be formulated in terms of subgroups of G, where there are
significant applications, especially for exceptional groups.
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Corollary 1 If X is a connected simple G-cr subgroup of G, then there is a
uniquely determined commuting product E1 ∙ ∙ ∙Ek with X ≤ E1 ∙ ∙ ∙Ek ≤ G, such
that each Ei is a simple restricted subgroup of the same type as X, and each of
the projections X → Ei/Z(Ei) is nontrivial and involves a different field twist.

It will be shown in 7.2 and 9.2 to follow that the commuting product
E1 ∙ ∙ ∙Ek given by Corollary 1 and each of its simple factors are G-cr. We also
remark that there is a unique i such that L(X) = L(Ei). The other projections
involve nontrivial and distinct field twists. These projections may also involve
twists by graph automorphisms and in the case of B2, G2, F4 with p = 2, 3, 2,
respectively, exceptional isogenies may also be present.

Steinberg’s theorem also applies to finite groups of Lie type, Y (q), where q
is a power of p. Take Y (q) of universal type so that Y (q) = Yσ for a simply
connected, simple algebraic group Y , with σ a Frobenius morphism. Here the
Steinberg theorem shows that an irreducible representation Y (q)→ SL(V ), for
V finite dimensional over the algebraic closure of Fq, extends to an irreducible
representation of Y .

Our next result extends this to arbitrary simple algebraic groups. However,
to obtain a result covering exceptional groups we require an assumption on the
underlying finite field Fq defining the finite group.

Consider a homomorphism φ : Y (q) → G, where G is a simple exceptional
group in (good) characteristic p. In [9, Thm 1] it is shown that for q sufficiently
large, there is a connected subgroup of G, containing Y (q), which stabilizes all
Y (q) invariant subspaces of L(G). Usually q > 9 is sufficient, but a larger bound
is required for the case where Y (q) is a rank 1 group. This field restriction is
required for our next theorem.

In order to formulate a uniqueness result we need the following terminology.
If Y > Y (q) are as above, a morphism ψ : Y → G is said to be q-restricted
if ψ(Y ) is G-cr and in the factorization given by Theorem 1, each of the field
twists qi is less than q.

In the special cases Y (q) = 2B2(q),
2G2(q),

2F4(q), with p = 2, 3, 2, respec-
tively, we must modify the above definition slightly. We are assuming that p is
good, so these cases only occur when G is classical. If V is the natural module
for G we say ψ is (q, s)-restricted if ψ is q-restricted and the high weights of all
composition factors of Y on V have support on the short fundamental roots.

Theorem 2 With notation as above, let φ : Y (q) → G be a homomorphism
with image group G-cr. If G is of exceptional type, suppose also that q satisfies
the lower bounds in the hypothesis of [9, Thm 1]. Then φ factors uniquely

as Y (q) ↪→ Y
ψ
→ G, where the first map is inclusion, and ψ is a q-restricted

morphism ( (q, s)-restricted if Y (q) = 2B2(q),
2G2(q),

2F4(q)), with image group
G-cr.

Theorem 2 can also be formulated in terms of subgroups of G along the lines
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of Corollary 1. We define a connected, simple subgroup of G to be q-restricted
(respectively (q, s)-restricted), if it is the image of a q-restricted (respectively
(q, s)-restricted) morphism.

Corollary 2 Let Y (q) be a G-cr subgroup of G. If G is of exceptional type,
suppose also that q satisfies the lower bounds in the hypothesis of [9, Thm 1].
Then there is a unique connected, simple subgroup Y of G such that Y contains
Y (q), Y is of the same type as Y (q), and Y is q-restricted ((q, s)-restricted if
Y (q) = 2B2(q),

2G2(q),
2F4(q)).

When studying a subgroup X < G it is important to have information on
the action of X on certain modules for G, in particular the adjoint module
and, for G of classical type, the natural module. For G classical and X a G-cr
subgroup, this is relatively easy, since one can obtain the precise action of X on
the classical module from knowledge of high weights of composition factors. A
result for G-cr subgroups of exceptional groups, giving the precise action on the
adjoint module is highly desirable, but has until now proved elusive. Results
exist (e.g. [7] and [5]) which determine the composition factors of X on L(G),
but not the precise action. The difficulty is that even though the subgroup X
is G-cr, complicated indecomposable modules may occur within L(G) ↓ X. In
the following we establish results that resolve this problem.

We fix notation as follows to be used in Theorems 3 and 4 below. As before,
X will denote a connected simple G-cr subgroup of G, a simple algebraic group
in good characteristic. Let E1, ..., Ek and 1 = q1 < ... < qk be the corresponding
subgroups and prime powers given by Corollary 1.

Theorem 3 is a tensor product theorem in the case where X = A1 in its
representation on the adjoint module, L(G). Here tilting modules are the basic
objects.

Recall that a tilting module is one which has filtrations both by Weyl mod-
ules and also by dual Weyl modules. For each non-negative integer c, there is
a unique indecomposable tilting module T (c) for A1 of highest weight c, and
every tilting module is a direct sum of these. Some basic information on tilting
A1-modules can be found in [14, Section 2].

The results in [14] highlight the importance of tilting modules for restricted
(i.e. good) A1’s in G. It is shown in [14], Theorem 1.1(iii) that with one
exception L(G) ↓ A1 is a tilting module for such an A1. The exception occurs
only for G of type An with p|n+ 1 and even here we get a tilting module if we
replace G by GLn+1.

Theorem 3 Let G be a simple algebraic group in good characteristic p, except
for the case where G is of type An with p|n + 1, in which case assume that
G = GLn+1. Let X = A1 be a connected simple, G-cr subgroup of G. Then
L(G) ↓ X is a direct sum of modules of the form T (c1)

(q1) ⊗ . . . ⊗ T (ck)(qk),
where for 1 ≤ i ≤ r, T (ci) is a tilting module for Ei of high weight ci ≤ 2p− 2.
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The tilting decomposition of Theorem 3 does not extend to groups of rank
greater than 1, as can be easily seen by looking at classical groups. However, for
exceptional groups it is still possible to obtain a tensor product theorem with
information on tensor factors. The result is as follows.

Theorem 4 Let G be a simple exceptional group in good characteristic p and
let X be a connected simple G-cr subgroup of rank at least 2. Then L(G) ↓ X
is a direct sum of modules of the form V

(q1)
1 ⊗ ... ⊗ V (qr)r , where each Vi is a

restricted module for Ei. Moreover, one of the following holds:

(i) each Vi is a Weyl module, a dual Weyl module, or a tilting module;

(ii) p = 7, X = G2 and either X is maximal in an F4 subgroup of G, or
X < F4G2 < E8 = G with X projecting to a maximal subgroup of the F4 factor.

We remark that (ii) is a real exception. Indeed, if p = 7 and G2 < F4
is maximal, then L(F4) ↓ G2 is a direct sum of two irreducibles VG2(01) ⊕
VG2(11), while the Weyl module WG2(11) is reducible with irreducible maximal
submodule of high weight 20 (see [13]).

Corollary 4 Assume G is an exceptional group and p > 7. If X is a connected
simple subgroup of G of rank at least 2, then L(G) ↓ X is completely reducible
with each irreducible summand a twisted tensor product of (irreducible) Weyl
modules.

Corollary 4 combines with Theorem 1 to yield a tensor product theorem
with respect to the adjoint representation of G. This tensor product theorem
contains much more information than what is provided by the Steinberg tensor
product theorem for the representation X → G → GL(V ), with V = L(G).
Indeed, the latter shows that the image of X is contained in a certain product
of subgroups of GL(V ). Theorem 1 implies that these subgroups are actually
contained in the image of G.

Corollary 1 reduces the problem of determining connected simple G-cr sub-
groups of G to the problem of determining commuting products of restricted
subgroups. In the last section of the paper we establish results which should be
useful in determining all such commuting products (see for example Corollary
9.5).

The paper is organised as follows. In Section 2 we discuss material on sub-
groups of algebraic groups which will be required for work on exceptional groups.
Theorem 1 is proved in Sections 3 and 4, the former for the uniqueness assertion
and the latter establishing existence of the factorization. The Restricted Mor-
phism Theorem is deduced in Section 5, and Theorems 2, 3 and 4 are proved
in Sections 6, 7 and 8, respectively. The paper concludes with a section con-
taining applications of the results of this paper to the analysis of subgroups of
exceptional algebraic groups.
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Notation We shall use the following notation for representations: if X is a
reductive algebraic group and λ a dominant weight, then VX(λ),WX(λ), TX(λ)
denote the corresponding irreducible module, Weyl module, or indecomposable
tilting module of high weight λ, respectively. If λ1, ..., λk are dominant weights,
then λ1/λ2/.../λk will denote a module having the same composition factors
as WX(λ1) ⊕ . . . ⊕ WX(λk). Finally, λ1|λ2| . . . |λk denotes a module having
composition factors VX(λ1), . . . , VX(λk).

2 G-cr and restricted subgroups of exceptional
groups

When G is of exceptional type, the results of this paper ultimately rely on a
major analysis of the subgroup structure of exceptional algebraic groups. Indeed
the results of [7] are key to finding the commuting product required for Theorem
1. In this section we derive results from this analysis which will be required later.
The main result of the section is Proposition 2.3, which is not only used in the
proof of Theorem 1, but is also fundamental to the proof of the Restricted
Morphism Theorem.

The maximal connected reductive subgroups of exceptional algebraic groups
were determined in [13], under certain mild assumptions on the characteristic
p of the underlying field. These assumptions are slightly stronger than the as-
sumption that p is a good prime. Then in [7] the authors analyzed arbitrary
reductive subgroups under roughly the same characteristic restrictions. More
recently [10] the authors have extended the results of [13], removing all charac-
teristic restrictions. Parts of this work together with the results and arguments
of [7] will be needed in what follows .

The following theorem is the final result on maximal subgroups. It is consid-
erably stronger than what we need here, as we are assuming p is a good prime
for G.

Theorem 2.1 ([10, 13].) Let G be an exceptional algebraic group in arbitrary
characteristic p > 0, and let M be a maximal connected subgroup of G. Then
either M is parabolic, reductive of maximal rank, or G,M are as in Table 1.
Maximal subgroups of each type indicated in the table exist, subject to the indi-
cated restrictions on p, and are unique up to Aut(G)-conjugacy.

Table 1

G M

G2 A1(p ≥ 7)
F4 A1(p ≥ 13), G2(p = 7), A1G2(p ≥ 3)
E6 A2(p ≥ 5), G2(p 6= 7), F4, C4(p ≥ 3), A2G2
E7 A1(p ≥ 17), A1(p ≥ 19), A2(p ≥ 5), A1A1(p ≥ 5), A1G2(p ≥ 3), A1F4, G2C3
E8 A1(p ≥ 23), A1(p ≥ 29), A1(p ≥ 31), B2(p ≥ 5), A1A2(p ≥ 5), G2F4
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Remarks 1. For G = E7, E8 Table 1 has repetitions for groups of type A1.
This is done to indicate distinct conjugacy classes of subgroups of this type.

2. We shall be using Theorem 2.1 only in the case where p is a good prime
for G; in this case 2.1 is already proved in [13], except when X = A1, p ≤ 7,
or when (X,G, p) = (A2, E7, 5). For these cases it is proved in [10] that only
X = A2 occurs as a maximal subgroup.

With a description of the maximal subgroups in hand, the next step is to
try to understand the embedding of semisimple subgroups in the maximal sub-
groups. Under the hypothesis that the subgroup in question is G-cr, this ulti-
mately comes down to embeddings in certain reductive subgroups. For this we
need the notion of essential embedding.

Let Y be a semsimple algebraic group, and let X be a semisimple subgroup
of Y . For a subgroup A of Y write Ā = AZ(Y )/Z(Y ), and for a simple factor S
of Y , let πS : X̄ → S̄ be the projection map. The connected preimage of X̄πS
in S is called the projection of X in S. We say that X is essentially embedded
in Y if, for each exceptional simple factor Y0 of Y , the projection of X in Y0
is either Y0 or maximal connected but not of maximal rank in Y0, and for each
classical factor Y1 of Y , the projection of X in Y1 is either irreducible on the
natural Y1-module, or Y1 = Dn and the natural module splits under X into a
sum of two non-isomorphic irreducible summands of odd dimension.

Recall also from [7] that a subsystem subgroup of G is a connected semisimple
subgroup which is normalized by a maximal torus of G.

Proposition 2.2 Let G be an exceptional algebraic group over K in good char-
acteristic p, and let X be a connected semisimple subgroup of G. Assume that
X is G-cr. Choose a subsystem subgroup Y of G, minimal subject to containing
X (possibly Y = G). Then one of the following holds:

(i) X is essentially embedded in Y ;

(ii) X has a factor G2, p = 7, Y = E6 or E8, and X < F4 < E6 or
X < G2F4 < E8 respectively, with X projecting to a maximal subgroup G2 of
the F4 factor;

(iii) X has a factor A1, and there is a subgroup Y0 = F4, E6, E7 or E8 of G,
a maximal connected subgroup Z of Y0 not containing a maximal torus, and a
semisimple subgroup Y1 of CG(Y0), such that either X is essentially embedded
in ZY1, or X = Y0Y1.

