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Abstract. We study the problem of Brownian motion in a multiscale potential. The potential is3
assumed to have N +1 scales (i.e. N small scales and one macroscale) and to depend periodically on4
all the small scales. We show that for nonseparable potentials, i.e. potentials in which the microscales5
and the macroscale are fully coupled, the homogenized equation is an overdamped Langevin equation6
with multiplicative noise driven by the free energy, for which the detailed balance condition still holds.7
This means, in particular, that homogenized dynamics is reversible and that the coarse-grained8
Fokker-Planck equation is still a Wasserstein gradient flow with respect to the coarse-grained free9
energy. The calculation of the effective diffusion tensor requires the solution of a system of N coupled10
Poisson equations.11
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1. Introduction. The evolution of complex systems arising in chemistry and15

biology often involve dynamic phenomena occurring at a wide range of time and16

length scales. Many such systems are characterised by the presence of a hierarchy17

of barriers in the underlying energy landscape, giving rise to a complex network of18

metastable regions in configuration space. Such energy landscapes occur naturally in19

macromolecular models of solvated systems, in particular protein dynamics. In such20

cases the rugged energy landscape is due to the many competing interactions in the21

energy function [10], giving rise to frustration, in a manner analogous to spin glass22

models [11, 40]. Although the large scale structure will determine the minimum en-23

ergy configurations of the system, the small scale fluctuations of the energy landscape24

will still have a significant influence on the dynamics of the protein, in particular the25

behaviour at equilibrium, the most likely pathways for binding and folding, as well as26

the stability of the conformational states. Rugged energy landscapes arise in various27

other contexts, for example nucleation at a phase transition and solid transport in28

condensed matter.29

30

To study the influence of small scale potential energy fluctuations on the system31

dynamics, a number of simple mathematical models have been proposed which cap-32

ture the essential features of such systems. In one such model, originally proposed by33

Zwanzig [56], the dynamics are modelled as an overdamped Langevin diffusion in a34

rugged two–scale potential V ϵ,35

(1) dXϵ
t = −∇V ϵ(Xt) dt+

√
2σ dWt, σ = β−1 = kBT,36

where T is the temperature and kB is Boltzmann’s constant. The function V ϵ(x) =37

V (x, x/ϵ) is a smooth potential which has been perturbed by a rapidly fluctuating38

function with wave number controlled by the small scale parameter ϵ > 0. See Figure39

1 for an illustration. Zwanzig’s analysis was based on an effective medium approxima-40

tion of the mean first passage time, from which the standard Lifson-Jackson formula41
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[33] for the effective diffusion coefficient was recovered. In the context of protein42

dynamics, phenomenological models based on (1) are widespread in the literature, in-43

cluding but not limited to [3, 28, 37, 53]. Theoretical aspects of such models have also44

been previously studied. In [13] the authors study diffusion in a strongly correlated45

quenched random potential constructed from a periodically-extended path of a frac-46

tional Brownian motion. Numerical study of the effective diffusivity of diffusion in a47

potential obtained from a realisation of a stationary isotropic Gaussian random field is48

performed in [6]. More recent works include [23, 22] where the authors study systems49

of weakly interacting diffusions moving in a multiwell potential energy landscape,50

coupled via a Curie-Weiss type (quadratic) interaction potential and [34] in which the51

authors consider enhanced diffusion for Brownian motion in a tilted periodic poten-52

tial expressing the effective diffusion in terms of the eigenvalue band structure. It is53

also worth mentioning a series of works [47, 4, 19, 54] studying multiscale behaviour54

of diffusion processes with multiple-well potentials in which the limiting process is a55

chemical reactions instead of a diffusion. We also mention [14], where the combined56

mean field/homogenization limit for diffusions interacting via a periodic potential is57

considered. The main result of this paper is that, in the presence of phase transitions,58

the mean field and homogenization limits do not commute.59
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Fig. 1: Example of a multiscale potential. The left panel shows the isolines of the
Mueller potential [49, 39]. The right panel shows the corresponding rugged energy
landscape where the Mueller potential is perturbed by high frequency periodic fluc-
tuations.

For the case where (1) possesses one characteristic lengthscale controlled by ϵ > 0,60
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BROWNIAN MOTION IN AN N -SCALE PERIODIC POTENTIAL 3

the convergence of Xϵ
t to a coarse-grained process X0

t in the limit ϵ → 0 over a finite61

time interval is well-known. When the rapid oscillations are periodic, under a diffu-62

sive rescaling this problem can be recast as a periodic homogenization problem, for63

which it can be shown that the process Xϵ
t converges weakly to a Brownian motion64

with constant effective diffusion tensor D (covariance matrix) which can be calculated65

by solving an appropriate Poisson equation posed on the unit torus, see for example66

[46, 8]. The analogous case where the rapid fluctuations arise from a stationary ergodic67

random field has been studied in [31, Ch. 9]. The case where the potential V ϵ pos-68

sesses periodic fluctuations with two or three well-separated characteristic timescales,69

i.e. V ϵ(x) = V (x, x/ϵ, x/ϵ2) follow from the results in [8, Ch. 3.7], in which case the70

dynamics of the coarse-grained model in the ϵ → 0 limit are characterised by an Itô71

SDE whose coefficients can be calculated in terms of the solution of an associated72

Poisson equation. A generalization of these results to diffusion processes having N -73

well separated scales was explored in Section 3.11.3 of the same text, but no proof of74

convergence is offered in this case. Similar diffusion approximations for systems with75

one fast scale and one slow scale, where the fast dynamics is not periodic have been76

studied in [43].77

78

A model for Brownian dynamics in a potential V possessing infinitely many character-79

istic lengthscales was studied in [7]. In particular, the authors studied the large-scale80

diffusive behaviour of the overdamped Langevin dynamics in potentials of the form81

(2) V n(x) =

n∑
k=0

Uk

(
x

Rk

)
,82

obtained as a superposition of Hölder continuous periodic functions with period 1. It83

was shown in [7] that the effective diffusion coefficient decays exponentially fast with84

the number of scales, provided that the scale ratios Rk+1/Rk are bounded from above85

and below, which includes cases where there is no scale separation. From this the au-86

thors were able to show that the effective dynamics exhibits subdiffusive behaviour,87

in the limit of infinitely many scales. See also the analytical calculation presented88

in [15] for a piecewise linear periodic potential; in the limit of infinitely many scales,89

the homogenized diffusion coefficient converges to zero, signaling that, in this limit,90

the coarse-grained dynamics is characterized by subdiffusive behaviour.91

92

In this paper we study the dynamics of diffusion in a rugged potential possessing93

N well-separated lengthscales. More specifically, we study the dynamics of (1) where94

the multiscale potential is chosen to have the form95

(3) V ϵ(x) = V (x, x/ϵ, x/ϵ2, . . . , x/ϵN ),96

where V is a smooth function, which is periodic with period 1 in all but the first97

argument. Clearly, V can always be written in the form98

(4) V (x0, x1, . . . , xN ) = V0(x0) + V1(x0, x1, . . . , xN ),99

where (x0, x1, . . . , xN ) ∈ Rd×
(
Td
)N

. We will assume that the large scale component100

of the potential V0 is smooth and confining in Rd, and that the perturbation V1 is a101

smooth bounded function which is periodic in all but the first variable. Unlike [7], we102

work under the assumption of explicit scale separation, however we also permit more103

general potentials than those of the form (2), allowing possibly nonlinear interactions104
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4 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

between the different scales, and even full coupling between scales. 1 To emphasize the105

fact that the potential (4) leads to a fully coupled system across scales, we introduce106

the auxiliary processes X
(j)
t = Xt/ϵ

j , j = 0, . . . , N . The SDE (1) can then be written107

as a fully coupled system of SDEs driven by the same Brownian motion Wt,108

dX
(0)
t = −

N∑
i=0

ϵ−i∇xiV
(
X

(0)
t , X

(1)
t , . . . , X

(N)
t

)
dt+

√
2σ dWt(5a)109

dX
(1)
t = −

N∑
i=0

ϵ−(i+1)∇xi
V
(
X

(0)
t , X

(1)
t , . . . , X

(N)
t

)
dt+

√
2σ

ϵ2
dWt(5b)110

...111

dX
(N)
t = −

N∑
i=0

ϵ−(i+N)∇xi
V
(
X

(0)
t , X

(1)
t , . . . , X

(N)
t

)
dt+

√
2σ

ϵ2N
dWt(5c)112

113

in which case X
(0)
t is considered to be a “slow” variable, while X

(1)
t , . . . X

(N)
t are114

“fast” variables. In this paper, we first provide an explicit proof of the convergence of115

the solution of (1), Xϵ
t to a coarse-grained (homogenized) diffusion process X0

t given116

by the unique solution of the following Itô SDE:117

(6) dX0
t = −M(X0

t )∇Ψ(X0
t ) dt+ σ∇ ·M(X0

t ) dt+
√

2σM(X0
t ) dWt,118

where

Ψ(x) = −σ logZ(x),

denotes the free energy, for

Z(x) =

∫
Td

· · ·
∫
Td

e−V1(x,y1,...,yN )/σ dy1 . . . dyN ,

and where M(x) is a symmetric uniformly positive definite tensor which is indepen-119

dent of ϵ. The formula of the effective diffusion tensor is given in Section 2.120

Our assumptions on the potential V ϵ in (4) guarantee that the full dynamics (1)
is reversible with respect to the Gibbs measure µϵ by construction. It is important
to note that the coarse-grained dynamics (6) is also reversible with respect to the
equilibrium Gibbs measure

µ0(x) = Z(x)/Z.

Indeed, the natural interpretation of Ψ(x) = −σ logZ(x) is as the free energy cor-121

responding to the coarse-grained variable X0
t . The weak convergence of Xϵ

t to X0
t122

implies in particular that the distribution of Xϵ
t will converge weakly to that of X0

t ,123

uniformly over finite time intervals [0, T ], which does not say anything about the con-124

vergence of the respective stationary distributions µϵ to µ0. In Section 4 we study the125

equilibrium behaviour of Xϵ
t and X0

t and show that the long-time limit t → ∞ and the126

coarse-graining limit ϵ → 0 commute, and in particular that the equilibrium measure127

µϵ of Xϵ
t converges in the weak sense to µ0. We also study the rate of convergence128

to equilibrium for both processes, and we obtain bounds relating the two rates. This129

1we will refer to potentials of the form V ϵ(x) = V0(x) + V1(x/ϵ, . . . , x/ϵN ) where V1 is periodic
in all variables as separable.
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BROWNIAN MOTION IN AN N -SCALE PERIODIC POTENTIAL 5

question is naturally related to the study of the Poincaré constants for the full and130

coarse–grained potentials [41, 24].131

We can summarize the above discussion as follows: the (Wasserstein) gradient132

structure, reversibility and detailed balance property of the dynamics (the three prop-133

erties are equivalent) are preserved under the homogenization/coarse-graining process:134

the reversibility of Xϵ
t with respect to µϵ is preserved under the homogenization pro-135

cedure. Indeed, any general diffusion process that is reversible with respect to µ0(x)136

will have the form (18), see [45, Sec. 4.7]. It is not necessarily always the case that the137

gradient structure is preserved under coarse-graining, as has been shown recently [48].138

The creation of non-gradient/nonreversible effects due to the multiscale structure of139

the dynamics is a very interesting problem that we will return to in future work.140

We also remark that the homogenized SDE corresponds to the kinetic/Klimontovich141

interpretation of the stochastic integral [27], i.e. it can be written in the form142

