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Abstract

For a given target density = on R, there exist infinitely many diffusion pro-
cesses that ergodic with respect to 7 and that can be used in order to sample from
this distribution. As observed in a number of papers Lelievre et al. (2013), Dun-
can et al. (2016), Rey-Bellet & Spiliopoulos (2015a,b) samplers based on non-
reversible diffusion processes can significantly outperform their reversible coun-
terparts both in terms of reducing the asymptotic variance as well in increasing
the rate of convergence to equilibrium. In this paper, we take advantage of this
observation in order to construct efficient sampling algorithms based on the Lie-
Trotter decomposition of a nonreversible diffusion process into reversible and non-
reversible components. We show that samplers based on this scheme can signifi-
cantly outperform standard MCMC methods, at the cost of introducing some con-
trolled bias. In particular, we prove that numerical integrators constructed accord-
ing to this decomposition are geometrically ergodic. Moreover we characterize
fully their asymptotic bias and variance by analysing the solution of a discrete
Poisson equation, and show that the sampler inherits the good mixing properties of
the underlying nonreversible diffusion. This is illustrated further with a number of
numerical examples ranging from highly correlated low dimensional distributions,
to logistic regression problems in high dimensions as well as inference for spatial
models.



1 Introduction

Consider the problem of computing expectations with respect to a probability distribu-
tion with smooth density 7(z), known only up to the normalization constant, i.e. we
wish to evaluate

w(f) = / Fan(e) da. (LD)

For high dimensional distributions, deterministic techniques are no longer tractable.
On the other hand, probabilistic methods do not suffer the same curse of dimension-
ality and thus are often the method of choice. One such approach is Markov Chain
Monte Carlo (MCMC) which is based on the construction of a Markov process on R¢
whose unique invariant distribution is 7(z). Due to their simplicity and wide applica-
bility, Markov chains based on Metropolis-Hastings (MH) transition kernels Hastings
(1970), Metropolis et al. (1953) and their numerous variants remain the most widely
used scheme for sampling from a general target probability distribution, despite hav-
ing been introduced over 60 years ago. As there are infinitely many Markov processes
which are ergodic with respect to a given target distribution 7, a natural question is
whether a Markov process can be chosen which is more efficient, in terms of accel-
erating convergence to equilibrium and improving mixing. Metropolized schemes are
reversible Markov chains by construction, i.e. they satisfy detailed balance. 1t is a
well documented fact that nonreversible chains convergence to equilibrium faster than
reversible ones Neal (2004), Diaconis et al. (2000), Mira & Geyer (2000) and have a
smaller asymptotic variance. Various MCMC schemes have been proposed which are
based on the general idea of breaking reversibility by introducing an augmented tar-
get measure on an extended state space, along with dynamics which is invariant with
respect to the augmented target measure. For discrete state spaces, the lifting method
Diaconis et al. (2000), Hukushima & Sakai (2013), Turitsyn et al. (2011) is one such
approach, where the Markov chain is “lifted” from the state space F to E x {1, —1}.
The transition probabilities in each copy of F are modified by introducing transitions
between the copies to preserve the invariant distribution but now promote the sampler
to generate long trajectories. For continuous state spaces, analogous approaches in-
volve augmenting the state space with a velocity/momentum variable and constructing
Makovian dynamics which are able to mix more rapidly in the augmented state space.
Such methods include Hybrid Monte Carlo (HMC) methods, inspired by Hamiltonian
dynamics. While the standard construction of HMC Duane et al. (1987), Neal (2011) is
reversible, it is straightforward to construct dynamics based on the Generalized HMC
scheme Horowitz (1991) which will not be reversible, see also Ottobre et al. (2016)
and more recently Ma et al. (2016).

Deferring issues of simulation until later, another candidate Markov process for sam-
pling from the distribution 7 is the diffusion process (X;);>o defined by the following
1td stochastic differential equation (SDE):

dX; = b(Xy) dt + V2 dWy, (1.2)

where W, is a standard R%—valued Brownian motion and b : R? — R¢ is a smooth
vector field which satisfies

b(z) = Viog(z) + 7(x), V- (r(a)y(z)) =0, (1.3)

for some smooth vector field v on R? satisfying some mild assumptions (c.f. Propo-
sition 2.2). It is a well known fact that the process X is reversible if and only if the



vector field «y vanishes, v = 0, see (Pavliotis 2014, Ch. 4).
By the Birkhoff ergodic theorem,

and thus one can use "
1
wr(f) =g [ s
0

as an estimator for 7(f), for T sufficiently large. A natural way to measure the effi-
ciency of such estimator is the mean square error (MSE) given by

MSE(T) := Elrr(f) — 7 (f)|*. (14)

Under appropriate conditions on X; and f, the estimator 7 (f) will satisfy a central
limit theorem, i.e.

lim VT (nr(f) = 7(f)) = N(0,20°(f)), (1.5)

T—+o00

where o2 ( f) is the asymptotic variance of the estimator 77 ( f) which can be expressed
by
o*(f) = (¢, (=L)9), (1.6)

where L is the infinitesimal generator of (1.2) and ¢ is the mean zero solution of the
following Poisson equation on R<,

Lo = f - 7(f). (1.7)

The mean square error MSE (1.4) can be naturally decomposed it in terms of bias
pr(f) and variance o2.(f) as follows

Elrr(f) —m(f)P = Err(f) =7 (f)* +E(r(f) ~Err(£)* = (ur(f))* +07(f)-

For large T, the variance satisfies 02 (f) ~ T~ 'o?(f), while ur(f)* = o(T71).
Since ~(z) is not uniquely defined in (1.3), i.e. there are infinitely many solutions to
the partial differential equation V - (y7) = 0, a natural question is how it should be
chosen to ensure that for a given time 7', the MSE in (1.4) is as small as possible. This
can be achieved in two manners, the first by maximising the rate of convergence to
equilibrium of (1.2) as was considered in Lelievre et al. (2013), Wu et al. (2014). In
general, constructing a nonreversible flow v by which to maximise the rate of conver-
gence in L?(7r) is challenging, even for Gaussian target measures. An alternative is
to choose () in such a way so as to reduce the asymptotic variance o(f) Duncan
et al. (2016). It should be emphasised that the optimal choice will be different for each
case, and will depend specifically on the observable f. In particular in Duncan et al.
(2016), Rey-Bellet & Spiliopoulos (2015a,b), it was shown that the choice vy(z) = 0,
which corresponds to using reversible dynamics, gives the maximum value of asymp-
totic variance for a given choice of diffusion tensor. More precisely, introducing a
nonreversible perturbation will never decrease the performance of an estimator based
on Langevin dynamics, both in terms of convergence to equilibrium and asymptotic
variance.



In general (1.2) cannot be simulated exactly, and one typically resorts to a discreti-
sation of the SDE, denoted by X2, in order to approximate 7(f). In particular, the
following ergodic average is used

N
) = SOAERY), Nar=T. (1.8)
k=0

Extra caution has to be taken in order to ensure that the above quantity converges in the
limit of T — oo since even if (1.2) is ergodic (or even exponentially ergodic), this will
not necessarily be the case for its numerical discretisation Roberts & Stramer (2002),
Stramer & Tweedie (1999a,b). In addition, even when the numerical discretization is
ergodic and thus

lim 7p(f) =724(f) = | f(2)72(x)de, (1.9)
T—o00 R4

it is not true in general that 72! = 7, since the underlying numerical discretization
introduces bias in the estimation of 7(f) (see Talay & Tubaro (1990), Abdulle et al.
(2014, 2015)). One way to eliminate such bias is through Metropolization Smith &
Roberts (1993), Tierney (1994), i.e. the introduction of an accept-reject step that en-
sures that the corresponding Markov chain is ergodic with respect to the target distri-
bution 7. However, such bias elimination might not be advantageous in practice since
the Metropolised chain will be reversible by construction, thus eliminating any benefit
introduced by the nonreversible perturbation .

When computing expectations of distributions with expensive likelihoods, it might be
too costly to sample a long Markov chain trajectory. If an appropriate nonreversible
Langevin dynamics (1.2) can be introduced which does give rise to a dramatic reduction
in asymptotic variance, then it might be advantageous to permit a controlled amount
of bias in exchange for needing to sample far less. This bias-variance tradeoff, in the
context of numerical discretisations of (1.2) is the subject of study of this paper. In
particular, we will consider discretizations based on a Lie-Trotter splitting between the
reversible and the nonreversible part of the dynamics. More specifically, we consider
integrators of the form R R

XA = 0ar 0D (XA, (1.10)

where ®a(z) is a integrator that approximates the flow map corresponding to the

deterministic dynamics

dxt

g =(z4), (1.11)

and © 5 (z) which approximates the reversible dynamics
dxy = Vlog m(x,)dt + v/ 2dWy. (1.12)

In this paper we shall focus on the specific case when the reversible dynamics is sim-
ulated using a Metropolized scheme, while the nonreversible dynamics are simulated
using a higher-order quadrature ODE integrator. We mention here that this splitting
idea has also been used recently in Poncet (2017) to construct a non-reversible sampler
with no bias. This however, comes with the cost of having to solve (1.11) using an
implicit integrator.



The choice of ®a;, O has a fundamental influence on the bias, asymptotic vari-
ance and stability of the resulting sampler. In particular, if one chooses ®a; to be
a Metropolised integrator Bou-Rabee & Hairer (2012) then, similarly to the result in
Abdulle et al. (2015), the order of convergence of the deterministic integrator ® A, pro-
vides a lower bound for the difference between expectations with respect to 72 and
7. However, this is not the case for the numerical asymptotic variance EQN( f), since
even though we can show that it is a perturbation of o (f) the difference will depend
crucially on the choice of ©a;. These results are important as they allow to choose
the correct combination of dynamics and numerical scheme that drastically reduces the
computational cost required to achieve a given tolerance of error.

In summary, the main contributions of this paper are:

1. proving geometric ergodicity for the Markov chain given by (1.10) for a variety
of different numerical integrators applied to the reversible part;

2. a complete characterisation of the asymptotic bias of (1.10);

3. showing that, by completely characterising the asymptotic variance, numerical
integrators of the type (1.10) inherit the asymptotic variance benefits of the non
reversible SDE (1.2);

4. exhibiting the potential of using nonreversible integrators for sampling as illus-
trated from a number of different numerical experiments on inference for spatial
models as well as real data sets.