Proof This follows from the proofs of [7, Theorems 5,7] (pp.53-55), where the
result is proved under the assumption that p > N(X,G), where N(X,G) is
as defined on [7, p.2] (this excludes a few good characteristics in some cases).
The only points to note are that the use of [7, Theorem 1] is replaced by our
hypothesis that X is G-cr; use of [13] is replaced by use of Theorem 2.1; and
extra subgroups X < G2F4 < E8 (p = 7) show up under (ii), which do not
appear in [7, Theorem 5], because of the stronger characteristic assumption
there.
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Remark In (iii) of Proposition 2.2, the possibilities for Z are given by Theorem
2.1, and the possibilities for CG(Y0) are as follows:

Y0 CG(Y0) (G = E8, E7, E6, F4)
F4 G2, A1, 1, 1 (resp.)
E6 A2, T1, 1,−
E7 A1, 1,−,−
E8 1,−,−,−

Let E be a simple algebraic group. We introduce the following notation
to deal with cases where L(E) has nontrivial ideals. Let L(E)+ denote the
subalgebra of L(E) generated by all nilpotent elements. We note that L(E) =
L(E)+ if E is simply connected, and, of course, this also holds if L(E) is simple.
With the exception of some orthogonal groups in characteristic 2, L(E)+ has
codimension at most 1 in L(E).

The next proposition is the main result of the section.

Proposition 2.3 Let G be an exceptional algebraic group over K in good char-
acteristic p, and let E be a connected simple subgroup of G.

(i) If E is a restricted A1, then E is G-cr.

(ii) If rank(E) ≥ 2, then E is G-cr, except possibly when E = G2, p = 7 and
G = E7 or E8.

(iii) Suppose that E is restricted, and also that either E is G-cr or CG(E)
contains a connected simple subgroup of the same type as E. Then CG(E)

0 is
reductive, CG(E)

0 = CG(L(E)
+)0, and CL(G)(E) = CL(G)(L(E)

+).

Proof (i) This follows from [14, Theorem 1.1(iv)].

(ii) Assume rank(X) > 1. Theorem 1 of [7] shows that E is G-cr provided
the prime p satisfies p > N(E,G), where N(E,G) is defined in the table in [7,
p.2]. The only cases where this inequality is stronger than p being a good prime
are (E,G, p) = (A2, E7, 5), (G2, E7, 5), (G2, E7, 7) and (G2, E8, 7). The last two
possibilities appear in the conclusion of (ii), so we must show that in the first
two cases E is G-cr.

For this we follow the proof of [7, Theorem 1]. Let P = QL be a parabolic
subgroup of G, minimal subject to containing E, with unipotent radical Q and
Levi subgroup L. Using 2.1 and arguing as in [7, 3.2], we see that either L′

is a commuting product of classical groups, or L′ = E6 and E projects to a
maximal subgroup of L′ or is diagonal in a subsystem of type A2A2A2. Now we
see as in the proof of [7, 3.3, 3.4] that the possible high weights for E acting on
composition factors of Q are as listed on p.36 of [7]. In our cases, p = 5, and
the rest of the proof of [7, 3.4] gives the conclusion.

(iii) Here we are assuming that E is a restricted subgroup. If E = A1 then
the hypothesis implies that E is a good A1 in G. The first equality follows from
[14, Theorem 1.2]. For the second equality, first use [14, Theorem 1.1] to see
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that L(G) ↓ E is a tilting module and then apply [14, Lemma 2.3(d)] to get the
equality on fixed points.

Suppose now that rank(E) ≥ 2. Assume first that E is G-cr. Letting Y be
a minimal subsystem subgroup of G containing X, the embedding of X in Y is
given by (i) or (ii) of Proposition 2.2.

In case 2.2(ii) we have p = 7 and either E = G2 < F4 < E6 ≤ G or
E = G2 < G2F4 < E8 = G. In either case L(E) = L(E)

+. In the first case, we
have, using [13],

L(F4) ↓ E = VE(01)⊕ VE(11), VF4(λ4) ↓ E = VE(20).

Moreover, L(G) ↓ F4 is the sum of an adjoint module, a fixed space of dimension
dimCG(F4), and a number of copies of VF4(λ4). It follows that CG(E)

0 =
CG(F4)

0 = 1, A1, G2 for G = E6, E7, E8 (see [13]). Further, since E is restricted,
only trivial composition factors of L(G) ↓ E can be centralized by L(E)+, and
so it follows that CG(L(E)

+)0 = CG(E)
0 and CL(G)(E) = CL(G)(L(E)

+), as
required.

In the second case above, E = G2 < G2F4 < E8, we have

L(E8) ↓ E = VE(01)
2 ⊕ VE(11)⊕ (VE(10)⊗ VE(20)).

To understand the last summand we first consider VE(10)⊗ TE(20), where the
second factor is the indecomposable tilting module of high weight 20, which has
shape 00/20/00. The tensor product of tilting modules is again a tilting module
and using this we find that VE(10) ⊗ VE(20) = VE(30) ⊕ VE(01) ⊕ TE(11),
where TE(11) has socle length 3 with layers 20, 11 ⊕ 00, 20. It follows that
CG(E)

0 = CG(L(E))
0 = 1 and CL(G)(E) = CL(G)(L(E)) = 0.

Next consider case 2.2(i). Here E is essentially embedded in the subsystem
subgroup Y . The possibilities for Y , E and L(G) ↓ E are worked out explicitly
in [7, p.56-68 and Tables 8.1-8.4], under the assumption that p > N(E,G). In
this situation we have

CG(E) ≤ CG(L(E)) ≤ CG(L(E)
+),

CL(G)(E) ≤ CL(G)(L(E)) ≤ CL(G)(L(E)
+),

dimCG(L(E)
+) ≤ dimCL(G)(L(E)

+), and

dimCG(E) = dimL(CG(E)) ≤ dimCL(G)(E) ≤ dimCL(G)(L(E)
+).

Hence to prove that CG(E)
0 = CG(L(E)

+)0 and CL(G)(E) = CL(G)(L(E)
+), it

suffices to show that dimCG(E) = dimCL(G)(L(E)
+).

As noted above, only trivial composition factors of L(G) ↓ E can be central-
ized by L(E)+.

Assume p > N(E,G). As observed in [7, p.90], Tables 8.1-8.4 of [7] show that
in all but three cases, the number of trivial composition factors in L(G) ↓ E is
equal to dimCG(E), hence dimCG(E)) = dimCL(G)(L(E)

+); in the exceptional
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cases E = A4 (p = 5) or A6 (p = 7), and the same conclusion holds, by an
argument in [7, p.90]. Finally, CG(E)

0 is reductive, by [7, Theorem 2].

Now assume p ≤ N(E,G). As p is good, this means that (E,G, p) =
(A2, E7, 5), (G2, E7, 5 or 7) or (G2, E8, 7). In each case L(E) is simple, and
in particular L(E) = L(E)+. The possibilities for Y,E and L(G) ↓ E can be
worked out exactly as in [7] (p.62 for G2, p.64-67 for A2), and are just as in
Tables 8.1-8.4 of [7]. In particular the maximal A2 in E7 satisfies L(E7) ↓ A2 =
L(A2)⊕ VA2(44), so there are no fixed points. In all but one case we find that
the number of trivial composition factors in L(G) ↓ E is equal to dimCG(E),
and CG(E)

0 is reductive, giving the conclusion as above. The exceptional case
occurs when E = G2, Y = A6 and p = 7; here

L(E7) ↓ E = 01/10
5/203/003, L(E8) ↓ E = 01

5/1013/203/006,

where (as in [7]) the notation abn indicates the presence of the composition
factors of n copies of the Weyl module WE(ab). Now WE(20) has a trivial
1-dimensional submodule when p = 7, this means that the number of trivial
composition factors in L(G) ↓ E is 6 or 9, for G = E7 or E8 respectively.
The restrictions L(G) ↓ E can be calculated precisely by first restricting to
A6T1 = GL7, where we see that the action is a direct sum of modules of the
form V,∧2V,∧3V , duals of these modules, trivial modules, and V ⊗ V ∗, where
V denotes a usual 7-dimensional module. It follows that L(G) ↓ E is a tilting
module.

In particular, for each occurence of the composition factor 20, there is a direct
summand which is an indecomposable tilting module of shape 00/20/00. Hence
the dimension of the fixed point space of E (or L(E)) on L(G) is 3 or 6, according
as G = E7 or E8. If G = E7 then CG(E) = A1, as shown in [13, p.34-35]. And
if G = E8 then E < A6 < E7, so that CG(E) ≥ CE7(A1)CG(E7) = A1A1, and
by consideration of dimension CG(E)

0 = A1A1. This gives the assertion here.

We have now proved part (iii) of the proposition under the assumption that
E is G-cr. It remains to prove it under the assumption that rank(E) ≥ 2, E
is restricted, not G-cr, and CG(E) contains a connected simple subgroup of the
same type as E.

By part (ii), the assumption that E is not G-cr forces E = G2, p = 7 and
G = E7 or E8. Moreover, the proof of [7, Theorem 1] shows that E must lie in
a parabolic subgroup P = QL of G, such that the unipotent radical Q, when
restricted to E, has a composition factor VE(λ) such that the Weyl module
WE(λ) has a trivial composition factor. Choose P minimal for this. From
[7, p.36], we see that the only possibilities are L = A6 or E6, with λ = 20.
As in [7] we calculate the composition factors of L(G) ↓ E in these cases; it
turns out that the number of trivial composition factors is less than dimE,
except when L = E6 and G = E8, in which case this number is precisely
14 = dimE. Hence by our hypothesis, this case must occur, and we must have
CG(E)

0 ∼= E = G2 and dimCL(G)(L(E)) = CL(G)(L(E)
+) = 14 = dimCG(E)

also. (Such a configuration exists as E8 ≥ F4G2 ≥ G2G2.) This completes the
proof.
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3 Theorem 1: Uniqueness

In this section we prove the uniqueness part of Theorem 1. Suppose then that
G is a simple algebraic group in characteristic p, a good prime, and that X is
a simple, simply connected group and φ : X → G is a morphism whose image
is G-cr. Let k, q1, ..., qk, ψ and μ be as in Theorem 1. Now let k

′, q′1, ..., q
′
k′ , ψ

′,
and μ′ correspond to another factorization of φ.

If dφ = 0, then φ can be factored through a Frobenius morphism of X which
induces the p-power map on a maximal torus (see Lemma 1.2 of [7]). Repeating
this we see that there is a unique power q of p such that φ = μ◦F , where F is a
Frobenius morphism inducing the q-power map on a maximal torus and dμ 6= 0.

The assumption dφ = 0 implies both q1 > 1 and q
′
1 > 1. Moreover the

uniqueness of q forces q = q1 = q′1. We can then factor off a q-power map and
assume q1 = q

′
1 = 1.

For 1 ≤ i ≤ k, let μi be the restriction of μ to the ith simple factor of
X × ... × X (k factors). Thus φ(x) =

∏k
1 μi(x

(qi)) for x ∈ X. Similarly,

φ(x) =
∏k′

1 μ
′
j(x

q′j ).

We aim to show that k = k′, qi = q
′
i and μi = μ

′
i for all i. For convenience we

may assume k ≥ k′ and proceed by induction on k. The base case k = k′ = 1 is
trivial. Assume k ≥ 2. Write Ei = μi(X) and Fj = μ′j(X); these are connected,
simple, restricted subgroups of G. We have φ(X) ≤ E1 . . . Ek with a qi-field
twist in the projection to Ei/Z(Ei), and likewise φ(X) ≤ F1 . . . Fk′ with a q

′
j-

twist in the jth projection. Since q1 = q′1 = 1 and recalling the notation given
just before Lemma 2.3,we have

L(φ(X))+ = L(E1)
+ = L(F1)

+.

The following is a key result for the uniqueness proof.

Lemma 3.1 (i) CG(E1)
0 = CG(L(E1)

+)0.

(ii) CG(E1)
0 is reductive.

Proof Assume first that G is of exceptional type. Since k ≥ 2, the hypothesis
of Proposition 2.3(iii) is satisfied by E1, so both (i) and (ii) follow from that
result.

Suppose now that G is of classical type. We first claim that for purposes of
proving (i) we may work with the actual classical group (i.e. with G = SL, Sp,
or SO). To see this let Ĝ be the simply connected cover of G, π : Ĝ → G the
natural surjection, and Ê1 the connected preimage of E1 in Ĝ. Then Z = ker(π)
is finite and S = ker(dπ) is of dimension at most one and consists of semisimple
elements. Indeed, since p is good S = 0 unless Ĝ = SLn and p|n.

Set Ĉ = CĜ(Ê1)
o and C = CG(E1)

o. Similarly, set D̂ = CĜ(L(Ê1))
o and

D = CG(L(E1))
o. To prove the claim it will suffice to show that C = D if and

only if Ĉ = D̂.
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Now Ê1 and E1 are generated by unipotent elements while L(Ê1)
+ and

L(E1)
+ are generated by nilpotent elements. Therefore π : Ê1 → E1 and

dπ : L(Ê1)
+ → L(E1)

+ are surjective. For u ∈ Ĝ a unipotent element and
n ∈ L(Ĝ) a nilpotent element it follows from the Jordan decomposition that
CĜ(uZ) = CĜ(u) and CĜ(n+ S) = CĜ(n).

It follows from the previous paragraph that π−1(C) = Ĉ ∙ Z and π−1(D) =
D̂ ∙ Z. We get the claim by taking connected components.