(7) dX0
t = −M(X0

t )∇Ψ(X0
t ) dt+

√
2σM(X0

t ) ◦Klim dWt,143

where we use the notation ◦Klim to denote the Klimontovich stochastic differen-144

tial/integral. The Klimontovich interpretation of the stochastic integral leads to a145

thermodynamically consistent Langevin dynamics, in the sense that it is reverible146

with respect to the coarse-grained Gibbs measure.147

The multiplicative noise is due to the full coupling between the macroscopic and148

the N microscopic scales.2 For one-dimensional potentials, we are able to obtain an149

explicit expression for M(x), regardless of the number of scales involved. In higher150

dimensions, M(x) will be expressed in terms of the solution of a recursive family151

of Poisson equations which can be solved only numerically. We also obtain a vari-152

ational characterization of the effective diffusion tensor, analogous to the standard153

variational characterisations for the effective conductivity tensor for multiscale con-154

ductivity problems, see for example [29]. Using this variational characterisation, we155

are able to derive tight bounds on the effective diffusion tensor, and in particular,156

show that as N → ∞, the eigenvalues of the effective diffusion tensor will converge157

to zero, suggesting that diffusion in potentials with infinitely many scales will exhibit158

anomalous diffusion. The focus of this paper is the rigorous analysis of the homog-159

enization problem for (1) with V ϵ given by (4). More precisely, we are interested in160

establishing the convergence of both the dynamics (over finite time domain) and of161

the equilibrium measure of (1) as ϵ tends to zero.162

163

Our proof of the homogenization theorem, Theorem 3 is based on the well known164

martingale approach to proving limit theorems [8, 42, 43]. The main technical dif-165

ficulty in applying such well known techniques is the construction of the corrector166

field/compensator and the analysis of the obtained Poisson equations. This turns out167

to be a challenging task, since we consider the case where all scales, the macroscale168

and the N– microscales, are fully coupled. For recent applications of the techniques,169

we refer the reader to [32, 50] where the authors study metastable behaviour of mul-170

tiscale diffusion processes.171

172

173

174

2For additive potentials of the form (2), i.e. when there is no interaction between the macroscale
and the microscales, the noise in the homogenized equation is additive.
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6 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

The rest of the paper is organized as follows. In Section 2 we state the assumptions175

on the structure of the multiscale potential and state the main results of this paper.176

In Section 3 we study properties of the effective dynamics, providing expressions for177

the diffusion tensor in terms of a variational formula, and derive various bounds. In178

Section 4 we study properties of the effective potential, and prove convergence of the179

equilibrium distribution of Xϵ
t to the coarse-grained equilibrium distribution µ0. The180

proof of the main theorem, Theorem 3, is presented in Section 5. Finally, in Section181

6 we provide further discussion and outlook.182

2. Setup and Statement of Main Results. In this section we provide con-183

ditions on the multiscale potential which are required to obtain a well-defined ho-184

mogenization limit. In particular, we shall highlight assumptions necessary for the185

ergodicity of the full model as well as the coarse-grained dynamics.186

187

We will consider the overdamped Langevin dynamics188

dXϵ
t = −∇V ϵ(Xϵ

t ) dt+
√
2σ dWt,(8)189190

where V ϵ(x) is of the form (3). The multiscale potentials we consider in this paper can191

be viewed as a smooth confining potential perturbed by smooth, bounded fluctuations192

which become increasingly rapid as ϵ → 0, see Figure 1 for an illustration. More193

specifically, we will assume that the multiscale potential V satisfies the following194

assumptions.3195

Assumption 1. The potential V is given by196

(9) V (x0, x1, . . . , xN ) = V0(x0) + V1(x0, x1, . . . , xN ),197

where (x0, x1, . . . , xN ) ∈ Rd ×
(
Td
)N

, and198

1. V0 is a smooth confining potential, i.e. e−V0(x) ∈ L1(Rd) and V0(x) → ∞ as199

|x| → ∞.200

2. The perturbation V1(x0, x1, . . . , xN ) is smooth and bounded uniformly in x0.201

3. There exists C > 0 such that
∥∥∇2V0

∥∥
L∞(Rd)

≤ C.202

Remark 2. We note that Assumption 1 is quite stringent, since it implies that203

V0 is quadratic to leading order. This assumption is also made in [43]. In cases204

where the process Xϵ
0 ∼ µϵ, i.e. the process is stationary, this condition can be relaxed205

considerably.206

The infinitesimal generator Lϵ of Xϵ
t is the selfadjoint extension of207

(10) Lϵf(x) = −∇V ϵ(x) · ∇f(x) + σ∆f(x), f ∈ C∞
c (Rd).208

It follows from the assumption on V0 that the corresponding overdamped Langevin209

equation210

(11) dYt = −∇V0(Yt) dt+
√
2σdWt,211

is ergodic with the unique stationary distribution

µref (x) =
1

Zref
exp(−V0(x)/σ), Zref =

∫
Rd

e−V0(x)/σ dx.

3We remark that we can always write (4) in the form (9) where V0(x) =∫
Td · · ·

∫
Td V (x, x1, . . . , xN ) dx1 . . . dxN .
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BROWNIAN MOTION IN AN N -SCALE PERIODIC POTENTIAL 7

Since V1 is bounded uniformly, by Assumption 1, it follows that the potential V ϵ is
also confining, and therefore Xϵ

t is ergodic, possessing a unique invariant distribution

given by µϵ(x) = e−V ϵ(x)/σ

Zϵ , where Zϵ =
∫
Rd e

−V ϵ(x)/σ. Moreover, noting that the
generator Lϵ of Xϵ

t can be written as

Lϵf(x) = σ eV
ϵ(x)/σ∇ ·

(
e−V ϵ(x)/σ∇f(x)

)
, f ∈ C2

c (Rd).

it follows that µϵ is reversible with respect to the dynamics Xϵ
t , c.f. [45, 20].212

213

Our main objective in this paper is to study the dynamics (8) in the limit of infi-214

nite scale separation ϵ → 0. Having introduced the model and the assumptions we215

can now present the main result of the paper.216

Theorem 3 (Weak convergence of Xϵ
t to X0

t ). Suppose that Assumption 1 holds217

and let T > 0, and the initial condition X0 is distributed according to some probability218

distribution ν on Rd. Then as ϵ → 0, the process Xϵ
t converges weakly in (C[0, T ];Rd)219

to the diffusion process X0
t with generator defined by220

(12) L0f(x) =
σ

Z(x)
∇x · (Z(x)M(x)∇xf(x)) , f ∈ C2

c (Rd),221

and where222

(13) Z(x) =

∫
Td

· · ·
∫
Td

e−V1(x,x1,...,xN )/σ dxN . . . dx1223

and224

(14)

M(x) =
1

Z(x)

∫
Td

· · ·
∫
Td

(1 +∇xN
θN ) · · · (1 +∇x1θ1)e

−V1(x,x1,...,xN )/σ dxN · · · dx1.225

The correctors are defined recursively as follows: define θN−k = (θ1N−k, . . . , θ
d
N−k) to226

be the weak vector-valued solution of the PDE227

(15) ∇xN−k
· (KN−k(x0, . . . , xN−k)(∇xN−k

θN−k(x0, . . . , xN−k) + I)) = 0,228

where θN−k(x0, . . . , xN−k−1, ·) ∈ H1(Td;Rd), with the notation [∇xn
θn]·,j = ∇xn

θjn,229

for j = 1, . . . , d and n = 1, . . . , N and where230

(16)

KN−k(x0, . . . , xN−k)

=

∫
Td

· · ·
∫
Td

(I +∇xN
θN ) · · · (I +∇xN−k+1

θN−k+1)e
−V1/σ dxN . . . dxN−k+1,

231

for k = 1, . . . , N − 1, and232

(17) KN (x, x1, . . . , xN ) = e−V1(x,x1,...,xN )/σI233

where I denotes the identity matrix in Rd×d. Provided that Assumptions 1 hold,234

Proposition 15 guarantees the existence and uniqueness (up to a constant) of solutions235

to the coupled Poisson equations (15). Furthermore, the solutions will depend smoothly236

on the slow variable x0 as well as the fast variables x1, . . . , xN . The process X0
t is the237

unique solution to the Itô SDE238

(18) dX0
t = −M(X0

t )∇Ψ(X0
t ) dt+ σ∇ ·M(X0

t ) dt+
√
2σM(X0

t ) dWt,239
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8 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

where

Ψ(x) = −σ logZ(x) = −σ log

(∫
Td

· · ·
∫
Td

e−V1(x,y1,...,yN )/σ dy1 . . . dyN

)
.

The proof, which closely follows that of [43] is postponed to Section 5. Theorem 3
confirms the intuition that the coarse-grained dynamics is driven by the coarse-grained
free energy. On the other hand, the corresponding SDE has multiplicative noise given
by a space dependent diffusion tensor M(x). We can show that the homogenized
process (18) is ergodic with unique invariant distribution

µ0(x) =
Z(x)

Z
=

1

Z
e−Ψ(x)/σ, where Z =

∫
Rd

Z(x) dx.

Other qualitative properties of the solution to the homogenized equation (6), includ-
ing noise-induced transitions and noise-induced hysteresis behaviour has been studied
in [15]. It is also important to note that the reversibility of Xϵ

t with respect to µϵ is
preserved under the homogenization procedure. Indeed, any general diffusion process
that is reversible with respect to µ0(x) will have the form (18), see [45, Sec. 4.7]. See
Section 6 for further discussion on this point.

As is characteristic with homogenization problems, when d = 1 we can obtain, up to
quadratures, an explicit expression for the homogenized SDE. In this case, we obtain
explicit expressions for the correctors θ1, . . . , θN , so that the intermediary coefficients
K1, . . . ,KN can be expressed as (see also [15])

Ki(x0, x1, . . . , xi) =

(∫
eV1(x0,x1,...,xi,xi+1,...,xN )/σ dxi+1 . . . dxN

)−1

, i = 1, . . . , N.

Thus we obtain the following result.240

Proposition 4 (Effective Dynamics in one dimension). When d = 1, the effective241

diffusion coefficient M(x) in (18) is given by242

(19) M(x) =
1

Z1(x)Ẑ1(x)
,243

where

Z1(x) =

∫
· · ·
∫

e−V1(x,x1,...,xN )/σ dx1 . . . dxN ,

and

Ẑ1(x) =

∫
· · ·
∫

eV1(x,x1,...,xN )/σ dx1 . . . dxN .

Equation (19) generalises the expression for the effective diffusion coefficient for a two-244

scale potential that was derived in [56] without any appeal to homogenization theory.245

In higher dimensions we will not be able to obtain an explicit expression for M(x),246

however we are able to obtain bounds on the eigenvalues of M(x). In particular, we247

are able to show that (19) acts as a lower bound for the eigenvalues of M(x).248

Proposition 5. The effective diffusion tensor M is uniformly positive definite249

over Rd. In particular,250

(20) 0 < e−osc(V1)/σ ≤ 1

Z1(x)Ẑ1(x)
≤ e · M(x)e ≤ 1, x ∈ Rd,251
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BROWNIAN MOTION IN AN N -SCALE PERIODIC POTENTIAL 9

for all e ∈ Rd such that |e| = 1, where

osc(V1) = sup
x∈Rd,

y1,...,yN∈Td

V1(x, y1, . . . , yN )− inf
x∈Rd,

y1,...,yN∈Td

V1(x, y1, . . . , yN )

This result follows immediately from Lemmas 10 and 11 which are proved in Section252

3.253

Remark 6. The bounds in (20) highlight the two extreme possibilities for fluctu-254

ations occurring in the potential V ϵ. The equality 1

Z1(x)Ẑ1(x)
= e · M(x)e is attained255

when the multiscale fluctuations V1(x0, . . . , xN ) are constant in all but one dimension256

(e.g. the analogue of a layered composite material, [12, Sec 5.4], [46, Sec 12.6.2]). In257

the other extreme, the inequality e · M(x)e = 1 is attained in the absence of fluctua-258

tions, i.e. when V1 = 0.259

Remark 7. Clearly, the lower bound in (20) becomes exponentially small in the260

limit as σ → 0.261

While Theorem 3 guarantees weak convergence of Xϵ
t to X0

t in C([0, T ];Rd) for
fixed T , it makes no claims regarding the convergence at infinity, i.e. of µϵ to µ0.
However, under the conditions of Assumption 1 we can show that µϵ converges weakly
to µ0, so that the T → ∞ and ϵ → 0 limits commute, in the sense that:

lim
ϵ→0

lim
T→∞

E[f(Xϵ
T )] = lim

T→∞
lim
ϵ→0

E[f(Xϵ
T )],

for all f ∈ L2(µref ).262

Proposition 8 (Weak convergence of µϵ to µ0). Suppose that Assumption 1263

holds. Then for all f ∈ L2(µref ),264

(21)

∫
Rd

f(x)µϵ(dx) →
∫
Rd

f(x)µ0(dx),265

as ϵ → 0.266

If Assumption 1 holds, then for every ϵ > 0, the potential V ϵ is confining, so that267

the process Xϵ
t is ergodic. If the “unperturbed” process defined by (11) converges to268

equilibrium exponentially fast in L2(µref ), then so will Xϵ
t and X0

t . Moreover, we269

can relate the rates of convergence of the three processes. We will use the notation270

Varµ(f) = Eµ(f − Eµf)
2 to denote the variance with respect to a measure µ.271

Proposition 9. Suppose that Assumptions 1 holds and let Pt be the semigroup272

associated with the dynamics (11) and suppose that µref (x) = 1
Z0

e−V0(x)/σ satisfies273

Poincaré’s inequality with constant ρ/σ, i.e.274

(22) Varµref
(f) ≤ σ

ρ

∫
|∇f(x)|2 µref (dx), f ∈ H1(µref ),275

or equivalently4276

(23) Varµref
(Ptf) ≤ e−2ρt/σVarµref

(f), f ∈ L2(µref ),277

4The equivalence between (22) and (23) follows since Pt is a reversible Markov semigroup with
respect to the measure µref . See [5].