We mention here that the proof of the geometric ergodicity uses the approach de-
scribed in Meyn & Tweedie (1993b), while the characterisation of the asymptotic bias
uses the framework developed in Abdulle et al. (2014). Additionally, the characteri-
sation of the asymptotic variance relies heavily on the analysis of the discrete Poisson
equation associated with the splitting scheme. A similar analysis was carried out in
Mijatovic & Vogrinc (2015) and has also recently been used to analyse the asymptotic
variance of random walk Metropolis chains Mijatovi¢ & Vogrinc (2017).

The rest of the paper is organised as follows. In Section 2 we describe some known
theoretical results for the SDE (1.2) which are necessary for the development of this
paper. In Section 3 we identify sufficient conditions to guarantee geometric ergodicity
of the Lie-Trotter splitting scheme (1.10) on R¢. In Section 4 we study the asymptotic
properties of a class of numerical integrators for (1.2) for which the Lie-Trotter scheme
is a special case. In particular we derive perturbative expansions for the asymptotic bias
and variance. In Section 5 we apply these results to characterise the asymptotic bias and
variance of the Lie-Trotter scheme on the bounded domain T¢. In Section 6, we focus
on the case where the target distribution is Gaussian and study analytically the trade-off
between the asymptotic bias and asymptotic variance in this case. To demonstrate the
efficacy of these schemes, in Section 7 we present a number of numerical experiments
on inference for spatial models as well as on Bayesian logistic regression. Proofs of the
main results of this paper are deferred to Section 8 as well as the Appendices. Finally, a
discussion of the results presented in this paper and potential future research directions
can be found in Section 9.



2 Properties of Overdamped Langevin Diffusions

In this section we discuss different known theoretical results that are useful for under-
standing the main results of the paper. We start by listing the assumptions we shall
make on 7 and the SDE (1.2) to ensure ergodicity.

Assumption 2.1.

1. The measure 7 possesses a positive smooth density w(x) > 0, known up to a normal-
izing constant, such that m € L'(R?).

2. The drift vector b : R — R? of (1.2) is smooth and satisfies (1.3) with v : R? — R?
being a smooth vector field with components in L (7).

The following result provides necessary and sufficient conditions on the coefficients
of (1.2) to ensure that X; possesses a unique stationary distribution 7.

Proposition 2.2. Suppose that Assumptions 2.1 hold. Then the diffusion process X
defined by (1.2) possesses a strongly continuous semigroup (Py)i>o on L?(r) defined
by

Py f(z) = E[f(X¢) [ Xo = a]. 2.1

The associated infinitesimal generator is an an extension of
1
L==V -(7V)+v-V (2.2)
T

with core Cg*° (Rd). Moreover, P, has unique invariant distribution w. Conversely,
given a diffusion process of the form (1.2) which is invariant with respect to w, then the
drift b necessarily satisfies (1.3).

Proof. The first part of this result is a direct application of (Lorenzi & Bertoldi 2006,
Thm 8.1.26). The converse implication can be checked using integration by parts. [

While many choices for y are possible (see Ma et al. (2015) for a more complete recipe)
a natural family of vector fields is given by v(z) = JV®(7(z)), where ® is a smooth
function satisfying V®(7(-)) € L'(w) and J is d x d skew-symmetric matrix. We
shall focus specifically on the following three choices:

1. If 7 satisfies [, |V logm(x)|m(dx) < oo, then the vector field
y(z) = JVlogn(z), J=-J, (2.3)

satisfies condition (1.3). This was the choice which was studied in Duncan et al.
(2016).

2. If [o, [Viogm(z)|w't*(dx) < oo for some o > 0 then another natural choice
for the vector field is given by

() = IV (x), J=-J". (2.4)

Although (2.4) introduces an additional tuning parameter «, one might prefer
this choice as it coincides with the intuition that when far away from the modes
the sampler should move towards the modes as quickly as possible, and should
only undergo these deterministic meanders in regions of high probability.



3. Let ¥ : R — R be a smooth, compactly supported function. Then
v(z) = JVlogm(z)¥(n(z)), J=-J', andB€R, (2.5)

will always satisfy (1.3). Moreover, if 7 has compact level sets, then v will also
be compactly supported on R

Applying the results detailed in Glynn & Meyn (1996), Meyn & Tweedie (1993c¢),
we shall assume that the process X; possesses a Lyapunov function, which is sufficient
to ensure the exponential ergodicity of X, as detailed in the subsequent proposition.

Assumption 2.3 (Foster—Lyapunov Criterion). There exists a function V : R* — R
and constants ¢ > 0 and b € R such that

LV (x) < —cV(x) +ble, and V(z) > 1, z€RY (2.6)
where 1¢ is the indicator function over a petite set.

For the definition of a petite set we refer the reader to Meyn & Tweedie (1993b).
For the generator £ corresponding to the process (1.2) compact sets are always pe-
tite. The exponential ergodicity of X; follows from the following proposition (see also
Mattingly et al. (2002), Meyn & Tweedie (19930)).

Proposition 2.4. Suppose that Assumption 2.3 holds, then there exist constants C' > 0
and A > 0 such that:

|Pif(x) —7(f)] < CV(z)e™, xeRY, 2.7)
for all f satisfying |f| < V.

Moreover, the Foster-Lyapunov criterion also provides a sufficient condition for the
Poisson equation (1.7) to be well-posed, and thus for the central limit theorem (1.5) to
hold.

Proposition 2.5. Suppose that Assumption 2.3 holds and that (U?) < oo, then for any
function f such that | f| < U, the central limit theorem (1.5) holds, i.e. /T (m7(f) —
7(f)) converges weakly to a N (0, 20 ( f))~distributed random variable, with

()= [ ola)L)o(wyr(a) da.

where ¢ is the unique mean zero solution to the Poisson equation (1.7). Moreover the
solution ¢ can be expressed as

¢:A Pof — (/)] dt.

The following lemma provides a sufficient condition on 7 for (1.2) to possess a Lya-
punov function. It is a slight generalisation of a similar result from Roberts & Tweedie
(1996), extended to also apply in the case of nonreversible diffusion processes.

Lemma 2.6. (Roberts & Tweedie 1996, Theorem 2.3) Consider the process X, defined
by (1.2) with drift coefficient b satisfying (1.3) . Suppose that m is bounded, there exists
0 < § < 1 such that,

liminf ((1 — 6)|Vlogw(z)[*> + Alogm(z)) > 0, (2.8)

|z] =00



and the vector field v satisfies
V-y(z)=0, zcR%L (2.9)

Then the Foster—Lyapunov criterion holds for (1.2) with U (x) = 7~°(z) and moreover
m(U) < 0.

Remark 2.7. Note that when v(x) = JV®(n(z)) equation (2.9) is automatically
satisfied. Hence the choices of choices of v specified by (2.3), (2.4) and (2.5) all satisfy
(2.9).

3 Stochastic Stability of the splitting scheme on R?

In this section we identify sufficient conditions under which the Lie-Trotter scheme on
R? is geometrically ergodic with respect to an invariant distribution 72t which will
be a perturbation of 7. In general, a discretization of the ergodic diffusion process
(1.2) need not be ergodic, geometric or otherwise, see for example Roberts & Tweedie
(1996) . For the splitting scheme we shall show that provided the approximate non-
reversible flow ® A is sufficiently weak away from the origin, the process (1.10) will
inherit the geometric ergodicity from the reversible dynamics.

We follow Meyn and Tweedie Meyn & Tweedie (1993b) to demonstrate geometric
ergodicity of ()A( nAt) . Consider the reversible process defined by

neN
Ziti = OnZyY, (3.1)
and P, be the corresponding transition semigroup. We shall assume that the reversible

dynamics are a Metropolis-Hastings chain, with proposal kernel ga(-|x). More specif-
ically, given z € R%, © at(x) is constructed as follows

1. Sample y ~ ga¢(-| ).

2. With probability
m(y)qae(z]y) )

a(x,y) = min (1’ m(z)gac(y|x)

set Oax := y otherwise Oz := x.

It is well known that the target distribution 7 is invariant under the map © A, Metropolis
et al. (1953), Hastings (1970). In this paper, we shall focus on two specific proposals,
namely the Langevin proposal

aat(- |x) = o+ AtVilegn(z) + V2Alg, (3.2)
and the random walk proposal
ani(- |2) = = + V24Aty, (3.3)

where ¢ is a standard d-dimensional Gaussian random variable. The resulting scheme
is known as Metropolis-Adjusted Langevin Algorithm (MALA) when proposal (3.2) is
used, and Random Walk Metropolis Hastings (RWMH) when (3.3) is used.



Denote by ﬁAt(x, . and Pay(x, ) the transition distribution functions of the splitting
scheme (1.10) and (3.1) respectively. Then clearly,

Paif(x, A) = (Parf)(®ae(z), A), A€ BRY).

Following the approach of Mengersen & Tweedie (1996) we first show that (1.10) is a
m-irreducible, aperiodic Markov chain. Moreover, we will show that all compact sets
are small, i.e. for every compact set C, there exists a § > 0 and n > 0 such that

P2 (z,-) > 6v()), zeC.

Finally, we will show that if a Foster-Lyapunov condition holds for the reversible dy-
namics Pa¢, then it also holds for Pa;. To this end, we shall make the following
assumptions.

Assumption 3.1. For At sufficiently small, we assume that

1 The reversible chain (3.1) satisfies a Foster-Lyapunov condition, i.e. there exists a
continuous function V> 1, a compact set C' C R< and constants \ € (0,1)andb >0
such that _

PaiV(z) < AV (2) +blo(z), = €R% (3.4)

2 The nonreversible flow map ® A+ satisfies the following condition,

. V(®ar(z)) —V(z) 1
1 ——1. 3.5

3 The preimage ® 51 (C) is bounded.
The main theorem of this section establishes the geometric ergodicity of (1.10).

Theorem 3.2. Suppose that Assumptions 3.1 hold, and that m and qa+(y|z) are positive
and continuous for all x,y € R®. Then for At sufficiently small, the process X2 is
geometrically ergodic, i.e. there exists p € (0,1) and K > 0 such that

sup
lg|I<V

| o) (Pasta) = =) dy| < KV(@)y", nen.

The following result is an application of Theorem 3.2 for the Random Walk pro-
posal (3.3).