Thus to prove (i), we may work with any image of Ĝ and we choose the actual
classical group. Indeed it will suffice to establish the result for G = SL(V ).
By hypothesis X is completely reducible in its action on V . Let Y be the
direct factor mapping under the morphism μ of the theorem to E1. Then Y
acts homogeneously on each irreducible summand of V ↓ X. Hence V ↓ Y is
completely reducible with all irreducibles restricted. It follows that Y and L(Y )
leave invariant precisely the same subspaces of V . Also, μ(Y ) = E1 and since
L(Y ) = L(Y )+ we have dμ(L(Y )) = dμ(L(Y )+) ≤ L(E1)+.

Now consider centralizers. Clearly CG(E1) ≤ CG(L(E1)
+), so we must

establish the reverse containment. We first observe that E1 and L(E1)
+ leave

invariant the same subspaces of V . Surely any subspace invariant under E1 is
invariant under L(E1) and hence L(E1)

+. Conversely, suppose L(E1)
+ leaves

W invariant. By the above dμ(L(Y )) also leaves W invariant and we have seen
that Y and L(Y ) leave invariant the same subspaces. Hence W is Y -invariant,
and hence E1-invariant, as μ(Y ) = E1.

Decompose V into homogeneous components with respect to L(E1)
+. Each

is invariant under the action of E1 as well as CG(L(E1)
+), so we may assume that

V is homogeneous under the action of L(E1)
+. Now Lemma 2.3 of [8] shows that

there is a decomposition V = V1 ⊗ V2 such that CGL(V )(L(E1)+) = 1⊗GL(V2)
and CGL(V )(CGL(V )(L(E1))

+) = GL(V1) ⊗ 1. Hence E1 ≤ NGL(V )(GL(V1) ⊗
GL(V2))

0 = GL(V1)⊗GL(V2). Now L(E1)+ ≤ L(GL(V1)) and E1 is restricted,
so this forces E1 ≤ GL(V1). But then E1 centralizes the second factor, estab-
lishing (i).

It follows from the above that CGL(V )(E1) is a product of smaller GL’s. This
implies (ii) for G = SL(V ). If G is a symplectic or orthogonal group we must
take fixed points of this centralizer with respect to an involution. As p > 2 here
(p is good), this centralizer is reductive, giving (ii).

We are now in position to complete the uniqueness argument. Set D =
CG(E1)

0, so that by Lemma 3.1(i) we have D = CG(L(E1)
+)0 = CG(L(F1)

+)0.
Applying 3.1 again, this time to the second factorization φ(X) ≤ F1 . . . Fk′ yields
CG(F1)

0 = CG(L(F1)
+)0 = D. Now E2 . . . Ek and F2 . . . Fk′ are contained in

D, so that E1 . . . Ek = φ(X)(E2 . . . Ek) and F1 . . . Fk′ = φ(X)(F2 . . . Fk′) are
contained in φ(X)D = E1 ◦D = F1 ◦D. It follows that E1 = F1.

Now for x ∈ X we have
∏
μi(x

(qi)) = φ(x) =
∏
μ′j(x

(q′j)), and hence

(μ′1(x
(q′1)))−1μ1(x

(q1)) = z(x) ∈ E1 ∩D.
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Since E1∩D ≤ Z(E1), the map x→ z(x) is a group homomorphismX → Z(E1).
However, X = X ′ so this map must be trivial; in other words, z(x) = 1 for all
x ∈ X, whence μ1 = μ′1.

We now have
∏
i>1 μi(x

(qi)) =
∏
j>1 μ

′
j(x
(q′j)). View this as an equality

between two factorizations of another morphism from X to G, where the inter-
mediate direct product has one less factor in each case. The inductive hypothesis
now yields the result.

4 Theorem 1: Existence

Let G be a simple algebraic group over an algebraically closed field K of good
characteristic p.

To establish the existence part of Theorem 1, we may replace X by its image
in G, so we take X ≤ G, a connected simple subgroup which is G-cr. We need to
prove the existence of a commuting product E1 ∙ ∙ ∙Er of restricted subgroups of
the same type as X, such thatX ≤ E1 ∙ ∙ ∙Er and the projections X → Ei/Z(Ei)
are nontrivial and involve distinct field twists.

The case where G is of classical type is fairly easy due to Steinberg’s theorem.
This is settled in the following lemma.

Lemma 4.1 Theorem 1 holds if G is a classical group.

Proof We may assume X ≤ G ≤ SL(V ). If G is a symplectic or orthogonal
group, then we are assuming p 6= 2, so that G = SL(V )τ for a suitable involutory
automorphism τ of G. Moreover, X is completely reducible in its action on V .

First assume G = SL(V ). Here the Steinberg tensor product theorem pro-
vides the required (twisted diagonal) embedding X < E1 ∙ ∙ ∙Er, corresponding
to field twists 1 = q1 < ... < qr.

Now suppose G = SL(V )τ . From the uniqueness result we see that τ nor-
malizes each Ei while centralizing the projection of X. However, for each i,
Ei and X are of the same type, so it follows that τ centralizes Ei and the
commuting product is contained in G.

From now on we assume that G is an exceptional group. Here the most
complicated case is that in which X = A1 (i.e. X = SL2 or PSL2), and we
settle this case in the following subsection. The higher rank cases will be settled
in subsection 4.2.

4.1 The case X = A1

Assume X = SL2 or PSL2. We must find find suitable restricted groups Ei.
These restricted A1’s are good A1’s of G, in the sense of [14]. Theorem 1.2 of
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[14] provides a strong connection between good A1’s and unipotent classes. We
will use this result to show that restricted A1’s of certain subgroups of G are
also restricted for G. Combining this with Proposition 2.2 we are in position to
carry out an inductive proof of Theorem 1.

We begin with a general result on reductive subgroups of G of maximal rank
(i.e. containing a maximal torus).

Proposition 4.2 Let G be a simple algebraic group in characteristic p, a good
prime for G, and letM be a proper connected reductive subgroup of G of maximal
rank. Then Z(M) 6= 1 and M = CG(Z(M))0.

Proof As p is good, an inspection of subsystem groups (using the Borel - de
Siebenthal algorithm) shows that Z(M) 6= 1. Let D = CG(Z(M))

0, so M ≤ D
and Z(M) ≤ Z(D). Choose a maximal torus T of M containing Z(M). Then
Z(D) ≤ CG(M) ≤ CG(T ) = T ≤ M , and hence Z(D) = Z(M) = Z, say. If
M < D then M/Z < D/Z. But M/Z is a maximal rank subgroup of D/Z, so
must have a nontrivial center, whereas Z(M/Z) = 1, a contradiction. Therefore
M = D = CG(Z(M))

0.

Recall, that if X is an A1 subgroup of a connected reductive group M , we
will say X is restricted in M provided all weights of X on L(M) are at most
2p − 2. If X ≤ M ≤ G and if X is G-restricted, then clearly X is also M
restricted. The following result is a remarkable converse for certain particuarly
nice subgroups M of G.

Proposition 4.3 (i) Let M be a connected reductive subgroup of G of maximal
rank. Then restricted A1’s in M are also restricted in G.

(ii) Let τ be a semisimple automorphism of G. Then restricted A1’s in CG(τ)
are also restricted in G.

Proof (i) Suppose X is a restricted A1 inM . Let u be a non-identity unipotent
element of X. Theorem 1.2 of [14] implies that CG(u) = QCG(A), where Q is
normal and unipotent and A is a restricted A1 in G containing u. As u ∈M we
have Z = Z(M) ≤ CG(u).

We claim that there exists x ∈ Q such that Z ≤ CG(A)
x. Certainly Z0 lies

in a maximal torus of QCG(A), hence Z
0 ≤ CG(A)

y for some y ∈ Q. Write
C = CG(u), so CC(Z

0) = Q0R0 where Q0 = CQ(Z
0) and R0 = CCG(Ay)(Z

0).
Now Z = Z0 × Z1 with Z1 a finite abelian p′-group. Then Z1 ≤ Rz0 for some
z ∈ Q0, and hence Z ≤ CG(A)yz, proving the claim.

Replacing A by Ax (which still contains u), we have CG(u) = QCG(A), u ∈ A
and Z ≤ CG(A). Then u ∈ A ≤ CG(Z)

0, and so by the previous proposition,
u ∈ M . By [14], u lies in a unique CM (u)-class of restricted A1’s in M , and
hence X is CM (u)-conjugate to A. In particular, X is restricted in G, proving
(i).
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(ii) Let X be a restricted A1 in CG(τ) and u ∈ X a non-identity unipotent
element. Let A be a restricted A1 of G containing u. Then A

τ is another such,
and so by [14, 1.1] there exists x ∈ Q = Ru(CG(u)) with A

τx = A. Now, τ
normalizes CG(u) so it follows that τx ∈ Qτ and so the semisimple part of τx is
conjugate to τ by an element of Q. As τx normalizes A, so does its semisimple
part. Hence, we may assume τ normalizes A, while centralizing u. But then
τ induces a unipotent automorphism of A, whereas τ is semisimple. It follows
that τ centralizes A and so X and A are good A1’s of CG(τ) containing u. From
the conjugacy result in [14, 1.1], we conclude that X is restricted in G.

Notice that parts of the above result can be combined. For example, if
G = E8 and D is a group of type F4 or C4 contained in a subsystem subgroup
E6 of G, then it follows that restricted A1’s in D are also restricted in G.

We proceed with the existence part of Theorem 1 by induction. So we assume
that the result holds for A1 subgroups of simple algebraic groups of dimension
smaller than that of G.

Lemma 4.4 Theorem 1 holds if X is contained in a proper connected reductive
subgroup of maximal rank in G, or in a proper parabolic subgroup of G, or in
CG(τ) for τ a nontrivial semisimple automorphism of G.

Proof Suppose X is contained in one of these types of subgroups. As X is
G-cr, we then have X ≤M < G, with M connected reductive of maximal rank
or M = CG(τ). By induction the theorem holds for the projection of X in each
simple factor of M . So for each simple factor there is a commuting product
of A1’s which are restricted for that factor, such that the projection of X is a
diagonal subgroup of this product, with distinct field twists.

Fix a particular field twist and consider the corresponding A1’s associated
to this twist in various simple factors of M . It is obvious from a consideration of
weights that a diagonal A1 (no twists) in the product of these A1’s is restricted
for M , and so Proposition 4.3 shows it is restricted for G as well. Finally,
X is diagonal in a product of these A1’s, with distinct field twists, giving the
conclusion.

Recall the assumption that G is of exceptional type. Since p is a good prime
for G, it is not 2 or 3 and also is not 5 when G = E8.

If G = G2 then using 4.4 we may assume that X is maximal in G, and hence
by [13], we have p ≥ 7 and L(G) ↓ X has highest weight 10. Consequently X is
good in G, giving the existence conclusion of Theorem 1. Thus we assume from
now on that G 6= G2.

At this point we combine Proposition 2.2 with Lemma 4.4 to obtain precise
information about the possible embeddings of X in G.
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Lemma 4.5 Theorem 1 holds unless one of the following occurs:

(i) there is a subgroup Y0 = F4 of G, a maximal connected subgroup Z of Y0
not containing a maximal torus, and a semisimple subgroup Y1 of CG(Y0), such
that X is essentially embedded in ZY1;

(ii) there is a maximal connected subgroup Z of G not containing a maximal
torus, such that X is essentially embedded in Z.

The possibilities for Z in (i) and (ii) are as listed in Table 2 below, and the
possibilities for CG(Y0) in (i) are given in the remark following 2.2.

Table 2

Case in 4.5 possibilities for Z
(i) A1, G2(p = 7), A1G2
(ii), G = E6 A2, G2(p 6= 7), A2G2
(ii), G = E7 A2, A1A1, A1G2, A1F4, G2C3
(ii), G = E8 B2, A1A2, G2F4

Proof This follows from Proposition 2.2 and Lemma 4.4, noting that in Table
2 we have omitted the cases Z = F4, C4 when G = E6, since these are involution
centralizers, and we have also omitted the maximal A1’s in E7, and E8, since
these are restricted in G (see [14]).

Lemma 4.6 Theorem 1 holds in case (ii) of Lemma 4.5.

Proof Assume 4.5(ii) holds, so that X is essentially embedded in a maximal
connected subgroup Z of G as in Table 2. Moreover, Z is a product of at most
two simple factors, and with one possible exception, the essentiality implies that
the projection of X in each factor is either equal to, or maximal in the factor;
the exception is for the factor C3 (of G2C3 in E7), when the projection of X
could be an irreducible but non-maximal A1 in C3 (lying in a subgroup A1A1
of C3 acting on the naural module as 1 ⊗ 2).

We have either X ≤ Ak1 , where k ≤ 2 is the number of simple factors of Z,
or X ≤ A31 with Z = G2C3. There are possibly field twists in some projections.
Let X1 denote a diagonal A1 in this product without any field twists.

The composition factors of L(G) ↓ Z are given in [7, Section 2]. We sum-
marise the information in the following table. In the third column, we give the
highest weight of X1 on L(G). If this highest weight is at most 2p − 2 then
X1 is restricted in G, from which it follows that the conclusion of Theorem 1
holds; the remaining cases are listed in the last column of the table. Note that
the conditions on p given in the first column follow either from the existence of
maximal A1’s in the simple factors of Z, or simply from the fact that p is good.
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Z < G (L(G)/L(Z)) ↓ Z highest wt. open cases
of X1 on L(G)

B2 < E8(p ≥ 5) 06/32 18 p = 7
A1A2(p ≥ 5) < E8 6⊗ 11/4⊗ 30/ 10

4⊗ 03/2⊗ 22
G2F4(p ≥ 13) < E8 10⊗ 0001 22
A2 < E7(p ≥ 5) 44 16 p = 5, 7
A1A1 < E7(p ≥ 5) 2⊗ 8/4⊗ 6/6⊗ 4/ 10 p = 5

2⊗ 4/4⊗ 2
A1G2 < E7(p ≥ 7) 4⊗ 10/2⊗ 20 14 p = 7
A1F4 < E7(p ≥ 13) 2⊗ 0001 18
G2C3 < E7(p ≥ 7) 10⊗ 010 14 p = 7
A2 < E6(p ≥ 5) 41/14 10 p = 5
G2 < E6(p ≥ 11) 11 16
A2G2 < E6(p ≥ 7) 11⊗ 10 10

First assume G = E8. The only open case is Z ∼= B2 with p = 7. Here X
is a maximal A1 of B2 and it follows from [13, p.193] that the labelled diagram
of a maximal torus of X is 00020020. This yields all weights on L(G), and we
calculate that the composition factors of X on L(G) are as follows:

L(G) ↓ X = 182|16|143|126|104|85|65|44|26|03.