This manuscript is for review purposes only.



10 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

for all t ≥ 0. Let P ϵ
t and P 0

t denote the semigroups associated with the full dynamics278

(8) and homogenized dynamics (18), respectively. Then for all f ∈ L2(µref ),279

(24) Varµϵ(P ϵ
t f) ≤ e−2γt/σVarµϵ(f),280

and281

(25) Varµ0(P 0
t f) ≤ e−2γ̃t/σVarµ0(f).282

for γ = ρ e−osc(V1)/σ and γ̃ = ρe−2osc(V1)/σ.283

The proof of Propositions 8 and 9 can be found in Section 4.284

3. Properties of the Coarse–Grained Process. In this section we study the285

properties of the coefficients of the homogenized SDE (18) and its dynamics.286

3.1. Separable Potentials. Consider the special case where the potential V ϵ

is separable, in the sense that the fast scale fluctuations do not depend on the slow
scale variable, i.e.

V (x0, x1, . . . , xN ) = V0(x0) + V1(x1, x2, . . . , xN ).

Then, it is clear from the construction of the effective diffusion tensor (14) that M(x)
will not depend on x ∈ Rd. Moreover, since

Z(x) =

∫
Td

· · ·
∫
Td

e−
V0(x)+V1(y1,...,yN )

σ dy1 . . . dyN =
1

K
e−V0(x)/σ,

where K =
∫
Td · · ·

∫
Td exp(−V1(y1, . . . , yN )/σ) dy1 . . . dyN , then it follows that the287

coarse–grained stationary distribution µ0 equals the stationary distribution µref ∝288

exp(−V0(x)/σ) of the process (11). For general multiscale potentials however, µ0 will289

be different from µref . Indeed, introducing multiscale fluctuations can dramatically290

alter the qualitative equilibrium behaviour of the process, including noise-inductioned291

transitions and noise induced hysteresis, as has been studied for various examples in292

[15].293

3.2. Variational bounds on M(x). A first essential property is that the con-294

structed matrices KN , . . . ,K1 are positive definite over all parameters. For conve-295

nience, we shall introduce the following notation296

(26) Xk = Rd ×
k

"
i=1

Td,297

for k = 1, . . . , N , and set X0 = Rd for consistency. First we require the following298

existence and regularity result for a uniformly elliptic Poisson equation on Td.299

Lemma 10. For k = 1, . . . , N , for x0, . . . , xk−1 fixed, the tensor Kk(x0, . . . , xk−1, ·)300

is uniformly positive definite and in particular satisfies, for all unit vectors e ∈ Rd,301

(27)
1

Ẑk(x0, x1, . . . , xk−1)
≤ e · Kk(x0, x1, . . . , xk−1, xk) e, xk ∈ Td

302

where

Ẑk(x0, x1, . . . , xk−1) =

∫
. . .

∫
eV (x0,x1,...,xk−1,xk,...,xN )/σ dxNdxN−1 . . . dxk,

which is independent of xk.303
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Proof. We prove the result by induction on k starting from k = N . For k = N
the tensor KN is clearly uniformly positive definite for fixed x0, . . . , xN−1 ∈ XN−1.
By [8, Thms III.3.2 and III.3.3] there exists a unique (up to a constant) solution such
that θN (x, x1, · · · , xN−1, ·) ∈ H2(Td;Rd) of (15). In particular,∫

Td

|∇xN
θN (x0, x1, . . . , xN−1, xN )|2F dxN < ∞,

where |·|F denotes the Frobenius norm, so thatKN−1 is well defined. Fix (x0, . . . , xN−2) ∈304

XN−2. To show that KN−1(x0, . . . , xN−2, ·) is uniformly positive definite on Td we305

first note that306

(28)

∫
Td

(I +∇xN
θN )⊤(I +∇xN

θN )e−V/σ dxN

=

∫
Td

(
I +∇xN

θN +∇xN
θ⊤N +∇xN

θ⊤N∇xN
θN
)
e−V/σdxN ,

307

where V = V (x0, x1, . . . , xN ) and ⊤ denotes the transpose. From the Poisson equation
for θN we have ∫

θN ⊗∇⊤
xN

(e−V/σ(∇xN
θN + I)) dxN = 0,

from which we obtain, after integrating by parts:308

(29)

∫
Td

∇xN
θ⊤N

(
∇xN

θN + I
)
e−V/σ dxN = 0.309

From (28) and (29) we deduce that310

KN−1 =

∫
Td

(I +∇xN
θN ) e−V/σ dxN311

=

∫
Td

[
I +∇xN

θN +∇xN
θ⊤N (∇xN

θN + I)
]
e−V/σdxN312

=

∫
Td

(I +∇xN
θN )⊤(I +∇xN

θN )e−V/σ dxN .313
314

Thus KN−1 is well-defined and symmetric. We note that∫
Td

(I +∇xN
θN ) dxN = I,

therefore, it follows by Hölder’s inequality that

|v|2 =

∣∣∣∣v⊤ ∫
Td

(I +∇NθN ) dxN

∣∣∣∣2 ≤ v⊤ (KN−1) v

(∫
Td

eV/σ dxN

)
,

so that

|v|2

ẐN (x0, . . . , xN−1)
≤ v⊤KN−1(x0, . . . , xN−1)v, ∀(x0, x1, . . . , xN−1).

Since ẐN is uniformly bounded for (x0, . . . , xN−1) it follows KN−1(x0, . . . , xN−2, ·) is
uniformly positive definite, and arguing as above we establish existence of a unique
θN−1, up to a constant, solving (15) for k = 2.
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Now, assume that the corrector θN−k+1 has been constructed, and so KN−k+1 is
well defined. By multiplying the cell equation for θN−k+1

∇xN−k+1
·
[
KN−k+1(∇xN−k+1

θN−k+1 + I)
]
= 0

by θN−k+1 then integrating with respect to xN−k+1 and using integration by parts
as well as the symmetry of KN−k+1 from the inductive hypothesis we obtain∫

∇xN−k+1
θ⊤N−k+1KN−k+1

(
I +∇xN−k+1

θN−k+1

)
dxN−k+1 = 0.

Therefore, we have315

KN−k =

∫
Td

KN−k+1(I +∇N−k+1θN−k+1) dxN−k+1316

=

∫
Td

[
KN−k+1(I +∇N−k+1θN−k+1) +∇xN−k+1

θ⊤N−k+1KN−k+1(I +∇xN−k+1
θN−k+1)

]
dxN−k+1317

=

∫
Td

(I +∇xN−k+1
θN−k+1)

⊤KN−k+1(I +∇xN−k+1
θxN−k+1

) dxN−k+1.318
319

Thus KN−k is also well-defined and symmetric. To show (27) we note that∫
· · ·
∫
(I +∇xN

θN ) · · · (I +∇xN−k
θN−k)dxN . . . dxN−k = I.

Therefore, for any vector v ∈ Rd:320

|v|2 =

∣∣∣∣v⊤(∫ · · ·
∫
(I +∇xN

θN ) · · · (I +∇xN−k
θxN−k

)dxN . . . dxN−k

)∣∣∣∣2321

≤ v⊤
(∫

· · ·
∫
(I +∇xN−k

θN−k)
⊤ · · · (I +∇xN−k

θxN−k
)e−V/σdxN . . . dxN−k

)
v

∫
eV/σdxN . . . dxN−k322

=
(
v⊤KN−k(x1, . . . , xN−k)v

)
Ẑ(x1, . . . , xN−k).323324

The fact that we have strict positivity then follows immediately.325

To obtain upper bounds for the effective diffusion coefficient, we will express the326

intermediary diffusion tensors Ki as solutions of a quadratic variational problem. This327

variational formulation of the diffusion tensors can be considered as a generalisation328

of the analogous representation for the effective conductivity coefficient of a two-scale329

composite material, see for example [29, 36, 8].330

Lemma 11. For i = 1, . . . , N , the tensor Ki satisfies331

(30)
e · Ki(x0, . . . , xi)e

= inf
vi+1∈C(Xi;H

1(Td))

...
vN∈C(XN−1;H

1(Td))

∫
(Td)N

|e+∇vi+1(x0, . . . , xi+1) + . . .+∇vN (x0, . . . , xN )|2 e−V (x0,...,xN )/σ dxN . . . , dxi+1,
332

for all e ∈ Rd.333
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Proof. For i = 1, . . . , N , from the proof of Lemma 10 we can express the inter-334

mediary diffusion tensor Ki in the following recursive manner,335

Ki(x0, . . . , xi)336

=

∫
Td

(I +∇xi+1θi+1(x0, . . . , xi, xi+1))
⊤Ki+1(x0, . . . , xi+1)(I +∇xi+1θi+1(x0, . . . , xi+1)) dxi+1.337

338

Consider the tensor K̃i defined by the following symmetric minimization problem339

(31)

e·K̃i(x0, . . . , xi)e

= inf
v∈C(Xi;H1(Td))

∫
Td

(e+∇v(x0, . . . , xi+1)) · Ki+1(x0, . . . , xi+1)(e+∇v(x0, . . . , xi+1)) dxi+1.
340

Since Ki+1 is a symmetric tensor, the corresponding Euler-Lagrange equation for the
minimiser is given by

∇xi+1 ·
(
Ki+1(x0, . . . , xi+1)(∇xi+1χ(x0, . . . , xi+1) + e)

)
= 0, xi+1 ∈ Td,

with periodic boundary conditions. This equation has a unique mean zero solution341

given by χ(x0, . . . , xi+1) = θi(x0, . . . , xi+1)
⊤e, where θi is the unique mean-zero solu-342

tion of (15). It thus follows that e⊤Kie = e⊤K̃ie, where K̃i is given by (31). Consider343

now the minimisation problem344

inf
v2∈C(Xi;H

1(Td))

v1∈C(Xi+1;H
1(Td))

∫
Td

∫
Td

(e+∇xi+2v1(x0, . . . , xi+2) +∇xi+1v2(x0, . . . , xi+1))
⊤

Ki+2(x0, . . . , xi+2)(e+∇xi+2v1(x0, . . . , xi+2) +∇xi+1v2(x0, . . . , xi+1)) dxi+2dxi+1.

345

Optimising over v1 for v2 fixed it follows that v1 = (e+∇xi+1v2)
⊤θi+2, where θi+2 is346

the unique mean-zero solution of (15). Thus, the above minimisation can be written347

as348

inf
v2∈C(Xi;H

1(Td))

∫
Td

∫
Td

(e+∇xi+1
v2(x0, . . . , xi+1))

⊤(I +∇xi+2
θi+2)

⊤

Ki+2(x0, . . . , xi+2)(I +∇xi+2θi+2)(e+∇xi+1v2(x0, . . . , xi+1)) dxi+2dxi+1

= inf
v2∈C(Xi−1;H

1(Td))

∫
Td

(e+∇xi+1v2(x0, . . . , xi+1))
⊤Ki+1(x0, . . . , xi+1)(e+∇xi+1v2(x0, . . . , xi+1)) dxi+2dxi+1

= e⊤Kie.

