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Abstract We consider non-reversible perturbations of reversible diffusions that do not alter
the invariant distribution and we ask whether there exists an optimal perturbation such that
the rate of convergence to equilibrium is maximized. We solve this problem for the case
of linear drift by proving the existence of such optimal perturbations and by providing an
easily implementable algorithm for constructing them. We discuss in particular the role of
the prefactor in the exponential convergence estimate. Our rigorous results are illustrated by
numerical experiments.
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1 Introduction

1.1 Motivation

The problem of convergence to equilibrium for diffusion processes has attracted consider-
able attention in recent years. In addition to the relevance of this problem for the convergence
to equilibrium of some systems in statistical physics, see for example [30], such questions
are also important in statistics, for example in the analysis of Markov Chain Monte Carlo
(MCMC) algorithms [9]. Roughly speaking, one measure of efficiency of an MCMC algo-
rithm is its rate of convergence to equilibrium, and increasing this rate is thus the aim of
many numerical techniques (see for example [5]).

Let us recall the basic approach for a reversible diffusion. Suppose that we are interested
in sampling from a probability distribution function

ψ∞ = e−V

∫
RN e−V dx

, (1)

where V : R
N → R is a given smooth potential such that

∫
RN e−V dx < ∞. A natural dy-

namics to use is the reversible dynamics

dXt = −∇V (Xt) dt + √
2dWt, (2)

where Wt denotes a standard N -dimensional Brownian motion. Let us denote by ψt the
probability density function of the process Xt at time t . It satisfies the Fokker-Planck equa-
tion

∂tψt = ∇ · (∇V ψt + ∇ψt). (3)

Under appropriate assumptions on the potential V (e.g. that 1
2 |∇V (x)|2 − �V (x) → +∞

as |x| → +∞, see [42, A.19]), the density ψ∞ satisfies a Poincaré inequality: there exists
λ > 0 such that for all probability density functions φ,

∫

RN

(
φ

ψ∞
− 1

)2

ψ∞ dx ≤ 1

λ

∫

RN

∣
∣
∣
∣∇

(
φ

ψ∞

)∣
∣
∣
∣

2

ψ∞dx. (4)

The optimal parameter λ in (4) is the opposite of the smallest (in absolute value) non-
zero eigenvalue of the Fokker-Planck operator ∇ · (∇V · +∇·), which is self-adjoint in
L2(RN,ψ−1∞ dx) (see (7) below). Thus, λ is also called the spectral gap of the Fokker-Planck
operator.

It is then standard to show that (4) is equivalent to the following inequality, which
shows exponential convergence to the equilibrium for (2): for all initial conditions ψ0 ∈
L2(RN,ψ−1∞ dx), for all times t ≥ 0,

‖ψt − ψ∞‖
L2(ψ−1∞ )

≤ e−λt‖ψ0 − ψ∞‖
L2(ψ−1∞ )

, (5)

where ‖ · ‖
L2(ψ−1∞ )

denotes the norm in L2(RN,ψ−1∞ ), namely ‖f ‖2
L2(ψ−1∞ )

=
∫

RN f 2(x)ψ−1∞ (x) dx. This equivalence is a simple consequence of the following identity: if

ψt is solution to (3), then

d

dt
‖ψt − ψ∞‖2

L2(ψ−1∞ )
= −2

∫

RN

∣
∣
∣
∣∇

(
ψt

ψ∞

)∣
∣
∣
∣

2

ψ∞dx. (6)



Optimal Non-reversible Linear Drift for the Convergence to Equilibrium 239

In view of (5), the algorithm is efficient if λ is large, which is typically not the case if Xt

is a metastable process (see [26]). A natural question is therefore how to design a Markovian
dynamics which converges to the equilibrium distribution ψ∞ (much) faster than (2). There
are many approaches (importance sampling methods, constraining techniques, see for exam-
ple [27]), and the focus here is on modifying the dynamics (2) to a non-reversible dynamics,
which has the same invariant measure.

1.2 Non-reversible Diffusions

As noticed in [24, 25], one way to accelerate the convergence to equilibrium is to depart
from reversible dynamics (see also [10] for related discussions for Markov Chains). Let us
recall that the dynamics (2) is reversible in the sense that if X0 is distributed according to
ψ∞(x) dx, then (Xt )0≤t≤T and (XT −t )0≤t≤T have the same law. This is equivalent to the fact
that the Fokker-Planck operator is self-adjoint in L2(RN,ψ−1∞ dx):

∫

RN

∇ · (∇V ψ + ∇ψ)φ ψ−1
∞ dx = −

∫

RN

∇(
ψψ−1

∞
) · ∇(

φψ−1
∞

)
ψ∞dx

=
∫

RN

∇ · (∇V φ + ∇φ)ψ ψ−1
∞ dx. (7)

Now, a natural non-reversible dynamics to sample from the distribution ψ∞(x) dx is:

dXb
t = (−∇V

(
Xb

t

) + b
(
Xb

t

))
dt + √

2dWt, (8)

where b is taken to be divergence-free with respect to the invariant distribution ψ∞(x) dx:

∇ · (be−V
) = 0, (9)

so that ψ∞(x) dx is still the invariant measure of the dynamics (8). A general way to con-
struct such a b is to consider

b = J∇V, (10)

where J is a constant antisymmetric matrix.
It is important to note that the dynamics (8) is non-reversible. Indeed, one can check that

(Xb
t )0≤t≤T has the same law as (X−b

T −t )0≤t≤T (notice the minus sign in front of b), and thus
not the same law as (Xb

T −t )0≤t≤T . Likewise, Eq. (7) now becomes:

∫

RN

∇ · ((∇V − b)ψ + ∇ψ
)
φ ψ−1

∞ dx =
∫

RN

∇ · ((∇V + b)φ + ∇φ
)
ψ ψ−1

∞ dx.

Again, notice the change of sign in front of b.
From (10) it is clear that there are many (in fact, infinitely many) different ways to mod-

ify the reversible dynamics without changing the invariant measure. A natural question is
whether the addition of a non-reversible term can improve the rate of convergence to equi-
librium and, if so, whether there exists an optimal choice for the perturbation that maximizes
the rate of convergence to equilibrium. The goal of this paper is to present a complete solu-
tion to this problem when the drift term in (8) is linear.

More precisely, let ψb
t denote the law of the process Xb

t , i.e. the solution to the Fokker-
Planck equation

∂tψ
b
t = ∇ · ((∇V − b)ψb

t + ∇ψb
t

)
. (11)



240 T. Lelièvre et al.

Using the fact that ψ∞ is a stationary solution to (11) (which is equivalent to (9)) and under
the assumption that ψ∞ satisfies the Poincaré inequality (4), one can check that the upper
bound for the reversible dynamics (2) is still valid:

∥
∥ψb

t − ψ∞
∥
∥

L2(ψ−1∞ )
≤ e−λt

∥
∥ψb

0 − ψ∞
∥
∥

L2(ψ−1∞ )
. (12)

Actually, as in the reversible case, (12) (for all initial conditions ψb
0 ) is equivalent to (4). This

is because (6) also holds for ψb solution to (11). In other words, adding a non-reversible part
to the dynamics cannot be worse than the original dynamics (2) (where b = 0) in terms of
exponential rate of convergence.

What we show below (for a linear drift) is that it is possible to choose b in order to obtain
a convergence at exponential rate of the form:

∥
∥ψb

t − ψ∞
∥
∥

L2(ψ−1∞ )
≤ C(V,b)e−λt

∥
∥ψb

0 − ψ∞
∥
∥

L2(ψ−1∞ )
, (13)

with λ > λ and C(V,b) > 1. It is important to note the presence of the constant C(V,b) in
the right-hand side of (13). For a reversible diffusion (b = 0), the spectral theorem forces
the optimal C(V,0) to be equal to one, and λ = λ, the Poincaré inequality constant of ψ∞
(since (5) implies (4)). The interest in adding a non-reversible perturbation is precisely to
allow for a constant C(V,b) > 1, which permits a rate λ > λ. The difficulty is thus to design
a b such that λ is large and C(V,b) is not too large. In the following, we adopt a two-stage
strategy: we first optimize b in order to get the largest possible λ, and then we discuss how
the constant C(V,b) behaves for this optimal rate of convergence.

1.3 Bibliography

This problem was studied in [24] for a linear drift (namely V is quadratic and b is linear)
and in [25] for the general case. It was shown in these works that the addition of a drift func-
tion b satisfying (9) helps to speed up convergence to equilibrium. Furthermore, the optimal
convergence rate was obtained for the linear problem (see also Proposition 1 in the present
paper) and some explicit examples were presented, for ordinary differential equations in two
and three dimensions.

The behavior of the generator of the dynamics (8) under a strong non-reversible drift
has also been studied [4, 6, 14]. It was shown in [14] that the spectral gap attains a finite
value in the limit as the strength of the perturbation becomes infinite if and only if the
operator b · ∇ has no eigenfunctions in an appropriate Sobolev space of index 1. These
works, although relevant to our work, are not directly related to the present paper since our
main focus is in obtaining the optimal perturbation rather than an asymptotic result. The
effect of non-reversible perturbations to the constant in logarithmic Sobolev inequalities
(LSI) for diffusions have also been studied, see [3, 13]. In these papers, examples were
presented where the addition of a non-reversible perturbation can improve the constant in
the LSI.

This work is also related to [16], where the authors use another idea to enhance the
convergence to equilibrium. The principle is to keep a reversible diffusion, but to change the
underlying Riemannian metric by considering

dXM
t = −D∇V

(
XM

t

)
dt + √

2DdWt

for a well chosen matrix D. More precisely, the authors apply this technique to a Hybrid
Monte Carlo scheme. It would be interesting to set up some test cases in order to compare
the two approaches: non-reversible drift versus change of the underlying metric.
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Finally, we would like to mention related recent works on spectral properties of non-
selfadjoint operators see for example [7, 15, 41] and references therein.

1.4 Outline of the Paper

In this paper, we study the case of a linear drift. Namely, we consider (2) with a quadratic
potential

V (x) = 1

2
xT Sx, (14)

where S is a positive definite N × N symmetric matrix. In the following, we denote SN(R)

the set of symmetric matrices and S >0
N (R) the set of positive definite symmetric matrices.

The equilibrium distribution thus has the density

ψ∞(x) = det(S)1/2

(2π)N/2
exp

(

−xT Sx

2

)

. (15)

It can be checked that if the vector field b(x) is linear, it satisfies (9) if and only if b = −JSx

with J = −J T an antisymmetric real matrix, see Lemma 1. For a given S, the question is
thus how to choose J in order to optimize the rate of convergence to equilibrium for the
dynamics (8), which in our case becomes:

dXJ
t = −(I + J )SXJ

t dt + √
2dWt, (16)

where I denotes the identity matrix in MN(R), the set of N × N real valued matrices.
We provide an answer to this question. In particular:

1. We prove that it is possible to build an optimal J (denoted Jopt ), which yields the best
possible rate λ (denoted λopt ) in (13).

2. We provide an algorithm for constructing an optimal matrix Jopt .
3. We obtain estimates on the constant C(V, b) = C(S,J ) in (13).

It appears that this procedure becomes particularly relevant in the situation when the con-
dition number of S is large (namely for an original dynamics with multiple timescales, see
Sects. 3.3 and 6). Discussions about the size of C(S,J ) with respect to this conditioning
and to the dimension N can be carried out very accurately.

The reason why the case of linear drift is amenable to analysis is because it can be re-
duced to a linear algebraic problem, at least for the calculation of λopt and the construction of
Jopt . One way to understand this is the following remark: the spectrum of an operator of the
form (which is precisely the form of the generator of the dynamics (16)) L = −(Bx) ·∇ +Δ,
can be computed in terms of the eigenvalues of the matrix B . Here, B denotes any real square
matrix whose eigenvalues have strictly positive real part. In [31] (see also [34, 35] and
Proposition 10 below), it was indeed proven that the spectrum of L in Lp spaces weighted
by the invariant measure of the dynamics (p > 1) consists of integer linear combinations of
eigenvalues of B:

σ(L) =
{

−
r∑

j=1

njλj , nj ⊂ N

}

, (17)

where {λj }r
j=1 denote the r (distinct) eigenvalues of B . In particular, the spectral gap of the

generator L is determined by the eigenvalues of B , and this yields a simple way to design
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the optimal matrix Jopt . On the other hand, the control of the constant C(S,J ) requires a
more elaborate analysis, using Wick (in the sense of Wick ordered) calculus, see Sect. 5.3
below.