It is proved in [10] that a subgroup X ∼= A1 with these composition factors
on L(G) is G-conjugate to an A1 which lies in a maximal rank subgroup A8 of
G, acting indecomposably on the usual 9-dimensional module with composition
factors 4|1 ⊗ 1(7). But then X is contained in a proper parabolic subgroup of
A8 and hence one of G. So the result follows from 4.4. (Actually this A1 fails
to be G-cr.)

Assume next that G = E7, and consider first the case where Z = A2 with
p = 5 or 7. For p = 7, restricting VA2(44) to X, we find that

L(E7) ↓ X = 16|14|12
3| . . . |03.

By [1], of the composition factors appearing, only 12 = 5 ⊗ 1(7) extends the
trivial module, and ExtX(12, 0) has dimension 1. Since L(E7) is self-dual, it
follows that X fixes a nonzero vector v ∈ L(E7). By [13, 1.3], the stabilizer of
v in E7 lies in a proper subgroup of E7 which is either parabolic or reductive of
maximal rank. In either case the result follows from Lemma 4.3. When p = 5,
a similar argument applies: here we find

L(E7) ↓ X = 16|14|12
3|102|85| . . . |04,

and the only composition factor present which extends the trivial module is
8 = 3⊗1(5). From the extension theory of SL2 we can write L(E7) ↓ X = A⊕B,
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where A contains all the composition factors of high weight
∑
cip

i for which
c0 = 0 or p− 2. Here A has composition factors 102|85|04. It then follows from
the proof of [10, 3.6(i)] that X fixes a nonzero vector in A. The conclusion
follows as before.

The remaining cases for G = E7 each have Z the product of two simple
factors. From the information in the table it is clear that Theorem 1 holds
except for the case where X is diagonal in Z with no field twist in either factor.
Consequently we now assume that X = X1 .

First consider Z = A1A1 with p = 5. Let T be a maximal torus of X1.
From L(E7) ↓ Z we calculate that the non-negative weights of T on L(E7) are
103, 86, 65, 44, 211, 03. We check also that these weights agree with those of a
1-dimensional torus lying in a maximal rank subgroup A2A5 of E7, projecting
to a torus of a regular A1 in each factor. Therefore T < A2A5. Now let V56 be
the 56-dimensional irreducible E7-module V (λ7). By [7, 2.3] we have

V56 ↓ A2A5 = λ1 ⊗ λ1/λ2 ⊗ λ5/0⊗ λ3.

Hence the non-negative weights of T on V56 are 9, 7
3, 56, 39, 19, and so the com-

position factors of L(E7) ↓ X are 9|72|53|36|12. Of these composition factors,
only 7 = 2⊗1(5) extends 1. Since L(E7) is self-dual, we conclude that L(E7) ↓ X
has a submodule W ∼= 1 (of dimension 2). The variety of all 2-spaces in V56 has
dimension 108, and hence NE7(W ) is a closed subgroup of E7 containing X1
and of dimension at least dimE7 − 108 = 25. Let M be a maximal connected
subgroup of E7 containing NE7(W )

0. If M is parabolic or reductive of maximal
rank, we are done by Lemma 4.3. Otherwise, by [13], M = A1F4 or G2C3.
Neither of these fixes a 2-space in V56 (see [7, 2.5]), so NE7(W )

0 is proper in M .

If X is contained in a proper parabolic of M then it is also contained in one
for G and 4.4 yields the result. If X is contained in a subgroup ofM of maximal
rank, then X < CM (s) < M for some semisimple element ofM . But then CG(s)
has maximal rank in G and contains X, and again 4.4 gives the result. Now the
dimension restriction and and [13] imply that the only remaining possibility is
that M = A1F4 and X < F4. But this is clearly impossible, since X has no
fixed points on L(E7), whereas CM (F4) = A1.

Similar considerations apply to the cases Z = A1G2 or G2C3 with p = 7.
By [7, 2.5],

V56 ↓ A1G2 = 1⊗ 01/3⊗ 10, V56 ↓ G2C3 = 10⊗ 100/00⊗ 001.

Hence, if T denotes a maximal torus of X, we calculate that the non-negative
weights of T on V56 are 11, 9

3, 74, 55, 37, 18 in both cases. It follows that the
composition factors of X are

L(E7) ↓ X = 11|9
2|7|52|34|12.

By [1], only 11 = 4⊗ 1(7) extends the module 1, and hence X fixes a 2-space W
in V56. Now we complete the argument as above.
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Finally let G = E6 with Z = A2 and p = 5. We consider the 27-dimensional
E6-module V27 = VE6(λ1). Let T be a maximal torus in X. By [13, p.65],
T < A1A5 < E6, and by [7, 2.3], V27 ↓ A1A5 = 1⊗λ5/0⊗λ4. Hence we calculate
the T -weights on V27, from which it follows that V27 ↓ X = 8|6|42|2|02. Only the
composition factor 8 = 3⊗1(5) extends the trivial module, so we deduce that X
fixes a 1-space 〈v〉 of V27. So X < M = NG(〈v〉), which has dimension at least
dimE6 − 26 = 52. By 4.4 we may assume X lies in no parabolic or maximal
rank subgroup of E6, so we must have M = F4 by [13]. Now V27 ↓ F4 = V26⊕0,
where V26 is the irreducible F4-module VF4(λ4). As V26 ↓ X = 8|6|4

2|2|0, X
must also fix a 1-space 〈w〉 of V26. It now follows using [13] that X lies in a
parabolic or maximal rank subgroup of F4, and again 4.4 yields the result.

Lemma 4.7 The conclusion of Theorem 1 holds in case (i) of Lemma 4.5.

Proof Here X ≤ F4C, where C = CG(F4) = G2, A1, 1 or 1, according as
G = E8, E7, E6 or F4, respectively. Moreover, by [7, 2.4], (L(G)/L(F4C)) ↓
F4C = 0001⊗ 10, 0001⊗ 2 or 0001, according as G = E8, E7 or E6. Write V26
for the 26-dimensional F4-module VF4(0001).

Denote by X1 the projection of X in F4, and by X2 an A1 lying in F4C
which projects to a maximal A1 in each factor with no twists involved in any
projection.

We record the possibilities for Z, L(F4) ↓ Z and V26 ↓ Z, given by [13, p.193]
and [7, 2.5]:

Z (L(F4)/L(Z)) ↓ Z V26 ↓ Z highest wt. of X2
on L(F4), V26

A1 22/14/10 16/8/0 22, 16
G2(p = 7) 11 20 16, 12
A1G2(p ≥ 7) 4⊗ 10 2⊗ 10/4⊗ 00 10, 8

It follows from this that the conclusion holds, unless either Z = G2, p = 7 or
Z = A1G2, p = 7, G = E8 and X projects to a maximal A1 in C = G2.

Suppose Z = G2. By [13, p.193], the labelling of a maximal torus T of X1 in
F4 is 2022. Now consider an A1 lying in a maximal rank subgroup A1C3 of F4
via the embedding 1(7), 5 (i.e. the projection to the factor C3 is the irreducible
representation of high weight 5, and the projection to the factor A1 is a twist
of the representation 1). We calculate the weights of a maximal torus T1 of
this A1 using the restriction L(F4) ↓ A1C3 = L(A1C3)/1 ⊗ 001, and conclude
from these weights that the labelled diagram of T1 is also 2022. Hence by [7,
Theorem 6], X1 is F4-conjugate to this A1 in A1C3. It follows that X centralizes
an involution in F4 and hence an involution in G, so the result follows from 4.4.

A similar argument settles the case Z = A1G2, p = 7. This time we calculate
the weights of T on L(F4), and find that they agree with the weights of a
maximal torus of an A1 lying in a maximal rank subgroup A1C3, embedded via
the untwisted representations 1, 5. Hence, again by [7, Theorem 6], we conclude
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that X1 < A1C3 and hence X centralizes an involution and again 4.4 yields the
assertion.

This completes the existence proof of Theorem 1 for X = A1.

4.2 The case where rank(X) ≥ 2

We continue with the proof of Theorem 1, where it remains to treat the case of
a simple group X with rank(X) ≥ 2. The information provided in [7] make this
a much easier task than for groups of type A1. Indeed, except for a couple of
situations in small characteristic, the possibilities for X are described explicitly
in [7].

Recall that G is an exceptional group and we are trying to prove the existence
of a commuting product E1 . . . Er of restricted subgroups Ei of the same type as
X, such that X ≤ E1 . . . Er and the projections X → Ei/Z(Ei) are nontrivial
and involve distinct field twists.

The embedding of X in G is given by Proposition 2.2(i,ii). First consider
case 2.2(ii): here p = 7, X = G2, and either X < F4 < E6 ≤ G, or X < G2F4 <
E8 = G, with X projecting to a maximal subgroup of the F4 factor. Let λ1, λ6
denote the fundamental dominant weights of E6 corresponding to the restricted
27-dimensional modules. From [13] we have

L(E6) ↓ G2 = 01/11/20, VE6(λ1) ↓ G2 = 20/00, and

L(E8) ↓ G2G2 = L(G2G2)/00⊗ 11/10⊗ 20,

where in the last case the G2G2 lies in G2F4, the second factor G2 being maximal
in F4. We note that L(E8) ↓ E6 = L(E6) ⊕ VE6(0)

8 ⊕ VE6(λ1)
3 ⊕ VE6(λ6)

3.
It follows that in the case where X < E6, X is restricted; and in the case
X < G2F4, if neither projection involves a twist then X is restricted, and
otherwise X lies in the product of two restricted G2’s with distinct twists in the
projections. Hence the result holds in case 2.2(ii).

Now consider case 2.2(i). Here there is a subsystem subgroup Y of G such
that X is essentially embedded in Y . When p > N(X,G) (as defined in [7,
p.2]), the possibilities for Y and L(G) ↓ X are given in [7, Tables 8.1-8.4].
And in the extra cases where p is good but p ≤ N(X,G) - namely, the cases
(X,G, p) = (A2, E7, 5), (G2, E7, 5), (G2, E8, 5 or 7) - the possibilities for Y and
L(G) ↓ Y can be calculated exactly as in [7, p.62,64] (using 2.1 for the case
where X is maximal in G. The outcome is that the possibilities in these cases
are exactly as in Tables 8.1 and 8.2.

We first settle the case where the subsystem subgroup Y has a simple factor
Y1 of exceptional type. By 2.1 there are very few possibilities; they are as
follows:

(Y1;X) = (E8;B2); (E7;A2); (E6;A2, G2, F4 or C4); (F4;G2) (p = 7).
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First suppose X < Y1. Then X is a maximal subgroup of Y1 and it is clear from
2.4 of [7] (together with the remark after 2.1) that L(G) ↓ X has all composition
factors restricted. Hence X is a restricted subgroup of G and there is nothing
to prove. Now suppose X 6≤ Y1. Then Y has at least two simple factors, and
as rank(X) ≥ 2, the only possibility is that Y = E6A2, G = E8, and X = A2.
Here X < A2A2, where the first A2 is a maximal subgroup of E6 and the other
is a subsystem group. If the embedding does not involve a field twist in either
factor, then we see from the A2E6 row of [7, p.100] that all composition factors
of X on L(G) are restricted. If a field twist is present, then we need only show
that each of the A2 factors is restricted and this information is also immediate
from [7, Table 8.1].

From now on assume that Y = Y1 . . . Yk with each Yi a simple group of
classical type. Let Xi be the projection of X in Yi. Recall that X is essentially
embedded in Y and hence for each i, either Xi is irreducible on the natural
module for Yi or else Yi = Dk for some k and the natural orthogonal module
restricts to Xi as the direct sum of two irreducible nondegenerate subspaces.

We now inspect Tables 8.1 - 8.4 of [7], which give the possibilities for the
composition factors of L(G) ↓ X. If none of these composition factors involves
a q-field twist then we see from the tables that they are all restricted, so X is a
restricted subgroup and there is nothing to prove.

So suppose there is a composition factor present which involves a q-twist.
This can happen for a number of reasons.

First, there could be a projectionX → Yi which corresponds to an irreducible
twisted tensor product representation for X on the natural Yi-module. Since X
has rank at least 2, this can only happen when X = A2 < A2A2 < A8 = Y or
X = C2 < C2C2 < D8 = Y , with G = E8 in both cases. In either case we see
from the tables that the two A2 or C2 factors are both restricted, and the result
follows.

Second, there could be a projection X → Yi which corresponds to a reducible
representation of X on the natural Yi-module, with different twists for each
summand. This occurs only if Yi is of type Dn; for example, X = B2 → D5 = Yi
via the embedding 10⊕ 10(q), or X = G2 → D7 = Yi via 10⊕ 10(q). In all such
cases, inspection of the tables shows that we can choose a suitable product of
restricted copies of X in Yi and the other factors of Y to give the conclusion.