349

Proceeding recursively, we arrive at the advertised result (30).350

4. Properties of the Equilibrium Distributions. In this section we study351

in more detail the properties of the equilibrium distributions µϵ and µ0 of the full (8)352

and homogenized dynamics (18), respectively. We first provide a proof of Proposition353

8. The approach we follow in this proof is based on properties of periodic functions,354

in a manner similar to [12, Ch. 2].355

Proof of Proposition 8. Let f ∈ L2(µref ) and δ > 0. Clearly C∞
c (Rd) is dense in356

L2(µref ) and so, by Assumptions 1 there exists fδ ∈ C∞
c (Rd) such that357

(32)

∣∣∣∣∫
Rd

f(x)e−V ϵ(x)/σ dx−
∫
Rd

fδ(x)e
−V ϵ(x)/σ dx

∣∣∣∣ ≤ δ

3
,358
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and359

(33)

∣∣∣∣∫
Rd

∫
Td

· · ·
∫
Td

(fδ(x)− f(x))e−V (x,y1,...,yN )/σ dyN . . . dy1 dx

∣∣∣∣ ≤ δ

3
,360

uniformly with respect to ϵ. Now, we partition Rd into pairwise disjoint translations
of [0, 1]d as Rd = ∪k∈NYk, where

Yk = ϵNxk + ϵN [0, 1]d,

for {xk}k≥0 = Zd. With this decomposition we obtain361 ∫
Rd

fδ(x)e
−V ϵ(x)/σ dx =

∑
k∈N

∫
Yk

fδ(x)e
−V ϵ(x)/σ dx362

= ϵNd
∑
k∈N

∫
[0,1]d

fδ(ϵ
N (xk + y))e−V (ϵN (xk+y),...,ϵ(xk+y),y)/σ dy,363

364

where in the last equality we use the periodicity of V with respect to the last variable.365

Since the integrand is smooth with compact support, we can Taylor expand around366

ϵNxk to obtain367 ∫
Rd

fδ(x)e
−V ϵ(x)/σ dx = ϵNd

∑
k∈N

∫
[0,1]d

fδ(ϵ
Nxk)e

−V (ϵNxk,...,ϵxk,y)/σ dy + Cϵ,368

369

where C is a constant depending on the derivatives of V with respect to the first N370

variables, and the volume of the support of fδ.371

Noting that the above sum is a Riemann sum approximation, we can write372

ϵNd
∑
k∈N

∫
[0,1]d

fδ(ϵ
Nxk)e

−V (ϵNxk,...,ϵxk,y)/σ dy373

= ϵNd
∑
k∈N

∫
[0,1]d

∫
[0,1]d

fδ(ϵ
N (xk + y′))e−V (ϵN (xk+y′),...,ϵ(xk+y′),y)/σ dy dy′ + C1ϵ374

=

∫
Rd

∫
[0,1]d

fδ(x)e
−V (x,...,x/ϵN−1,y)/σ dy dx+ C1ϵ,375

376

where C1 is a constant. Repeating the above process N − 1 times, we obtain that377

(34)∫
Rd

fδ(x)e
−V ϵ(x)/σ dx =

∫
Rd

∫
Td

· · ·
∫
Td

fδ(x)e
−V (x,y1,...,yN )/σ dyN . . . dy1 dx+ CN ϵ,378

where CN > 0 is a constant depending on the support of fδ and derivatives of V with379

respect to the first N variable. Thus, choosing ϵ < δ/(3CN ) and combining (32), (33)380

and (34) we obtain381

(35)∣∣∣∣∫
Rd

f(x)e−V ϵ(x)/σ dx−
∫
Rd

∫
Td

· · ·
∫
Td

f(x)e−V (x,y1,...,yN )/σ dyN . . . dy1 dx

∣∣∣∣ ≤ δ,382

Choosing f ≡ 1 we obtain immediately that

Zϵ =

∫
Rd

e−V ϵ(x)/σ dx → Z0 =

∫
Rd

∫
Td

· · ·
∫
Td

e−V (x,y1,...,yN ) dyN . . . dy1 dx,
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and so for f ∈ L2(µref ) we obtain

∫
f(x)µϵ(x) dx →

∫
f(x)µ0(x) dx,

as ϵ → 0, as required.383

Proof of Proposition 9. Since V1 is bounded uniformly by Assumption 1, it is384

straightforward to check that385

(36) µref (x)e
−osc(V1)/σ ≤ µϵ(x) ≤ µref (x)e

osc(V1)/σ.386

It follows from the discussion following [5, Prop 4.2.7], that µϵ satisfies Poincaré’s
inequality with constant

γ =
ρ

σ
e−osc(V1)/σ,

which implies (24). An identical argument follows for the coarse–grained density387

µ0(x). Finally, by (20) of Proposition 5 we have |v|2e−osc(V1)/σ ≤ v · M(x)v, for all388

v ∈ Rd, and so389

Varµ0(f) ≤ σ

ρ
eosc(V1)/σ

∫
Rd

|∇f(x)|2 µ0(x) dx390

≤ σ

ρ
e2osc(V1)/σ

∫
∇f(x) · M(x)∇f(x)µ0(x) dx,391

392

from which (25) follows.393

Remark 12. Note that one can similarly relate the constants in the logarithmic394

Sobolev inequalities for the measures µref , µ
ϵ and µ0 in an almost identical manner,395

based on the Holley-Stroock criterion [26].396

Remark 13. Proposition 9 requires the assumption that the multiscale perturba-
tion V1 is bounded uniformly. If this is relaxed, then it is no longer guaranteed that
µϵ will satisfy a Poincaré inequality, even though µref does. Consider, for example,
the following one dimensional potential

V ϵ(x) = x2(1 + α cos(x/ϵ)),

then the corresponding Gibbs distribution µϵ(x) will not satisfy Poincaré’s inequality
for any ϵ > 0. Following [25, Appendix A] we demonstrate this by checking that this
choice of µϵ does not satisfy the Muckenhoupt criterion [38, 2] which is necessary and
sufficient for the Poincaré inequality to hold, namely that supr∈R B±(r) < ∞, where

B±(r) =

(∫ ±∞

r

µϵ(x) dx

) 1
2

(∫
[0,±r]

1

µϵ(x)
dx

) 1
2

.
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Given n ∈ N, we set r/ϵ = 2πn+ π/2. Then we have that397

B+(r) ≥

(∫ ϵ(2πn+4π/3)

ϵ(2πn+2π/3)

e−|x|2(1−α/2)/σ dx

)1/2(∫ ϵ(2πn+π/3)

ϵ(2πn−π/3)

e|x|
2(1+α/2)/σ dx

)1/2

398

≥
(
2πϵ

3

)
exp

(
−|πϵ(2n+ 4/3)|2

2σ

(
1− α

2

)
+

|πϵ(2n− 1/3)|2

2σ

(
1 +

α

2

))
399

=

(
2πϵ

3

)
exp

(
−
|2πϵn|2

(
1 + 2

3n

)2
2σ

(
1− α

2

)
+

|2πϵn|2
(
1− 1

6n

)2
2σ

(
1 +

α

2

))
400

≈
(
2πϵ

3

)
exp

(
|2πϵn|2

2σ

(
α+ o(n−1)

))
→ ∞, as n → ∞,401

402

so that Poincaré’s inequality does not hold for µϵ.403

A natural question to ask is whether the weak convergence of µϵ to µ0 holds404

true in a stronger notion of distance such as total variation. The following simple405

one-dimensional example demonstrates that the convergence cannot be strengthened406

to total variation.407

Example 14. Consider the one dimensional Gibbs distribution

µϵ(x) =
1

Zϵ
e−V ϵ(x)/σ,

where

V ϵ(x) =
x2

2
+ α cos

(x
ϵ

)
,

and where Zϵ is the normalization constant and α ̸= 0. Then the measure µϵ converges
weakly to µ0 given by

µ0(x) =
1√
2πσ

e−x2/2σ.

From the plots of the stationary distributions in Figure 2a it becomes clear that the408

density of µϵ exhibits rapid fluctuations which do not appear in µ0, thus we do not409

expect to be able to obtain convergence in a stronger metric. First we consider the410

distance between µϵ and µ0 in total variation 5411

∥µϵ − µ0∥TV =

∫
R
|µϵ(x)− µ0(x)| dx =

∫
R

e−x2/2σ

√
2σ

∣∣∣∣1− e−
α
σ cos(2πx/ϵ)

Kϵ

∣∣∣∣ dx,412
413

where Kϵ = Zϵ/
√
2πσ. It follows that414

∥µϵ − µ0∥TV ≥
∑
n≥0

∫ ϵ(2πn+π/3)

ϵ(2πn−π/3)

e−x2/2σ

√
2πσ

dx

∣∣∣∣1− e−
α
2σ

Kϵ

∣∣∣∣415

≥
∑
n≥0

2ϵπ

3

e−ϵ2(2nπ+π/3)2/2σ

√
2πσ

∣∣∣∣1− e−
α
2σ

Kϵ

∣∣∣∣416

≥
∫ ∞

0

2π

3

e−2π2(x+ϵ/6)2/σ

√
2πσ

∣∣∣∣1− e−
α
2σ

Kϵ

∣∣∣∣ ,417
418

5we are using the same notation for the measure and for its density with respect to the Lebesgue
measure on R.
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where we use the fact that e−α/2σ/Kϵ ≤ 1 for ϵ sufficiently small. In the limit ϵ → 0,419

we have Kϵ → I0(α/σ), where In(·) is the modified Bessel function of the first kind420

of order n. Therefore, as ϵ → 0,421

(37) ∥µϵ − µ0∥TV ≥
∫ ∞

0

2π

3

e−2π2(x+ϵ/6)2/σ

√
2πσ

∣∣∣∣1− e−
α
2σ

Kϵ

∣∣∣∣ = 1

6

∣∣∣∣1− e−
α
2σ

I0(α/σ)

∣∣∣∣ ,422

which converges to 1
6 as α

σ → ∞. Since relative entropy controls total variation
distance by Pinsker’s theorem, it follows that µϵ does not converge to µ0 in relative
entropy, either. Nonetheless, we shall compute the distance in relative entropy between
µϵ and µ0 to understand the influence of the parameters σ and α. Since both µ0 and
µϵ have strictly positive densities with respect to the Lebesgue measure on R, we have
that

dµϵ

dµ0
(x) =

√
2πσ

Zϵ
e−

V ϵ(x)
σ + x2

2σ .

Then, for Z0 =
√
2πσI0(1/σ),423

H
(
µϵ |µ0

)
=

1

Zϵ

∫ (
1

2
log(2πσ)− logZϵ

)
e−V ϵ(x)/σ dx424

+
1

Zϵ

∫ (
−V ϵ(x)/σ + x2/2σ

)
e−V ϵ(x)/σ dx425

ϵ→0−−−→ − log I0(α/σ)−
α

σZ0
lim
ϵ→0

∫
cos(2πx/ϵ)e−x2/2σ−α cos(2πx/ϵ)/σ dx426

= − log I0(α/σ)−
α

σ

I1(α/σ)

I0(α/σ)
=: K(α/σ).427

428

and it is straightfoward to check that K(s) > 0, and moreover

K(s) →

{
0 as s → 0,

+∞ as s → ∞.

In Figure 2b we plot the value of K(s) as a function of s. From this result, we see429

that for fixed α > 0, the measure µϵ will converge in relative entropy only in the limit430

as σ → ∞, while the measures will become increasingly mutually singular as σ → 0.431

-2 -1 1 2

0.1

0.2

0.3

0.4

μϵ(x)

μ0(x)

(a) Plot of µϵ and µ0with ϵ = α = 0.1
and σ = 1.0

1 10 100 1000 104 105 106
α/σ

0.5

1

5

10

K(α/σ)

(b) Plot of K(α/σ) as a function of α/σ.