Compared to the related previous paper [24], our contributions are threefold: (i) we pro-
pose an algorithm to build the optimal matrix Jopt , (ii) we discuss how to get estimates on
the constant C(S,J ) and (iii) we consider the longtime behavior of the partial differential
equation (11) and not only of ordinary differential equations related to (16). In particular,
our analysis covers also non Gaussian initial conditions for the SDE (16). Although the re-
sults that we obtain have a limited practical interest (there exist many efficient techniques
to draw Gaussian random variables), we believe that this study is a first step towards further
analysis, in particular for nonlinear drift terms.

The rest of the paper is organized as follows. In Sect. 1.5 we present the main results
of this paper. In Sect. 2 we perform some preliminary calculations. The linear algebraic
problem and the evolution of the corresponding ordinary differential equation are studied in
Sect. 3. Direct computations of the expectations and the variances are performed in Sect. 4
for Gaussian initial data. The convergence to equilibrium for the non-reversible diffusion
process for general initial data is then studied in Sect. 5. Results of numerical simulations
are presented in Sect. 6.

1.5 Main Results

For a potential given by (14), our first result is a simple lemma which characterizes all non-
reversible perturbations that satisfy the divergence-free condition (9).

Lemma 1 Let V (x) be given by (14) and let b(x) = −Ax where A ∈ MN(R). Then (9) is
satisfied if and only if

A = JS, with J = −J T . (18)

Proof Equation (9) with b = −Ax and quadratic potential (14) gives ∇ · (Ax e− xT Sx
2 ) = 0

which is equivalent to: ∀x ∈ R
N,Tr(A) + (Ax)T (Sx) = 0. This is equivalent to the con-

ditions Tr(A) = 0 and (AT S) = −(AT S)T . Set now J = AS−1. We have Tr(JS) = 0 and
S(J + J T )S = 0 which is equivalent to J = −J T . �

We will denote the set of N × N real antisymmetric matrices by AN(R) ⊂ MN(R). The
following result concerns the optimization of the spectrum of the matrix BJ = (I + J )S,
which appears in the drift of the dynamics (16) and plays a crucial role in the analysis; see
Eq. (17).

Theorem 1 Define BJ = (I + J )S. Then

max
J∈AN (R)

min Re
(
σ(BJ )

) = Tr(S)

N
. (19)

Furthermore, there is a simple algorithm to construct matrices Jopt ∈ AN(R) such that the
maximum in (19) is attained. The matrix Jopt can be chosen so that the semi-group associ-
ated to BJopt satisfies the bound

∥
∥e−(I+Jopt )St

∥
∥ ≤ C

(1)
N κ(S)1/2 exp

(

−Tr(S)

N
t

)

, (20)
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for all t ≥ 0, where the matrix norm is induced by the Euclidean norm on R
N and κ(S) =

‖S‖‖S−1‖ denotes the condition number.

Theorem 1 is a straightforward consequence of Proposition 4 and Proposition 5 below,
with an explicit expression for the constant C

(1)
N given by (46). This expression allows to dis-

cuss the dependence of C
(1)
N on the dimension N (see Remark 7 for details). The algorithm

to construct the matrix Jopt is given in Fig. 1 below, at the end of Sect. 3.2.
The partial differential equation version of this result requires to introduce the generator

LJ = −(BJ x) · ∇ + Δ

of the semigroup (et LJ )t≥0 considered in L2(RN,ψ∞dx;C), where, we recall (see (15)),

ψ∞(x) = det(S)1/2

(2π)N/2
exp

(

−xT Sx

2

)

.

Here L2(RN,ψ∞dx;C) denotes the set of functions f : R
N → C such that∫

RN |f |2(x)ψ∞(x) dx < ∞.

Theorem 2 For BJ = (I +J )S with J ∈ AN , the drift-diffusion operator LJ = −(BJ x).∇+
Δ defined in L2(RN,ψ∞dx;C) with domain of definition

D(LJ ) = {
u ∈ L2

(
R

N,ψ∞dx;C
)
, LJ u ∈ L2

(
R

N,ψ∞dx;C
)}

generates a contraction semigroup (et LJ )t≥0 and it has a compact resolvent. Optimizing its
spectrum with respect to J gives

max
J∈AN (R)

min Re
(
σ(−LJ ) \ {0}) = Tr(S)

N
. (21)

Furthermore, the maximum in (21) is attained for the matrices Jopt ∈ AN(R) constructed as
in Theorem 1. The matrix Jopt can be chosen so that

∥
∥
∥
∥e

t LJopt u −
(∫

RN

uψ∞dx

)∥
∥
∥
∥

L2(ψ∞)

≤ C
(2)
N κ(S)7/2 exp

(

−Tr(S)

N
t

)∥
∥
∥
∥u −

(∫

RN

uψ∞dx

)∥
∥
∥
∥

L2(ψ∞)

(22)

holds for all u ∈ L2(RN,ψ∞dx;C) and all t ≥ 0, where κ(·) again denotes the condition
number.

Theorem 2 is a straightforward consequence of Proposition 12 below, with an explicit ex-
pression for the constant C

(2)
N given by (64). The dependence of C

(2)
N on the dimension N is

discussed in Remark 9. A simple corollary of this result is the following:

Corollary 1 Let us consider the Fokker Planck equation associated to the dynamics (16)
on XJ

t :

∂tψ
J
t = ∇ · (BJ xψJ

t + ∇ψJ
t

)
, (23)
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where BJ = (I + J )S. Let us assume that ψJ
0 ∈ L2(RN,ψ−1∞ dx). Then, by considering

J = −Jopt , where Jopt ∈ AN(R) refers to the matrix considered in Theorem 2 to get (22),
the inequality

∥
∥ψJ

t − ψ∞
∥
∥

L2(ψ−1∞ )
≤ C

(2)
N κ(S)7/2 exp

(

−Tr(S)

N
t

)∥
∥ψJ

0 − ψ∞
∥
∥

L2(ψ−1∞ )
,

holds for all t ≥ 0, when ψ∞ is defined by (15).

Proof This result is based on the following simple remark: ψJ
t is a solution to (23) in

L2(RN,ψ−1∞ dx) if and only if ψJ
t ψ−1∞ = et L−J (ψJ

0 ψ−1∞ ) in L2(RN,ψ∞ dx). Notice the mi-
nus sign in L−J . Then the exponential convergence is obtained from (22) using the equality:

∥
∥ψJ

t − ψ∞
∥
∥

L2(ψ−1∞ )
=

∥
∥
∥
∥ψJ

t ψ−1
∞ −

(∫

RN

ψJ
0 ψ−1

∞ ψ∞dx

)∥
∥
∥
∥

L2(ψ∞)

.

�

Remark 1 A more general result (in terms of the assumption on ψJ
0 ) but with a less accurate

upper bound is given in Proposition 8.

Remark 2 The partial differential equation

∂tf = LJ f = −(BJ x) · ∇f + �f

which we consider in Theorem 2 is the backward Kolmogorov equation associated with the
dynamics (16). It is related to this stochastic differential equation through the Feynman-Kac
formula f (t, x) = E

x(f (XJ
t )) where XJ

t is the solution to (16) and E
x indicates that we

consider a solution starting from x ∈ R
N : XJ

0 = x. The partial differential equation

∂tψ
J
t = ∇ · (BJ xψJ

t + ∇ψJ
t

)

which we consider in the Corollary 1 is the Fokker Planck (or forward Kolmogorov) equa-
tion associated with (16): if XJ

0 ∼ ψJ
0 (x) dx, then for all times t > 0, ψJ

t is the probability
density function of XJ

t .
As explained in the proof of Corollary 1 above, these two partial differential equations

are related through a conjugation. See also, e.g. [33, 42].

Remark 3 It would be interesting to explore extensions of this approach to the Langevin
dynamics:

{
dqt = pt dt,

dpt = −∇V (qt ) dt − γpt dt + √
2γ dWt,

which is ergodic with respect to the measure Z−1 exp(−V (q) − |p|2/2) dpdq . For example
the following modification

{
dqt = (I − J )pt dt,

dpt = −(I + J )∇V (qt ) dt − γpt dt + √
2γ dWt,
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where J is an antisymmetric matrix leaves the measure Z−1 exp(−V (q) − |p|2/2) dpdq

stationary. In the linear case V (x) = xT Sx
2 , this leads to a Kramers-Fokker-Planck operator

which is a differential operator (at most) quadratic in (q,p, ∂q, ∂p). Then the exponential
decay rate can be reduced to some (more involved) linear algebra problem following [21].
About the constant prefactor in front of the decaying in time exponential, the argument based
on the sectorial property used in Lemma 3 does not apply anymore. It has to be replaced by
hypoelliptic estimates in the spirit of [11, 20, 21]. The reference [21] provides accurate
results for differential operators with at most quadratic symbols.

2 A Useful Rescaling

The analysis will be carried out in a suitable system of coordinates which simplifies the cal-
culations and the presentation of the intermediate results. We will perform one conjugation
and a change of variables.

First, from the partial differential equation point of view, it appears to be useful to work
in L2(RN, dx;C) instead of L2(RN,ψ∞dx;C), since this allows to use standard techniques
from the spectral analysis of partial differential equations. In the following, the norm in
L2(RN, dx;C) is simply denoted ‖·‖L2 . For a general potential V , the mapping u 
→ ψ

−1/2
∞ u

maps unitarily L2(RN, dx;C) into L2(RN,ψ∞dx;C) with the associated transformation
rules for the differential operators:

e− V
2 ∇e

V
2 = ∇ + 1

2
∇V, e− V

2 ∇T e
V
2 = ∇T + 1

2
∇V T ,

where ∇ and ∇T denote the gradient and the divergence operators, respectively. Thus, the
operator L = −∇V T ∇ + bT ∇ + Δ is transformed into

L = e− V
2 Le

V
2 = Δ − 1

4
|∇V |2 + 1

2
�V + bT ∇ + 1

2
bT ∇V. (24)

In the linear case we consider in this paper, V (x) = 1
2xT Sx (where S = ST is positive

definite), b(x) = −Ax and A = JS, J ∈ AN(R), (see Lemma 1), so that the operator
L = LJ = −(BJ x)T ∇ + Δ with BJ = (I + J )S becomes

LJ = Δ − 1

4
xT S2x + 1

2
Tr(S) + 1

2

(
xT SJ∇ − ∇T JSx

)
.

In the above calculation we have used J T = −J , xT SJ T Sx = 0 and

∇T Bx =
∑

i,j

∂xi
Bij xj =

∑

i,j

xjBij ∂xi
+

∑

i

Bii = xT BT ∇ + Tr(B)

with B = SJ T , BT = −JS and Tr(SJ ) = Tr(S1/2JS1/2) = 0. According to Lemma 1, we

know that the kernel of LJ is Ce− V
2 = Ce− xT Sx

4 . The operator LJ is unitarily equivalent to
the operator LJ .

The aim of the second change of variables is to modify the kernel of the operator LJ to
a centered Gaussian with identity covariance matrix. Let us introduce the new coordinates
y = S1/2x, so that ∇x = S1/2∇y . Then the operator LJ becomes:

L̃J = ∇T
y S∇y − 1

4
yT Sy + 1

2
Tr(S) + 1

2

(
yT J̃∇y − ∇T J̃ y

)
(25)
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where

J̃ = S1/2JS1/2 ∈ AN(R).

The corresponding stochastic process is, in the new coordinate system (Yt = S1/2Xt ):

dYt = −(S + J̃ )Ytdt + √
2S1/2dWt .

The L2-normalized element of ker L̃J is now simply the standard Gaussian distribution
1

(2π)N/4 e− |y|2
4 . Notice that L̃J is still acting in L2(RN, dx;C).