Finally, there could simply be distinct twists for the projections X → Yi;
such a situation is indicated by the notation Y1Y

q
2 . . . in the tables. Let Z1, Z2, . . .

be products of the Yi’s corresponding to the same twist. Once again, inspection
of the tables shows that we can find restricted copies of X in each Zi so that
X is contained in the product of these, with different twists in each projection.
This completes the proof.

The proof of Theorem 1 is now complete.
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5 Proof of the Restricted Morphism Theorem

In this section we prove the Restricted Morphism theorem, using Theorem 1. Let
X be a simple simply connected group and let φ : X → G be a morphism with
image group G-cr, where G is a simple algebraic group in good characteristic p.
We begin with two lemmas.

The first lemma shows that in part (ii) of the definition of a restricted mor-
phism (see Section 1), in the cases where G is classical and has more than one
natural module it does not matter which natural module is chosen.

Lemma 5.1 Let X be simple and simply connected of rank at least 2, and
let G = An, B2, A3 or D4 (with p a good prime for G). If φ : X → G is
a representation which is restricted on some natural module for G, then φ is
restricted on all natural modules for G.

Proof The result is trivial if X and G are of the same type, so assume this
is not the case. If G = An, the result is immediate using duals. For G = B2
there are no possibilities with X proper. For A3 the 6-dimensional module is the
wedge square of the 4-dimensional natural module. The only possiblities with X
proper are X = A2 or B2, and considering possible actions on the 4-dimensional
module immediately yields the assertion.

Now let G = D4. We may as well take φ to be restricted on the natural
8-dimensional module V = VG(λ1). The possibilities for X and the high weights
of the composition factors of V ↓ φ(X) are as follows:

X = A2, V ↓ φ(X) = 11 or 10/01/002,

X = A3, V ↓ φ(X) = 100/001 or 010/002,

X = B2, V ↓ φ(X) = 012 or 10/003,

X = B3, V ↓ φ(X) = 100/000 or 001.

X = G2, V ↓ φ(X) = 10/00.

In the irreducible A2 case the image centralizes a triality morphism of G which
permutes the 3 modules in question. Excluding this case, we see that in each
case ∧2V is also restricted for X. But this wedge is the same for any of the 3
modules, so they must also be restricted.

The second lemma shows that centralizer condition in the Restricted Mor-
phism Theorem is independent of the isogeny type of G. The proof is very
similar to an argument in the proof of 3.1, but we give details for completeness.
Let Ĝ be the simply connected group of the same type as G, and let π : Ĝ→ G
be the canonical surjection. As X is simply connected we can find φ̂ : X → Ĝ
such that φ = π ◦ φ̂.

Lemma 5.2 With notation as above, CG(φ(X))
0 = CG(dφ(L(X)))

0 if and only

if CĜ(φ̂(X))
0 = CĜ(dφ̂(L(X)))

0.
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Proof Let C = CG(φ(X))
0 and Ĉ = CĜ(φ̂(X))

0. Similarly we set D =

CG(dφ(L(X)))
0 and D̂ = CĜ(dφ̂(L(X)))

0.

Now X is generated by unipotent elements and, as X is simply connected,
L(X) is generated by nilpotent elements. Similarly for the images of X under

φ and φ̂ and for the images of L(X) under dφ and dφ̂.

For u ∈ Ĝ a unipotent element and n ∈ L(Ĝ) a nilpotent element it follows
from the Jordan decomposition that CĜ(uZ) = CĜ(u) and CĜ(n+S) = CĜ(n),

where Z = ker(π) and S = ker(dπ). It follows that π−1(C) = Ĉ ∙ Z and
π−1(D) = D̂ ∙ Z, so the result follows by taking connected components.

We can now prove the Restricted Morphism Theorem. Let φ : X → G be as
above, with φ(X) a G-cr subgroup of G.

Suppose first that CG(φ(X))
0 = CG(dφ(L(X)))

0. By Theorem 1, φ factors
as

X
ψ
→ X × ∙ ∙ ∙ ×X

μ
→ G,

where ψ(x) = (x(q1), ..., x(qk)), q1 < . . . < qk, and μ is restricted with finite ker-
nel. Let E1 . . . Ek be the image of μ. If q1 > 1 then dφ(L(X)) = 0, contradicting
the supposition that CG(φ(X))

0 = CG(dφ(L(X)))
0. Hence q1 = 1. If k > 1

then dφ(L(X)) ≤ L(E1), so dφ(L(X)) is centralized by Ei for i > 1. However
φ(X) does not centralize any Ei. Hence k = 1, and so φ = μ is restricted, as
required.

Conversely, suppose that φ : X → G is restricted. We need to show that
CG(φ(X))

0 = CG(dφ(L(X)))
0. Set E = φ(X), a restricted subgroup of G.

First assume G is of exceptional type. Then as p is good for G the only
proper ideals of L(X) consist of semisimple elements (this could fail if X had
type Bn, Cn, F4, G2 with p = 2, 2, 2, 3 resp.). Hence dφ(L(X)) = L(E)

+ and we
must show that CG(E)

0 = CG(L(E)
+)0. But this is immediate from Proposition

2.3(iii).

Now assume G is of classical type. By Lemma 5.2 we may assume that
G = SL(V ), Sp(V ) or SO(V ), a classical group with natural module V . It will
suffice to establish the result for G = SL(V ). The fact that φ is restricted
simply means that φ(X) has restricted composition factors on V . Since φ(X)
is G-cr and p is good, V is completely reducible and restricted for X. It follows
that X and L(X) have precisely the same irreducible subspaces on V under the
representations φ and and dφ respectively. Now 2.3 of [8] shows that φ(X) and
dφ(L(X)) have the same centralizer in GL(V ).

This completes the proof of the Restricted Morphism Theorem.
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6 Proof of Theorem 2

Assume the hypotheses of Theorem 2 where we aim for a tensor product theorem
covering finite groups, Y (q), of Lie type. The main difficulty is for exceptional
groups G, where the argument is based on results in [9] showing that for q
suitably large there is a connected subgroup Y of G such that Y and Y (q)
stabilize precisely the same subspaces of L(G).

Throughout this section assume that G is a simple algebraic group in good
characteristic and that Y (q) is a finite group of Lie type over Fq, with Y (q) = Yσ,
where Y is a simple, simply connnected algebraic group and σ is a Frobenius
morphism. Also we fix φ : Y (q) → G a nontrivial homomorphism with image
group G-cr.

We first establish the result for classical groups where it follows readily from
the Steinberg tensor product theorem. Suppose that G = SL(V ), Sp(V ) or
SO(V ) is classical, with natural module V . The G-cr subgroup φ(Y (q)) acts
completely reducibly on V . Steinberg’s theorem implies that each irreducible
summand of V ↓ Y (q) extends to an irreducible q-restricted representation Y →
SL(V ) ((q, s)-restricted if Y (q) = 2B2(q),

2G2(q),
2 F4(q)). This establishes the

existence of the required factorization Y (q) ↪→ Y
ψ
→ G of φ, in the case where

G = SL(V ). Also, ψ(Y ) is completely reducible on V and stabilizes precisely
the same subspaces as φ(Y (q)). It follows that the images of Y (q) and Y have
the same centralizer in SL(V ).

If μ : Y → SL(V ) is another such q-restricted morphism ((q, s)-restricted if
Y (q) = 2B2(q),

2G2(q),
2 F4(q)) factorizing φ, then ψ and μ are representations

of Y with the same restriction to Y (q) and so it follows that there exists g ∈
SL(V ) such that for y ∈ Y , we have μ(y) = ψ(y)g. Then g centralizes the image
of Y (q) and hence centralizes ψ(Y ), as well. Therefore, ψ = μ and uniqueness
is established for G = SL(V ).

If G is symplectic or orthogonal, then p 6= 2 and G = SL(V )τ for an appro-
priate involutory automorphism τ of SL(V ). With ψ as above, the morphism
ψ ◦ τ is another q-restricted representation such that ψ and ψ ◦ τ agree on Y (q).
It follows from the above that these two morphisms are equal. Then ψ(Y ) ≤ G
giving existence. Uniqueness is a consequence of unicity for G = SL(V ).

Now suppose G is exceptional. The cases Y (q) = 2B2(q),
2G2(q),

2F4(q) do
not occur here as p is good. Define Y0 = φ(Y (q)). By [9, Corollary 5], there is a
proper connected subgroup Ỹ of G containing Y0 and fixing the same subspaces
of L(G) as Y0. Choose Ỹ minimal subject to these conditions. The proof of [9,
9.4] shows that Ỹ is reductive, and now the proof of [9, 9.5] and the ensuing
argument shows that Ỹ is simple and of the same type as Y .

We claim Ỹ is G-cr. Suppose Ỹ < P = QR, a parabolic with unipotent
radical Q and Levi subgroup R. As Y0 is G-cr, we may assume that Y0 < R.
Then Y0 fixes L(R), hence so does Ỹ . However, NP (L(R))

0 = R, as shown in
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the proof of [9, 9.4], so this means that Ỹ ≤ R, showing that Ỹ is G-cr.

From Corollary 1, we have Ỹ ≤ E1 . . . Ek, a commuting product of connected
simple restricted subgroups Ei of the same type, with distinct qi-field twists in
the projections. Consequently, we can find a morphism μ : Y → G with image
Ỹ and which factors as in Theorem 1 with p-powers, q1, ..., qk.

At this point μ restricts to Y (q) as φ, but it is possible that μ is not q-
restricted. For each i, let ri denote the reduction of qi modulo q. Using the
factorization of μ we can obtain a morphism ψ : Y → E1 . . . Ek, where the field
twists are r1, ..., rk and the restriction to Y (q) is still φ.

Suppose ri = rj for i 6= j. Then Y0 fixes the Lie algebra of a diagonal

subgroup of EiEj which is not fixed by Ỹ , a contradiction. Hence the ri are
distinct.

Next we show that Ȳ = ψ(Y ) is G-cr. Suppose Ȳ < P = QR, a parabolic
with unipotent radical Q and Levi subgroup R. As Y0 is G-cr we can take
Y0 < R. Now Y0 fixes L(Q) and L(R), hence so does Ỹ . Therefore Ỹ ≤
NG(L(Q)) = P , and hence Ỹ ≤ NP (L(R))

0 = R. Let Z = Z(R). Then Z
centralizes Ỹ . By Lemma 9.3(ii) below, CG(Ỹ ) = CG(E1 . . . Er), and hence
E1 . . . Er ≤ CG(Z) = R. As E1 . . . Er contains Ȳ , it follows that Ȳ ≤ R.
Consequently Ȳ is G-cr.

We have now established that ψ satisfies the conclusion of Theorem 2.

It remains to prove the uniqueness of ψ. Suppose ψ′ : Y → G is another
such morphism. Then ψ′ determines a commuting product F1 . . . Fl of restricted
simple subgroups Fi with distinct si-twists in the projections of Y0, where si < q.
Also, Y0 fixes each L(Fi), hence so does Ỹ .

Observe next that the hypothesis of Proposition 2.3(iii) holds for each Fi:
this is clear if l > 1, and is also true if l = 1, since then F1 = ψ′(Y ) is G-
cr. Then by 2.3(iii), we have CG(L(Fi))

0 = CG(Fi)
0, and hence NG(L(Fi))

0 =
FiCG(Fi)

0. It follows that Ỹ normalizes F1 . . . Fl, hence lies in F1 . . . FlD, where
D = CG(F1 . . . Fl)

0. Since Y0 < F1 . . . Fl, the projection from Ỹ to D has kernel
containing Y0, and hence also Ỹ ≤ F1 . . . Fl.

The projections of Ỹ to the simple factors Fi involve distinct field twists, as
this is already the case for Y0. It now follows from the uniqueness assertion in
Theorem 1, that k = l and E1 . . . Ek = F1 . . . Fl.

The maps ψ,ψ′ factor in accordance with Theorem 1. We then have an
equality

∏
ψi(x

(ri)) =
∏
ψ′i(x

(si)) for all x ∈ Y (q). As in the uniqueness argu-
ment of Section 3 this implies

(∗) ψi(x
(ri)) = ψ′i(x

(si))

for each i and all x ∈ Y (q). Fix i. There is an automorphism α of Y such that
ψi = ψ′i ◦ α. Taking ri ≤ si and writing ti = si/ri, we then have ψ

′
i(α(x)) =

ψi(x) = ψ′i(x
(ti)) for all x ∈ Y (q), and hence α(x) = x(ti) for all x ∈ Y (q). It

follows that α(y) = y(tiq
r) for some r ≥ 0 and all y ∈ Y . However, we know that

ψi = ψ
′
i ◦α and ψi, ψ

′
i are restricted morphisms. Hence it must be the case that
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r = 0 and ti = 1. On other words, ψi = ψ′i. This establishes the uniqueness of
ψ.

7 Tilting decompositions

In this section we establish Theorem 3. Let G be as in the hypothesis of Theorem
3, and let X be a connected, simple subgroup of G of type A1 which is G-cr.
Our goal is to show that the L(G) ↓ X is a direct sum of modules, each of which
is a twisted tensor product of tilting modules for X where the tensor factors
have (untwisted) high weights at most 2p− 2.