Fig. 2: Error between µϵ(x) ∝ exp(−V ϵ(x)/σ) and effective distribution µ0.
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5. Proof of weak convergence. In this section we show that over finite time432

intervals [0, T ], the process Xϵ
t converges weakly to a process X0

t which is uniquely433

identified as the weak solution of a coarse-grained SDE. The approach we adopt is434

based on the classical martingale methodology of [8, Section 3]. The proof of the435

homogenization result is split into three steps.436

1. We construct an appropriate test function which is used to decompose the437

fluctuations of the process Xϵ
t into a martingale part and a term which goes438

to zero as ϵ → 0.439

2. Using this test function, we demonstrate that the path measure Pϵ corre-440

sponding to the family
{
(Xϵ

t )t∈[0,T ]

}
0<ϵ≤1

is tight on C([0, T ];Rd).441

3. Finally, we show that any limit point of the family of measures must solve a442

well-posed martingale problem, and is thus unique.443

The test functions will be constructed by solving a recursively defined sequence444

of Poisson equations on Rd. We first provide a general well-posedness result for this445

class of equations.446

Proposition 15. Let Xk, k = 0, 1, . . . , N be the space defined in Section 3.2. For447

fixed (x0, . . . , xk−1) ∈ Xk−1, let Sk be the operator given by448

(38) Sku =
1

ρ(x0, . . . , xk)
∇xk

· (ρ(x0, . . . , xk)D(x0, . . . , xk)∇xk
u(x0, . . . , xk)) ,449

for u ∈ C2(Td), where ρ is a smooth and uniformly positive and bounded function,450

and D is a smooth and uniformly positive definite tensor on Xk. Let h be a smooth451

function with bounded derivatives, such that for each (x0, . . . , xk−1) ∈ Xk−1:452

(39)

∫
Td

h(x0, . . . , xk)ρ(x0, . . . , xk) dxk = 0.453

Then there exists a unique solution u ∈ C(Xk−1;H
1(Td)) to the Poisson equation on454

Td given by455

(40) Sku(x0, . . . , xk) = h(x0, . . . , xk),

∫
Td

u(x0, . . . , xk)ρ(x0, . . . , xk) dxk = 0.456

Moreover u is smooth and bounded with respect to the variable xk ∈ Td as well as the457

parameters x0, . . . , xk−1 ∈ Xk−1.458

Proof. Since ρ and D are strictly positive, for fixed values of x0, . . . , xk−1, the
operator Sk is uniformly elliptic, and since Td is compact, Sk has compact resolvent
in L2(Td), see [18, Ch. 6] and [46, Ch 7]. The nullspace of the adjoint S∗ is spanned
by a single function ρ(x0, . . . , xk−1, ·). By the Fredholm alternative, a necessary and
sufficient condition for the existence of u is (39) which is assumed to hold. Thus, there
exists a unique solution u(x0, . . . , xk−1, ·) ∈ H1(Td) having mean zero with respect
to ρ(x0, . . . , xk). By elliptic estimates and Poincaré’s inequality, it follows that there
exists C > 0 satisfying

∥u(x0, . . . , xk−1, ·)∥H1(Td) ≤ C∥h(x0, . . . , xk−1, ·)∥L2(Td),

for all (x0, . . . , xk−1) ∈ Xk−1. Since the components of D and ρ are smooth with re-459

spect to xk, standard interior regularity results [21] ensure that, for fixed x0, . . . , xk−1 ∈ Xk−1,460

the function u(x0, . . . , xk−1, ·) is smooth. To prove the smoothness and boundedness461
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with respect to the other parameters x0, . . . , xk−1, we can apply an approach either462

similar to [8], by showing that the finite differences approximation of the derivatives463

of u with respect to the parameters has a limit, or otherwise, by directly differentiat-464

ing the transition density of the semigroup associated with the generator Sk , see for465

example [43, 55, 44] as well as [21, Sec 8.4].466

467

Remark 16. Suppose that the function h in Proposition 15 can be expressed as

h(x0, . . . , xk) = a(x0, x1, . . . , xk) · ∇ϕ0(x0)

where a is smooth with all derivatives bounded. Then the mean-zero solution of (40)468

can be written as469

(41) u(x0, x1, . . . , xk) = χ(x0, x1, . . . , xk) · ∇ϕ0(xi),470

where χ is the classical mean-zero solution to the following Poisson equation471

(42) Skχ(x0, . . . , xk) = a(x0, . . . , xk), (x0, . . . , xk) ∈ Xk.472

This can be seen by checking directly that u given in (41) with χ satisfying (42) solves
(40), which implies it is the unique solution of (40) due to the uniqueness of a solution.
In particular, χ is smooth and bounded over x0, . . . , xk, so that given a multi-index
α = (α0, . . . , αk) on the indices (0, . . . , k), there exists Cα > 0 such that

|∇αu(x0, . . . , xk)|F ≤ Cα

α0∑
k=0

|∇k+1ϕ0(x0)|F , ∀x0, x1, . . . , xk,

where |·|F denotes the Frobenius norm. A similar decomposition is possible for

g(x0, . . . , xk) = A(x0, x1, . . . , xk) : ∇2ϕ0(x0),

where ∇2 denotes the Hessian.473

5.1. Constructing the test functions. It is clear that we can rewrite (8) as474

(43) dXϵ
t = −

N∑
i=0

ϵ−i∇xiV (x, x/ϵ, . . . , x/ϵN ) dt+
√
2σ dWt.475

The generator of Xϵ
t denoted by Lϵ can be decomposed into powers of ϵ as follows

(Lϵf)(x) = −
N∑
i=0

ϵ−i∇xi
V (x, x/ϵ, . . . , x/ϵN ) · ∇f(x) + σ∆f(x).

For functions of the form f ϵ(x) = f(x, x/ϵ, . . . , x/ϵN ), we have476

(Lϵf ϵ)(x) =

N∑
i=0

ϵ−i∇xiV (x, x/ϵ, . . . , x/ϵN ) ·
( N∑

j=0

ϵ−j∇xjf(x, x/ϵ, . . . , x/ϵ
N )
)

477

+ σ

k∑
i,j=0

ϵ−(i+j)∇2
xixj

f(x, x/ϵ, . . . , x/ϵN )478

=

N∑
i,j=0

ϵ−(i+j)
[
eV/σ∇xi

·
(
σe−V/σ∇xj

f
)]

(x, x/ϵ, . . . , x/ϵN )479

=

2N∑
n=0

ϵ−n(Lnf)(x, x/ϵ . . . , x/ϵ
N ),(44)480

481
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where for n = 0, . . . , 2N

(Lnf)(x, x/ϵ, . . . , x/ϵ
N ) =

[
eV/σ

∑
i,j∈{0,...N}

i+j=n

∇xi
·
(
σe−V/σ∇xj

f
) ]

(x, x/ϵ, . . . , x/ϵN ).

Given a function ϕ0, which will be specified later, our objective is to construct a test482

function ϕϵ of the form483

ϕϵ(x) =ϕ0(x) + ϵϕ1(x, x/ϵ) + . . .+ ϵNϕN (x, x/ϵ, . . . , x/ϵN )484

+ ϵN+1ϕN+1(x, x/ϵ, . . . , x/ϵ
N ) + . . .+ ϵ2Nϕ2N (x, x/ϵ, . . . , x/ϵN )485486

such that487

(45) (Lϵϕϵ)(x) = F (x) +O(ϵ),488

for some function F which is independent of ϵ. The above form for the test function489

is suggested by the calculation(44). Using (44) we compute490

(Lϵϕϵ)(x) =

2N∑
k=0

ϵk(Lϕk)(x, x/ϵ, . . . , x/ϵ
N )491

=

2N∑
k=0

ϵk
( 2N∑

n=0

ϵ−n(Lnϕk)(x, x/ϵ . . . , x/ϵ
N )
)

492

=

2N∑
k,n=0

ϵk−n(Lnϕk)(x, x/ϵ . . . , x/ϵ
N ),493

494

where

(Lnϕk)(x, x/ϵ . . . , x/ϵ
N ) =

[
eV/σ

∑
i,j∈{0,...N}

i+j=n

∇xi
·
(
σe−V/σ∇xj

ϕk

) ]
(x, x/ϵ, . . . , x/ϵN ).

Note that ∇xj
ϕk = 0 for j > k. By equating powers of ϵ, from O(ϵ−N ) to O(1)495

respectively, in both sides of (45), we obtain the following sequence of N+1 equations496

497

L2NϕN + L2N−1ϕN−1 + . . .+ LNϕ0 = 0,(46a)498

L2NϕN+1 + L2N−1ϕN + . . .+ LN−1ϕ0 = 0,(46b)499

...500

L2Nϕ2N−1 + . . .+ L1ϕ0 = 0,(46c)501

L2Nϕ2N + . . .+ L0ϕ0 = F.(46d)502503

This system generalizes the system written for three scales in [8, III-11.3]. We note
that each nonzero term in (46a), (46b) to (46c) has the form

σeV (x0,...,xN )/σ∇xi ·
(
e−V (x0,...,xN )/σ∇xjϕk

)
,

where 1 ≤ i + j − k ≤ N . Furthermore, all the terms appearing in (46a), (46b) to
(46c) must satisfy i > 0. Indeed i = 0 would imply j ≥ k + 1 > k and so ∇xj

ϕk = 0
by construction of the test function. Since

V (x0, . . . , xN ) = V0(x0) + V1(x0, . . . , xN ),
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all the terms Lnϕk appearing (46a), (46b) to (46c) can be simplified as504

Lnϕk = e(V0+V1)/σ
∑

i∈{1,...N}
j∈{0,...N}

i+j=n

∇xi ·
(
σe−(V0+V1)/σ∇xjϕk

)
505

= eV1/σ
∑

i∈{1,...N}
j∈{0,...N}

i+j=n

∇xi ·
(
σe−V1/σ∇xjϕk

)
,506

507

where we have used the fact that V0 is independent of xi for i ∈ {1, . . . N} to pull the508

term eV0 out from the divergence operator. Thus, we can rewrite the first N equations509

as510

A2NϕN +A2N−1ϕN−1 + . . .ANϕ0 = 0,(47a)511

A2NϕN+1 +A2N−1ϕN + . . .AN−1ϕ0 = 0,(47b)512

...513

A2Nϕ2N−1 + . . .+A1ϕ0 = 0,(47c)514515

where
Anf = σeV1(x0,...,xN )/σ

∑
i∈{1,...,N}
j∈{0,...,N}

i+j=n

∇xi ·
(
e−V1(x0,...,xN )/σ∇xjf

)

Before constructing the test functions, we first introduce the sequence of spaces on
which the sequence of correctors will be constructed. Define H to be the space of
functions on the extended state space, i.e. H = L2(XN ), where XN is defined by (26).
We construct the following sequence of subspaces of H. Let

HN =

{
f ∈ H :

∫
f(x0, . . . , xN )e−V1/σ dxN = 0

}
,

Then clearly H = HN ⊕ H⊥
N . Suppose we have defined HN−k+1 then we can define

HN−k inductively by

HN−k =

{
f ∈ HN−k+1 :

∫
f(x0, . . . , xN−k)ZN−k(x0, . . . , xN−k) dxN−k = 0

}
,

where Zi(x0, . . . , xi) =
∫
. . .
∫
e−V1(x0,...,xN )/σ dxi+1 dxi+2 . . . dxN . Clearly, we have516

that H1 ⊕H⊥
1 ⊕ . . .⊕H⊥

N = H.517

518

Applying Proposition 15 we can now construct the series of test functions ϕ1, . . . , ϕ2N519

that solve (47).520

Proposition 17. Given ϕ0 ∈ C∞(Rd), there exist smooth functions ϕi for i =521

1, . . . , 2N − 1 such that equations (47a)-(47c) are satisfied, and moreover we have the522

following pointwise estimates, which hold uniformly on x0, . . . , xk ∈ Xk:523

(48) ∥∇αϕi(x0, . . . , xk)∥F ≤ C

α0+2∑
l=1

∥∇l
x0
ϕ0(x0)∥F ,524
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for some constant C > 0, and all multiindices α on (0, . . . , k), and all 0 ≤ k ≤ i ≤525