As a summary, u(t, x) satisfies ∂tu = LJ u if and only if v(t, y) =√
ψ∞(S−1/2y)u(t, S−1/2y) satisfies ∂tv = L̃J v. We have u(t, x) = et LJ u0(x) and v(t, y) =

et L̃J v0(y) where u0 = u(0, ·) and v0 = v(0, ·) are related through v0(y) =√
ψ∞(S−1/2y)u0(S

−1/2y). In particular, it is easy to check that for all t ≥ 0,
∥
∥
∥
∥et LJ u0 −

(∫

RN

u0ψ∞dx

)∥
∥
∥
∥

L2(ψ∞)

= (detS)−1/4
∥
∥et L̃J (I − Π0)v0

∥
∥

L2 , (26)

where

(
Π0(v0)

)
(y) = (2π)−N/2

(∫

RN

v0(y)e−|y|2/4 dy

)

e−|y|2/4

is the L2-orthogonal projection of v0 on the kernel Ce− |y|2
4 of L̃J . Thus, proving (22) is

equivalent to proving

∥
∥e

t L̃Jopt (I − Π0)
∥
∥

L(L2)
≤ C

(2)
N κ(S)7/2 exp

(

−Tr(S)

N
t

)

, (27)

where here and in the following we use the standard operator norm

‖A‖L(L2) = sup
u∈L2(RN )

‖Au‖L2

‖u‖L2

for an arbitrary operator A.
In the following, we will mostly work with L̃J and Yt rather than with LJ and Xt .

3 The Linear Algebra Problem

The stochastic differential equation (8) for the linear case (quadratic potential) that we con-
sider becomes

dXt = −(I + J )SXt dt + √
2dWt, (28)

and is associated with the drift matrix

BJ = (I + J )S. (29)

With the change of variables given in Sect. 2 (Yt = S1/2Xt ), the stochastic differential equa-
tion (28) becomes

dYt = −(S + J̃ )Yt dt + √
2S1/2 dWt .
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The drift matrix is now

B̃J = S1/2BJ S−1/2 = (S + J̃ ), (30)

where, we recall, J̃ = S1/2JS1/2 ∈ AN(R). We first collect basic spectral properties of B̃J

(or equivalently of BJ ) when J ∈ AN(R)) and then show how this spectrum can be con-
structively optimized.

3.1 Spectrum of B̃J for a General J ∈ AN(R)

Proposition 1 For J̃ ∈ AN(R) (or equivalently J = S−1/2J̃ S−1/2 ∈ AN(R)) and S ∈
S >0

N (R), the matrix B̃J = S + J̃ has the following properties:

(i) σ(B̃J ) ⊂ {z ∈ C,Re(z) > 0}.
(ii) Tr(B̃J ) = Tr(S).
(iii) min Re[σ(B̃J )] ≤ Tr(S)

N
.

Notice that the properties stated above on B̃J also hold on BJ since σ(B̃J ) = σ(BJ ) and
Tr(B̃J ) = Tr(BJ ).

Proof Let λ ∈ C be an eigenvalue of B̃J with corresponding (non-zero) eigenvector xλ ∈
C

N : (S + J̃ )xλ = B̃J xλ = λxλ. Since S is a real matrix, the complex scalar product with xλ

gives λ|xλ|2 = |S1/2xλ|2 + (xλ, J̃ xλ)C. Here and in the following, the complex scalar product

is taken to be right-linear and left-antilinear: for any X and Y in C
N , (X,Y )C = X

T
Y . Using

the fact that J̃ ∈ AN(R), we get:

Re(λ) = |S1/2xλ|2
|xλ|2 > 0.

This ends the proof of (i). The proof of (ii) follows immediately from the fact that the trace
of the antisymmetric matrix J̃ is 0.

To prove (iii), let

σ(B̃J ) = {λ1, λ2, . . . , λr}
denote the spectrum of B̃J , and let mk denote the algebraic multiplicity of λk . Part (ii) says∑r

k=1 mkλk = Tr(S) ∈ R, and consequently:

r∑

k=1

mk Re(λk) = Tr(S).

Now, using the fact that
∑r

k=1 mk = N , we conclude

min Re
[
σ(B̃J )

] = min
{
Re(λk), k ∈ {1, . . . , r}} ≤ Tr(S)

N
. �

3.2 Optimization of min Re [σ(B̃J )]

Our goal now is to maximize min Re[σ(BJ )] over J ∈ AN(R), or equivalently, to maximize
min Re[σ(B̃J )] over J̃ = S1/2JS1/2 ∈ AN(R). Indeed, this is the quantity which will deter-
mine the exponential rate of convergence to equilibrium of the non-reversible dynamics (16)
as it will become clear below.
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From Proposition 1(iii), the maximum is obviously achieved if there exists a matrix J ∈
AN(R) such that:

∀λ ∈ σ(B̃J ), Re(λ) = Tr(S)

N
. (31)

In the following proposition we obtain a characterization of the antisymmetric matrices J̃

(related to J through J̃ = S1/2JS1/2) for which (31) is satisfied and B̃J is diagonalizable
(see (33) below). This characterization requires to introduce a companion real symmetric
positive definite matrix Q ∈ S >0

N (R). The case of non-diagonalizable B̃J is then discussed,
using an asymptotic argument. We finally show how this characterization can be used to
develop an algorithm for constructing a matrix J̃ ∈ AN(R) such that (31) is satisfied.

Proposition 2 Assume that J̃ ∈ AN(R) and that S ∈ S >0
N (R). Then the following conditions

are equivalent:

(i) The matrix B̃J = S + J̃ is diagonalizable (in C) and the spectrum of B̃J satisfies

σ(B̃J ) ⊂ Tr(S)

N
+ iR. (32)

(ii) B̃J − Tr(S)

N
I is similar to an anti-adjoint matrix.

(iii) There exists a hermitian positive definite matrix Q = Q
T

such that

J̃Q − QJ̃ = −QS − SQ + 2 Tr(S)

N
Q. (33)

(iv) There exists a real symmetric positive definite matrix Q = QT such that (33) holds.

Proof First we prove the equivalence between (i) and (ii). Equation (32) is equivalent to the
statement that there exists a matrix P ∈ GLn(C) (where GLn(C) denotes the set of complex
valued invertible matrices) such that

P −1

(

B̃J − Tr(S)

N
I

)

P = diag(it1, . . . , itN )

for some tk in R, which is equivalent to statement (ii), since any anti-adjoint matrix can be
diagonalized in C.

To prove that (ii) implies (iii), we write statement (ii) as: there exists a matrix P ∈ GLn(C)

such that
(
P −1B̃J P

)T − Tr(S)

N
I = −P −1B̃J P + Tr(S)

N
I. (34)

Since B̃J = S + J̃ ∈ MN(R) and J̃ ∈ AN(R), we obtain

P −1J̃ P − P
T
J̃
(
P

−1)T = −P
T
S
(
P

−1)T − P −1SP + 2 Tr(S)

N
I.

We multiply this equation left and right by P and P
T

respectively, to obtain

J̃ PP
T − PP

T
J̃ = −PP

T
S − SPP

T + 2 Tr(S)

N
PP

T
. (35)
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Statement (iii) follows now by taking Q = PP
T

. Conversely, (iii) ⇒ (ii) follows from the

writing Q = PP
T

, with P ∈ GLn(C) (take P = √
Q) for any hermitian positive definite

matrix Q. Then, one obtains (ii) by going back from (35) to (34). Finally, (iii) implies (iv)
by taking the real part of (33) and using the fact that J̃ and S are real matrices. The converse
(iv) ⇒ (iii) is obvious. This ends the proof. �

Remark 4 Notice that if J̃ is such that (32) is satisfied, so is −J̃ (and thus J̃ T ). Indeed, if
(J̃ ,Q) satisfies (33), then (−J̃ ,Q−1) also satisfies (33).

Let us give another equivalent formulation of Proposition 2(iv).

Lemma 2 With the notation of Proposition 2, let us consider matrices J̃ ∈ AN(R), S ∈
S >0

N (R) and Q ∈ S >0
N (R). Let us denote {λk}N

k=1 the positive real eigenvalues of Q (counted
with multiplicity), and {ψk}N

k=1 the associated eigenvectors, which form an orthonormal ba-
sis of R

N . Equation (33) is equivalent to the two conditions: for all k in {1, . . . ,N},

(ψk, Sψk)R = Tr(S)

N
(36)

and, for all j �= k in {1, . . . ,N},

(λj − λk)(ψj , J̃ψk)R = (λk + λj )(ψj , Sψk)R. (37)

Proof Since {ψk}N
k=1 form an orthonormal basis of R

N , Eq. (33) is equivalent to this same
equation tested against ψT

j on the left, and ψk on the right. This yields:

λkψ
T
j J̃ψk − λjψ

T
j J̃ψk = −λjψ

T
j Sψk − λkψ

T
j Sψk + 2 Tr(S)

N
δjkλk,

where δjk is the Kronecker symbol. When j = k, we obtain (36) by using the antisymme-
try of J̃ , together with the fact that all eigenvalues of Q are non-zero. When j �= k, we
obtain (37). �

Notice that when the eigenvalues of Q are all with multiplicity one, J̃ is completely
determined by (37): for all j �= k in {1, . . . ,N},

(ψj , J̃ψk)R = −λk + λj

λk − λj

(ψj , Sψk)R. (38)

Indeed, by the antisymmetry of J̃ , the remaining entries are zero:

(ψj , J̃ψj )R = 0 for all j ∈ {1, . . . ,N}.

This motivates the following definition.

Definition 1 We will denote by Popt (S) the set of pairs (J̃ ,Q), where Q is a real symmetric
positive definite matrix with N eigenvalues of multiplicity one and associated eigenvectors
satisfying (36), and J̃ is the associated antisymmetric matrix defined by (38).
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Notice that for any (J̃ ,Q) ∈ Popt (S), J̃ is completely defined (by (38)) as soon as Q is
chosen, so that the set Popt (S) can be indexed by the set of matrices Q ∈ S >0

N (R) with N

eigenvalues of multiplicity one, and with eigenvectors ψk satisfying (36). As it will become
clear below, the matrix Q of a pair (J̃ ,Q) ∈ Popt (S) appears in the quantitative estimates
of Theorem 1 and Theorem 2 through the constants C

(1)
N and C

(2)
N . The construction of the

pair (J̃ ,Q) is also better understood by splitting the two steps: (1) construction of Q and
(2) when Q is fixed, construction of J̃ .

Remark 5 We would like to stress that the set Popt (S) does not provide all the matrices
J̃ ∈ AN(R) such that σ(B̃J ) ⊂ Tr(S)

N
+ iR. Indeed, first, we have assumed that B̃J is diago-

nalizable and, second, in this case we have assumed moreover that Q has N eigenvalues of
multiplicity one.

Actually the spectrum of B̃J depends continuously on J̃ . Hence any limit J̃ = limn→∞ J̃n

in AN(R) with (J̃n,Qn) ∈ Popt (S) will lead to σ(B̃J ) ⊂ Tr(S)

N
+ iR. A particular case is

interesting: Fix the real orthonormal basis {ψj }N
j=1 and consider Qα with the eigenval-

ues (α, . . . , αN) with α > 0. The unique associated antisymmetric matrix J̃α is given by
(ψj , J̃αψj )R = 0 and

(ψj , J̃αψk)R = −αk + αj

αk − αj
(ψj , Sψk)R.

Taking the limit as α → +∞ or α → 0+ leads to

(ψj , J̃∞ψk)R = −sign(k − j)(ψj , Sψk)R, J̃0+ = −J̃∞.

Actually, for such a choice J̃opt = J̃∞ or J̃opt = J̃0+ , the matrix S + J̃opt is triangular in the
basis (ψj )1≤j≤N and σ(B̃Jopt ) = { Tr(S)

N
}. In general (see for example Sect. 3.3), the matrix

B̃Jopt may not be diagonalizable over C and may have Jordan blocks.