Corollary 3.3 (Geometric Ergodicity of Lie-Trotter scheme with RWMH dynamics).
Consider the Lie-Trotter splitting scheme X2t where the reversible dynamics (1.12)
are simulated using a RWMH scheme with proposal defined by (3.3). Suppose that
the conditions on 7 and qa: specified in (Roberts et al. 1998, Theorem 3.2) hold and
moreover that

Jm(1@a(e)| - ) =0, (3.6)
for At sufficiently small. Then XnAt is geometrically ergodic.

An almost identical result holds for the MALA proposal (3.2).

Corollary 3.4 (Geometric Ergodicity of Lie-Trotter scheme with MALA dynamics).
Consider the Lie-Trotter splitting scheme X,f‘t where the reversible dynamics (1.12)
are simulated using a MALA scheme with proposal defined by (3.2). Suppose that the
conditions on 7 and g specified in (Roberts & Tweedie 1996, Theorem 4.1) hold and
moreover that (3.6) holds for At sufficiently small. Then X2 is geometrically ergodic.



In particular, suppose that lim|,| o 7(2) — 0, and that, given ac > 0, there exist
positive constants o/, K; and K5 such that

|V (z)| < K% (z), |[VVr*(z)|, . < Ky, x€R? (3.7)

max

where || a2 denotes the max norm. If v = JV 7 for J antisymmetric, then condition
(3.6) will hold if ®a¢(x) is simulated using an explicit Euler or Runge-Kutta scheme.
A similar result holds for v given by (2.5).

4 Asymptotic Bias and Variance Estimates for general
integrators

In this section we consider the asymptotic behaviour of the estimator (1.8) for = (f),
obtained for a general numerical scheme ()/(\' At);>0. In particular, we shall derive es-
timates for the asymptotic bias and asymptotic variance of the estimator 72¢( f). For
simplicity we shall focus on the case where the domain is T¢, i.e. the unit hypercube
with periodic boundary conditions. As in Mattingly et al. (2010) this set-up greatly
simplifies the derivation of expressions for bias and variance, particularly since re-
mainder terms arising from Taylor expansions can be easily controlled. We expect that
extending these results to unbounded domains should be possible by following analo-
gous approaches in Kopec (2014). Throughout this section, we shall assume that the

numerical integrator X is ergodic, with unique invariant distribution 74¢,

4.1 Notation

We first introduce the notation which will be used in this section and the remainder
of the paper. Given a probability measure i on (T%, B(T?)) define L?(u1) to be the
Hilbert space of square integrable functions on T¢, equipped with inner product (-, -) M
and norm ||-|| .2 (). The subspace L§ () of L (1) is defined to be

Li(p) ={f € L*(p) : u(f) =0}, @.1)

We define L>°(1) (also denoted by L>°(T?)) to be the Banach space of essentially
bounded functions on T¢ equipped with norm ||-|| ;. (7ay. The subspace L§°(u) of
L°° (1) is defined analogously to (4.1). Finally, given a (signed) measure v on (T, B(T%))
we denote the total variation norm of v by ||v||ry .

4.2 Backward error analysis for ODEs

Backward error analysis is a powerful tool for the analysis of numerical integrators for
differential equations Sanz-Serna & Calvo (1994), Leimkuhler & Reich (2004), Hairer
et al. (2006). In particular, it is the main ingredient for the proof of the good energy
conservation (without drift) of symplectic Runge-Kutta methods when applied to de-
terministic Hamiltonian systems over exponentially long time intervals Hairer et al.
(2006). In our context it is useful to characterize the infinitesimal generator of the
numerical flow ®a; approximating the solution of the ODE (1.11). Indeed, given a
consistent integrator z,, 11 = ®a¢(2,,) for the ODE

dz(t)
dt

= f(2(¢)), (4.2)

10



the idea of backward error analysis is to search for a modified differential equation
written as a formal series in powers of the stepsize At,
dz ~
E:f(zj+Atf1(z)+A7§2fg(zj+..., Z(0) = 2 (4.3)
such that (formally) z,, = Z(¢,), where ¢,, = nAt (in the above differential equation,
we omit the time variable for brevity). The numerical solution can thus be interpreted
as a higher order approximation of the exact solution of a modified ODE. For all rea-
sonable integrators, the vector fields f; can be constructed inductively Leimkuhler &
Reich (2004), Hairer et al. (2006), starting from fy = f. In general, the series in (4.3)
will diverge for nonlinear systems, and thus needs to be truncated. We thus consider
the truncated modified ODE at order s
dz X ~
== fE) +AtHE) + AP fH(2) + ... + At £(2),  Z(0) = z. (4.4)
One can then show that z, = Z(t,) + O(At*™') for At — 0 for bounded times
t, = nAt < T. We note that the flow ®;(z) of the modified differential equation
(4.4) satisfies

- MOAtRCE ~
oD s = ( o D) p+O(AtMTY) Lp = Ry AtF+AP Pyt . +ALF,
k=0 )

4.5)
for all M > 0, and smooth test functions ¢, and where Fj¢ = f; - Vo, j =0,...,s
and fo = f. Note that the (’)(AtM“) terms in (4.5) are independent of At — 0 but
depend on M, s and ¢'.

4.3 Asymptotic bias of numerical integrators

The aim of this subsection is to describe the conditions on a numerical integrator for
(1.2) which are sufficient for the numerical invariant distribution 72 to approximate 7
to order 7 in the weak sense. These conditions relate directly to the expansion of one-
step numerical expectations in powers of At. In particular, denote by Pa; the transition
semigroup associated with X2?, i.e.

Pacf = E [f(R1) Xo = 2]
and assume that the following expansion holds

Parf = f+AtAof +. . +AF Ap  fA AT A f+ALIQ sy, q > k+1, (4.6)

where A;,7 = 0,1,---, k are linear differential operators with coefficients depend-
ing smoothly on m(x), its derivatives, and the choice of the numerical integrator. In
addition @ f A is a smooth remainder term depending both on f and A¢ while being
uniformly bounded with respect to At. The following theorem provides sufficient con-
ditions for expectations with respect to 72 to approximate expectations with respect
to 7 to order r.

!For all At small enough, the sum in (4.5) can be shown to converge for M — oo in the case of analytic
vector fields f; (and analytic test functions ¢), which permits to remove the O remainder.

11



Theorem 4.1. Consider equation (1.2) solved by a numerical scheme which is ergodic
with respect to some probability measure Tt and such that the one step transition
semigroup satisfies (4.6) with

Aimr=0, for j=1,---,r—1, 4.7

where q¢ > r. Then one obtains

fla)m(de) = f(x)ﬂ(dx)JrAt”/ Ar(=L) N (f=m(f))m(da) + At Ry v,
Td Td Td

(4.8)
where the remainder term Ry a¢ is uniformly bounded with respect to At, for At suf-
ficiently small.

Proof. The proof can be found in Abdulle et al. (2014). O

Remark 4.2. Integrators X Atsphich have weak error order r will automatically satisfy
condition (4.7) for j = 0,...,r — 1. However, the converse is not necessarily true, see
Abdulle et al. (2014) for further discussion.

An immediate corollary of Theorem (4.1) is that, if (4.7) holds, then for At suffi-
ciently small, the estimator 77 given by (1.8) satisfies

Jm Fxslf) = w(h)+ar | A (—L)7N(f — 7(f))m(da) + o(AL7).

4.4 Asymptotic variance of numerical integrators

The aim of this subsection is to derive a perturbation expansion in the small timestep
regime for the asymptotic variance of an arbitrary ergodic numerical integrator for
the dynamics (1.2). To this end, we consider a diffusion X; for which the central limit
theorem (1.5) holds. Moreover, we shall make the following assumption, which implies
that the corresponding numerical scheme X kAt converges to equilibrium exponentially
fast in L°°(T?), with rate which is uniform with respect to At.

Assumption 4.3. There exist constants C' > 0 and A > 0 independent of At such that,
Sfor At sufficiently small,

|PAer =720y < CEBN =Ry F € LT,

Remark 4.4. This condition is nontrivial to verify in general. For the specific case
of the Lie-Trotter integrator (1.10), when the reversible component of the dynamics is
integrated either using MALA or random walk proposals, it is shown in Theorem B.1
that Assumption 4.3 holds.

Given an observable f € C°°(T9) we consider 72t as in (1.8). We define the
rescaled asymptotic variance of the estimator %:%t as follows

o2:(f) = At Jim N Varza. ll f()?,ft)] : (4.9
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Here we rescale the asymptotic variance with At, to guarantee a well-defined limit
when At — 0. Assumption 4.3 implies that there exists a constant /' > 0, independent
of At such that

I—Pn |
At

<K, (4.10)

L8° (%At)

for At sufficiently small. In particular, we can express (4.9) as

) =280 (1= (1= Par) (=720 ) |~ Aaresil)

;T\At
(4.11)
It should be clear from (4.11) that there will be two contributions to the error between
5%,(f) and o%(f): one arising from the order of weak convergence of the numerical
method, and one from the time discreteness of the process X At Indeed, even when
one considers the exact discrete time dynamics defined by

X2 = X(nAt), neN,

the error between the corresponding asymptotic variance o%,(f) and o(f) will be
non-zero, despite the fact that both discrete and continuous time Markov processes have
the same invariant distribution. To isolate the different sources of error, we present first
Proposition 4.5 which quantifies the effect of the time-discreteness on the asymptotic
variance. In Theorem 4.6 we then quantify the error between the asymptotic variances
02,(f) and 5%, (f) of X5 and X2, respectively.

Proposition 4.5. For all ¢ € C>(T?), such that 7(¢) = O there exists a smooth
function Ry such that for At sufficiently small,

I—Pa\ " B . At [T—Pa\ " A2 (T—Pa\ " 5 5
(F52) e =0 G (F) Cos-S (T5R) (orerar,
(4.12)
where Ry is bounded, independent of At. In particular, for f € C*°(T?),
2 2 At? 2
PAull) = 02() + DL (F — (1)) ]~ () + oA,
Proof. The proof can be found in Section 8.2. O

Define the operator M to be the projector onto functions with mean zero with respect
to 72%, ie.
~At
Mardla) = 6(o) ~ [ owF>()dy.
T
The following theorem characterises the difference between the asymptotic variance
arising from the exact discrete time dynamics X2 and the numerical integrator X 2.