From Theorem 1 we have X ≤ R1 ∙ ∙ ∙Rk, with each Ri a restricted A1
(i.e. a good A1), and X is embedded with distinct field twists in each factor.
Consequently, it will suffice to show that L(G) ↓ (R1 ∙ ∙ ∙Rk) is a direct sum
with each summand being a tensor product of indecomposable tilting modules
for the factors Ri with appropriate high weights.

We know from [14, Theorem1(iii)] that L(G) ↓ Ri is a tilting module for each
i. However, unlike the situation for completely reducible modules, this does not
in general imply a tilting decomposition for R1 ∙ ∙ ∙Rk. For classical groups it is
easy to get the result, but for exceptional groups we will have to work harder.

Note that by the above, we can assume that k ≥ 2. The first lemma relates
Weyl modules and tilting modules for R1 ∙ ∙ ∙Rk to those of the individual Ri. If
λ is a dominant weight for a semisimple group E, let WE(λ), TE(λ) denote the
corresponding Weyl module and indecomposable tilting module.

Lemma 7.1 Let λ = λ1 + ...+ λk be a dominant weight of R1 ∙ ∙ ∙Rk, where λi
is a dominant weight for Ri. Then

(i) WR1∙∙∙Rk(λ) =WR1(λ1)⊗ ...⊗WRk(λk).

(ii) TR1∙∙∙Rk(λ) = TR1(λ1)⊗ ...⊗ TRk(λk)

Proof (i) Let V = WR1(λ1)⊗ ...⊗WRk(λk). Then V has the same character
as WR1∙∙∙Rk(λ). Fix i and consider V ↓ Ri. This restriction is the direct sum
of copies of WRi(λi) and hence all semisimple quotients are homogeneous of
type VRi(λi). Now letting i vary we see that any simple quotient of V has high
weight λ. As λ has multiplicity 1 we conclude that V is indecomposable. The
universal property of Weyl modules [3, p.209] implies that V is the image of
WR1∙∙∙Rk(λ), and these modules have the same dimension. Part (i) follows.

(ii). As each TRi(λ) has a filtration by Weyl modules, (i) implies that the
same holds for S = TR1(λ1) ⊗ ... ⊗ TRk(λk). Similarly, we see that S has a
filtration by dual Weyl modules. It follows that TR1(λ1)⊗...⊗TRk(λk) is a tilting
module with high weight λ. Consequently we can write TR1(λ1)⊗...⊗TRk(λk) =
TR1∙∙∙Rk(λ)⊕ TR1∙∙∙Rk(δ)⊕ TR1∙∙∙Rk(μ)⊕ ..., where λ > δ ≥ μ....

Suppose TR1∙∙∙Rk(δ) 6= 0. Inductively, (ii) holds for δ so that TR1∙∙∙Rk(δ) =
TR1(δ1)⊗ ...⊗TRk(δk). Fix i. Then S ↓ Ri is the direct sum of copies of TRi(λi)
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and hence is a tilting module. Direct summands of tilting modules are again
tilting modules, so that TR1∙∙∙Rk(δ) ↓ Ri is a tilting module and is thus the direct
sum of copies of TRi(λi). But from (ii) for δ we obtain δi = λi. Letting i vary
this gives δ = λ, a contradiction. The result follows.

The next lemma is presented in a more general form than is required for this
section.

Lemma 7.2 Let X be a connected simple subgroup of G which is G-cr and
R1 ∙ ∙ ∙Rk the commuting product given by Theorem 1. Then R1 ∙ ∙ ∙Rk is G-cr.

Proof Suppose that R1 ∙ ∙ ∙Rk < P , with P a parabolic subgroup of G. Then
X < P . As X is G-cr there is a Levi subgroup L of P containing X. Let Z be
the connected center of L, a nontrivial torus.

The uniqueness assertion in Theorem 1 (or Corollary 1) implies that Z
normalizes R1 ∙ ∙ ∙Rk and connectedness of Z implies that Z < NG(Ri) for
each i. As Z ≤ CG(X) and X projects onto each Ri, we conclude that
R1 ∙ ∙ ∙Rk ≤ CG(Z) = L, proving the lemma.

Lemma 7.3 Theorem 3 holds if G is a classical group.

Proof Suppose G is classical, with natural module V . Lemma 7.2 and our
assumption that p is a good prime imply that V ↓ (R1 ∙ ∙ ∙Rk) is completely
reducible, with each composition factor a tensor product of restricted modules
for the various factors Ri. Thus V ↓ (R1 ∙ ∙ ∙Rk) is a tilting module. Now tensor
products of tilting modules and direct summands of tilting modules are again
tilting modules. Since L(G) is a direct summand of V ⊗V ∗, we have the result.

For the remainder of the proof of Theorem 3 assume G is of exceptional
type. As p is a good prime for G this implies p > 3.

Lemma 7.4 Theorem 3 holds if L(G) ↓ R1 ∙ ∙ ∙Rk =
⊕

j Vj where for each j,
at most one Ri fails to be completely reducible on Vj. In particular the result
holds if L(G) ↓ R1 ∙ ∙ ∙Rk is completely reducible.

Proof Assume L(G) ↓ R1 ∙ ∙ ∙Rk is completely reducible. Since we know that
each Ri is a good A1, this implies that each Vj is restricted and then the result
is immediate. So now assume that for some fixed j one Ri, say Rk, is not
completely reducible on Vj .

Consider the action of R1 ∙ ∙ ∙Rk on Vj . Each of R1, ..., Rk−1 is completely
reducible on Vj . It follows (see [8, 2.3] and argue by induction) that A =
R1 . . . Rk−1 acts completely reducibly on Vj , and by retricting to a homogeneous
component we may assume that Vj is homogeneous in this action. Let C =
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CGL(Vj)(A). Another application of [8, 2.3] shows that we can write Vj =
Y ⊗W for some spaces Y,W , so that A induces a subgroup of GL(Y )⊗ 1 and
C = 1 ⊗ GL(W ); in particular, Vj ↓ C is homogeneous of type W . On the
other hand, Rk ≤ C and Vj ↓ Rk is known to be a tilting module. As direct
summands of tilting modules are tilting, W ↓ Rk is tilting, hence is a direct sum
of indecomposable tilting modules. Moreover, A is completely reducible on Y ,
with each irreducible restricted and hence tilting. It follows that Vj ↓ R1 ∙ ∙ ∙Rk
is a direct sum of submodules, each of which is a tensor product of restricted
irreducibles for R1, . . . , Rk−1, and an indecomposable tilting module for Rk of
high weight at most 2p− 2. The result follows.

In the ensuing argument we shall make use of Proposition 2.2, which shows
that either R1 ∙ ∙ ∙Rk is essentially embedded in a subsystem subgroup of G, or
the situation of 2.2(iii) holds. With this in mind, we first establish the following.

Lemma 7.5 Let Y be a semisimple subsystem subgroup of G of maximal rank.

(i) If Y has no factor Ap−1 then L(G) ↓ Y is completely reducible.

(ii) If Y has a factor S = Ap−1, then L(G) ↓ Y = A⊕B, with B completely
reducible. In addition, S is the only factor of Y acting nontrivially on A and
S = SLp acts on A as on glp.

Proof Write Y = Y1 ∙ ∙ ∙Yr, a commuting product of simple subsystem groups
Yi. It is well-known and easy to prove (for example use [8, 2.3] and induction)
that L(G) ↓ Y is completely reducible if and only if L(G) ↓ Yi is completely
reducible for each i. So we may assume that Y is simple. Now the high weights,
λ, of composition factors for Y on L(G) are given by [7, Tables 8.1-8.5]: we list
below the possible high weights other than that of the adjoint module of Y :

(a) Y = An : λ = λj or λn−j (j = 1, 2, 3, 4), 2λ1, 2λn, 3λ1

(Note: 2λ1, 2λn occur only for G = F4 with n ≤ 2, and 3λ1 only for G = G2
with n = 1.)

(b) Y = Dn : λ = λ1, λn−1, λn.

(c) Y = E6 (resp.E7): λ1 or λ6 (resp. λ7).

(d) Y = Bn, Cn (G = F4, n ≤ 4, n ≤ 3, resp.): λ1, λn.

For each of these high weights we claim that the corresponding Weyl module
WY (λ) is irreducible. This follows from [7, 1.11] except when (Y, λ) = (An, λ4)
or (C3, λ3); in the first case WY (λ4) is the fourth wedge of the natural An-
module, which is irreducible, and in the second the claim follows from [2]. More-
over, it is well known - see for example [9, 1.10] that the adjoint module L(Y )
is irreducible except for the special cases of the lemma, where (Y, p) = (A4, 5)
or (A6, 7). This establishes (i).

Now assume Y has a factor S = Ap−1. If G = E8, only the case p = 7 occurs
since we are assuming p to be a good prime. A consideration of subsystems
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implies that Y ≤ S ∙ T1 ∙R, where R is semisimple. There is a subsystem group
of type Dp containing S ∙ T1 as a Levi factor. Then L(S ∙ T1) ∼= glp as an S-
module. This yields the space A, which is nondegenerate. Taking perpendicular
spaces we proceed as above to get (ii).

Lemma 7.6 Theorem 3 holds if R1 ∙ ∙ ∙Rk is essentially embedded in a subsys-
tem subgroup Y of G such that each simple factor of Y is of classical type.

Proof We first argue that it suffices to consider the case where Y is simple.
The previous lemma shows that either Y is completely reducible on L(G) or this
is true with the exception of just one summand where a single Ap−1 factor acts
nontrivially. In reducing to the case Y simple we consider one summand at a
time. So we may ignore the exceptional cases for now. Consider an irreducible
summand, which is the tensor product of irreducible representations for the
various simple factors of Y . This yields a corresponding tensor product for the
action of R1 ∙ ∙ ∙Rk. The tensor product of tilting modules is again a tilting
module, so we may replace R1 ∙ ∙ ∙Rk by its projection in a simple factor of Y .
In this way, we reduce to the case Y simple.

Consider first the case where Y = An. Here the embedding of R1 ∙ ∙ ∙Rk in
Y corresponds to an irreducible representation. Moreover, each Ri is a good
A1 of G and hence of Y . Hence, the natural module, say V , for Y (or an
appropriate cover) affords an irreducible restricted module for the corresponding
cover of R1 ∙ ∙ ∙Rk. Thus V affords a tilting module for R1 ∙ ∙ ∙Rk. Lemma 7.5
shows that Y is completely reducible on L(G), except for the cases Y = A4, A6,
with p = 5, 7, respectively. In the exceptional cases the action is completely
reducible except for a summand of type glp ∼= V ⊗ V ∗. As tensor products of
tilting modules are again tilting, this case causes no difficulty. The other direct
summands of L(G) ↓ Y have high weights of irreducibles listed under case (a)
in the proof of 7.5. As p is a good prime, each of these summands is a direct
summand of an appropriate tensor power of the natural module. The family
of tilting modules is closed under tensor products and direct summands, so the
assertion follows in this case.

Next assume Y = Dn. Here R1 ∙ ∙ ∙Rk ≤ Y essential means that under
the action of R1 ∙ ∙ ∙Rk, the natural orthogonal Dn-module is either irreducible
or decomposes as an orthogonal sum of two irreducibles of odd degree. Since
each irreducible summand of Dn is completely reducible under the action of
Bk × Bn−k−1 another reduction allows us to assume that R1 ∙ ∙ ∙Rk < Y0 = Br
or Dr, where r ≤ 7 or 8, respectively, and the embedding corresponds to an
irreducible restricted representation. From the information in (b) of the proof
of 7.5 we see that L(G) ↓ Y0 is a direct sum of an adjoint module, natural
modules, and spin modules. The only issue is the action of R1 ∙ ∙ ∙Rk on the
corresponding spin modules.

Recall the assumption that k ≥ 2. The possibilities for the embedding
R1 ∙ ∙ ∙Rk < Y0 and the corresponding composition factors of the spin modules
for Y0 restricted to R1 ∙ ∙ ∙Rk can be read off from the table on p.29 of [7]. If
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each composition factor for each Ri is restricted, then R1 ∙ ∙ ∙Rk acts completely
reducibly on the spin module and there is nothing to prove. In the remaining
cases we have k = 2. We list the cases, indicating the possible pairs (i⊗ j, Y0),
where i ⊗ j is the irreducible tensor product representation of R1R2 on the
natural Y0-module:

(5⊗ 1, D6), (4⊗ 2, B7), (7⊗ 1, D8), (3⊗ 3, D8).

In all but the last case it follows from p.29 of [7] and our assumption that p is
a good prime for G, that R2 is completely reducible on the spin modules. Since
we also know that R1 has a tilting decomposition on L(G) and hence on the spin
modules, consideration of homogeneous summands for R2 gives the conclusion.

In the last case we have R1R2 < C2C2 < D8. If W1,W2 denote the two
restricted spin modules for D8, then from [7, p.30] we have

W1 ↓ C2C2 = 10⊗ 11/11⊗ 10, W2 ↓ C2C2 = 20⊗ 01/01⊗ 20/02⊗ 00/00⊗ 02.

Since p ≥ 7 here (as p is good), it follows thatWi ↓ C2C2 is completely reducible
for i = 1, 2.

Fix i and Ri < C2. We will consider restrictions of the above representations
to Ri. First note that the modules 10 and 01 are both irreducible restricted
representations for Ri, hence irreducible tilting modules. Hence 01⊗01, 10⊗10
and 10⊗01 are all tilting modules upon restriction to Ri. These tensor products
decompose for C2 as 02⊕ 10⊕ 00, 20⊕ 02, 11⊕ 01, respectively. Hence Ri acts
on each Wj as a sum of indecomposable tilting modules and the result follows.