We end this section by providing a practical way to construct a couple (J̃ ,Q) satisfy-
ing (33) (or equivalently (J̃ ,Q) ∈ Popt (S)), for a given S ∈ S >0

N (R). The strategy is simple.
We first build an orthonormal basis {ψk}N

k=1 of R
N such that (36) is satisfied, then we choose

the eigenvalues {λk}N
k=1 distinct and positive, and define J̃ by (38). The only non-trivial task

is thus to build the orthonormal basis {ψk}N
k=1.

Proposition 3 For every S ∈ S >0
N (R), there exists an orthonormal basis {ψk}N

k=1 of R
N such

that (36) is satisfied.

Proof We proceed by induction on N , using some Gram-Schmidt orthonormalization pro-
cess. The result is obvious for N = 1. For a positive integer N , let us assume it is true for
N − 1 and let us consider S ∈ S >0

N (R). Let us set T = S
Tr(S)

. The matrix T is in S >0
N (R) with

Tr(T ) = 1. Consequently (ψi, T ψi)R > 0, i = 1, . . . ,N and
∑N

i=1(ψi, T ψi)R = 1 for any
orthonormal basis {ψi}N

i=1 of R
N . Assume that not all (ψi, T ψi)R are equal to 1/N . Then

there exist i0, i1 ∈ {1, . . . ,N} such that

(ψi0 , T ψi0)R <
1

N
, (ψi1 , T ψi1)R >

1

N
.

Set ψt = cos(t)ψi0 +sin(t)ψi1 and consider the function f (t) = (ψt , T ψt )R. This function is
continuous with f (0) < 1/N and f (π/2) > 1/N . Consequently, there exists a t∗ ∈ (0,π/2)
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such that

(ψt∗ , T ψt∗)R = 1

N
. (39)

Let now Π = I − ψt∗(ψt∗)
T denote the orthogonal projection to Span(ψt∗)

⊥ and define

T 1 = N

N − 1
ΠTΠ.

This operator is symmetric positive definite on Span(ψt∗)
⊥ with

Tr
(
T 1

) = N

N − 1

(
Tr(T ) − (ψt∗ , T ψt∗)R

) = 1.

It can thus be associated with a symmetric positive definite matrix in MN−1(R). By the
induction hypothesis there exists an orthonormal basis (ψ̃2, . . . , ψ̃N ) of Span(ψt∗)

⊥ such
that (ψ̃i , T

1ψ̃i)R = 1
N−1 , i = 2, . . . ,N . Let us consider the orthonormal basis of R

N :

ψ̃i =
{
ψt∗ , i = 1,

ψ̃i , i ≥ 2.

We obtain (ψ̃1, T ψ̃1)R = (ψt∗ , T ψt∗)R = 1
N

and, for i ≥ 2, (ψ̃i , T ψ̃i)R = N−1
N

(ψ̃i, T
1ψ̃i)R =

1
N

. This ends the induction argument. �

Remark 6 Finding t∗ such that (39) is satisfied yields a simple algebraic problem in
two dimensions. Let (i0, i1) be the two indices introduced in the proof. The matrix
((ψi, T ψj )R)i,j∈{i0,i1} ∈ M2(R) is

[
α0 β

β α1

]

with α0 <
1

N
,α1 >

1

N
,β ∈ R.

Then, t∗ ∈ (0,π/2) is given by

tan t∗ =
−β +

√
β2 − (α1 − 1

N
)(α0 − 1

N
)

α1 − 1
N

and the vector ψt∗ by

ψt∗ = 1
√

1 + tan2 t∗
(ψi0 + tan t∗ψi1).

The above proof and Remark 6 yield a practical algorithm, in the spirit of the Gram-
Schmidt procedure, to build an orthonormal basis satisfying (36), see Fig. 1. This algorithm
is used for the numerical experiments of Sect. 6. Notice that in the third step of the algorithm,
only the vector ψn+1 is concerned by the Gram-Schmidt procedure. The chosen vector ψt∗
belongs to Rψn ⊕Rψn+1 and all the normalized vectors (ψn+2, . . . ,ψN) are already orthog-
onal to this plan.

A simple corollary of Proposition 3 is the following:
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Algorithm for constructing an optimal nonreversible perturbation

Start from an arbitrary orthonormal basis (ψ1, . . . ,ψN).

for n = 1 : N − 1 do

1. Make a permutation of (ψn, . . . ,ψN) so that

(ψn,Sψn)R = max
k=n,...,N

(ψk, Sψk)R > Tr(S)/N

and

(ψn+1, Sψn+1)R = min
k=n,...,N

(ψk, Sψk)R < Tr(S)/N.

2. Compute t∗ such that ψt∗ = cos(t∗)ψn + sin(t∗)ψn+1 satisfies (ψt∗ , Sψt∗)R = Tr(S)/N

(see Remark 6 above).
3. Use a Gram-Schmidt procedure to change the set of vectors (ψt∗ ,ψn+1, . . . ,ψN) to an

orthonormal basis (ψt∗ , ψ̃n+1, . . . , ψ̃N ).

end

Fig. 1 Algorithm for constructing an optimal nonreversible perturbation

Proposition 4 For every S ∈ S >0
N (R), it is possible to build a matrix J̃ ∈ AN(R) such that

Tr(S)

N
= min Re

[
σ(B̃J )

] ≥ min Re
[
σ(S)

]

where B̃J = S + J̃ . Moreover, this holds with a strict inequality as soon as S admits two
different eigenvalues.

In conclusion, the exponential rate of convergence may be improved by using a non-
reversible perturbation, if and only if S is not proportional to the identity. We also refer
to [24, Theorem 3.3] for another characterization of the strict inequality case.

3.3 Explicit Computations in the Two Dimensional Case

In the two dimensional case (N = 2), all the matrices J such that σ(BJ ) ⊂ Tr(S)/N + iR

can be characterized. Accordingly, explicit accurate estimate of the exponential decay are
available for the two-dimensional ordinary differential equation:

dxt

dt
= −(I + J )Sxt with x0 given in R

2. (40)

After making the connection with our general construction of the optimal matrices J (see
Definition 1), we investigate, for a given matrix S ∈ S >0

N (R), the minimization, with respect
to J , of the prefactor in the exponential decay law. We would like in particular to discuss
the optimization of the constant factor in front of exp(−Tr(S)t/2).

Without loss of generality, we may assume that S = [ 1 0
0 λ

]
and J = [ 0 a

−a 0

]
, where λ > 0

is fixed. The eigenvalues of BJ belong to Tr(S)/2 = (1 + λ)/2 + iR if and only if

a2 ≥ (1 − λ)2

4λ
(41)
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and then, the eigenvalues of BJ = (I + J )S are μ± = λ+1±i
√

4λa2−(1−λ)2

2 . When the inequal-
ity (41) is strict, the associated eigenvectors are

u± =
(

1
α±

)

with α± = μ± − 1

aλ
= λ − 1 ± i

√
4λa2 − (1 − λ)2

2aλ
.

We have that BJ = P
[ μ+ 0

0 μ−
]
P −1 with P = [ 1 1

α+ α−
]

and P −1 = 1
α−−α+

[ α− −1
−α+ 1

]
. The case

a = ± (1−λ)

2
√

λ
gives the matrix

BJ =
[

1 ±
√

λ(1−λ)

2∓ 1−λ

2
√

λ
λ

]

which has a Jordan block when λ �= 1. This ends the characterization of all the possible
optimal J ’s in terms of the exponential rate.

Let us compare with the general construction of the pair (Q, J̃ = S
1
2 JS

1
2 ), see Defini-

tion 1. The matrix Q is diagonal in an orthonormal basis (ψ1,ψ2) which satisfies the relation
(36). This yields |ψ1

1 |2 = |ψ2
1 |2 = |ψ1

2 |2 = |ψ2
2 |2 = 1

2 . Up to trivial symmetries one can fix

ψ1 =
( 1√

2
1√
2

)

and ψ2 =
( 1√

2

− 1√
2

)

.

Then, from (37), the eigenvalues λ1, λ2 of Q must satisfy

(λ2 − λ1)(−2a
√

λ) = (λ2 + λ1)(1 − λ)

and the limiting cases a = ± 1−λ

2
√

λ
are achieved after taking the limit λ2

λ1
→ +∞ or λ1

λ2
→ +∞.

Assume now a2 > (1−λ)2

4λ
and consider the two-dimensional Cauchy problem (40). Its

solution equals xt = P
[ exp(−μ+t) 0

0 exp(−μ−t)

]
P −1x0, which leads to

‖xt‖ ≤ ‖P ‖∥∥P −1
∥
∥ exp

(

−1 + λ

2
t

)

‖x0‖,

when ‖ · ‖ denotes either the Euclidean norm on vectors or the associated matrix norm,
‖A‖ = √

max(σ (A∗A)). This yields the exponential convergence with rate Tr(S)/2 = (1 +
λ)/2, as soon as a satisfies a2 > (1−λ)2

4λ
, while the degenerate case a2 = (1−λ)2

4λ
would give an

upper bound C(1 + t)e− 1+λ
2 t . A more convenient matrix norm is the Frobenius norm given

by ‖A‖2
F = ∑2

i,j=1 |Aij |2 = ∑
α∈σ(A∗A) α with the equivalence in dimension 2, 1√

2
‖A‖F ≤

‖A‖ ≤ ‖A‖F . By recalling α+ = α−, we get

‖xt‖ ≤ ‖P ‖F

∥
∥P −1

∥
∥

F
exp

(

−1 + λ

2
t

)

‖x0‖

≤ 2
(1 + |α+|2)
|α− − α+| exp

(

−1 + λ

2
t

)

‖x0‖

≤ 2(λ + 1)
|a|

√
4λa2 − (1 − λ)2

exp

(

−1 + λ

2
t

)

‖x0‖.
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Now, it is clear that the infimum of ‖P ‖F ‖P −1‖F is obtained asymptotically as |a| → ∞
and equals λ+1√

λ
. It corresponds to an antisymmetric matrix J with infinite norm.

To end this section, we would like to discuss the situation when the original dynamics
(when J = 0) has two separated time scales, namely λ is very large or very small. In the
case λ � 1, we observe that the optimal ‖P ‖F ‖P −1‖F (and thus the optimal ‖P ‖‖P −1‖)

scales like 1√
λ

, and that this scaling in λ is already achieved by taking a2 = (1−λ)2

2λ
(twice

the minimum value in (41)), since in this case, ‖P ‖F ‖P −1‖F = √
2 (λ+1)√

λ
. In terms of rate of

convergence to equilibrium, it means that, to get ‖xt‖ of the order of ‖x0‖/2, say, it takes
a time of order ln(1/λ). This should be compared to the original dynamics (for a = 0), for
which this time is of order 1/λ. Of course, a similar reasoning holds for λ � 1. Using an
antisymmetric perturbation of the original dynamics, we are able to dramatically accelerate
convergence to equilibrium.

4 Convergence to Equilibrium for Gaussian Laws and Applications

In this section, we use the results of the previous section in order to understand the longtime
behavior of the mean and the covariance of Xt solution to (28):

dXt = −(I + J )SXt dt + √
2dWt .

In particular, if X0 is a Gaussian random variable (including the case where X0 is deter-
ministic), then Xt remains a Gaussian random variable for all times, and understanding the
longtime behavior of the mean E(Xt) and the covariance matrix Var(Xt ) = E(Xt ⊗ Xt) −
E(Xt ) ⊗ E(Xt) is equivalent to understanding the longtime behavior of the density of the
process Xt , which is exactly Corollary 1 in a very specific case. Here and in the following,
⊗ denotes the tensor product: for two vectors x and y in R

N , x ⊗y = xyT is a N ×N matrix
with (i, j)-component xiyj .

4.1 The Mean

Let us denote xt = E(Xt), which is the solution to the ordinary differential equation

dxt

dt
= −(I + J )Sxt , x0 = x. (42)

The longtime behavior of xt amounts to getting appropriate bounds on the semigroup
e−(I+J )St or equivalently on e−(S+J̃ )t .