2N − 1. Finally, equation (46d) is satisfied with526

(49) F (x) =
1

Z(x)
∇x0

· (K1(x)∇x0
ϕ0(x)) .527

Proof. Guideline of the proof. Given ϕ0 as in the hypothesis of the proposition,528

we will find the test functions ϕi, i = 1, . . . , 2N from the system (47). This system529

consists of N equations. The other N equations come from solvability (compatibility)530

conditions, which are applications of the Fredholm alternative [46, Theorem 7.9].531

More specially, the solvability condition for the O(ϵ−(N−k))-equation in (47), viewing532

as an equation for ϕN+k in terms of ϕ0, . . . , ϕN+k−1, will give rise to an equation for533

ϕN−k in term of ϕ0, . . . , ϕN−k−1, for k = 1, . . . , N . The latter is an elliptic equation534

of the form (38) with ρ = 1 and D = KN−k. According to Lemma 10, KN−k is535

uniformly positive definite. Hence, the existence of ϕN−k follows from Proposition536

15. Therefore, the solvability condition for ϕN+k is fulfilled guaranteeing the existence537

of ϕN+k. By inductively repeating this process for all k = 1, . . . , N , we can construct538

the test functions ϕ1, . . . , ϕ2N satisfying the system (47). Finally, the function F is539

then determined from (46d).540

Now we implement this strategy in details. We start from Equation (47a), which541

can be viewed as an equation for ϕN in term of ϕ0, . . . , ϕN−1542

(50) A2NϕN = −(A2N−1ϕN−1+. . .+A0ϕ0), A2Nf = σeV1/σ∇xN
·
(
e−V1/σ∇xN

f
)
.543

Since the operator A2N has a compact resolvent in L2(Td), by the Fredholm alter-544

native a necessary and sufficient condition for (47a) to have a solution is that the545

following compatibility condition holds546

(51)

∫
(A2N−1ϕN−1 +A2N−2ϕN−2 + . . .+ANϕ0) e

−V1/σ dxN = 0.547

Note that every term in this summation is of the form548

(52) A2N−kϕN−k = σ
∑

0≤i,j≤N
i+j=2N−k

eV1/σ∇xj
·
(
e−V1/σ(x)∇xi

ϕN−k

)
,549

For ∇xiϕN−k to be non-zero it is necessary that i ≤ N − k. To enforce the condition550

i + j = 2N − k it must be that i = N − k and j = N , and thus the only non-zero551

terms in the above summation are:552

(53) A2N−kϕN−k = σeV1/σ∇xN
·
(
e−V1/σ∇xN−k

ϕN−k

)
,553

for k = 1, . . . , N . It follows that the compatibility condition (51) holds, by the554

periodicity of the domain. Therefore (47a) has a solution. In addition, it can be555

written as556

A2NϕN = −
N∑

k=1

A2N−kϕN−k557

= −
N∑

k=1

σeV1/σ∇xN
·
(
e−V1/σ∇xN−k

ϕN−k

)
558

= (σeV1/σ∇xN
· (e−V1/σI)

)
·
( N∑

k=1

∇xN−kϕN−k

)
.559

560
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Note that for k = 0, the Poisson equation (15) can be expressed as

A2NθN = σeV1/σ∇xN
· (e−V1/σI).

which has unique mean–zero solution θN . According to Remark 16, the test function561

ϕN can be written as562

(54) ϕN = θN ·
(
∇xN−1

ϕN−1 + . . .+∇x0
ϕ0

)
+ r

(1)
N (x0, . . . , xN−1),563

where
θN · (∇xN−1ϕN−1 + . . .+∇x0

ϕ0) ∈ HN

and for some r
(1)
N ∈ H⊥

N , which will be specified later. Next we consider theO(ϵ−(N−1)) -564

equation, that is (47b) viewing as an equation for ϕN+1 in terms of ϕN , . . . , ϕ0:565

(55) A2NϕN+1 = −(A2N−1ϕN + . . .+AN−1ϕ0),566

where A2N is given in (50). According to the Fredholm alternative, a necessary and567

sufficient condition for the above equation to have a solution is568

(56)

∫
(A2N−1ϕN + . . .+AN−2ϕ1 +AN−1ϕ0) e

−V1/σ dxN = 0.569

Similarly as in (53), for k = 1, . . . , N + 1, we have570

A2N−kϕN−k+1 = σeV1/σ
[
∇xN−1

·
(
e−V1/σ∇xN−k+1

ϕN−k+1

)
571

+∇xN
· (e−V1/σ∇xN−k

ϕN−k+1)
]
.572

573

Substituting this into (55) we obtain574

0 =

∫
∇xN−1

·
[
e−V1/σ(∇xN

ϕN +∇xN−1
ϕN−1 + . . .+∇x0ϕ0)

]
dxN575

= ∇xN−1
·
(∫

e−V1/σ∇xN
θN
(
∇xN−1

ϕN−1 . . .+∇x0ϕ0

)
dxN

)
576

+∇xN−1
·
(∫

e−V1/σ
(
∇xN−1

ϕN−1 + . . .+∇x0
ϕ0

))
dxN ,577

578

where in the last equality we use the fact that r
(1)
N is independent of xN . Thus we579

obtain the following equation for ϕN−1:580

(57) ∇xN−1
·
(
KN−1∇xN−1

ϕN−1

)
= −∇xN−1

·
(
KN−1

(
∇xN−2

ϕN−2 + . . .+∇x0ϕ0

) )
,581

where

KN−1(x0, x1, . . . , xN−1) =

∫
(I +∇xN

θN ) e−V1/σ dxN .

By Lemma 10, for fixed x0, x1, . . . , xN−1 the tensor KN−1 is uniformly positive definite
over xN−1 ∈ Td. As a consequence, the operator defined in (57) is uniformly elliptic,
with adjoint nullspace spanned by ZN (x0, x1, . . . , xN−1). Since the right hand side
has mean zero, this implies that a solution ϕN−1 exists. We recall that the corrector
θN−1 satisfies equation (15) with k = 1, that is

∇xN−1
·
[
KN−1

(
∇xN−1

θN−1 + I
)]

= 0.
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According to Remark 16, we can write ϕN−1 as

ϕN−1 = θN−1 ·
(
∇xN−2

ϕN−2 + . . .+∇x0
ϕ0

)
+ r

(1)
N−1(x0, . . . , xN−2),

for some r
(1)
N−1 ∈ H⊥

N−1. Since (56) has been satisfied, it follows from Proposition 15
that there exists a unique decomposition of ϕN+1 into

ϕN+1(x0, x1, . . . , xN ) = ϕ̃N+1(x0, x1, . . . , xN ) + r
(1)
N+1(x0, x1, . . . , xN−1),

where ϕ̃N+1 ∈ HN and for some r
(1)
N+1 ∈ H⊥

N . For the sake of illustration we now582

consider the O(ϵ−(N−2)) equation in (47)583

A2NϕN+2 = −
N+1∑
k=0

AN+k−2ϕk,584

which, again by the Fredholm alternative, has a solution if and only if585

(58)

∫
(A2N−1ϕN+1 +A2N−2ϕN + . . .+AN−2ϕ0) e

−V/σdxN = 0.586

For k = 1, . . . , N + 2, we have587

A2N−kϕN−k+2 = σeV1/σ
[
∇xN−2

·
(
e−V1/σ∇xN−k+2

ϕN−k+2

)
+∇xN−1

·
(
e−V1/σ∇xN−k+1

ϕN−k+2

)
588

+∇xN
· (e−V1/σ∇xN−k

ϕN−k+2)
]
.589590

Fixing the variables x0, . . . , xN−2, we can rewrite (58) as an equation for r
(1)
N =591

r
(1)
N (x0, . . . , xN−1)592

(59) Ã2N−2r
(1)
N := ∇xN−1

·
(
ZN−1∇xN−1

r
(1)
N

)
= −RHS,593

where

ZN−1 =

∫
e−V1(x)/σ dxN ,

and the RHS contains all the remaining terms. We note that all the functions of
xN−1 in the RHS are known, so that all the remaining undetermined terms can be
viewed as constants for fixed x0, . . . , xN−2 ∈ XN−2. By the Fredholm alternative, a
necessary and sufficient condition for a unique mean zero solution to exist to (59) is
that the RHS has integral zero with respect to xN−1, which is equivalent to:

∇N−2 ·
(∫ ∫ (

∇xN
ϕN +∇xN−1

ϕxN−1
+ . . .+∇x0

ϕ0

)
e−V/σ dxNdxN−1

)
= 0,

or equivalently:

∇xN−2
·
(
KN−2∇xN−2

ϕN−2

)
= −∇xN−2

·
(
KN−2

(
∇xN−3

ϕN−3 + . . .+∇x0
ϕ0

))
.

Once again, this implies that

ϕN−2 = θN−2 ·
(
∇xN−3

ϕN−3 + . . .+∇x0
ϕ0

)
+ r

(1)
N−2(x0, . . . , xN−3),
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where r
(1)
N−2 ∈ H⊥

N−2 is unspecified. Since the compatibility condition holds, by
Proposition 15 equation (59) has a solution, so that we can write

r
(1)
N (x0, . . . , xN−1) = r̃

(1)
N (x0, . . . , xN−1) + r

(2)
N (x0, . . . , xN−2),

where r̃
(1)
N ∈ HN−1 is the unique smooth solution of (59) and for some r

(2)
N ∈ H⊥

N−1.594

We continue the proof by induction. Suppose that for some k < N , the functions595

ϕN , . . . ϕN±(k−1) have all been determined. We shall consider the case when k is even,596

noting that the k odd case follows mutatis mutandis.597

From the previous steps, each term in

ϕN+k−2, ϕN+k−4, . . . , ϕN−k−2,

admits a decomposition such that in each case we can write:

ϕN+k−2i = ϕ̃N+k−2i + r
(k/2−i)
N+k−2i,

where

ϕ̃N+k−2i ∈ Hk/2−i,

has been uniquely specified, and the remainder term

r
(k/2−i)
N+k−2i ∈ H⊥

k/2−i,

remains to be determined. The O(ϵN−k) equation is given by598

(60) A2NϕN+k +A2N−1ϕN+k−1 + . . .+AN−kϕ0 = 0.599

Following the example of the O(ϵN−2) step, in descending order we successively ap-600

ply the compatibility conditions which must be satisfied for the equations involving601

r
(1)
N+k, . . . , r

(k−1)
N−k−2 of the form602

(61) Ã2N−2k−2ir
(k/2−i)
N+k−2i = RHS,603

where in (61), all terms dependent on the variable xk/2−i have been specified uniquely
and where

Ã2N−2k−2iu = ∇xN−k−i
·
(
ZN−k−i∇xN−k−i

u
)
.

This results in (60) being integrated with respect to the variables N, . . . , N − k + 1.604

In particular, all terms A2N−jϕN+k−j for j = 0, . . . , k− 1 will have integral zero, and605

thus vanish. The resulting equation is then606

(62)

∫
. . .

∫
(A2N−kϕN + . . .+AN−kϕ0) e

−V1/σ dxN . . . dxN−k+1 = 0.607

Moreover, since the function ϕN−i depends only on the variables x0, . . . , xN−i , then
(62) must be of the form

∇xN−k
·
(∫

. . .