Finally, consider the cases where Y = Bn, Cn < F4. Here R1 ∙ ∙ ∙Rk is an
irreducible subgroup of Y , so k = 2 and we indicate the possibilities for (i⊗j, Y ),
where i⊗ j is the representation of R1R2 on the natural Y -module:

(2⊗ 2, B4), (1⊗ 2, C3), (1⊗ 1, C2).

Now p ≥ 5 and we claim in each case that L(G) ↓ Ri is restricted. In the first
case this is shown in 2.13 of [7]. In the other cases it follows from fact (d) given
in the proof of 7.5 that the composition factors of Cn to consider are those of
high weights λ1, λn. These occur within the appropriate wedge of the natural
module, so the claim is immediate. The conclusion now follows from 7.4.

Lemma 7.7 Theorem 3 holds if R1 ∙ ∙ ∙Rk is contained in no subsystem sub-
group having each factor of classical type.

Proof Under the hypothesis, Proposition 2.2 shows that there is a subgroup
Y0 of exceptional type F4, E6, E7 or E8 in G, a maximal connected subgroup Z
of Y0 not containing a maximal torus, and a semisimple subgroup Y1 of CG(Y0)
such that R1 ∙ ∙ ∙Rk is essentially embedded in ZY1.

If Y1 is not simple, then in view of the possibilities for for CG(Y0) (see the
remark after 2.2), we have Y0CG(Y0) = F4G2 < E8 = G and Y1 = A1A1. But
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then R1 ∙ ∙ ∙Rk centralizes an involution and we can replace Y0CG(Y0) by the
centralizer A1E7 of this involution. Hence we may assume that Y1 is simple. As
a consequence we have that the projection of R1 ∙ ∙ ∙Rk to Y1 is either trivial or
a single A1.

The group Y0CG(Y0) acts completely reducibly on L(G) with composition
factors given by [7, 2.1,2.4]. Using this we see that the projection of R1 ∙ ∙ ∙Rk to
Y1 acts completely reducibly on L(G) with each composition factor restricted.
Since tensor products of tilting modules are tilting, it suffices to work with the
projection to Z. That is we assume that R ≤ Z, essentially embedded.

Taking into account the fact that k ≥ 2, by Theorem 2.1 we have the fol-
lowing configurations to consider:

Y0 = F4, Z = A1G2

Y0 = E6, Z = A2G2, C4

Y0 = E7, Z = A1A1, A1G2, A1F4, G2C3

Y0 = E8, Z = A1A2, G2F4.

With the exception of the cases Z = C4, G2C3, which will be settled later in
the proof, the essentiality of R1 ∙ ∙ ∙Rk in Z implies that k = 2, with one Ri in
each simple factor of Z. So write Z = Z1Z2 with Ri ≤ Zi, where Z1 is the first
factor in the list above. In view of Lemma 7.4 we are done if we can show that
either R1 or R2 has all composition factors on L(G) being restricted.

Consider the cases where (Z, Y0) = (A1G2, F4), (A2G2, E6), (A1G2, E7),
(A1F4, E7) or (A1A2, E8). For the E8 case we have p ≥ 7 as p is good; this
also holds in the other cases, because maximal A1’s in G2, F4 require p ≥ 7, 13,
respectively. Using 2.4 and 2.5 of [7] we check that R1 has all composition
factors on L(G) being restricted, so we have the result by 7.4.

A similar argument holds for the case where Z = G2F4 < E8. Here, R1 < G2
is irreducible and restricted on the usual 7-dimensional G2-module, and the
existence of a maximal A1 in F4 implies that p ≥ 13. Then [7, 2.4] implies that
all composition factors of R1 on L(G) are restricted, giving the result by 7.4.

Next suppose Z = C4 < E6. Here, k = 3 and the natural C4-module V8
restricts to R1R2R3 as 1⊗ 1⊗ 1. By [7, 2.4], the possible composition factors of
C4 on L(G) have high weights 2000, 0100, 0001. It follows that each Ri has only
restricted composition factors on L(G) and again the result follows from 7.4.

Now assume Z = G2C3 < E7. We may suppose R1 projects nontrivially
to G2 as a maximal A1. This forces p ≥ 7. If the projection of R1 ∙ ∙ ∙Rk to
C3 is an irreducible A1, then k = 2, R1 has trivial projection to C3 and we
are immediately done by 7.4. So assume the projection of R to C3 corresponds
to an irreducible subgroup of type A1A1 acting as 1 ⊗ 2 on the 6-dimensional
symplectic module. Also, k = 2 or 3.

The composition factors of Z on L(G) are L(Z), 10⊗010, 10⊗100, 00×001,
where the latter two occur only if G = E8. This action is completely reducible
so we can work with the individual summands. Now R2, (R3) < C3 and from
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the tensor embedding on the natural module we easily see that all composition
factors of R2 (and R3 if it occurs) on L(G) are restricted (as p ≥ 7). So once
again Lemma 7.4 settles the issue.

The remaining case is Z = R1R2 = A1A1 < E7. Here, by [7, 2.4],

L(E7) ↓ R1R2 = 2⊗ 0/0⊗ 2/2⊗ 8/4⊗ 6/6⊗ 4/2⊗ 4/4⊗ 2.

If G = E8 the restriction of L(G) to E7 involves L(E7) plus two copies of
V56 = V (λ7). By [7, 2.5],we have V56 ↓ R1R2 = 6⊗3/4⊗1/2⊗5. If p ≥ 7, then
R1 has all factors restricted, so the result follows from Lemma 7.4. The only
difficulty occurs for G = E7 with p = 5. Here we must be a little more careful.

Notice that each of R1 and R2 have composition factors of high weight
4. These extend no other composition factors. Consequently we may write
L(G) ↓ R1R2 = V1 ⊕ V2 ⊕ V3, where for i = 1, 2, Vi ↓ Ri = 4k. We have
V3 ↓ R1R2 = 2 ⊗ 0/0 ⊗ 2/2 ⊗ 8. On each factor either R1 or R2 is restricted,
while the other restricts to a tilting module. Once again the result follows from
Lemma 7.4.

At this point we have completed the proof of Theorem 3.

8 Theorem 4

In this section we prove Theorem 4 and Corollary 4. Assume then that G is of
exceptional type and X < G is a connected simple G-cr subgroup of rank at
least 2. Let E1, ..., Er be the subgroups given in Corollary 1.

By Proposition 2.2, either X is essentially embedded in a subsystem sub-
group Y of G, or X = G2, p = 7 and conclusion (ii) of Theorem 4 holds. In
the latter case the restriction L(G) ↓ X can be worked out using the following
restrictions:

L(F4) ↓ G2 = L(G2)⊕ VG2(11), L(E8) ↓ G2F4 = L(G2)⊕ L(F4)⊕ (10⊗ 0001)

(see [13, p.193]), from which we see that Theorem 4 holds in this case.

Assume now Theorem 4(ii) does not hold, so that X is essentially embedded
in a subsystem subgroup Y of G. As observed in the proof of Proposition 2.3,
when p > N(X,G) (as defined in [7, p.2]), the possibilities for Y,X and the
composition factors of L(G) ↓ X are worked out explicitly in [7, Tables 8.1-8.4];
and when p ≤ N(X,G), we have (X,G, p) = (A2, E7, 5), (G2, E7, 5 or 7) or
(G2, E8, 7), and the possibilities for Y,X and L(G) ↓ X can be worked out as in
[10], and are just as in Tables 8.1-8.4 again. These tables give the composition
factors of L(G) ↓ X, and indicate those cases where one of the corresponding
Weyl modules is reducible. Moreover, the proof of Theorem 1 shows that the
product E1 ∙ ∙ ∙Er lies in Y and can be read off from the tables.

If all the relevant Weyl modules are irreducible, then L(G) ↓ Ei is completely
reducible for each i, this shows that L(G) ↓ E1 ∙ ∙ ∙Er is completely reducible
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and that each irreducible summand is a tensor product of (irreducible) Weyl
modules for the factors. Thus Theorem 4 holds. Moreover, we see from [7,
Tables 8.1-8.4] that when p > 7 all the relevant Weyl modules are irreducible,
so this establishes Corollary 4.

It remains to consider those cases where one of the Weyl modules corre-
sponding to a composition factor of L(G) ↓ X is reducible. ¿From the tables in
[7], these cases are as follows:

X Y p reducible Weyl module in L(G) ↓ X
A6 A6 7 W (λ1 + λ6) = λ1 + λ6|0
A4 A4 5 W (λ1 + λ4) = λ1 + λ4|0
B3 A6 7 W (200) = 200|000
B3 A7 7 W (101) = 101|001
C3 D7 7 W (110) = 110|001
G2 A6 7 W (20) = 20|00
G2 D7 7 W (11) = 11|20
B2 D7 7 W (22) = 22|02, W (13) = 13|03
B2 D5 5 W (11) = 11|01
A2 A5 5 W (22) = 22|11
A2 A2A5 5 W (22) = 22|11, W (31) = 31|20
A2 E6 5 W (22) = 22|11
A2 E7 7 W (44) = 44|11

In all cases except (X,Y ) = (A2, A2A5), the fact that X is essentially embedded
in Y and there is a composition factor in L(G) ↓ X as indicated in the last
column, implies that r = 1 and hence that X is a restricted subgroup of G.
Consequently, it will suffice in these cases to show that L(G) ↓ X is a direct sum
of Weyl modules, dual Weyl modules, and tilting modules. In the exceptional
case with Y = A2A5, either r = 1 and X is a restricted subgroup, or r = 2 and
there is a field twist in one of the projections from X to the factors of Y .

Consider the first case X = A6 < G with p = 7. Here G = E7 or E8. Let
V7 be the usual 7-dimensional module for X. It follows from [7] that L(G) ↓
A6 = R ⊕ S, where S is a sum of irreducible wedge modules ∧i(V7) = V (λi) =
W (λi) and their duals, and R has a single adjoint composition factor and some
trivial composition factors. Now X is contained in a subgroup GL7 ∼= A6T1 <
E7. Indeed, there is a Levi subgroup E = A6T1 which induces GL7 on a 7-
dimensional submodule of L(E7). We have L(E) ∼= V7 ⊗ V ∗7 , which is a tilting
module for X. Also, R ↓ A6 is the direct some of L(E) and some trivial modules,
so this yields the result. The second case X = A4, p = 5 is similar.

Now consider the third case, X = B3 < A6 < G with p = 7. As above,
L(G) ↓ A6 = R ⊕ S. Each of the wedge modules in S is a direct summand of
a tensor power of V , hence is tilting for X. And taking E = GL7 as above,
L(E) ∼= V ⊗ V ∗ is also a tilting module for X, and the conclusion follows. The
sixth case X = G2 < B3 < A6 < G is entirely similar.

Next consider the cases where (X,Y, p) = (B3, A7, 7) or (A2, A5, 5). Here the
embedding X < Y is given by the irreducible VX(001) or VX(20) respectively,
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both of which are irreducible Weyl modules. From [7] we see that L(G) ↓ Y is
a direct sum of L(Y ) with wedge modules ∧iV , ∧iV ∗ and trivials, where V is
the usual module for Y . Moreover, L(Y ) is a direct summand of V ⊗ V ∗, while
∧iV is a summand of the ith tensor power of V . It follows that L(G) ↓ X is a
direct sum of tilting modules, as required.

The case where (X,Y, p) = (A2, A2A5, 5) is similar: here G = E7 and L(G) ↓
A2A5 = L(A2) ⊕ L(A5) ⊕ (λ1 ⊗ λ2) ⊕ (λ2 ⊗ λ4). If r = 2 and there is a field
twist in one of the projections from X to the factors of Y , then the conclusion
follows from the Y = A5 case above. And if r = 1, we see as above that each
summand is tilting for X.

We next treat together the cases X = C3, G2 or B2 with p = 7 and Y = D7.
Here X < D7 < E8 = G with the embedding in D7 given by the 14-dimensional
X-modules VX(λ) with λ = λ2, λ2 or 2λ2 respectively. For each of these, the
Weyl module WX(λ) is irreducible.

It follows from [7] that L(E8) ↓ D7 = λ2/λ
2
1/λ6/λ7/0. This is a direct

sum so it suffices to consider the various summands. Let V denote the natural
module for D7, an irreducible tilting module for X. Hence V ⊗V and its direct
summand L(D7) are also tilting for X. (We note that in B2 case this restriction
is TB2(22) = 02|22|02.) So it suffices to consider the action of X on the two
spin modules.

Let A < X be a regular A1 in X. One then checks that V ↓ A = T (8) or
T (10), the latter only when X = G2. It follows that if 1 6= u ∈ A is unipotent,
then u acts on V as the sum of two Jordan blocks of size 7. Hence u has type
A6 in the notation of the classification of unipotent classes in G (see [4]). Then
[4] implies that L(G) ↓ u = (J7)35 + (J1)3, where Jr denotes a Jordan block of
size r. In particular there is no Jordan block of length 6.

It is shown in 2.12 of [7] that each of the spin modules restricts to X with
composition factors the same as those of the Weyl module WC3(110), WG2(11)
or WB2(13). We have WC3(110) = 110|100, WG2(11) = 11|20 and WB2(13) =
13|03. In each case a dimension argument using the action of u implies that the
spin module must be indecomposable for X, hence must be isomorphic to one
of these Weyl modules, and the conclusion follows.