When J = 0, namely for the ordinary differential equation

dxt

dt
= −Sxt , x0 = x,

we immediately deduce from the spectral representation of the positive symmetric matrix S

that ‖xt‖ ≤ e−ρt‖x0‖ where ρ := min{σ(S)}. The above bound implies that ‖e−St‖ ≤ e−ρt ,
where ‖M‖ = supx∈RN ,x �=0

‖Mx‖
‖x‖ . Notice that ρ ≤ Tr(S)

N
.

We now derive a similar estimate for the semigroup generated by the perturbed matrix
B̃J = S + J̃ (or equivalently BJ = (I + J )S), when (J̃ ,Q) ∈ Popt , and show that a better
exponential rate of convergence is obtained. As explained in the introduction, the price to
pay for the improvement in the rate of convergence is the worsening of the constant (which
is simply 1 in the reversible case) in front of the exponential.
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Proposition 5 For (J̃ ,Q) ∈ Popt and J = S−1/2J̃ S−1/2, the estimates

∥
∥e−(S+J̃ )t

∥
∥ ≤ κ(Q)1/2 exp

(

−Tr(S)

N
t

)

, (43)

∥
∥e−(I+J )St

∥
∥ ≤ κ

(
Q−1S

)1/2
exp

(

−Tr(S)

N
t

)

, (44)

hold for every t ≥ 0.

Proof Consider the ordinary differential equation

dyt

dt
= −(S + J̃ )yt , y0 = y. (45)

We introduce the scalar product (·, ·)Q−1 := (·,Q−1·)R on R
N with the corresponding norm

‖ · ‖Q−1 . We calculate:

d

dt
‖yt‖2

Q−1 = −2
(
yt ,Q

−1(S + J̃ )yt

)
R

= −(
yt ,

(
Q−1S + Q−1J̃ + SQ−1 − J̃Q−1

)
yt

)
R

= −
(

yt ,
2 Tr(S)

N
Q−1yt

)

R

= −2 Tr(S)

N
‖yt‖2

Q−1 .

In the above, we have used the identity

Q−1J̃ − J̃Q−1 = −SQ−1 − Q−1S + 2 Tr(S)

N
Q−1

which follows from (33) after multiplication on the left and on the right by Q−1. From the
above we conclude that

‖yt‖2
Q−1 = e−2 TrS

N
t‖y‖2

Q−1 .

We now use the definition of the norm ‖ · ‖Q−1 to deduce that

‖yt‖ ≤ ∥
∥Q1/2

∥
∥
∥
∥Q−1/2yt

∥
∥ = ∥

∥Q1/2
∥
∥‖yt‖Q−1

≤ e− TrS
N

t
∥
∥Q1/2

∥
∥‖y‖Q−1 ≤ e− TrS

N
t
∥
∥Q1/2

∥
∥
∥
∥Q−1/2

∥
∥‖y‖

= e− TrS
N

tκ(Q)1/2‖y‖.
For the second estimate, we set xt = S−1/2yt and obtain

‖xt‖ ≤ ∥
∥S−1/2Q1/2

∥
∥
∥
∥Q−1/2yt

∥
∥

≤ e− Tr(S)
N

t
∥
∥S−1/2Q1/2

∥
∥
∥
∥Q−1/2y

∥
∥

≤ e− Tr(S)
N

t κ
(
Q−1S

)1/2‖x‖. �

Proposition 5 shows that, for a well chosen matrix J , the mean xt = E(Xt) converges to
zero exponentially fast with a rate Tr(S)

N
. Equation (20) in Theorem 1 is a simple corollary
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of (44) and the inequality κ(Q−1S)1/2 ≤ κ(Q)1/2κ(S)1/2, so that C
(1)
N in (20) can be chosen

as

C
(1)
N = κ(Q)1/2. (46)

Remark 7 Using the upper bound (46), it can be shown that C
(1)
N may be chosen indepen-

dently of N , while keeping the norm of the perturbation J̃ under control. More precisely, for
a given orthonormal basis (ψk) satisfying (36), let us consider the eigenvalues λk = N + k.
On the one hand, C(1)

N remains small since κ(Q) = 2. On the other hand, using (38), we have

‖J̃‖2
F = 2

∑

j<k

(
λk + λj

λk − λj

)2

(ψj , Sψk)
2
R

≤ 2(4N)2
∑

j<k

(ψj , Sψk)
2
R

≤ 16N2‖S‖2
F .

Thus, the norm of J̃ (compared to the one of S) remains linear in N .

4.2 The Covariance

Let us again consider Xt solution to (28), and let us introduce the covariance

Σt = E(Xt ⊗ Xt) − E(Xt) ⊗ E(Xt),

which satisfies the ordinary differential equation:

dΣt

dt
= −(I + J )SΣt − ΣtS(I − J ) + 2I. (47)

The equilibrium variance is Σ∞ = S−1.

Proposition 6 For (J̃ ,Q) ∈ Popt and J = S−1/2J̃ S−1/2, the estimate

∥
∥Σt − S−1

∥
∥ ≤ κ

(
Q−1S

)
exp

(

−2
Tr(S)

N
t

)∥
∥Σ0 − S−1

∥
∥ (48)

holds for all t ≥ 0, when the matrix norm is induced by the Euclidean norm on R
N .

Proof The solution to (47) (see e.g. [29, 40]), Σt is

Σt = S−1 + e−tBJ
(
Σ0 − S−1

)
e−tBT

J . (49)

The result then follows from the estimate on ‖e−tBJ ‖ in Proposition 5 above and ‖e−tBT
J ‖ =

‖(e−tBJ )T ‖ = ‖e−tBJ ‖. �

4.3 Gaussian Densities

As a corollary of Proposition 5 and Proposition 6, we get the following convergence to the
Gaussian density (see (15))

ψ∞(x) = det(Σ∞)−1/2

(2π)N/2
exp

(

−xT Σ−1∞ x

2

)

, with Σ−1
∞ = S.
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Proposition 7 Assume that Xt solves (28) while X0 is a Gaussian random variable, so that
Xt is a Gaussian random variable for all t ≥ 0, with density ψJ

t . Assume moreover that
J = S−1/2J̃ S−1/2, and that (J̃ ,Q) is chosen in Popt . Then, the inequality

∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )
≤ N2Ne−2 Tr(S)

N
(t−t0)

[
1 + ‖x0‖2 exp

(
2e−2 Tr(S)

N
(t−t0)‖x0‖2

)]
,

holds for all times t larger than

t0 = N

2 TrS
ln

[
4
(
1 + ‖S‖)κ(

Q−1S
)(

1 + ‖SΣ0‖
)]

. (50)

This result is related to the result stated in Corollary 1, that will be proven in Sect. 5. Corol-
lary 1 provides a better and uniform in time quantitative information (which has also a better
behavior with respect to the dimension N according to (64) and Remark 9). On the contrary,
it requires more regularity than Proposition 7 which does not assume ψJ

0 ∈ L2(RN,ψ−1∞ dx).
Of course, with initial data outside L2(RN,ψ−1∞ dx), the convergence estimate makes sense
only for sufficiently large times (hence the introduction of the positive time t0 in Proposi-
tion 7).

Proof The Gaussian random vector Xt has the mean xt , which solves (42), and the covari-
ance Σt , solution to (47), so that

ψJ
t (x) = det(Σt)

−1/2

(2π)N/2
exp

(

− (x − xt )
T Σ−1

t (x − xt )

2

)

.

When t ≥ t0, Proposition 6 gives ‖Σt − Σ∞‖ ≤ 1
4‖Σ∞‖ and thus, ‖Σ− 1

2∞ ΣtΣ
− 1

2∞ − I‖ ≤
1
4 , which yields 3

4 Σ∞ ≤ Σt ≤ 5
4Σ∞ and 4

5Σ−1∞ ≤ Σ−1
t ≤ 4

3 Σ−1∞ . In particular Σ−1
t

2 ≤ Σ−1∞
allows to compute

1 + ∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )

= 1 +
∫

RN

(
ψJ

t − ψ∞
)2

ψ−1
∞ =

∫

RN

(ψJ
t )2

ψ∞

= (2π)−N/2 det(Σt)
−1

det(Σ∞)−1/2

∫

RN

exp

(

−(x − xt )
T Σ−1

t (x − xt ) + xT Σ−1∞ x

2

)

.

We then use the relation, for A and B in S >0
N (R),

(x − xt )
T A(x − xt ) − xT Bx

= (
x − (

I − A−1B
)−1

xt

)T
(A − B)

(
x − (

I − A−1B
)−1

xt

)

+ xT
t

[
A − A(A − B)−1A

]
xt ,
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with A = Σ−1
t and B = Σ−1∞

2 in order to get

1 + ∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )

= (2π)−N/2 det(Σt)
−1

det(Σ∞)−1/2
π

N
2 det

(

Σ−1
t − Σ−1∞

2

)−1/2

× exp

(

xT
t

[

Σ−1
t

(

Σ−1
t − Σ−1∞

2

)−1

Σ−1
t − Σ−1

t

]

xt

)

= 1

det(Σ−1∞ Σt)
1
2 det(2I − Σ−1∞ Σt)

1
2

exp
(
xT

t

[
2
(
2I − Σ−1

∞ Σt

)−1 − I
]
Σ−1

t xt

)
.

After setting Rt = I − Σ−1∞ Σt , we deduce

∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )

= 1

det(I − R2
t )

1
2

− 1

+ 1

det(I − R2
t )

1
2

× [
exp

(
xT

t

[
2(I + Rt)

−1 − I
])

Σ−1
t xt ) − 1

]
. (51)

Let us start with the determinant det(I − R2
t ). The condition t ≥ t0 and Proposition 6 give

‖Rt‖ = ∥
∥I − Σ−1

∞ Σt

∥
∥ ≤ e−2 Tr(S)

N
(t−t0)

4
and

∥
∥R2

t

∥
∥ ≤ e−4 Tr(S)

N
(t−t0)

16
.

With ‖R2
t ‖ ≤ 1

16 , we know

∣
∣ln det

(
I − R2

t

)∣∣ ≤ ∣
∣Tr

(
ln

(
I − R2

t

))∣∣ ≤ N
∥
∥ln

(
I − R2

t

)∥∥ ≤ −N ln
(
1 − ∥

∥R2
t

∥
∥)

.

We deduce

1

det(I − R2
t )

1
2

≤ (
1 − ∥

∥R2
t

∥
∥)− N

2 ≤
(

16

15

)N
2 ≤ 2

N
2 .

Concerning the exponential term in (51), Proposition 5 implies that the absolute value
|xT

t [2(I + Rt)
−1 − I ]Σ−1

t xt | is smaller than

(
1 + 2

∥
∥(I + R)−1

∥
∥)∥∥Σ−1

t

∥
∥ × κ

(
Q−1S

)
exp

(

−2
Tr(S)

N
t

)

‖x0‖2.

The inequality ‖(1 + R)−1‖ ≤ (1 − ‖R‖)−1 ≤ 4
3 and the condition t ≥ t0 imply ‖Σ−1

t ‖ ≤
4
3‖Σ−1∞ ‖ = 4

3 ‖S‖ and

∣
∣xT

t

[
2(I + Rt)

−1 − I
]
Σ−1

t xt

∣
∣ ≤ 44

9 × 4
e−2 Tr(S)

N
(t−t0)‖x0‖2.
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We have proved

∥
∥ψI

t − ψ∞
∥
∥2

L2(ψ−1∞ )
≤

[(

1 − e−4 Tr(S)
N

(t−t0)

16

)− N
2 − 1

]

+ 2
N
2

[

exp

(
11

9
e−2 Tr(S)

N
(t−t0)‖x0‖2

)

− 1

]

.

By using (1 − x)−N/2 ≤ 1 + N2N/2x when x ∈ (0,1/2) for the first term, and ey − 1 ≤ yey

when y ≥ 0 for the second term we finally obtain

∥
∥ψI

t − ψ∞
∥
∥2

L2(ψ−1∞ )
≤ N2

N
2 e−4 Tr(S)

N
(t−t0)

+ 11

9
2

N
2 e−2 Tr(S)

N
(t−t0)‖x0‖2 exp

(
11

9
e−2 Tr(S)

N
(t−t0)‖x0‖2

)

,

which yields the result. �

4.4 General Initial Densities

As a corollary of Proposition 7, a convergence result for a general initial probability law can
be proven by using an argument based on the conditioning by the initial data.