Theorem 4.6. Suppose that, for some k € N, k > 1, there exist operators Ay, . . ., Ay
on O (T%), bounded uniformly with respect to At, where A; = %72 =0, ,k—
1 and such that for all 1» € C>(T?) the semigroup ﬁAt satisfies (4.6). Suppose that

the corresponding invariant distribution T2t satisfies

Y(@) 72 (2)de = | (x)m(x)dz + At" Ry,
Td Td
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where v > k and Ry, is a smooth remainder term, uniformly bounded with respect to

At. Moreover, suppose that 13& satisfies (4.10). Then for all f, g € C*(T?) such that
w(f) = m(g) = 0, we have the expansion

1 D -1
<g,(1_A]§“) f> =<MAt97 <I_Af“> MAtf> + ARy (f.9) + o(AtF),

(4.13)
where
- B\ Lh+1 I—Pa\ !
Rl(fag): At Mny (M—Ak) ( AL ) fiMag Am-
4.14)
In particular
GAc(f) = oA (f) + 2At5 R (f, ) + o(ALY). (4.15)
Moreover, we can write the remainder term as
Ri(f.9)={((-£)"" JZE——AiA (=L) ' f +o(AtY),  (4.16)
1(J,9) = (k+1)! 0k 797T > .
where Moth = — [14 1 (y)7(y) dy.
Proof. The proof can be found in Section 8.2. [

Remark 4.7. It is interesting to note that contrary to the case of the asymptotic bias
in Theorem 4.1, the order of error for the discrete asymptotic variance in Theorem 4.6
depends crucially on the order of the weak convergence of the underlying numerical
integrator. Furthermore, we see from equation (4.15) that if the weak order of the
integrator is higher than two (k > 2) then the leading order error term between 63, ( f)
and the asymptotic variance of the continuous process o*(f) equals to the leading
order term of difference between o ,(f) and o (f).

To complete this analysis we shall consider the asymptotic variance arising from
a perturbed diffusion process X; having infinitesimal generator £, such that, for At
sufficiently small

Larf =Lf+A°Luf + At 'Ry, f € C=(TY), 4.17)

where ¢ > k-+1. We shall also assume that (L)~ is bounded in L& (7AY) uniformly
with respect to At. More specifically there exists K > 0, independent of At such that

o

for At sufficiently small. The following result characterises the influence of this per-
turbation on the asymptotic variance for small A¢. For numerical approximations of
X, for which a modified SDE Zygalakis (2011) is known, the following result com-
bined with Proposition 4.5 provide a convenient means of obtaining an expression for
the asymptotic variance 53, (f) of the numerical scheme in terms of o2 (f).

<K, (4.18)

LSO(’T?At)
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Proposition 4.8. Consider a diffusion process )A(:t on T with smooth coefficients and
generator L as which satisfies (4.17) and (4.18). Suppose that X; has unique invariant
distribution T2t which satisfies

/qp(x)%m(x) dzx = / Y(z)m(z) de + At" Ry, (4.19)

where v > k, and Ry, is a smooth remainder term, uniformly bounded with respect to
At. Then for all f € C°°(T¢) with w(f) = 0,

G2:(f) = 02, (f) + 2At° Ry + o( ALF). (4.20)

where »
Ry = <(_ZAt) Ma(—Ly) (—ﬁ)f1 7 MAtf> . 4.21)

ﬁAt

Moreoven we can express the remainder term as
Ry = ((=£)7 Mo(=£x) (~£)* £.1)_+ o(At"), (422)

where Mo = 1 — [, 9 (y) dy.

Proof. The result follows from an argument similar to that of Theorem 4.6. O

S Asymptotic Bias and Variance Estimates for the split-
ting scheme

In this section we derive asymptotic bias and variance estimates for the Lie-Trotter
splitting scheme (1.10) on T by applying the general results derived in Section 4. In
Section 5.1 we apply Theorem 4.1 to obtain an asymptotic bias estimate for the splitting
scheme. In particular, we find that when an unbiased method is used for the reversible
part of the dynamics, then the order of the bias of the splitting scheme depends only
on the properties of the deterministic integrator applied to the nonreversible part of the
dynamics. Furthermore, in Section 5.2 we obtain estimates for the asymptotic variance,
in the particular case where a Metropolized integrator is used to integrate the reversible
part of the dynamics. These estimates confirm the soundness of the spitting approach
as they imply that for At sufficiently small, the numerical asymptotic variance mimics
the good properties of the asymptotic variance of the exact dynamics.

5.1 Asymptotic bias of the splitting scheme

We now consider the Lie-Trotter scheme (1.10) on T¢. In this section we obtain esti-
mates for the asymptotic bias of the scheme by applying Theorem 4.1.

Theorem 5.1. Suppose that the integrator © n; used for the reversible dynamics is
invariant with respect to w and that that the deterministic flow ® a; satisfies a modified
backward equation of the form (4.3) where the vector fields f; satisfy

V- (fjlx)r(z))=0, j=1,...,r—1 (5.1
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Then, assuming ergodicity, the Lie-Trotter splitting (1.10) has order r of accuracy for
the invariant measure. More precisely, for all ¢ € C?(T?) and At sufficiently small

P(x)72(dx) = [ S(x)m(dx) + At"Cr g + A" Ry A, (5.2)
']I‘d Td

where C,. 4 and Ry a+ are uniformly bounded and

Crp = (frs (L) "H(o — 7(0))) -

Remark 5.2. From standard elliptic energy estimates, the remainder term Cy. 4 in (5.2)
satisfies the a priori bound

1Crsl < 207 I frll L2 1Nl L2 ()
where p is the L*(r) Poincare constant.

Theorem 5.1 follows from a direct application of Theorem 4.1 and is proved in Section
8.3. Suppose that the nonreversible dynamics is determined by (1.11) where ~v(x) =
B7(x), for B € R and for some smooth vector field 7. If Ua; is an integrator for
the flow with error order r, then it is straightforward to show that U a; will satisfy a
modified backward equation of the form (4.3) where the vector fields f; satisfy the
scaling f; = |B[I+1f;, with || f;l|z2(my ~ O(1) for j = 0,...,7 — 1. It follows that
if the conditions of Theorem 5.1 hold, then the leading order term of the bias is of the
form CAt"|B|" !, where C is independent of At and /3. This estimate provides a rule
of thumb for choosing the magnitude of the nonreversible perturbation (. Clearly, this
should be as large as possible while maintaining a given tolerance e for the bias. To
this end, for At < 1, 5 must satisfy

18] = emF1 At
In particular, assuming that |3| < At~" where k € R, we obtain an upper bound

1 loge r
= r+llog At r+1°

(5.3)

For € =< At, this rule suggests that /3 should have been chosen to be O(1) with respect to
At if a first order integrator is used to simulate the nonreversible dynamics. Employing
a higher order integrator however, permits larger values of |3|, in particular |3| =
At=96 for a fourth order scheme as considered in the examples of Section 7. We
emphasise that unless we have explicit control on the growth of the remainder term in
(4.5) as a function of 3, then (5.3) is only heuristic. Moreover, we are assuming that
the integrator WA is stable for this parameter regime. In practice, the stiffness of the
ODE (1.11) would impose additional constraints on f3.

5.2 Asymptotic variance of the splitting scheme

In this section we characterise the asymptotic variance of the splitting scheme (1.10).
Unlike the bias estimates obtained in Theorem 5.1 the resulting variance estimates will
depend on the choice of integrator for the reversible dynamics © . We shall focus
specifically on the case where O a; is simulated using MALA. We again shall assume
that the integrator ® o, for the nonreversible flow satisfies the following expansion

Dard = ¢+ AtA1d + At*Asp + ARy, ¢ € C(T?),

16



where A; = () - V is the antisymmetric part of £ in L?(7) and R, € C>(T?) is
bounded independently of At.

Proposition A.1 in the Appendix implies that the reversible integrator © 5, satisfies
the following perturbation expansion

Ontd = ¢ + AtG1¢ + At?Gog + A2 Ry, ¢ € C(TY), (5.4)

where G; = S is the symmetric part of £ in L?(7), Gs is given by (A.2), and R,
is a smooth remainder term bounded independently with respect to At. The following
theorem characterises the asymptotic variance of the Lie-Trotter splitting scheme (1.10)
for this choice of reversible dynamics. It is a direct application of Theorem 4.6 and is
proved in Section 8.4.

Theorem 5.3. Consider the Lie-Trotter splitting scheme defined by (1.10) where © a¢
is integrated using MALA and suppose that the nonreversible dynamics preserves the
invariant distribution up to order 2. Then for all f € C*(T?) we have

GA(f) = (N)+AL((—L)7HL? = 2(A2 + G1 AL+ Go) (L) (f = 7(f), f — 7(f))+o(At).

If moreover, the nonreversible dynamics is integrated using a second order scheme then
the O(At) term can be written as

(L) ((8% = 2G2) + [S, A)) (L) H(f = 7(f), f = 7(f)),. »
where S and A are the symmetric and antisymmetric parts of L in L?(r), respectively.

From the point of view of tuning the nonreversible Langevin sampler defined by
(1.10) the main conclusion of Theorem 5.3 is that, for At sufficiently small, the asymp-
totic variance of (1.10) is, to leading order, equal to the asymptotic varaince of the exact
dynamics (1.2). In particular, given an observable f, this result implies that a choice
of flow v which reduces the variance of a sampler based on (1.2) will have a simi-
larly beneficial effect on (1.10). One can thus leverage the theory detailed in Duncan
et al. (2016) and Lelievre et al. (2013) to design efficient samplers for a given target
distribution 7 and observable f.

6 Gaussian target distributions

In Sections 5.1 and 5.2, the asymptotic bias and variance for estimators based on Lie-
Trotter splitting scheme (1.10) were characterised in terms of stepsize At and magni-
tude of the nonreversible perturbation 3. This detailed analysis was however restricted
to the case of T¢—valued diffusions, as a similar analysis for R? would be significantly
more involved (see for example Kopec (2014)). To demonstrate that analogous expres-
sions for the asymptotic variance and bias can be derived in the R? case, in this section
we consider the class of linear SDEs given by

dX, = —AX,dt + dW, (6.1)

where X; € R?, W, is a standard d-dimensional Brownian motion. In the case where
— A is stable the dynamics generated by (6.1) are ergodic with respect to N (0, Xo)
where ¥, satisfies the Lyapunov equation Gardiner (1985):

AV o + X AT = 1. (6.2)
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We shall consider a vector field ~ satisfying (1.3) which is given by

v(z) = BJAz,
where J is a skew symmetric matrix, and [ is a free parameter. Hence (1.2) becomes
dX; =—(I — BJ)AX, dt + dW,. (6.3)

The fact that equation (6.3) is linear implies that is amenable to very detailed analysis,
as for certain classes of numerical schemes, one can find another linear SDE that the
numerical method solves exactly in the weak sense. We explain this idea further in
Section 6.1, while in Section 6.2 we extend the formula for the asymptotic variance
from Duncan et al. (2016) to linear diffusions with a general positive definite diffusion
tensor. This allows the use of the modified equation analysis presented in Section 6.1
not just to study the infinite time bias of numerical schemes applied to (6.3), but also
the asymptotic variance. This is discussed further in Section 6.3 in the context of a
simple two dimensional example. In particular, using the results from the previous
two sections, we are able to calculate analytically the expressions for the asymptotic
bias and variance of our numerical integrator, which allows in turn for an analytic
expression for the mean square error of the integrator at some time 7'. We then use this
expression to explore the bias-variance tradeoff as a function of the properties of the
integrator. This provides valuable insights, that we later use in Section 7 when studying
more complicated numerical examples.