∫ (
∇xN

ϕN + . . .∇xN−1
ϕN−1 + . . .∇x0

ϕ0

)
e−V/σ dxN . . . dxN−k+1

)
= 0.
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We now apply the inductive hypothesis to see that (to shorten the notations, we608

denote dxN,...,N−k+1 := dxN · · · dxN−k+1 etc)609 ∫
(∇xN

ϕN + . . .∇x0
ϕ0) e

−V1/σ dxN,...,N−k+1610

=

∫ ∫
(∇xN

θN + I) dxN

(
∇xN−1

ϕN−1 + . . .+∇x0
ϕ0

)
e−V1/σ dxN−1,...,N−k+1611

=

∫ ∫ ∫
(∇xN

θN + I) dxN

(
∇xN−1

θN−1 + I
)
dxN−1

(
∇xN−2

ϕN−2 + . . .+∇x0
ϕ0

)
e−V1/σ dxN−2,...,N−k+1612

...613

= KN−k+1

(
∇xN−k

ϕN−k + . . .∇x0ϕ0

)
.614615

Thus, the compatibility condition for the O(ϵN−k) equation reduces to the elliptic
PDE

∇xN−k
·
(
KN−k∇xN−k

ϕN−k

)
= −∇xN−k

·
(
KN−k

(
∇xN−k−1

ϕN−k−1 + . . .∇x0
ϕ0

))
= 0,

so that ϕN−k can be written as616

(63) ϕN−k = θN−k

(
∇xN−k−1

ϕN−k−1 + . . .∇x0
ϕ0

)
+ r

(1)
N−k,617

where r
(1)
N−k is an element of H⊥

N−k, which is yet to be determined. Moreover, each

remainder term r
(k/2−i)
N+k−2i can be further decomposed as

r
(k/2−i)
N+k−2i = r̃

(k/2−i)
N+k−2i + r

(k/2−i+1)
N+k−2i ,

where

r̃
(k/2−i)
N+k−2i ∈ Hk/2−i+1,

is uniquely determined and

r
(k/2−i+1)
N+k−2i ∈ H⊥

k/2−i+1,

is still unspecified. Continuing the above procedure inductively, starting from a618

smooth function ϕ0 we construct a series of correctors ϕ1, . . . , ϕ2N−1.619

620

We now consider the final equation (46d). Arguing as before, we note that we can621

rewrite (46d) as622

(64) A2Nϕ2N + . . .AN+1ϕN+1 = F (x)−
N∑
i=1

Liϕi.623

A necessary and sufficient condition for ϕ2N to have a solution is that624

(65)

∫
Td

(A2N−1ϕ2N−1 + . . .+AN+1ϕN+1) e
−V1/σ dxN

=

∫
Td

(
F (x)−

N∑
i=1

Liϕi

)
e−V1/σ dxN .

625
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At this point, the remainder terms will be of the form

r
(1)
2N−2, r

(2)
2N−4, . . . r

(k)
2N−2k, . . . , r

(1)
2 ,

such that r
(i)
2N−2i ∈ H⊥

i , is unspecified. Starting from r
(1)
2N−2 a necessary and sufficient626

condition for the remainder r
(i)
2N−2i to exist is that the integral of the equation with627

respect to dxN−i vanishes, i.e.628

(66)

F (x)Z(x) =

∫
(Td)N

(A2N−1ϕ2N−1 + . . .AN+1ϕN+1) e
−V1/σ dxNdxN−1 . . . dx1

+

∫
(Td)N

(LNϕN + . . .L1ϕ1) e
−V1/σ dxNdxN−1 . . . dx1

629

where

Z(x) =

∫
Td

. . .

∫
Td

e−V1/σ dxN . . . dx1.

As above, after simplification, (66) becomes

∇x0
· (∇xN

ϕN + . . .+∇x0
ϕ0) = Z(x)F (x),

which can be written as

σ

Z(x)
∇x0

·

(∫
(Td)N

(I +∇xN
θN ) · . . . · (I +∇x1

θ1) e
−V/σ dxN . . . dx1∇x0

ϕ0

)
= F (x),

or more compactly

F (x) =
σ

Z(x)
∇x0 · (K1(x)∇x0ϕ0(x)) ,

where the terms in the right hand side have been specified and are unique. Thus,
the O(1) equation (66) provides a unique expression for F (x). Moreover, for each

i = 1, . . . , N −1, there exists a smooth unique solution r
(i)
2N−2i ∈ Hi−1 and ϕ2N ∈ HN

by Proposition 15.

Note that we have not uniquely identified the functions ϕ1, . . . , ϕ2N , since after the
above N steps there will be remainder terms which are still unspecified. However,
conditions (47a)-(47c) will hold for any choice of remainder terms which are still un-
specified. In particular, we can set all the remaining unspecified remainder terms to
0. Moreover, every Poisson equation we have solved in the above steps has been of
the form:

Sku(x0, . . . , xk) = a(x0, . . . , xk) · ∇x0
ϕ0(x0) +A(x0, . . . , xk) : ∇2

x0
ϕ0(x0),

where Sk is of the form (38), and a and A are uniformly bounded with bounded630

derivatives. In particular, from the remark following Proposition 15 the pointwise631

estimates (48) hold.632

Remark 18. Note that we do not have an explicit formula for the test functions,
for i = 1, . . . , N . However, by applying (63) recursively one can obtain an explicit
expression for the gradient of ϕi in terms of the correctors θi:

∇xi
ϕi = ∇xi

θi(I +∇xi−1
θi−1) · · · · · (I +∇x1

θ1)∇x0
ϕ0.

Since these are the only terms required for the calculation of the homogenized diffusion633

tensor we thus obtain an explicit characterisation of the effective coefficients.634
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5.2. Tightness of Measures. In this section we establish the weak compactness635

of the family of measures corresponding to {Xϵ
t : 0 ≤ t ≤ T}0<ϵ≤1} in C([0, T ];Rd)636

by establishing tightness. Following [43], we verify the following two conditions which637

are a slight modification of the sufficient conditions stated in [9, Theorem 8.3].638

Lemma 19. The collection {Xϵ
t : 0 ≤ t ≤ T}{0<ϵ≤1} is relatively compact in639

C([0, T ];Rd) if it satisfies:640

1. For all δ > 0, there exists M > 0 such that

P
(

sup
0≤t≤T

|Xϵ
t | > M

)
≤ δ, 0 < ϵ ≤ 1.

2. For any δ > 0, M > 0, there exists ϵ0 and γ such that

γ−1 sup
0<ϵ<ϵ0

sup
0≤t0≤T

P

(
sup

t∈[t0,t0+γ]

∣∣Xϵ
t −Xϵ

t0

∣∣ ≥ δ ; sup
0≤s≤T

|Xϵ
s | ≤ M

)
≤ δ.

To verify condition 1 we follow the approach of [43] and consider a test function641

of the form ϕ0(x) = log(1 + |x|2). The motivation for this choice is that while ϕ0(x)642

is increasing, we have that643

(67)

3∑
l=1

(1 + |x|)l|∇l
xϕ0(x)|F ≤ C,644

where |·|F denotes the Frobenius norm. Let ϕ1, . . . , ϕ2N−1 be the first 2N − 1 test645

functions constructed in Proposition 17. Consider the test function646

(68)
ϕϵ(x) = ϕ0(x) + ϵϕ1(x, x/ϵ) + . . .+ ϵNϕN (x, x/ϵ, . . . , x/ϵN )

+ ϵN+1ϕN+1(x, x/ϵ, . . . , x/ϵ
N ) + . . .+ ϵ2N−1ϕ2N−1(x, x/ϵ, . . . , x/ϵ

N ).
647

Applying Itô’s formula, we have that

ϕϵ(Xϵ
t ) = ϕϵ(x) +

∫ t

0

G(Xϵ
s) ds+

√
2σ

N∑
i=0

2N−1∑
j=0

ϵj−i

∫ t

0

∇xiϕj dWs,

where G(x) is a smooth function consisting of terms of the form:648

(69) ϵk−(i+j)eV/σ ∇xi
·
(
e−V/σ σ∇xj

ϕk

)
(x, x/ϵ, . . . , x/ϵN ),649

where k ≥ i+ j, by construction of the test functions. Moreover, ∇xiϕj = 0 for j < i.650

To obtain relative compactness we need to individually control the terms arising in651

the drift. More specifically, we must show that the terms652

(70) E sup
0≤t≤T

∫ t

0

∣∣∣eV/σ∇xi
·
(
e−V/σ σ∇xj

ϕk

)
(Xϵ

s , X
ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N ) ds
∣∣∣ ,653

654

(71) E
∣∣∣∣ sup
0≤t≤T

∫ t

0

∇xj
ϕk(X

ϵ
s , X

ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N ) dWs

∣∣∣∣2 ,655

and656

(72) sup
0≤t≤T

|ϕj(X
ϵ
t )|.657
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are bounded uniformly with respect to ϵ ∈ (0, 1]. Terms of the type (70) can be658

bounded above by:659

E sup
0≤t≤T

∫ t

0

∣∣(∇xiV · ∇xjϕk

)
(Xϵ

s , . . . , X
ϵ
s/ϵ

N )
∣∣+ ∣∣σ∇xi · ∇xjϕk(X

ϵ
s , . . . , X

ϵ
s/ϵ

N )
∣∣ ds.660

661

If i > 0, then ∇xi
V is uniformly bounded, and so the above expectation is bounded662

above by663

C E
∫ T

0

|∇xj
ϕk(X

ϵ
s , . . . , X

ϵ
s/ϵ

N )|+ |∇xi
· ∇xj

ϕk(X
ϵ
s , . . . , X

ϵ
s/ϵ

N )| ds664

≤CE
∫ T

0

3∑
m=1

∣∣∇m
x0
ϕ0(X

ϵ
s)
∣∣
F
ds ≤ KT,665

666

using (67), for some constant K > 0 independent of ϵ. For the case when i = 0, an667

additional term arises from the derivative ∇x0V0 and we obtain an upper bound of668

the form669

(73)

E
∫ T

0

3∑
m=1

∣∣∇m
x0
ϕ0(X

ϵ
t )
∣∣
F
(1 + |∇x0

V0(X
ϵ
t )|) dt

≤ E
∫ T

0

3∑
m=1

∣∣∇m
x0
ϕ0(X

ϵ
t )
∣∣
F
(1 + ∥∇∇V0∥L∞ |Xϵ

t |) dt

670

and which is bounded by Assumption 1 and (67). For (71), we have671

E
∣∣∣∣ sup
0≤t≤T

∫ t

0

∇xj
ϕk(X

ϵ
s , X

ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N ) dWs

∣∣∣∣2 ≤ 4E
∫ T

0

|∇xj
ϕk(X

ϵ
s , X

ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N )|2 ds672

≤ C E
∫ T

0

3∑
m=1

∣∣∇m
x0
ϕ0(X

ϵ
s)
∣∣
F
ds,673

674

which is again bounded. Terms of the type (72) follow in a similar manner. Condition675

1 then follows by an application of Markov’s inequality.676

677

To prove Condition 2, we set ϕ0(x) = x and let ϕ1, . . . , ϕ2N−1 be the test func-678

tions which exist by Proposition 17. Applying Itô’s formula to the corresponding679

multiscale test function (68), so that for t0 ∈ [0, T ] fixed,680

(74) Xϵ
t −Xϵ

t0 =

∫ t

t0

Gds+
√
2σ

N∑
i=0

2N−1∑
j=0

ϵj−i

∫ t

t0

∇xi
ϕj dWs,681

where G is of the form given in (69). Let M > 0, and let682

(75) τ ϵM = inf{t ≥ 0 ; |Xϵ
t | > M}.683

Following [43], it is sufficient to show that684

(76)

E

[
sup

t0≤t≤T

∫ t∧τϵ
M

t0∧τϵ
M

∣∣∣eV/σ∇xi
·
(
e−V/σ∇jϕk

)
(Xϵ

s , X
ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N ) ds
∣∣∣1+ν

]
< ∞685
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and686

(77) E

 sup
t0≤t≤t0+γ

∣∣∣∣∣
∫ t∧τϵ

M

t0∧τϵ
M

∇xiϕj(X
ϵ
s , X

ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N ) dWs

∣∣∣∣∣
2+2ν

 < ∞687

for some fixed ν > 0. For (76), when i > 0, the term ∇xi
V is uniformly bounded.688