Proposition 8 Let ψJ
t satisfy the Fokker-Planck equation (23), with an initial probability

law with density ψJ
0 and such that

∫
RN eα‖x‖2

ψJ
0 (x) dx < +∞ for some positive α. Assume

moreover that J = S−1/2J̃ S−1/2, that (J̃ ,Q) are chosen in Popt and that t0 is given by (50).
Then the inequality

∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )
≤ N2N+1e−2 Tr(S)

N
(t−tα)

∫

RN

eα‖x‖2
ψJ

0 (x)dx, (52)

holds for all t ≥ tα = t0 + N
2 Tr(S)

| ln( α
4 )|.

Proof In all the proof, J = S−1/2J̃ S−1/2 is fixed, with (J̃ ,Q) chosen in Popt . For x ∈ R
N

and t > 0, let us denote φx
t the density of the Gaussian process Xx

t solution to:

dXx
t = −(I + J )SXx

t dt + √
2dWt with Xx

0 = x.

Proposition 7 can be applied with ψJ
t = φx

t and Σ0 = 0, so that the time t0 = N
2 TrS ln[4(1 +

‖S‖)κ(Q−1S)] is fixed. With the decomposition

ψJ
t (y) =

∫

RN

φx
t (y)ψJ

0 (x) dx,

coming from φx
0 = δx , we can write:

∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )
=

∫

RN

(ψJ
t )2(y)

ψ∞(y)
dy − 1

=
∫

RN

1

ψ∞(y)

(∫

RN

φx
t (y)ψJ

0 (x) dx

)2

dy − 1
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≤
∫

RN

∫

RN

(φx
t (y))2

ψ∞(y)
dy ψJ

0 (x) dx − 1

=
∫

RN

∫

RN

(
(φx

t (y))2

ψ∞(y)
dy − 1

)

ψJ
0 (x) dx.

With Proposition 7, we deduce

∥
∥ψJ

t − ψ∞
∥
∥2

L2(ψ−1∞ )
≤ N2Ne−2 Tr(S)

N
(t−t0)

×
[

1 +
∫

RN

‖x‖2 exp
(
2e−2 Tr(S)

N
(t−t0)‖x‖2

)
ψJ

0 (x) dx

]

≤ N2Ne−2 Tr(S)
N

(t−t0)

[

1 + 1

α

∫

RN

eα‖x‖2
ψJ

0 (x) dx

]

≤ N2Ne−2 Tr(S)
N

(t−t0)

(

1 + 1

α

)∫

RN

eα‖x‖2
ψJ

0 (x) dx,

for t ≥ tα = t0 + N
2 Tr(S)

| ln( α
4 )|. To get the second line, we used (for t ≥ tα) e−2 Tr(S)

N
(t−t0) ≤

α
2 and (for u > 0) ue

α
2 u ≤ 2

eα
eαu ≤ 1

α
eαu. Writing e−2 Tr(S)

N
(t−t0) = e−2 Tr(S)

N
(t−tα)e−| ln α

4 | and
discussing the two cases α ≥ 4 and α ≤ 4 yield the result. �

The aim of the analysis using Wick calculus in Sect. 5 is to obtain more accurate and
uniform in time estimates.

5 Convergence to Equilibrium for Initial Data in L2(RN,ψ∞dx)

We shall study the spectral properties, and the norm estimates of the corresponding semi-
group, for the generator L̃J defined by (25) (with the dummy variable y replaced by x in the
following):

L̃J = ∇T S∇ − 1

4
xT Sx + 1

2
Tr(S) + 1

2

(
xT J̃∇ − ∇T J̃ x

)
.

The operator L̃J acts in L2(RN, dx;C) and is unitarily equivalent (when J̃ = S1/2JS1/2,
and after a change of variables, see Sect. 2) to

LJ = −(BJ x)T ∇ + Δ with BJ = (I + J )S,J ∈ AN,

acting on L2(RN,ψ∞dx;C). Since for J �= 0, the operator L̃J (or LJ ) is not self-adjoint,
it is known (see [8, 15, 18–20, 41]) that the information about the spectrum is a first step
in estimating the exponential decay of the semigroup, but that it has to be completed by
estimates on the norm of the resolvent. This will be carried out by using a weighted L2-
norm associated with the construction of the matrices Q and J introduced in Sect. 3.

5.1 Additional Notation and Basic Properties of the Semigroup et L̃J

Let us introduce some additional notation.
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– We choose the right-linear and left-antilinear convention for L2-scalar products (or S −
S ′-duality products):

〈f,g〉L2 =
∫

RN

f (x)g(x) dx.

– For a multi-index n = (n1, . . . , nN) ∈ N
N , we will denote n! = ∏N

j=1 nj !, |n| = ∑N

j=1 nj

and when X1, . . . ,XN belong to a commutative algebra Xn = ∏N

j=1 X
nj

j .
– The space of rapidly decaying complex valued C∞ functions is

S
(
R

N
) =

{
f ∈ C∞(

R
N
)
, ∀α,β ∈ N

N,∃Cαβ ∈ R+,

sup
x∈RN

∣
∣xα∂β

x f (x)
∣
∣ ≤ Cαβ

}

and its dual is denoted S ′(RN).
– The Weyl-quantization qW(x,Dx) of a symbol q(x, ξ) ∈ S ′(R2N

x,ξ ) is an operator defined
by its Schwartz-kernel

[
qW(x,Dx)

]
(x, y) =

∫

RN

ei(x−y).ξ q

(
x + y

2
, ξ

)
dξ

(2π)N
.

For example, for q(x, ξ) = f (x), qW(x,Dx) is the multiplication by f (x), for q(x, ξ) =
f (ξ), qW(x,Dx) is the convolution operator f (−i∇), and for q(x, ξ) = xT ξ , qW (x,Dx)

is 1
2i

(xT ∇ + ∇T x).
– The Wick-quantization of a polynomial symbols of the variables (z, z), where z ∈ C

N is
an operator defined by replacing zj with the so-called annihilation operator aj = ∂xj

+ xj

2

and zj with the so-called creation operator a∗
j = −∂xj

+ xj

2 . Wick’s rule implies that
for monomials involving both z and z, the annihilation operators are gathered on the
right-hand side and the creation operators on the left-hand side: For given multi-indices
α,β ∈ N

N , the monomial zαzβ becomes (a∗)αaβ . A general presentation of the Wick
calculus may be found in [1, 2]. In the following, we will use direct calculation based on
the canonical commutation relation [ai, a

∗
j ] = δij . We shall also use the vectorial notation

a = (a1, . . . , aN)T and a∗ = (a∗
1 , . . . , a

∗
N)T .

– The orthogonal projection from L2(RN, dx;C) onto Ce− |x|2
4 will be denoted by Π0.

Let us now recall a few basic properties of the semigroup et L̃J . The Weyl symbol of

−L̃J + Tr(S)

2
= −∇T S∇ + 1

4
xT Sx − 1

2

(
xT J̃∇ − ∇T J̃ x

)

is (using the fact that J̃ is antisymmetric)

qJ (x, ξ) = ξT Sξ + xT Sx

4
− i

2

(
xT J̃ ξ − ξT J̃ x

) = ξT Sξ + xT Sx

4
− ixT J̃ ξ, (53)

which is a complex quadratic form on R
2N
x,ξ . Besides, the operator −L̃J is the Wick quanti-

zation of a quadratic polynomial since

−L̃J = −∇T S∇ + 1

4
xT Sx − 1

2
Tr(S) − 1

2

(
xT J̃∇ − ∇T J̃ x

)

= a∗,T (S − J̃ )a. (54)
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Proposition 9 The differential operator −L̃J is continuous from S(RN) into itself and
from S ′(RN) into itself. Its formal adjoint is −L̃−J . With the domain D(−L̃J ) = {u ∈
L2(RN, dx;C),−L̃J u ∈ L2(RN, dx;C)}, the operator −L̃J is a maximal accretive and sec-

torial operator in L2(RN, dx;C). Its resolvent is compact and its kernel equals Ce− |x|2
4 . The

associated semigroup (et L̃J )t≥0 has the following properties:

– For any u ∈ S(RN) (resp. any u ∈ S ′(RN)), the map [0,+∞) � t 
→ et L̃J u is a S(RN)-
valued (resp. S ′(RN)-valued) C∞ function.

– For any t > 0, the operator et L̃J maps continuously S ′(RN) into S(RN).
– In the orthogonal decomposition L2(RN, dx;C) = ⊕⊥

k∈N
Dk into the finite dimensional

vector spaces spanned by Hermite functions with degree k:

Dk = Span
{(

a∗)n
e− |x|2

4 , n ∈ N
N, |n| = k

}
,

the semigroup has a block diagonal decomposition

et L̃J =
⊥⊕

k∈N

et L̃J

∣
∣
∣
∣
∣

Dk

.

Proof As a differential operator with a polynomial Weyl symbol, −L̃J is continuous from
S(RN) (resp. S ′(RN)) into itself. Its formal adjoints has the Weyl symbols qJ (x, ξ) =
q−J (x, ξ) and equals −L̃−J . For k ∈ N, set

Hk = {
u ∈ L2

(
R

N, dx;C
)
, xαDβ

x u ∈ L2
(
R

N, dx;C
)
,

for all α,β ∈ N
N s.t. |α| + |β| ≤ k

}

and let H−k be its dual space. They satisfy
⋂

k∈Z
Hk = S(RN) and

⋃
k∈Z

Hk = S ′(RN).
Since S is a real symmetric positive definite matrix, the inequality

∣
∣qJ (x, ξ)

∣
∣ ≥ ξT Sξ + xT Sx

4
≥ CS

(|ξ |2 + |x|2)

implies that the operator −L̃J is globally elliptic (see [17, 36, 37, 39]). Therefore, it is a
bijection from Hk onto Hk−2 for any k ∈ Z. This provides the compactness of the resolvent
and the maximality property. The sectorial property (see [38, Chap. VIII]) comes from

〈u,−L̃J u〉L2 = 〈
u,a∗,T Sau

〉
L2 − 〈

u,a∗,T J̃ au
〉
L2 , with

∣
∣〈u, a∗,T J̃ au

〉
L2

∣
∣ ≤ ‖J̃‖

minσ(S)

〈
u,a∗,T Sau

〉
L2 .

This yields (using the fact that Re(〈u,−L̃J u〉L2) = 〈u,a∗,T Sau〉L2 and Im(〈u,−L̃J u〉L2) =
−〈u,a∗,T J̃ au〉L2 )

∀u ∈ S
(
R

N
)
,

∣
∣arg〈u,−L̃J u〉L2

∣
∣ ≤ θ, (55)

with 0 ≤ tan(θ) ≤ ‖J̃‖
minσ(S)

< +∞. Here and in the following, arg(z) denotes the argument of
a complex number z.

Then the usual contour integration technique for sectorial operators (see for example [38,
Theorem X.52] and its two corollaries) implies that (−L̃J )ket L̃J is bounded for any k ∈ N
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and any t > 0. Combined with the global ellipticity of −L̃J , this provides all our regularity
results.

The orthogonal decomposition L2(RN, dx;C) = ⊕⊥
k∈N

Dk is actually the spectral de-

composition for the harmonic oscillator Hamiltonian a∗T a. From the Wick calculus (use
either [ai, a

∗
j ] = δij or the general formula in [1, Proposition 2.7]), we deduce

[
a∗,T a, a∗,T (S − J̃ )a

] = a∗,T
[
I, (S − J̃ )

]
a = 0.

This implies that the spectral subspaces Dk , k ∈ N, are indeed invariant by the semigroup
et L̃J . �

Note that with the last property, the question of estimating the convergence to equilibrium
stated in Theorem 2 is equivalent to estimating the decay of the semigroup et L̃J (I − Π0) or

et L̃J |D⊥
0

where Π0 is the orthogonal projection onto Ce− |x|2
4 = D0 (see also (27)).