6.1 Exact modified equation

Consider a one step method applied to (6.3)

X2 = BAXS + f(Atw), X&' =, (6.4)
where f(At,w) is the flow map for the noise process and B(At) € R¥*9 satisfies
B(0) = I. For an Euler-Maruyama discretisation of (6.3),

B(At) = I—AtI—-BJ)A,
f(Atw) = VAL,
where ¢ € RY satisfies &€ ~ N(0, I). The fact that (6.4) remains linear implies that the
solution X ,?t remains Gaussian at all times, assuming a deterministic initial condition

x¢. This implies Zygalakis (2011), that the numerical solution (6.4) satisfies exactly in
the weak sense at all times the following stochastic differential equation

dX, = —BX, + 22w, (6.5)
where B € R%? and 5 € RZx4 are defined by
= log(B(At))
B = ——=——~ 6.6
A (6.62)
B(AHYXB(ANT - = Bz + ZB7T, (6.6b)

where Z = E(ffT). For sufficiently small At one can show that (6.5) is ergodic with
respect to A(0, ") where T satisfies the following Lyapunov equation

Br+I17B=%. (6.7)
Thus, by solving this equation we can obtain an expression for the invariant measure

that the numerical scheme is ergodic with respect to, and hence have an explicit ex-
pression for the asymptotic bias of the numerical method.
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6.2 Asymptotic variance

By extending the results from Duncan et al. (2016) one can calculate the asymptotic
variance for (6.5). In particular if we consider the SDE (6.1) our objective is to derive
an explicit expression for the asymptotic variance o2( f) of

1 [t <
=1 [ (R
t Jo
where f is a function of the form
fl)=a -Mx+ L -z+ K, (6.8)

for some M € R4 I, € R and K € R. To do so we make use of the following

sym>
result which is a slight generalisation of (Duncan et al. 2016, Proposition 1).

Proposition 6.1. Consider the linear diffusion defined by the SDE,
dXt = —AXt dt +o0o th, (69)

where W, is a m-dimensional Brownian motion, o € RY*™ such that ¥, = oo '

is positive definite and — A is stable. Then for the observable of the form (6.8) the
asymptotic variance o*(f) of the estimator 7 (f) for w(f) is given by

o?(f) = ATr [Qoo (/oo e~ ATt M AL dt) QOOM} +2L-A'QuL,
0

where Qo is the covariance of the invariant distribution of Xy, given by the solution
of the Lyapunov equation
AQOO + QOOAT =3

The proof of this result is deferred to Appendix C.

6.3 Example
We now consider the linear diffusion (6.3) where
a 0
=(52)

for which we know that the stationary covariance satisfies

= 0
Qoo:<2a )
U

We now study the properties of integrators where the ®a; and © o; in (1.10) are given
by

2
Dpi(z) = (I +AtBIA + %(ﬁJA)Q Fo Ap’;p(BJA)P> 2, (6.10a)

Oat(z) = e Mzt ond, (6.10b)

where

At
) 1
UAtO'Zt :/ e—A(At—s)Ee—AT(At—s)ds _ % [1 _ e—QaAt} T.
0
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More precisely we solve the reversible part of the dynamics exactly, while we apply a
Taylor-based method of order p to the nonreversible part of the dynamics. We note here
that the exact solution of the reversible part of the dynamics is only possible because
the dynamics are linear. A further consequence of the linearity of the dynamics is
that it is possible to conserve the invariant measure for the reversible part by using the
f method with = % see Abdulle et al. (2014) . Hence we will also consider the
integrator O a, (z) given by

Oni(z) = <I+ A;A) - [(1 - A;A> z4 \/A*tg} (6.11)

The other interesting feature of (6.11) is that even though not exact like (6.10), when
metropolised, proposals generated from by (6.11) will be accepted almost surely. For
nonlinear problems, the reversible dynamics cannot be integrated exactly, and it is
impossible to construct an exact solution like (6.10b) or a solution like (6.11) that con-
serves the invariant measure, and hence always gets accepted in a Metropolis step.
Hence one would replace these integrators with one that conserves the invariant mea-
sure by introducing a Metropolisation step, and Theorem 5.1 would still hold.

Study of the invariant measure bias. We now study the properties of the numerical
invariant measure using (6.6). We use Mathematica to symbolically calculate the solu-
tions to (6.6) and then obtain an expression for the numerical invariant measure, when a
first and a second order numerical method is used to solve the nonreversible part of the
diffusion by solving the corresponding Lyapunov equation (6.7). We note here that in
order for this equation to make sense one needs B to be positive definite, which clearly
gives rise to time-step restrictions as a function of «, 5. We now present in Tables 1
and 2 exact expressions for the first element of the covariance matrix of the numer-
ical invariant measure based on the Lie-Trotter splitting (1.10), for different ordering
of the splitting and different choices of integrators for the reversible and nonreversible
part. Furthermore, in Figure 1a we plot the 2-norm of the difference between the co-
variance matrix of the numerical method and the true covariance matrix Y., when the
nonreversible part is solved first and when the f-method with § = 1/2 is used for the
reversible part’. As we can see the order of convergence is always odd. This was also
observed in Abdulle et al. (2015) and it relates with the fact that for the deterministic
methods used here, the coefficient f,, in Theorem 5.1 is always zero when p is even,
hence giving the extra order of convergence observed in Figure la. Additionally in
Figure 1b we plot the asymptotic bias of At when a numerical integrator of order 1 is
used to solve the nonreversible part for different values of 5. As we can see, the larger
the value of 3 the larger the asymptotic bias.

Study of the asymptotic variance. We now study the properties of the asymptotic
variance using (6.6). In particular the idea is that since our numerical solution satis-
fies exactly in the weak sense the corresponding modified equation then it is enough
to look at Proposition 6.1 where A and ¢ are now replaced with the modified coeffi-
cients (6.6). Similarly to the case of the invariant measure bias we use Mathematica
to symbolically calculate the solutions to (6.6) and then obtain an expression for the

2We have not included any of the other possible combinations of ordering of splitting and numerical
integrators for the reversible part as the results are qualitatively the same
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Reversible first Non reversible first

O ) ) o 2ear
2a[l—e 298 (11a?f2A1%)] | Za[l—e 2081 (11a2B2AL2)]
(1_872aAt)(a4ﬁ4At4+4) 2(1_67204At)
=2
p 2a(e— 208 (0 BIAI14)—4) a[i—e 208 (A+ ot BEALY)]

Table 1: First component of numerical invariant covariance when the reversible part is
solved exactly

Reversible first Non reversible first
p=1 4+402 7 AL? 4
8a—4a2B2At+4a3B2At2 —atB2AL3 S8a—4a2B2At+4a3 B2 A2 —atB2AL3
B 4(4+a’ B ALT) 16
p=2 a(32—a3BrAt3(2—aAt)?) a(32—adBrAt3(2—aAt)?)

Table 2: First component of numerical invariant covariance when the reversible part is

solved by -method for 6 = 1.

10° 10?

10!

[T

—= o W e Ot

ant measure error

107!

Invari

1072

. o : < 1073
)2 10T 10 1072 10T 100

At At

10-12
(1[

(a) Error when using nonreversible integrator of order (b) Errors for different values of 3.
p=1,2,3,...,9

Figure 1: Accuracy of the numerical invariant measure (covariance matrix error) of the
Lie-Trotter splitting scheme, for different orders p of deterministic integrator, and for
different values of J respectively. A first order scheme is used in the second figure.

asymptotic variance 3, when a first and a second order numerical method is used to
solve the nonreversible part of the diffusion. In particular, we take K = 0, L = 0 and

1 0
u=(s5)
in (6.8), to find that when the reversible part is solved exactly (or with the #-method)
that for p = 1, we have

B2 +2 N (38° +78* + 682) At
 4a® (B +1) 8a2 (82 + 1)*

o (f) +0 (At2) )

3This again only makes sense if Bis positive definite which gives rise to restrictions to At as a function
of o, B
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independently of the ordering of the splitting, while for p = 2 we have independently
of the order of the splitting

B 8242 - BLAL
S 4d® (B2+1) 12a(B2 +1)°
when the reversible part is solved exactly, while when solved with the § method
B2 +2 (58* + 8%+ 2) At?
= 4a3 B2+1) 48 (a(62+1)2)
again independently of the order of the splitting. We note here that these results agree

with Proposition 4.8, since for p = 1 the leading order perturbation in terms of the
continuous time variance is O(At) while for p = 2 is O(At?).

Falf)

+ 0 (At?),

Falf)

+ 0 (At%),

Mean Square Error. Having obtained analytical expressions for the asymptotic bias
of the invariant measure as well as for the asymptotic variance of the corresponding
numerical schemes, we combine them in order to study the mean square error. More
precisely, decomposing the MSE into bias and variance,

E[Fr(f) - n(f)I* = EFr(f) - 7(f))* + E(Fr(f) - E7r(f)) = it + 57,
we approximate fi7 by the invariant measure bias, while on the other hand

/0\2
G2 o~ }f) .
We now plot in Figure 2a the MSE when a first and a second order numerical method is
used to solve the nonreversible part and the reversible part is solved exactly. In particu-
lar, we choose our timestep At = 1074, =1, T = 10% and we study the influence of
[ on the MSE. As can be seen in both cases there is a range of values of the parameter (3
for which the MSE is reduced almost to the theoretical minimum O'J% (c0)/T attainable

using this choice of dynamics Duncan et al. (2016), where 0]20(00) = J? (0)/2 = 1.
This range of parameters is wider in the case of case of the higher order integrator since
the asymptotic bias is O(At?) and will not dominate the MSE for a wider range of 3
values. However, one would expect that as the simulation time 7T is increased this ben-
efit will be lost, as the corresponding reduction in variance becomes less significant.
This tradeoff is indeed illustrated further in Figure 2b. Here, the MSE is plotted as a
function of time when a second order integrator for the nonreversible part is used and
At = 1072, We see that while increasing /3 leads to smaller MSE initially, eventually
the additional bias (as also observed in Figure 1b) will be the dominant contribution to
the MSE, and thus for large enough 7 the exact scheme (i.e. 5 = 0) will always have
better MSE.