Moreover, since ∇ϕ0 is bounded, so are the test functions ϕ1, . . . , ϕ2N+1. Therefore,689

by Jensen’s inequality one obtains a bound of the form690

CγνE
∫ t0+γ

t0

∣∣∣eV/σ∇xi
·
(
e−V/σ∇jϕk

)
(Xϵ

s , X
ϵ
s/ϵ, . . . ,X

ϵ
s/ϵ

N )
∣∣∣1+ν

ds691

≤Cγν

∫ t0+γ

t0

|K|1+ν ds ≤ K ′γ1+ν .692

693

When i = 0, we must control terms involving ∇x0
V0 of the form,

E

[
sup

t0≤t≤t0+γ

∫ t∧τϵ
M

t0∧τϵ
M

∣∣∇V0 · ∇xj
ϕk

∣∣1+ν
ds

]

where τ ϵM is given by (75). However, applying Jensen’s inequality,694

E

[
sup

t0≤t≤t0+γ

∫ t∧τϵ
M

t0∧τϵ
M

∣∣∇V0 · ∇xjϕk

∣∣1+ν
ds

]
≤ Cγν

∫ (t0+γ)∧τϵ
M

t0∧τϵ
M

E
∣∣∇V0 · ∇xjϕk

∣∣1+ν
ds695

≤ Cγν

∫ (t0+γ)∧τϵ
M

t0∧τϵ
M

E |∇V0(X
ϵ
s)|

1+ν
ds696

≤ Cγν
∥∥∇2V0

∥∥1+ν

∞

∫ (t0+γ)∧τϵ
M

t0∧τϵ
M

E|Xϵ
s |1+ν ds697

≤ CMγ1+ν
∥∥∇2V0

∥∥1+ν

L∞ ,(78)698699

as required. Similarly, to establish (77) we follow a similar argument, first using the700

Burkholder-Gundy-Davis inequality to obtain:701

E
(

sup
t0≤t≤t0+γ

∫ t

t0

|∇xi
ϕj dWs|2+2ν

)
≤ E

(∫ t0+γ

t0

|∇xi
ϕj |2 ds

)1+ν

702

≤ γν

∫ t0+γ

t0

E |∇xi
ϕj |2+2γ

ds703

≤ Cγ1+ν .704705

We note that Assumption 1 (3) is only used to obtain the bounds (73) and (78).706

A straightforward application of Markov’s inequality then completes the proof of707

condition 2. It follows from Prokhorov’s theorem that the family {Xϵ
t ; t ∈ [0, T ]}0<ϵ≤1708

is relatively compact in the topology of weak convergence of stochastic processes709

taking paths in C([0, T ];Rd). In particular, there exists a process X0 whose paths lie710

in C([0, T ];Rd) such that {Xϵn ; t ∈ [0, T ]} ⇒ {X0; t ∈ [0, T ]} along a subsequence ϵn.711
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5.3. Identifying the Weak Limit. In this section we uniquely identify any
limit point of the set {Xϵ

t ; t ∈ [0, T ]}0<ϵ≤1. Given ϕ0 ∈ C∞
c (Rd) define ϕϵ to be

ϕϵ(x) = ϕ0(x)+ϵϕ1(x/ϵ)+. . . ϵNϕN (x, x/ϵ, . . . , x/ϵN )+. . .+ϵ2Nϕ2N (x, x/ϵ, . . . , x/ϵN ),

where ϕ1, . . . , ϕN are the test functions obtained from Proposition 17. Since each test712

function is smooth, we can apply Itô’s formula to ϕϵ(Xϵ
t ) to obtain713

(79) E
[
ϕϵ(Xϵ

t )−
∫ t

s

Lϵϕϵ(Xu) du
∣∣∣Fs

]
= ϕϵ(Xϵ

s).714

We can now use (45) to decompose Lϕϵ into an O(1) term and remainder terms which
vanish as ϵ → 0. Collecting together O(ϵ) terms we obtain

E
[
ϕ0(X

ϵ
t )−

∫ t

s

σ

Z(Xϵ
u)

∇x0
· (Z(Xϵ

u)M(Xϵ
u)∇ϕ0(X

ϵ
u)) du+ ϵRϵ

∣∣∣Fs

]
= ϕ0(X

ϵ
s),

where Rϵ is a remainder term which is bounded in L2(µϵ) uniformly with respect to
ϵ, and where the homogenized diffusion tensor M(x) is defined in Theorem 3. Taking
ϵ → 0 we see that any limit point is a solution of the martingale problem

E
[
ϕ0(X

0
t )−

∫ t

s

σ

Z(X0
u)

∇x0 ·
(
Z(X0

u)M(X0
u)∇ϕ0(X

0
u)
)
du
∣∣∣Fs

]
= ϕ0(X

0
s ).

This implies that X0 is a solution to the martingale problem for L0 given by

L0f(x) =
σ

Z(x)
∇ · (Z(x)M(x)∇f(x)).

From Lemma 10, the matrix M(x) is smooth, strictly positive definite and has715

bounded derivatives. Moreover,716

Z(x) =

∫
Td

· · ·
∫
Td

e−V (x,x1,...,xN )/σ dx1 . . . dxN717

= e−V0(x)/σ

∫
Td

· · ·
∫
Td

e−V1(x,x1,...,xN )/σ dx1 . . . dxN ,718
719

where the term in the integral is uniformly bounded. It follows from Assumption 1,
that for some C > 0,

|M(x)∇Ψ(x)| ≤ C(1 + |x|), ∀x ∈ Rd,

where Ψ = − logZ. Therefore, the conditions of the Stroock-Varadhan theorem720

[51, Theorem 24.1] holds, and therefore the martingale problem for L0 possesses a721

unique solution. Thus X0 is the unique (in the weak sense) limit point of the family722

{Xϵ}0<ϵ≤1. Moreover, by [51, Theorem 20.1], the process {X0
t ; t ∈ [0, T ]} will be the723

unique solution of the SDE (18), completing the proof.724

6. Further discussion and outlook. In this paper, we have shown the conver-725

gence of the multi-scale diffusion process (8) to the homogenized (effective) diffusion726

process (18), as well as the convergence of the corresponding equilibrium measures.727

We have employed the classical martingale approach based on a suitable construction728

of test functions and analysis of the related Poisson equations. A notable feature729
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is that the effective (macroscopic) process is a multiplicative diffusion process where730

the diffusion tensor depends on the macroscopic variable, whereas the noise in the731

microscopic dynamics is additive. This is due to the full coupling between the macro-732

scopic and the microscopic scales. As discussed in the introduction, both processes are733

reversible diffusion processes satisfying the detailed balance condition. Therefore, ac-734

cording to [1], the corresponding Fokker Planck equations at all scales are Wasserstein735

gradient flows for the corresponding free energy functionals [30]. Thus, the rigorous736

analysis presented in this work leads to the conclusion that the Wasserstein gradient737

flow structure is preserved under coarse-graining. This raises the interesting question738

whether coarse-graining and, in particular, homogenization can be studied within the739

framework of evolutionary Gamma convergence [52, 4, 35, 17]. Another interesting740

question is obtaining quantitative rates of convergence [16] and also understanding741

the effect of coarse-graining on the Poincaré and logarithmic Sobolev inequality con-742

stants, using the methodology of two-scale convergence [41, 24]. We will return to743

these questions in future work.744
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limit in a wasserstein gradient flow: from diffusion to reaction, Calculus of Variations and768
Partial Differential Equations, 44 (2012), pp. 419–454.769

[5] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators,770
vol. 348, Springer Science & Business Media, 2013.771

[6] S. Banerjee, R. Biswas, K. Seki, and B. Bagchi, Diffusion in a rough potential revisited,772
2014, arXiv:1409.4581.773

[7] G. Ben Arous and H. Owhadi, Multiscale homogenization with bounded ratios and anomalous774
slow diffusion, Communications on Pure and Applied Mathematics, 56 (2003), pp. 80–113.775

[8] A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures,776
vol. 5, North Holland, 1978.777

[9] P. Billingsley, Probability and measure, John Wiley & Sons, 2008.778
[10] J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Funnels, pathways,779

and the energy landscape of protein folding: a synthesis, Proteins: Structure, Function,780

This manuscript is for review purposes only.

http://arxiv.org/abs/1409.4581


BROWNIAN MOTION IN AN N -SCALE PERIODIC POTENTIAL 33

and Bioinformatics, 21 (1995), pp. 167–195.781
[11] J. D. Bryngelson and P. G. Wolynes, Spin glasses and the statistical mechanics of protein782

folding, Proceedings of the National Academy of Sciences, 84 (1987), pp. 7524–7528.783
[12] D. Cioranescu and P. Donato, Introduction to homogenization, 2000.784
[13] D. S. Dean, S. Gupta, G. Oshanin, A. Rosso, and G. Schehr, Diffusion in periodic, corre-785

lated random forcing landscapes, Journal of Physics A: Mathematical and Theoretical, 47786
(2014), p. 372001.787

[14] M. G. Delgadino, R. S. Gvalani, and G. A. Pavliotis, On the Diffusive-Mean Field Limit788
for Weakly Interacting Diffusions Exhibiting Phase Transitions, Arch. Ration. Mech. Anal.,789
241 (2021), pp. 91–148, http://dx.doi.org/10.1007/s00205-021-01648-1, https://doi.org/790
10.1007/s00205-021-01648-1.791

[15] A. B. Duncan, S. Kalliadasis, G. A. Pavliotis, and M. Pradas, Noise-induced transitions792
in rugged energy landscapes, Phys. Rev. E, 94 (2016), p. 032107.793

[16] M. H. Duong, A. Lamacz, M. A. Peletier, A. Schlichting, and U. Sharma, Quantification794
of coarse-graining error in langevin and overdamped langevin dynamics, Nonlinearity, 31795
(2018), pp. 4517–4566.796

[17] M. H. Duong, A. Lamacz, M. A. Peletier, and U. Sharma, Variational approach to coarse-797
graining of generalized gradient flows, Calculus of Variations and Partial Differential Equa-798
tions, 56 (2017), p. 100.799

[18] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19 (1998).800
[19] L. C. Evans and P. R. Tabrizian, Asymptotics for scaled kramers–smoluchowski equations,801

SIAM Journal on Mathematical Analysis, 48 (2016), pp. 2944–2961.802
[20] C. Gardiner, Stochastic methods, Springer Series in Synergetics, Springer-Verlag, Berlin,803

fourth ed., 2009. A handbook for the natural and social sciences.804
[21] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,805

springer, 2015.806
[22] S. N. Gomes, S. Kalliadasis, G. A. Pavliotis, and P. Yatsyshin, Dynamics of the desai-807

zwanzig model in multiwell and random energy landscapes, Phys. Rev. E, 99 (2019),808
p. 032109.809

[23] S. N. Gomes and G. A. Pavliotis, Mean field limits for interacting diffusions in a two-scale810
potential, J. Nonlinear Sci., 28 (2018), pp. 905–941.811

[24] N. Grunewald, F. Otto, C. Villani, and M. G. Westdickenberg, A two-scale approach812
to logarithmic Sobolev inequalities and the hydrodynamic limit, Annales de l’Institut Henri813
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[34] N. J. López-Alamilla, M. W. Jack, and K. J. Challis, Enhanced diffusion and the eigen-836
value band structure of brownian motion in tilted periodic potentials, Phys. Rev. E, 102837
(2020), p. 042405.838

[35] A. Mielke, On Evolutionary Γ-Convergence for Gradient Systems, Springer International Pub-839
lishing, Cham, 2016, pp. 187–249.840

[36] G. W. Milton, The theory of composites, Materials and Technology, 117 (1995), pp. 483–93.841
[37] D. Mondal, P. K. Ghosh, and D. S. Ray, Noise-induced transport in a rough ratchet potential,842

This manuscript is for review purposes only.

http://dx.doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1007/s00205-021-01648-1


34 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

The Journal of chemical physics, 130 (2009), p. 074703.843
[38] B. Muckenhoupt, Hardy’s inequality with weights, Studia Mathematica, 44 (1972), pp. 31–38.844
[39] K. Müller, Reaction paths on multidimensional energy hypersurfaces, Angewandte Chemie845

International Edition in English, 19 (1980), pp. 1–13.846
[40] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Theory of protein folding: the847

energy landscape perspective, Annual review of physical chemistry, 48 (1997), pp. 545–600.848
[41] F. Otto and M. G. Reznikoff, A new criterion for the logarithmic sobolev inequality and849

two applications, Journal of Functional Analysis, 243 (2007), pp. 121–157.850
[42] G. C. Papanicolaou, D. Stroock, and S. R. S. Varadhan, Martingale approach to some851

limit theorems, in Duke Turbulence Conference (Duke Univ., Durham, NC, 1976), vol. 6,852
1977.853
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