5.2 Spectrum of L̃J

The result of this section is a direct application of the general results of [21, 36, 37] de-
veloped after [22, 39]. See also [34, 35] where these general results are used in order to
compute the spectrum of the generator of a linear SDE with, possibly degenerate diffusion
matrix. This result was first obtained in [31] using different techniques.

Proposition 10 The spectrum of the operator −L̃J equals

σ(−L̃J ) =
{ ∑

λ∈σ(B̃J )

kλλ, kλ ∈ N

}

,

and its kernel is Ce− |x|2
4 .

Proof The spectrum of the operator qW
J (x,Dx) = −L̃J + Tr(S)

2 associated with the elliptic
quadratic Weyl symbol qJ (x, ξ) defined by (53) equals, according to [21, Theorem 1.2.2],

σ
(
qW

J (x,Dx)
) =

{ ∑

λ∈σ(F )
Imλ≥0

−iλ(rλ + 2kλ), kλ ∈ N

}

,

where F is the so-called Hamilton map associated with qJ , and rλ is the algebraic multi-
plicity of λ ∈ σ(F ), i.e. the dimension of the characteristic space. The Hamilton map is the
C-linear map F : C

2N → C
2N associated with the matrix

F =
[

0 I

−I 0

]

MqJ
, where MqJ

=
[

S
4 − i

2 J̃

i
2 J̃ S

]

∈ M2N(C)

is the matrix of the C-bilinear form associated with qJ . The matrix F is similar to F̃ defined
by

F̃ =
[

1√
2

0

0
√

2

]

F

[√
2 0

0 1√
2

]

= 1

2

[
iJ̃ S

−S iJ̃

]

.
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Thus, the characteristic polynomial of F can be computed by

det(F − λI) = det(F̃ − λI) = 2−2N

∣
∣
∣
∣
iJ̃ − 2λI S

−S iJ̃ − 2λI

∣
∣
∣
∣

= 2−2N

∣
∣
∣
∣

iJ̃ − 2λI S

−S − J̃ − i2λI i(J̃ + S + i2λI)

∣
∣
∣
∣

= 2−2N

∣
∣
∣
∣
i(J̃ − S + i2λI) S

0 i(J̃ + S + i2λI)

∣
∣
∣
∣

= 2−2N det(S − J̃ − i2λI)det(S + J̃ + i2λI)

= 2−2N det(S + J̃ − i2λI)det(S + J̃ + i2λI),

where we used det(M) = det(MT ) for M = S − J̃ − i2λI in the last line. Using the fact that
Re(σ (B̃J )) ≥ 0, we thus obtain that σ(F ) ∩ {λ, Imλ ≥ 0} equals i

2 σ(S + J̃ ) = i
2 σ(B̃J ). In

particular one gets,

∑

λ∈σ(F )
Imλ≥0

−iλ2kλ =
∑

μ∈σ(B̃J )

kiμ/2μ

and

∑

λ∈σ(F )
Imλ≥0

−iλrλ = 1

2
Tr(B̃J ) = Tr(S)

2
.

This concludes the proof. �

The Gearhart-Prüss theorem (see [12, 19, 41]) provides the following corollary.

Corollary 2 When the pair (J̃ ,Q) belongs to Popt , the spectrum of −L̃J is contained in

{0} ∪
{

z ∈ C,Re z ≥ Tr(S)

N

}

and

lim
t→∞

1

t
ln

∥
∥et L̃J (I − Π0)

∥
∥

L(L2)
= −Tr(S)

N
,

where, we recall, ‖et L̃J (I − Π0)‖L(L2) = supu∈D⊥
0

‖et L̃J u‖
L2

‖u‖
L2

.

The above logarithmic convergence is weaker than an estimate ‖et L̃J ‖ ≤ Ce− Tr(S)
N with a

good control of the constant C. Obtaining such a control is not an easy task for general
semigroups with non self-adjoint generators (see [15, 18–20]). This is the subject of the
next section.
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5.3 Convergence to Equilibrium for et L̃J

Consider a pair (J̃ ,Q) ∈ Popt according to Definition 1. We recall that (J̃ ,Q) ∈ Popt satis-
fies (33). We associate to the matrix Q the operator

CQ = a∗,T Qa (56)

which will be used to define a natural functional space to study the norm of et L̃J in Proposi-
tion 11 below. The operator CQ is the Wick-quantization of the polynomial zT Qz and it has
the following properties:

– It is continuous from S(RN) into itself and from S ′(RN) into itself.
– It is globally elliptic (see [17, 36]) and it has a compact resolvent.
– It is a non negative self-adjoint operator in L2(RN, dx;C) with the domain D(CQ) =

{u ∈ L2(RN, dx;C),CQu ∈ L2(RN, dx;C)}.
– Its kernel is Ce− |x|2

4 .
– It is block diagonal in the decomposition L2(RN, dx;C) = ⊕⊥

k∈N
Dk :

∀t ∈ R, eitCQ =
⊥⊕

k∈N

eitCQ |Dk
. (57)

Let us introduce the two Hilbert spaces:

– H1
Q = {u ∈ L2(RN, dx;C), 〈u, CQu〉L2 < +∞}, naturally endowed with the scalar prod-

uct

〈u,v〉H1
Q

= 〈u, v〉L2 + 〈u,CQv〉L2 ;

– Ḣ1
Q = H1

Q ∩ D⊥
0 (where, we recall, D0 = Ce− |x|2

4 ) endowed with the scalar product

〈u,v〉Ḣ1
Q

= 〈u,CQv〉L2 .

Proposition 11 Assume that the pair (J̃ ,Q) belongs to Popt . Then the semigroup (et L̃J )t≥0

is a contraction semigroup on H1
Q satisfying the following estimate:

∀t ≥ 0,
∥
∥et L̃J (I − Π0)

∥
∥

L(Ḣ1
Q

)
≤ e− Tr(S)

N
t , (58)

where ‖et L̃J (I − Π0)‖L(Ḣ1
Q

) = supu∈Ḣ1
Q

‖et L̃J u‖Ḣ1
Q

‖u‖Ḣ1
Q

.

Proof The operator et L̃j is block diagonal (see Proposition 9) in the decomposition
D0 ⊕⊥ D⊥

0 = ⊕⊥
k∈N

Dk which is an orthogonal decomposition in L2(RN, dx;C) and also

in H1
Q owing to (57). With et L̃J e− |x|2

4 = e− |x|2
4 , the semigroup property on H1 is thus a

consequence of the estimate (58) in Ḣ1
Q.

Using the relation (33) together with the inequality (65) of Lemma 4 proved at the end

of this section, we have: for all u ∈ D = C[x1, . . . , xN ]e− |x|2
4 ∩ D⊥

0 ,

〈
u,

(−L̃∗
J CQ − CQL̃J

)
u
〉
L2 ≥ 2 Tr(S)

N
〈u, CQu〉L2 .
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Since the semigroup (et L̃J )t≥0 is a strongly C 1 semigroup on S(RN) and leaves D ⊂ S(RN)

invariant, we can compute for any u ∈ D,

d

dt

〈
et L̃J u,CQet L̃J u

〉
L2 = 〈

et L̃J u,
(

L̃∗
J CQ + CQL̃J

)
et L̃J u

〉
L2

≤ −2 Tr(S)

N

〈
et L̃J u, CQet L̃J u

〉
L2 .

The proof is then completed using the density of D in Ḣ1
Q. �

We are now in position to state the main result of this section.

Proposition 12 Assume that the pair (J̃ ,Q) belongs to Popt . Then the semigroup (et L̃J )t≥0

satisfies:

∀t ≥ 0,
∥
∥et L̃J (I − Π0)

∥
∥

L(L2)

≤ 25Nκ(Q)1/2

(
maxσ(Q)

minλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)2

κ(S)7/2e− Tr(S)
N

t .

Proof From the inequalities on real symmetric matrices minσ(Q)I ≤ Q ≤ maxσ(Q)I and
minσ(S) I ≤ S ≤ maxσ(S) I and from

CQ =
N∑

i,j=1

a∗
i Qij aj , − LJ + L∗

J

2
=

N∑

i,j=1

a∗
i Sij aj ,

we deduce the following inequalities on self-adjoint operators:

minσ(Q)a∗,T a ≤ CQ ≤ maxσ(Q)a∗,T a,

minσ(S)a∗,T a ≤ − L̃J + L̃∗
J

2
≤ maxσ(S)a∗,T a, and

−minσ(Q)

maxσ(S)

L̃J + L̃∗
J

2
≤ CQ ≤ −maxσ(Q)

minσ(S)

L̃J + L̃∗
J

2
.

Here, we have used the fact that − L̃J +L̃∗
J

2 is the Wick quantization of (z, Sz)C. Hence, using
Proposition 11, the following inequalities hold: for any u ∈ Ḣ1

Q and any t ≥ t0 > 0,

〈

et L̃J u, − L̃J + L̃∗
J

2
et L̃J u

〉

L2

≤ maxσ(S)

minσ(Q)

∥
∥et L̃J u

∥
∥2

Ḣ1
Q

≤ maxσ(S)

minσ(Q)
e−2 Tr(S)

N
(t−t0)

∥
∥et0 L̃J u

∥
∥2

Ḣ1
Q

≤ κ(Q)κ(S)e−2 Tr(S)
N

t e2 Tr(S)
N

t0

〈

et0 L̃J u, − L̃J + L̃∗
J

2
et0 L̃J u

〉

L2



Optimal Non-reversible Linear Drift for the Convergence to Equilibrium 267

≤ κ(Q)κ(S)e−2 Tr(S)
N

t e2 Tr(S)
N

t0
∥
∥et0 L̃J u

∥
∥

L2

∥
∥L̃J et0 L̃J u

∥
∥

L2 .

Using the inequalities

∀v ∈ D⊥
0 , minσ(S)‖v‖2

L2 ≤
〈

v, − L̃J + L̃∗
J

2
v

〉

L2
≤ ‖v‖L2‖L̃J v‖L2 ,

with v = et L̃J u and v = et0 L̃J u, we deduce

∥
∥et L̃J u

∥
∥2

L2 ≤ κ(Q)κ(S)e−2 Tr(S)
N

t e2 Tr(S)
N

t0

t2
0 minσ(S)2

∥
∥t0 L̃J et0 L̃J u

∥
∥2

L2 .

By taking t0 = N
Tr(S)

≥ 1
maxσ(S)

, we obtain, for all u ∈ Ḣ1
Q,

∥
∥et L̃J u

∥
∥2

L2 ≤ κ(Q)κ(S)3e−2 Tr(S)
N

t e2 sup
t ′>0

∥
∥t ′L̃J et ′ L̃J

∥
∥2

L(L2)
‖u‖2

L2 . (59)

The Lemma 3 below provides the bound

sup
t ′>0

∥
∥t ′L̃J et ′ L̃J

∥
∥2

L(L2)
≤ 1

π2 sin4 α
(60)

with α ∈ (0,π/4) defined by

tan

(
π

2
− 2α

)

= sup
u∈D(L̃J )

| Im〈u, L̃J u〉L2 |
|Re〈u, L̃J u〉L2 | ≤ ‖J̃‖

minσ(S)
.

The last inequality was proven in (55) above. We thus obtain

1

sinα
≤ 2 cosα

cos(2α)

‖J̃‖
minσ(S)

.