Next consider X = B2 with p = 5. Here X < D5 with embedding given
by the 10-dimensional adjoint module VX(02). Now G = E6 or E7 (as 5 is
not a good prime for E8). As above, let 1 6= u ∈ A < X, where A is of type
A1 embedded in X via an irreducible restricted representation. As VX(02) is
a direct summand of VX(01)⊗ VX(01), it is tilting, so it follows that VX(02) ↓
A = TX(6). Consequently u acts as J

2
5 and is hence a unipotent element of type

A4 in G.

Now L(G) ↓ D5 is a direct sum of L(D5), trivial modules, natural modules
(only in E7), and spin modules, so we work with each of these. Observe that
L(D5) is a direct summand of the tensor square of the natural module, so its
restriction to B2 is a direct summand of 02 ⊗ 02, a tilting module. So we need
only consider the spin modules. Now 2.12 of [7] shows that restrictions to B2
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of the spin modules have composition factors 11|01. By [4] unipotent elements
of type A4 have Jordan form on L(G) of type J

a
5 + Jb1 . On the other hand

the action on 01 is J3. Hence the spin modules must be indecomposable upon
restriction to B2, as required.

Next consider the case where (X,Y, p) = (A2, E7, 7). Here X is a maximal
subgroup of E7. We first consider the action of E7 on V = VE7(λ7), an irre-
ducible 56-dimensional module. It follows from [7] that V ↓ X = 60 + 06, the
sixfold symmetric power of the natural module plus its dual.

Let A be a regular A1 subgroup of X and u a nontrivial unipotent element
of A. As WX(60) is irreducible, it is a direct summand of the sixfold tensor
power of the natural module 10, and similarly for the dual. Restricting to A, we
see that WX(60) ↓ A is a tilting module for A, and a consideration of weights
shows this to be T (12) + T (8). It follows that V ↓ u = J87 . Consequently, it
follows from [4] that u is of type A6. This implies that L(E7) ↓ u = J197 .

The composition factors of L(E7) ↓ X are 44|112. Since L(E7) is self-dual
the only possiblities are L(E7) ↓ X = TX(44) or VX(44) ⊕ VX(11)2. But the
latter case is impossible, as this would contradict the action of u. Therefore,
L(E7) ↓ X = T (44) and L(E8) ↓ X = T (44)⊕ 602 ⊕ 062 ⊕ 003.

It remains to handle the case (X,Y, p) = (A2, E6, 5). Here X is maximal
in Y , and L(E6) ↓ X = 11 ⊕ 41 ⊕ 14, a sum of irreducible Weyl modules.
Hence we can assume that G = E7 (not E8, as p is a good prime). We have
L(E7) ↓ E6 = L(E6)⊕L(T1)⊕V27⊕V ∗27, where V27 is the 27-dimensional module
VE6(λ1).

Let A be regular A1 in X. As above, VX(40) ↓ A is tilting, hence so is
the restriction to A of the tensor product VX(40)⊗ VX(01). A calculation with
weights shows that VX(40)⊗ VX(01) = 41|30. As these composition factors do
not extend each other, this is a direct sum.

We conclude that the direct summand VX(41) is tilting on restriction to A,
and further calculation with weights implies that VX(41) ↓ A = T (10)⊕ T (6)⊕
T (4). Hence if 1 6= u ∈ A is a unipotent element, it acts on VX(41) as J

7
5 .

Therefore u acts on L(E6) as J
15
5 + J3; it follows by [4] that u lies in the class

A4 +A1. Consequently, by [4] again, we have L(E7) ↓ u = J255 + J3 + J
2
2 + J1.

Finally, from [7] we have V27 ↓ X = 22|11. The action of u shows that this
must be indecomposable. Therefore V27 ↓ X = WX(22), and the conclusion
follows.

This completes the proof of Theorem 4.

9 Additional results

Theorem 1 and its corollary are of considerable importance for the analysis of
subgroups of exceptional algebraic groups. In this section we establish additional
results on subgroups.
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We first extend Corollary 1 so as to cover semisimple groups. Then, returning
to the case where X is simple, we show that the restricted subgroups Ei given
by Corollary 1 are themselves G-cr and we determine CG(X) as the intersection
of the groups CG(Ei). Finally we describe a procedure for constructing all
commuting products E1 ∙ ∙ ∙Ek as given in Corollary 1.

Let X = X1 ∙ ∙ ∙Xr be a commuting product of connected simple G-cr sub-
groups of G. Corollary 1 shows that for each i there is a uniquely determined
family Ei,1, ..., Ei,ni of commuting restricted subgroups of G such that Xi is
contained in Ei,1 ∙ ∙ ∙Ei,ni with distinct field twists in each projection.

Proposition 9.1 If each Xi is a G-cr subgroup of G, then the corresponding
restricted subgroups Ei,k and Ej,l commute for i 6= j. Hence X is contained in
the commuting product (E1,1 ∙ ∙ ∙E1,n1) ∙ ∙ ∙ (Er,1 ∙ ∙ ∙Er,nr ).

Proof Fix i 6= j and let X̃i, X̃j be the corresponding covering groups. The

groups Ei,s, Ej,t arise from Theorem 1. Let φi : X̃i → G have image Xi and
factor as in Theorem 1 with certain field morphisms and a uniquely determined
restricted morphism μi.

Let xj ∈ Xj . Then composing μi with conjugation by xj yields another such
morphism and corresponding factorization of φi. Uniqueness implies that these
morphisms agree and hence xj centralizes Ei,s for all 1 ≤ s ≤ ni.

Now start with φj : X̃j → G with image Xj and factor this using a unique
restricted morphism μj . Conjugating by elements of Ei,1 ∙ ∙ ∙Ei,ni and using
uniqueness from Theorem 1 we have the result.

For the next two results fix X a simple G-cr subgroup of G and let X ≤
E1 ∙ ∙ ∙Ek be as in Corollary 1. So each Ei is a restricted subgroup of G. The
next result shows that these restricted subgroups are also G-cr.

Proposition 9.2 With notation as above, Ei is G-cr for i = 1, . . . , k.

Proof If X = A1, then each Ei is a good A1 of G, so by 2.3(i) each Ei is G-cr.
So now assume X has rank at least 2. Let X̂ be the simply connected cover of
X and φ : X̂ → X be the natural surjection. Factor φ = μ ◦ ψ (viewed as a
morphism from X̂ to G) as in Theorem 1.

First suppose G is of classical type. The issue of being G-cr is independent of
the isogeny type of G, so we may take G = SL(V ), Sp(V ), or SO(V ). As p is a
good prime for G, the issue is whether or not the Ei act completely reducibly on
V . Now μ is uniquely determined. So if τ is an automorphism of G centralizing
X, then τ ◦ μ = μ, hence τ centralizes E1 ∙ ∙ ∙Ek.

Write V = V1 ⊥ . . . ⊥ Vs, where each summand is X-invariant. Moreover,
we can make the choice such that for G = SL(V ) each Vi is irreducible for X
and for G = Sp(V ) or SO(V ) each summand is either irreducible of the sum of
two dual irreducible singular spaces. It is now clear that we can choose suitable
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semisimple automorphisms, τj , of G such that the intersection of the centralizers
of the τj must stabilize each Vi and both summands of Vi in case Vi is the sum
of two X-invariant singular spaces. Hence E1 ∙ ∙ ∙Ek is completely reducible and
thus so are each of the summands.

Now assume G is an exceptional group. Then 2.3(ii) gives the result except
when X = G2 and p = 7. In this case the argument of Section 4.2 (which is
based on 2.2) shows that k ≤ 2 and describes the containment X ≤ E1 ∙ ∙ ∙Ek.
If k = 1, the assertion is immediate since then X = E1 which is assumed
to be G-cr. Suppose k = 2. Then either E1E2 = G2G2 < B3B3 < D7 or
E1E2 = G2G2 < G2F4 < G = E8. We must show that in either case both G2
factors are G-cr.

If E is a G2 subgroup with E contained in a D4 subsystem subgroup of
G, then the high weights of composition factors of E on L(G) are 00, 10, 01.
None of these extend the trivial module, so the arguments of [7] show that E is
G-cr. This settles the issue except for E = E2 in the second case which we now
consider.

Using [13, p.193] we have L(G) ↓ G2F4 = L(G2)⊕ L(F4)⊕ (10⊗ 0001) and
L(F4) ↓ E2 = L(E2) ⊕ 11. Also, using the labelled diagram in this reference
we have 0001 ↓ E2 = 20. So L(G) ↓ E2 = 207 ⊕ 11 ⊕ 10 ⊕ 0014, which is
completely reducible. We cannot immediately conclude that E2 is G-cr because
E2-composition factors of high weight 20 do extend the trivial module. Note
however, that the decomposition does imply that CG(E2)

0 = E1.

Suppose that E2 < P , a parabolic subgroup of G. Comparing composition
factors of P on L(G) with those of E2 it is clear that the Levi factor of P must
contain an E6 factor. In fact, with suitable choice of root system P = P7 or
P7,8. Hence P ≤ P7 = NG(UαUβ) where α is the high root and β = α−α8. Let
L = E6A1T1 be the Levi factor of P7 and W = UαUβ . Then W is centralized
by Ru(P ) and by the E6 component of L and W affords an irreducible module
for the A1T1 part of L. Hence E2 < CG(W ) and so W < E1. We now argue
from [6, 2.2(i)] that all elements of W are long root elements of E1 = G2 and
so NE1(W ) is a maximal parabolic subgroup of E1. In particular there is a 1-
dimensional torus Z in CG(E2) inducing scalars on UαUβ . Then Z is a torus in
P7 centralizing the projection of E2 and inducing scalars on W . It follows that
Z is P -conjugate to the central torus of L and hence E2 < CG(Z) = E6A1Z,
from which we conclude E2 < E6, so that E2 is G-cr.

We next state a useful result on centralizers which follows easily from what
has already been established.

Proposition 9.3 Let X ≤ E1 ∙ ∙ ∙Ek ≤ G be as in Corollary 1. Then

(i) CG(Ei) is reductive for i = 1, . . . , k.

(ii) CG(X) =
⋂
i CG(Ei).

Proof (i) The previous proposition shows that each Ei is G-cr. If G is of
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exceptional type than 2.3(iii) yields the result. For G of classical type this is
proved at the end of the proof of 3.1.

For (ii) first note that
⋂
i CG(Ei) ≤ CG(X). For the other containment, let

g ∈ CG(X) and let inng denote the corresponding inner automorphism of G.
Let X̂ be the simply connected cover of X and φ : X̂ → X the natural surjection.
Factor φ = μ ◦ ψ as in Theorem 1, so that μ(X × . . . × X) = E1 ∙ ∙ ∙Ek. Now
consider the map μ′ ◦ψ, where μ′ = inng ◦μ. As g centralizes X this is another
factorization of φ, so the uniqueness assertion of Theorem 1 implies that μ = μ′.
But this implies that g centralizes each Ei, as required.

We next establish results for G of exceptional type which can be used to
determine commuting products of restricted simple subgroups.

Assume then that G is a simple algebraic group of exceptional type over an
algebraically closed field of good characteristic p. The simple restricted sub-
groups of G are reasonably well understood. The restricted A1’s are determined
in [14] and closely linked to unipotent elements of prime order; the higher rank
subgroups are determined explicitly in [10].

If X is a connected, restricted, simple subgroup of G, then by definition X is
also a restricted subgroup of any connected group containing it. The following
remarkable result shows that the converse often holds, and is a key result for
determining commuting products. Recall the definition of N(X,G) taken from
[7, p.2].

Proposition 9.4 Let S be any closed subgroup of the exceptional group G such
that CG(S) is reductive. If R is a connected simple restricted subgroup of CG(S)
and p > N(R,G), then R is also restricted in G.

Proof Suppose R fails to be G-restricted. By assumption D = CG(S)
0 is

reductive. Let R be a simple restricted subgroup of D. As p > N(R,G),
Theorem 1 of [7] implies R is G-cr. Consequently we may apply Theorem 1
of this paper to R, obtaining a containment R ≤ R1 ∙ ∙ ∙Rk, where each Ri is
restricted in G and the embedding is diagonal with distinct field twists in each
projection. The result is trivial if k = 1, so assume that k ≥ 2.

Reorder if necessary, so that L(R) = L(R1). Of course, S ≤ CG(L(R)).
Using Proposition 2.3 we then have S ≤ CG(L(R))0 = CG(L(R1))0 = CG(R1)0.
Therefore, R1 ≤ CG(S)

0. So then R,R1 are both restricted subgroups of D
having the same Lie algebra.

We claim that R,R1 are D-cr. If D has an exceptional simple factor Di,
then N(R,G) ≥ N(R,Di) and so the projection to this simple factor is Di-cr
by Theorem 1 of [7]. For classical factors the same follows from Theorem 3.8 of
[7] (as p is a good prime for G).

At this point 3.1 shows that CD(R)
0 = CD(L(R))

0 = CD(L(R1))
0 =

CD(R1)
0. Call this group E. Then R◦E = ND(L(R))0 = ND(L(R1))0 = R1◦E.

It follows that R = R1, so that R is restricted in G.
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Corollary 9.5 Let A be a restricted, connected, simple subgroup of G and as-
sume p > N(A,G). If B is a simple restricted subgroup of CG(A) of the same
type as A, then B is G-restricted.

Corollary 9.5 provides an algorithm for determining commuting products
of restricted subgroups of given type. The procedure is to choose one such
subgroup and find its centralizer. Choose a restricted subgroup of the required
type in the (reductive) centralizer, and repeat the process. It is hoped that the
conjugacy classes of such commuting products will be calculated in future work.
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