7 Numerical experiments

In this section, we perform a number of different numerical investigations that illus-
trate the superiority of the nonreversible Langevin samplers over standard Metropolis-
Hastings algorithms for a fixed computational budget. In particular, we define compu-
tational cost here in terms of number of density evaluations which is the dominating
cost in high dimensions. To this end we ensure that every comparison is made for the
same computational cost, i.e., same number of density evaluations.
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(a) MSE for fixed time. (b) MSE for varying time.

Figure 2: MSE for different methods applied the nonreversible part as a function of 3
and T'.

7.1 Warped Gaussian distribution

As a first numerical we consider the expectation of an observable with respect to the
following two dimensional distribution

2

m(x) x exp (lelO — (zg + ba? — 1001))2> , (7.1)
where x = (x1,23). The parameter b > 0 controls the degree of warpedness, and is
chosen to be b = 0.05. Our objective is to estimate 7(f) when f(z) = |z|?>. The
nonreversible flow ~y is chosen as follows:

(z) = IV logn(z), J—= <_01 (1)> .

In Figure 3, we plot characteristic trajectories of MALA as well its nonreversible coun-
terpart (for 5 = 25) starting from the initial point x = (15,2). The figure suggests
superior mixing of the nonreversible samplers, which improves further with increas-
ing (3 values. In Figure 4 the mean-square error is plotted as a function of stepsize
for different values of flow strength 5. The reversible part of the Lie-Trotter scheme is
simulated using MALA, RWMH and Barker rule in Figures 4a, 4b and 4c, respectively.
The “exact” value of 7( f) used to compute the MSE is obtained via adaptive Gaussian
quadrature, accurate up to 10719, In accordance with the results of Theorems 5.1 and
5.3, the MSE is a tradeoff between bias and variance. For a fixed computational bud-
get as At decreases, the bias arising from the discretisation of the nonreversible flow
decreases. However, the variance simultaneously increases as the total simulated time
T = NAt is reduced. This competion between bias and variance suggest an optimal
choice of timestep At which minimises the MSE. This tradeoff is further exacerbated
when [ is increased. Nevertheless, for an appropriate choice of 5 the MSE can be up
to an order of magnitude lower than that of MALA, at the same computational cost.

7.2 Logistic Regression

Let X be am x d design matrix comprising m samples with d covariates and a binary
response variable Y € {—1,1}™. A Bayesian logistic regression model of the binary
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MALA
Lie-Trotter

—20 —10 0 10 20

Figure 3: Typical trajectories for MALA and Lie-Trotter splitting scheme applied to
the warped Gaussian distribution (7.1), with computational budget of 3200 density
evaluations. Both schemes started from = = (15, 2) depicted by a blue dot.

2.0 ]H:A’J? 3.0 3.5 0 5 2.0 VHA’J'\ 3.0 3.5 0 5 20 »HrA(lr
(a) MALA for the reversible part (b) RMWH rule for the reversible (c) Barker Scheme for the re-
part versible part

Figure 4: Comparison of the MSE between MALA and different nonreversible sam-
plers applied to the warped Gaussian distribution (7.1). The computational budget is
setto N = 3.5- 102 density evaluations, and 4*" order Runge-Kutta method is used for
the nonreversible component.

response is obtained by the introduction of the regression coefficient € R¢. For the
sake of exposition, we shall assume a Gaussian prior of 6, i. e.,  ~ N (0,%). The
posterior distribution 7(0|X,Y") is given by

i T 1
7(0)(X,Y)) o exp (Z Y07 X; —log (1 + ¢ %) — 20Tz:19> : (7.2)

i=1

In Figure 5 we investigate the use of the Lie Trotter sampler applied to this prob-
lem for the Pima Indians* dataset obtained from the UCI machine learning reposi-
tory. The skew symmetric matrix J is chosen by generating a random permutation
o(1),...,0(d) and setting

Jo(i),oi+1) = Land Jo(i11),00) = —1,

4Here m = 768,d = 9.
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fort = 1,...,d — 1, and zero elsewhere. In Figure 5a we plot the first estimator
7Rt(61) with 95% confidence intervals for different values of 3 and stepsize. Each
point in the plot costs 3.5 - 103 density evaluations. To provide a comparison against
the truth, an optimally tuned MALA scheme was integrated over 107 timesteps. In Fig-
ure 5b we plot the effective sample size (ESS) of the Lie-Trotter scheme for different
values of 8 and At. The markers denote the median value of the ESS with the mark-
ers denoting the 5% and 95% percentiles. We note however that there would typically
be a very small number of observables for which the nonreversible scheme offers no
advantage. This agrees with the theory detailed in Duncan et al. (2016) which char-
acterises the minimum attainable variance reduction in terms of the projection of the
observable f on the nullspace of the operator JVV (z) - V. As J is chosen randomly,
there will always been a number of observables which are close to this subspace, and
thus the nonreversible dynamics offer no advantage. One possible remedy around this
is to periodically resample the nonreversible matrix .J, but we do not investigate this
here.

0.0 10*

108

ESS

=§ = MALA Reference
—2.5 -§- MALA N
~3¥— Lie-Trotter § = 100 10°
—3.0 ~$— Lie-Trotter 8 = 200
~§— Lie-Trotter 8 = 400
—3.5 Lie-Trotter 3 = 600
Lie-Trotter 3 = 800 Lie-Trotter 3 = 800
—1.0 10!
2.0 2.5 3.0 3.5 ] L5 2.0 2.5 3.0 3.5 LO L5
—log At —log At
(a) E(Y7,1) vs Step-size (b) ESS vs Step-size

Figure 5: Confidence interval for an estimator of Y7 ; and ESS for estimators for 7 (6:),
1 = 1,...,9 for logistic regression of the Pima Indians data set. Each data point
in these plots is set to 3.5 - 10® density evaluations. The results are compared to an
optimally tuned MALA simulation run for 107 density evaluations.

7.3 Spatial model

We now consider a high dimensional target distribution related to inference for a log-
Gaussian Cox point process previously considered in Mgller et al. (1998). In particular,
given the location of 126 Scots pine saplings in a natural forest in Finland, we wish
to infer the average intensity of a corresponding Poisson point process. Following
Christensen et al. (2005), we consider a discretised version of the model where the
spatial region is discretised to a 64 x 64 regular grid. For each 4, j X; ; is the random
variable counting the number of observations in the (¢, j)-cell ,and hence the dimension
of the problem is d = 642 = 4096. The observations are assumed to be generated by a
Poisson point process with unobserved intensity A; ;,4,j5 = 1,--- ,64. Given the A; ;
the random variables X; ; are assumed to be conditionally independent with Poisson
distributed mean mA; ;, where m = 1/4096 is the area of a single cell. We impose a
log-Gaussian prior on A; j, more specifically

A;j =exp (Vi)
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where Y = (Y] j,4,7 =1,---64) ~ N(p1,X) where

=)+ (G = PN
648 ’

Sijirg =0 {— i,5,i',j' =1---,64.

The posterior distribution is thus given by

64

Flz) o< [] exp{(wijui,) — mexp(yi;)}exp{—0.5(y — u1)"S ™" (y — pl1)}.
ij=1

Due to the poor scaling of the posterior distribution in Christensen et al. (2005) a
reparametrization of y is introduced to improve the mixing of the Metropolis-Hastings
scheme. This procedure is expensive with a computational cost of O(d®). However, in
the case of the nonreversible samplers, the nonreversible perturbation compensates for
the poor scaling, thus rendering this reparametrisation unnecessary.

In Figure 6 we plot an estimator of E(A | 2) using MALA and its nonreversible
counterpart respectively. For this computation the skew-symmetric matrix J was gen-
erated randomly as in the logistic regression example. Due to the large number of
covariates, for any given random choice of .J, there would be a small number of co-
variates for which the nonreversible scheme does not offer significant advantage over
MALA, as described in Duncan et al. (2016). To better understand the effect of the
nonreversible flow on an average covariate, we generate 10 independent random skew-
symmetric matrices, and compute the average ESS over J. The results are presented
in Figure 7. In Figure 7c a histogram of the ESS over all covariates is plotted for both
MALA and the splitting scheme for specific choices of At and 5. We observe that the
ESS for the nonreversible scheme is orders of magnitude better than MALA. To illus-
trate the dependence of ESS on timestep, similarly to the case of logistic regression,
in Figure 7b we plot the median ESS for different choices of timestep. It is clear that
increasing § and At as much as possible increases the ESS. However, this comes at the
cost of increasing bias as can be observed in Figure 7a. Nonetheless, it is evident that
the nonreversible sampler significantly outperforms the MALA scheme.

: L . ’
40 50 60 10 20 30 50 60

(a) Average intensity estimated using MALA (b) Average intensity estimated using Lie-Trotter
scheme

Figure 6: E(Y; ;) estimated using different schemes. The computational budget is set
to N = 3.5 - 103 gradient evaluations.
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Figure 7: Results for the inference of the log-Gaussian Cox process. The computational
budget is set to N = 3.5 - 103 density evaluations. A reference MALA simulation run
for 107 density evaluations is provided for comparison.

8 Proofs of the main results

In this section we prove the main results of the paper. In particular, in Section 8.1 we
prove the geometric ergodicity of the splitting scheme (1.10), while in Sections 8.3
and 8.4 we prove the results related to the asymptotic bias and variance of the splitting
method.

8.1 Ergodicity of the splitting scheme

Here we prove the theorems and corollaries stated in Section 3.

Proof of Theorem 3.2. We verify the criteria for geometric ergodicity formulated in
Chapters 15 and 16 of Meyn & Tweedie (1993a).

1. We show that Pa(z, -) is m-irreducible. Let A C R? such that w(A) > 0, then
Paite, ) = [ asiy@aiw)a(®ai(e). ) dy
A
+1a() / gne(z | Dar(@)(1 — alz Bay(2))) dz > 0,
R

which implies that Pa; is m-irreducible.