In view of (60), one can assume that α ∈ (0,π/8) (up to changing α by min(α,π/8)) so that

1

sinα
≤ 2

√
2

‖J̃‖
minσ(S)

. (61)

When (J̃ ,Q) ∈ Popt (see Definition 1), the relation (38) provides an expression of the linear
mapping associated with J̃ in the orthonormal basis (ψk)1≤k≤N . In this basis, the Frobenius
norm can be computed and we get

‖J̃‖2 ≤ ‖J̃‖2
F ≤ 2

(
maxσ(Q)

minλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)2

‖S‖2
F

≤ 2

(
maxσ(Q)

minλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)2

N max
(
σ(S)

)2
. (62)

By gathering (59)–(60)–(61)–(62), we finally obtain the expected upper bound when t ≥ t0:

∥
∥et L̃J u

∥
∥2

L2 ≤ 210N2κ(Q)

(
maxσ(Q)

minλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)4

κ(S)7e−2 Tr(S)
N

t‖u‖2
L2 ,
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for all u ∈ Ḣ1
Q and by density for all u ∈ D⊥

0 . When t ≤ t0 = N
TrS , simply use

∥
∥et L̃J (I − Π0)

∥
∥

L(L2)
≤ 1 ≤ 25N

e
κ(Q)

1
2

(
maxσ(Q)

minλ �=λ′∈σ(Q) |λ − λ′|
)2

κ(S)
7
2 . �

Remark 8 A lower bound can be given for ‖J̃‖ with

‖J̃‖2 ≥ 1

N
‖J̃‖2

F ≥ 2

N

(
minσ(Q)

maxλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)2

‖S‖2
F

= 2

N

(
minσ(Q)

maxλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)2

Tr
(
S2

)
.

Thus, we have

‖J̃‖ ≥ √
2

minσ(Q)minσ(S)

maxλ,λ′∈σ(Q),λ �=λ′ |λ − λ′| . (63)

In view of (27), Proposition 12 yields the estimate (22) in Theorem 2 with a constant

C
(2)
N = 25Nκ(Q)1/2

(
maxσ(Q)

minλ,λ′∈σ(Q),λ �=λ′ |λ − λ′|
)2

. (64)

Let us comment on the way C
(2)
N behaves.

Remark 9 In view of the upper bound (64), using the same construction as in Remark 7,
we again notice that it is possible to have C

(2)
N = O(N3) while keeping a reasonable per-

turbation J̃ (with a Frobenius norm estimated by ‖J̃‖F ≤ 4N‖S‖F ). Contrary to the case
of the ordinary differential equation discussed in Remark 7 our estimate does not provide a
uniform in N constant.

We conclude this section with two technical lemma which were respectively used in the
proof of Proposition 12 and of Proposition 11.

Lemma 3 Let (L,D(L)) be a maximal accretive and sectorial operator in a Hilbert space
H with

∀u ∈ D(L),
∣
∣arg〈u,Lu〉H

∣
∣ ≤ θ = π

2
− 2α with α > 0,

where, we recall, arg(z) denotes the argument of a complex number z. Then, the associated
semigroup satisfies

∀t ≥ 0,
∥
∥tLe−tL

∥
∥

L(H)
≤ 1

π sin2 α
.

Proof The case t = 0 is obvious. For t > 0, e−tL maps H into D(L) so that tLe−tL belongs
to L(H). Consider first the case when 0 /∈ σ(L). Our assumptions with α > 0, ensure that
the operator tLe−tL is given by the convergent contour integral

tLe−tL = 1

2iπ

∫

Γ

tze−tz(z − L)−1 dz,
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where Γ is the union of the two half lines with arguments π
2 − α and − π

2 + α. For z = x ±
i x

tanα
∈ Γ with x > 0 the resolvent (z − L)−1 satisfies (see for example [38, Chap. VIII.17])

‖(z − L)−1‖L(H) ≤ 1
x

. Moreover, |dz| =
√

1 + 1
tan2 α

dx = dx
sinα

and |e−tz| = e−tx . From these

estimates, we deduce

∥
∥tLe−tL

∥
∥

H ≤ 2

2π

∫ +∞

0

tx

sinα
e−tx 1

x

dx

sinα
= 1

π sin2 α

∫ ∞

0
te−tx dx = 1

π sin2 α
.

When 0 ∈ σ(L) it suffices to replace L by ε + L which satisfies the same assumptions as L

with the same α with 0 /∈ σ(ε + L). The identity

t (ε + L)e−t (ε+L) − Le−tL = tεe−εt e−tL + (
e−εt − 1

)
tLe−tL

with t > 0 fixed and e−tL, tLe−tL ∈ L(H) implies limε→0 ‖t (ε + L)e−t (ε+L) − tLe−tL‖L(H)

= 0, which yields the result in the general case. �

Lemma 4 Let S,Q, J̃ be real matrices such that S ∈ S >0
N (R), Q ∈ S >0

N (R) and J̃ ∈ AN(R).
Let us consider the operator L = −L̃J (see Eq. (25) for the definition) and C = CQ (see
Eq. (56)). The operator L (respectively C) is the Wick quantization of the polynomial
�(z) = (z, Sz)C − (z, J̃ z)C (respectively p(z) = (z,Qz)C). Moreover, we have the follow-

ing estimate: ∀ϕ ∈ D = C[x1, . . . , xN ]e− |x|2
4 ∩ D⊥

0 ,

〈
ϕ,

(
L∗C + CL

)
ϕ
〉
L2 ≥ 〈

ϕ,
((

z, [SQ + QS + J̃Q − QJ̃ ]z)
C

)Wick
ϕ
〉
L2 . (65)

Proof The fact that L = (�(z))Wick and C = (p(z))Wick is easy to check. Both opera-
tor are block diagonal in the orthogonal decomposition D0 ⊕⊥ D⊥

0 = ⊕⊥
k∈N

Dk valid in
L2(RN, dx;C) and in H1

Q. Hence the composed operator L∗C + CL is well defined on

D which is the algebraic direct sum D = ⊕alg

n∈N∗ Dk . Notice that the polynomials � and p

satisfy

Re�(z) = (z, Sz)C, Im�(z) = −1

i
(z, J̃ z)C, p(z) = p(z).

We are looking for a lower bound for L∗C + CL. Using the general formula of [1, Propo-
sition 2.7] or by direct calculation using the relation [ai, a

∗
j ] = δij , the Wick symbol of

L∗C + CL is

�(z)p(z) + p(z)�(z) + ∂z�(z).∂zp(z) + ∂zp(z).∂z�(z)

= (
z⊗2, (S ⊗ Q + Q ⊗ S)z⊗2

)
C

+ (
z, (SQ + QS + J̃Q − QJ̃ )z

)
C
.

Since S and Q are non negative matrices, we deduce that S ⊗Q and Q⊗S are non negative
and so is the sum S ⊗ Q + Q ⊗ S. When B = (B(i,j),(k,�))1≤i,j,k,�≤N is a non negative matrix

on C
N2

with the symmetries B(i,j),(k,�) = B(i,j),(�,k) = B(j,i),(k,�), the operator

bWick =
∑

i,j,k,�

a∗
i a

∗
i B(i,j),(k,�)aka�

associated with the symbol b(z) = (z⊗2, Bz⊗2)C is non negative. This can be checked by
direct calculation of

〈
ϕ,bWickϕ

〉 =
∑

1≤i,j,k,�≤N

∫

RN

ϕ(i,j)(x)B(i,j),(k,�)ϕ(k,�)(x) dx
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Fig. 2 Norms of the matrix
exponentials for the 2 × 2
diagonal matrix (66) and optimal
nonreversible perturbations

where ϕ(i,j) = aiajϕ. We refer the reader to [2], precisely relation (8) after Proposition 2.2,
for a general statement. �

Notice that the inequality (65) cannot be obtained neither by using the non negative
anti-Wick quantization (see [28]) nor the sharp Garding or Feffermann-Phong inequalities
(see [23]).

6 Numerical Experiments

In this section we present some numerical experiments, based on the algorithm presented as
a pseudo-code in Fig. 1. The numerical computations presented in this section are based on
the following steps:

1. Calculate the orthonormal basis {ψk}N
k=1 using the algorithm presented in Fig. 1.

2. Choose the eigenvalues of the matrix Q, {λk}N
k=1, e.g. according to Remark 7.

3. Calculate the optimal perturbation J using (38) and the formula J = S−1/2J̃ S−1/2.
4. Calculate the optimally perturbed matrix BJ = (I + J )S.
5. Calculate the matrix exponentials e−tB and e−tBJ and their norms.

In Fig. 2 we present the results for a two dimensional problem, for which all results can
be performed analytically, see Sect. 3.3. We consider the case where the matrix B has a
spectral gap,

S = diag(1,0.1). (66)

In the figure we plot the norms of the matrix exponentials for the symmetric case, an optimal
perturbation and the critical value, see Eq. (41).

In Fig. 3 we present results for a three dimensional problem with the symmetric matrix

S = diag(1,0.1,0.01). (67)

The spectral gap of the optimally perturbed nonreversible matrix (and of the generator of
the semigroup) is given by TrS

3 = 0.37, which is a substantial improvement over that of S,
namely 0.01.

In Fig. 4 we consider a 100 × 100 diagonal matrix with random entries, uniformly dis-
tributed on [0,1]. For our example the minimum diagonal element (spectral gap) is 0.0012.
On the contrary, the spectral gap of BJ with J = Jopt is 0.4762.
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Fig. 3 Norms of the matrix
exponentials for the 3 × 3
diagonal matrix (67) and its
optimal nonreversible
perturbation

Fig. 4 Norms of the matrix
exponentials for a diagonal
matrix with random uniformly
distributed entries and its optimal
nonreversible perturbation for
N = 100

Finally, in Fig. 5 we consider a drift that is a (high dimensional) finite difference approx-
imation of the Laplacian with periodic boundary conditions. More precisely, consider the
drift matrix

Bii = 2, Bi,i+1 = Bi−1,i = −1,

with N = 100. In this case the improvement on the convergence rate is over three orders of
magnitude, since

min
(
σ(B)

) = 9.67 × 10−4, whereas Re
(
σ(BJ )

) = TrS

100
= 2.

We can think of this example in connection of sampling from a Gaussian random field
using a finite difference approximation of the stochastic heat equation ∂tu = ∂2

xu + ξ in
[0,1] with periodic boundary conditions, and where ξ denotes space-time white noise. Since
the computational cost of calculating the optimal nonreversible perturbation is very low,
we believe that the algorithm developed in this paper can be used for sampling Gaussian
distributions in infinite dimensions.



272 T. Lelièvre et al.

Fig. 5 Norms of the matrix
exponentials for the discrete
Laplacian and its optimal
nonreversible perturbation for
N = 100

Fig. 6 Second moment as a
function of time for (68) with the
potential (69). We take 0 as an
initial condition and β−1 = 0.1

The algorithm developed in this paper provides us with the optimal nonreversible per-
turbation only in the case of linear drift. However, even for nonlinear problems it is always
the case that the addition of a nonreversible perturbation can accelerate the convergence
to equilibrium, as mentioned in the introduction. This is particularly the case for systems
with metastable states and/or multiscale structure [26]; for such systems, a “clever” choice
of the nonreversible perturbation can lead to a very significant increase in the rate of con-
vergence to equilibrium. A systematic methodology for obtaining the optimal nonreversible
perturbation for general reversible diffusions (i.e. not necessarily with a linear drift) will be
developed elsewhere.

We illustrate the advantage of adding a nonreversible perturbation to the dynamics by
considering a simple two-dimensional example. In particular, we consider the nonreversible
dynamics

dXt = (−I + δJ )∇V (Xt) dt +
√

2β−1 dWt, (68)

with δ ∈ R and J the standard 2 × 2 antisymmetric matrix, i.e. J12 = 1, J21 = −1. For this
class of nonreversible perturbations the parameter that we wish to choose in an optimal way
is δ. Based on our numerical experiments we can conclude that even a non-optimal choice
of δ significantly accelerates convergence to equilibrium. To illustrate the effect of adding
a nonreversible perturbation, we solve numerically (68) using the Euler-Maruyama method
with a sufficiently small time step and for a sufficiently large number of realizations of the
noise. We then compute the expectation value of observables of the solution, in particular,
the second moment by averaging over all the trajectories that we have generated.
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We use one of the potentials that were considered in [32], namely

V (x, y) = 1

4

(
x2 − 1

)2 + 1

2
y2. (69)

In Fig. 6 we present the convergence of the second moment to its equilibrium value for
β−1 = 0.1. Even in this very simple example, the addition of a nonreversible perturbation,
with δ = 10, speeds up convergence to equilibrium. Notice also that, as expected, the non-
reversible perturbation leads to an oscillatory transient behavior.
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