2. We now show that every compact set C' of positive measure is small. To this
end, let C be such a set and B a measurable subset of C. Then D = C U
®A+(C) is also a compact set of positive measure. Since the target density 7 and
proposal ga¢(y|z) are positive and continuous for all z, y, applying (Mengersen
& Tweedie 1996, Lemma 1.2) implies that there exists 7 > 0 such that

Pay(z,B) > nw(B), BC D,z e D.
In particular,
Pay(z, B) = Pay(®Pas(z), B) > qr(B), BCC,zeC, (8.1

so that C' is small. Aperiodicity of the chain follows immediately from (8.1).
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3. To complete the proof we show that Pa; satisfies a Foster-Lyapunov condition
for the Lyapunov function V. To this end using (3.4), given z € R%:

PaV(z) < AV(Day(x)) + ble(Par(x))
<AV (@ae(x)) + bl@;i(c)(x)
S AV (@) + A (V(Pas(@)) = V(@) + bl 1 (o (@)-

By Assumptions 3.1(2) and 3.1(3), there exists a compact set D C R? and 0 <
¢ < 1such that ®;(C) C D and moreover

AV (z) + X (V(®ay(x)) — V(x)) < V(x), xeRI\D,

which implies that N
PaV(z) < V() 4+ blp(x),
as required.

O

Proof of Corollaries 3.3 and 3.4. By (Roberts & Tweedie 1996, Theorem 3.2), the RWMH
chain satisfies a Foster drift condition for the Lyapunov function V() = 7~'/2(z), so
that (A2) of Assumptions 3.1 holds. In particular, for U(z) = log w(x) we have

V(®ai(z) = V(z) _ oU(@ar(@)-U@)/2 _
V(z) ’

so that, by (3.6) given At > 0, there exists M > 0 such that (V (¥ a.(2))-V (z))/V(z) <
d for all || > M. Thus, Assumption 3.1(2) follows immediately. Moreover, we note
that (3.6) implies that there exists K > 0 such that

|Bai(2)] — K < |z] < |Pae(z)|+ K, xe€RY,

from which 3.1(3) follews immediately. Hence, the conditions of Theorem 3.2 all hold,
and thus the process X2 is geometrically ergodic.

In the MALA case, provided that the conditions of (Roberts & Tweedie 1996, The-
orem 4.1) hold, then the chain satisfies a Foster-Lyapunov condition for V' (x) = eslel
for s > O sufficiently small. If we consider

V(®ai(2)) V(@) _ so@)—lal) < gs(@@)]-le)
V(z) - ’

then Assumption 3.1(2) follows immediately.

Suppose now that v = JV7%, where J = —J and a > 0. Suppose ®a,(x) is
an explicit Runge-Kutta discretisation of the nonreversible dynamics having s stages.
Then we can write

ar(z) =z +hY_ biki(z), (8.2)
=1
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where
1 v(z)
ko(x) = v (2 + hwg 1 k1 (x))
3 v (@ + h(ws 1k (z) + w3 2k2(7)))

ks(z) =7 <x +h i w“kl(x)> ,
i=1

where (w; ;) is the Runge-Kutta matrix associated with the discretisation. By (3.7)
there exist positive constants o/, K’ and K such that

ki(@) < y(@)| < K'|Vr®(@)] < Kim® (x).
Suppose now that there exists constants Ko, ..., K;_1 such that
lk;(z)| < K;n®(x), zeRY j=1,...,i—1

By (3.7) the matrix Vy = (0,,7;(x)), ; has bounded components in R? and so apply-
ing the mean value theorem to every component of -, it follows that

1—1
ke @)] < [2(@)] + b (suﬂg Vv(xnmaz) S Ju 1k ()] < Kom® (a),
vER? =1

for some constant K. It follows by induction that |®a,(z) — z| < Kn® (x), for all
x € RY, which implies (3.6). The corresponding result for v given by (2.5) follows
similarly. O

8.2 Asymptotic variance of numerical integrators

Here we prove Proposition 4.5 and Theorem 4.6 which characterises the error in the
asymptotic variance for an arbitrary numerical integrator

Proof of Proposition 4.5. Tt follows from the maximum principle that the operator (—£)~*
is bounded on L° (7). Similarly the operator At(I — Pa;)~" is bounded on L&°(7),
uniformly with respect to At.

Let ¢ € C°°(T4) with w(¥)) = 0. There exists R, smooth and bounded uniformly
with respect to At such that

I — Ppy
At
provided that At is sufficiently small. Hence using (8.3) we obtain

ot = (T2 () ot

C(I—Pa T At (T—Pa\ " A2 (T—Pa\ " o,

_( At ) ¢+2< At ) Lo+ =5 At £
o (I —Pag\ "

+At3 (AtAt> R(,L)—lw.

2
) b= L — %c% _ %ﬁ% + AR, 8.3)

(8.4)
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Since both sides of (8.3) have mean zero and w(ﬁiw) = 0 for 7 > 0, it follows that
7(R(_zy-1y) = 0. Thus the remainder term in (8.4) is well-defined and uniformly
bounded with respect to At. Now let f € C°°(T%), then similar to (4.9), the asymptotic
variance of the estimator At/N ! 271272—01 F(XAY) for the discretized exact process is
given by

oAl =2 < (F52) U=~ w<f>> - AtVar,[f].

™

By (8.4) it follows that
) = 2(~0) 7~ (). S (1),
v At<(1 ) O g - w(f)>

At?
3

—1
<(I ) (LPU m( - w(f)> ARy~ Atvarg f]

™

where Ry is a remainder term depending on f. Since f is smooth, we can iteratively
apply (8.4) to the second term and third terms on the RHS obtaining

o f) =2((=L)"(f == (), f—=(])),
+AL(=L) (L) = 7(f), f—7(f)), — AtVarg[f]

+ 280 = (S~ 7,
+ At Ry
2 AtQ 3n
=0 () + = AL = 7)), f = 7(f)r + ARy,
as required. O

Proof of Theorem 4.6. The proof of this result follows closely that of (Leimkuhler et al.
2013, Theorem 2.9). To this end, given f,g € C°°(T) such that 7(f) = 7(g) = 0,

consider
I— Py
< ( A7 ) fr9
Since (Lo )71 f has mean zero with respect to 7, then

I— P\~ _ [ (I=Pa\"
<< A7 ) f,g> —<< A7 ) fiMacg
I— P\ ;
_ <( ) f,MM>W+At Ry

for a smooth remainder term Ry , bounded uniformly with respect to At. Using the

30



expansion (4.6) for the semigroup ﬁm:
I— Py " - P\ T—Px;\ (T —Pa\ "
M, = M, ! M
<< At ) [ Atg>AAt << A7 ) At( A7 )( A7 ) fs At9>AN
~ -1
I — Py I—Pp, L[ LRt I—Pa\ "
= M AtP [ ——= — A M
<< A7 > At( AT t((k—f—l)! k A7 [ Marg N
~ —1
I-P
+Atq1<< At) MAtRfaMAtg>
At
- NN
_ — Pat
—<< A7 > MAtf7MAt9>AAt
PN
I P L I—Pa\ 7"
Atk Mag | — Ay, M,
+ At << A7 ) At<(k+1)! k A7 [, Marg N

~ —1
I-P
+ Ata! << AtAt> MAtRfaMAtg> )

N

FAL

(8.5)
where Ry is a smooth function depending on f, bounded uniformly with respect to
At. By Assumption 4.3, the coefficients of the At* and At9~! terms are bounded
uniformly with respect to At. Equation (4.13) then follows immediately, and thus
(4.15). Noting that Ma; = Ma: My then by applying (8.5) with

£k+1 I—P -1
f:<(k+1),—MoAk>< AtAt> f, and g=g,

we obtain

o\ -1
/(1P LrH I—Pa\ "
Ri(f,9) = << AL ) My <(k+1)' — MyAy AL fiMag N

B -1 k+1 - -1
() ) (5) ) o amoma

for some smooth, uniformly bounded remainder term Rs. We now apply (4.12) to the
discrete generator At~!(I — Pa;) to obtain

() (o) () 1) = (o () o1

+ AtRS(fvg)v

s

for a smooth bounded remainder term R3, from which (4.16) follows.

8.3 Asymptotic bias of the splitting scheme

Here we prove the results from Section 5.1
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Proof of Theorem 5.1. Assume that the transition semigroup associated with XAt gat-
isfies the expansion (4.6). In order to prove the first part of Theorem 5.1 it is enough to
show that

Aimr=0 for j=1,---7—-1, Arm = div(f,m). (8.6)

The result then follows immediately from Theorem 4.1 using the identity
/ Ap(2)m(z)dz = — | () div(fr(2)7(2))dz. (8.7)
Td Td

We now start with the calculation of A;. In particular, given ¢ € C* (’]Td) and z € RV,
using the semigroup property of the Markov process we have

E {(;5 ()?1“) | XAt = 9:} —E[6(®ar 0 Opr())] = eAtEsmum (30 P a,)(x), (8.8)

where e2t£s.num ¢ denotes the numerical flow generated by the numerical method ap-
plied to the reversible part of the dynamics (1.12). We next recall the generator (4.5)
of the truncated modified equation (4.4) of the integrator ® a¢,

Lpp=Fy+AtF ¢+ ...+ At"Frp+ A" Ry,

where R is a smooth remainder term bounded uniformly with respect to At and where
we define the differential operators F;j¢ = f; - V¢ (with fo = f). We then have

cAn) o " ARLY YNLY:
E[qﬁ) (XlAt) |X0At :x} _ (Z t k?7num> (Z At}ff[)) ¢($)+Atr+2R:b

k=0 k=0

= ¢(x) + AtLp(x) + Y AT A p(x) + AR,
k=1

for a smooth remainder term R’¢ and where

k+1

_ k+1—j 1 e
Ak_ZES,num( Z i!(k—l—l—j)!Fnl Fﬂi)’
=0 1<i<y
ny + ng + +ng=4—i
where the second sum above is over integers 71, . .., n; > 0 and is equal to the identity

I when j = 0. We obtain for all k£ > 1,

k+1
. 1 . SN .
Air=3 2. mFm'“Fm)“sﬂum) .
j=0 1<i<j

ny+mng +---+n; =35 —i

Now since the integrator applied to the reversible part preserves the invariant measure
we have £ .., m = 0 which together with £r =0, ¢ =1,---r — 1 implies that for
k < r, the only possibly non-zero term in the above sum is obtained for j = r+ 1,k =
r,i =1, 1ie., F'm = div(f.7). Hence, we deduce (8.6) which permits to conclude the
proof. O
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8.4 Asymptotic variance of the splitting scheme
Here we prove the results from Section 5.2.

Proof of Theorem 5.3. Clearly, Assumption 4.3 holds immediately from Theorem B.1
in the Appendix. Consider the one step semigroup Pa; = Oa:Pa; be the one-step
semigroup corresponding to the Lie-Trotter splitting scheme (1.10), where O is the
one-step semigroup integrated by MALA. By Proposition A.1 one obtains

Prip = ¢+ AtAgd + At2 A1 ¢ + At*? Ry,
where

Ag=A1+G1 =L
A=Ay + G AL+ Go,

and where R is a smooth remainder term, bounded uniformly with respect to At.

Since the integrator ® A is assumed to preserve the invariant distribution up to order 2,
and © A preserves 7 it follows that

(A2 + GiAr + G2) ¢) =0, ¢ € C(T.
Applying Theorem 4.6, it follows that for f € C>(T9),
GAc(f) = oA (f) + AtR; + o(At),
where
Ry =2((=L£)""(L%/2 = (A2 + G1AL + Go) (L) H(f —7(f), f —7(f)),. -
Finally, invoking Theorem 4.1 we obtain
Gar(f) = 0*(f) + AtRg + o(At),

as required.

9 Discussion

In this paper sampling methods based on nonreversible diffusions have been proposed
and evaluated on a range of different inference problems. The development of these
methods is an attempt to improve on existing MCMC methodology in the case of target
densities that might be of high dimension and exhibit strong correlations. The key idea
behind these samplers is the exploitation of the irreversibility of an underlying diffusion
process, which leads to reduced asymptotic variance. This becomes possible through
a careful discretisation of the underlying SDE that introduces a controllable bias, but
more importantly mimics the reduced asymptotic variance of the nonreversible diffu-
sion.

From a practical point of view, the careful balancing of the bias and variance achieved
by the nonreversible samplers leads to much more efficient sampling than MALA. In
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particular, across all our experiments we observe improvements of two orders of mag-
nitude in terms of effective sample size. Moreover, all our comparisons are being
made on the basis of the same number of density evaluations used in the nonreversible
samplers and MALA. Furthermore, in the case of the log- Gaussian Cox model the
nonreversible samplers are able to achieve this dramatic improvement in terms of the
ESS without the need of an expensive O(d?®) reparametrisation, which is also the com-
putational bottleneck in high dimensions for more sophisticated sampling algorithms
such as MMALA Girolami & Calderhead (2011).

There exist a number of different directions that one could extend this work. In partic-
ular, when dealing with the nonreversible part of the dynamics further computational
benefits may be achieved with the use of adaptive integration. Furthermore, one could
replace the Metropolis-Hasting scheme used for simulating the reversible part of the
dynamics by appropriate numerical schemes Abdulle et al. (2014) that preserve the in-
variant measure to high order. In this situation one would expected the results of our
analysis to still hold which is important as the corresponding nonreversible samplers
would allow for greater flexibility in the presence of big data, where traditional MCMC
methods might become prohibitively expensive.
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A Expansions for the One-Step Semigroups of the Re-
versible Dynamics

In this section we present the expansion of the one-step transition semigroups for
MALA, which is directly obtained from Fathi et al. (2015), Lelievre & Stoltz (2016).
We shall define U = — log 7 to be the potential corresponding to the positive target
density 7.

Proposition A.1. (Fathi et al. 2015, Lemma 1) Let Pay denote the one-step transition
semigroup corresponding to the MALA scheme, then for all smooth i : T — R:

(Pac — Dvo(x) = AtGrp(x) + At2Gor + AtY?r(x),

where

Gy = —=VU - Vi + Ay, (A1)
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and
Go(a) = VU (@) - TV () VU (x) — VU (x) - VAG(2)
e—l9l?/2 (A2)
2n) dg,

+ oA -2 / (1A T(x,9)) (Vib(x), g)

and where |r| < C, uniformly in 0 < At < 1. Moreover, for At sufficiently small,
the acceptance probability of the proposal y = x — VU (z) At + v 2Atg, where g ~
N(0,I) and x satisfies

oz, — VU (x)At + V2Atg) = 1 — At?/? [G1)a(, Q)LL + At?*r(x,g), (A3)

where

Gaa(2.9)) = =3 =TVVU() : g% + —=VU() - VWU @)

and [a], = max(0,a).

+

B Exponential Ergodicity the Splitting Scheme

In this section we shall show that Assumption 4.3 holds when the reversible dynamics
is simulated using a Metropolis-Hastings scheme using MALA. To establish this, it
is sufficient to show that a uniform minorization condition holds. More specifically,
there exists At* and & > 0 and a probability measure v such that for any bounded
measurable non-negative function f and = € T¢,

P/ @) > @ / fdv, (B.1)
']I‘d
where 0 < At < At*.

This approach will follow very closely (Fathi & Stoltz 2015, Sec. 4.4), and we shall
only illustrate the slightly different set-up of the proof here.

Theorem B.1. Consider the Markov chain )A(Xt defined by (1.10) where the reversible
dynamics ©a; are simulated using a Metropolis-Hastings scheme with MALA (3.2).
Then, for At sufficiently small, the uniform minorisation condition (B.1) holds, and as
a result, Assumption 4.3 holds for X},.

Proof. 1t is straightforward from the construction of the Lie-Trotter process (1.10) that
we can write

X2 = XM+ Gy + Fo, (B.2)
where
G = VIRT S 1 [ < o (a0 (K2 0 (@50 (527) )
and -
P = AZ e < (P (T87) W (P (%20) 00) )| VU (e (@0 (55) 1))
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where (ug)}Z, are i.i.d U[0, 1] distributed random variables, (gi,)}—, are i.i.d N'(0, 1)
distributed random variables, where « is the acceptance probability and WA, is the
proposal function, i.e.

Uai(z,9) =z + AtVU (z) + V2Atg.

We introduce the decomposition G,, = én + (A?n where
_ n—1
G, = V2At Z 1[ux, < 1] g, (B.3)
k=0

and

G, —vaai S (1 [ur < o (Bae (X2) 0 (Bae (X2) 1 00) )| = 1 < 1) g
k=0

(B.4)
Following (Fathi & Stoltz 2015, Sec 4.4), one decomposes each random variable in the
summand into a drift plus a martingale increment term, i.e.

(1 {uk <a (q’m ()A(km) s Ut ((I)At (ka) ,gk)ﬂ = 1uy < 1])) gr = D(XPH)+ My,
where M}, is a martingale adapted to the filtration of X kAt. We obtain
D(z) =Eguno,0) [(a(Par (z), Par (Pac (2),9)) — 1) 9] (B.5)
It follows from (A.3) that there exists a constant C' independent of At such that
|D(z)| < CAL?, (B.6)

for At sufficiently small. Thus, it follows that

n—1
At2N " DXt < CAt. (B.7)
k=0

Similarly one can show that

E||My ‘ | < oanr,
so that by Chebyschev’s inequality, for n < [T'/At],
]P |;

for some constant C” independent of At. Applying (B.7) and choosing At sufficiently
small we obtain

n—1
G — V2AL Y D(XP)

k=0

1
>3] < C"AtY/?, (B.8)

P[g} zl}gaAt<1,

where C is a constant independent of At. The remainder of the argument involves
controlling the magnitude of F,, and the distribution of G,, to obtain the minorisation
condition (B.1) and follows identically to (Fathi & Stoltz 2015, Sec 4.4). O]
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C Analysis for Gaussian Distributions

In this section we provide a proof of Proposition 6.1. Taking a different approach to
Duncan et al. (2016), we shall obtain this result via the Green-Kubo formula, i.e.

() =2 / TP - (), f - (), e

where P; is the semigroup corresponding to the linear diffusion (6.9). We note that
for I > 0, the process X, satisfies the Foster-Lyapunov condition (2.6) with Lyapunov
function V;(x) = 1 + |z|?". In particular, by Proposition 2.5, a CLT for the estimator

ar(f) = T71 fOT f(X:) dt will hold for all observables f having algebraic growth,
and moreover (C.1) is well defined and finite.

Proof of Proposition 6.1. Provided that — A is stable, the process X; defined by (6.9)
is ergodic with unique invariant distribution N (0, Q). The stationary covariance Q,
can be explicitly writtien as lim;_, o, ¢y, where

t
Qt:/ e~ Asye=A"s g
0

We first prove the result for 3 = I, then obtaining the general case via a simple linear
transformation.

It is well known that the semigroup (P;);>o is given by this formula (Lorenzi &
Bertoldi 2006, Lemma 9.3.6),

(Pf) (t) = E[f(X;) | Xo = 2] = / fle e+ Q1 2)p(z)dz,  (C2)

for all f € LP(7), p € [1,00) where p is the density of a standard Gaussian in R%. In
particular, given fi(z) = z - Mz, with M € R%*4:

sym:*

Pfi—n(f) (z) =2 {e—A”Me—At} 2 —Tr(Qus — Q1) M).

Similarly, given fo(x) = L-z, then w(f2) = 0 and P, fo(x) = z-e~A L. Considering
the Poisson equation

—Az - V() + Ad(x) = f(x) — 7 (f),
where f = f1 + fo we can write the unique, mean-zero solution as

oo o0
o(x)=x- [/ e~ ATt Mem A dt} x—Tr [Qoo / e~ A Me=Atat| + L - A,
0 0

which is finite by the stability of —A. From (C.1) it follows that
02 (f) = 4ATr [QooTIQuo M) + 2L - A™' Qoo L, (C.3)
where

H:/ e‘ATtMe_At dt.
0

The case when . # I, can be recovered immediately by applying the transformation
é(z) = (X~1/2z), thus reducing it to the previous case, from which we obtain the
same identity. O
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Remark C.1. Note that there is no impediment to deriving the asymptotic variance for
observables involving higher powers, e.g. a third order tensor of the form Zl ik
but we only provide the result up to second order for the sake of clarity. A more general
approach would potentially be possible by considering the decomposition of an observ-
able f with respect to the eigenbasis of the Ornstein Uhlenbeck operator L, which can
be shown to be Hermite polynomials Metafune et al. (2002).
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