1

Ot s W

L O © 0O

16

BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL

A. B. DUNCAN *, M. H. DUONG', AND G. A. PAVLIOTIS?!

Abstract. We study the problem of Brownian motion in a multiscale potential. The potential is
assumed to have N +1 scales (i.e. N small scales and one macroscale) and to depend periodically on
all the small scales. We show that for nonseparable potentials, i.e. potentials in which the microscales
and the macroscale are fully coupled, the homogenized equation is an overdamped Langevin equation
with multiplicative noise driven by the free energy, for which the detailed balance condition still holds.
This means, in particular, that homogenized dynamics is reversible and that the coarse-grained
Fokker-Planck equation is still a Wasserstein gradient flow with respect to the coarse-grained free
energy. The calculation of the effective diffusion tensor requires the solution of a system of N coupled
Poisson equations.

Key words. Brownian dynamics, multiscale analysis, reiterated homogenization, reversible
diffusions, free energy.

AMS subject classifications. 35B27,35Q82,60H30

1. Introduction. The evolution of complex systems arising in chemistry and
biology often involve dynamic phenomena occurring at a wide range of time and
length scales. Many such systems are characterised by the presence of a hierarchy
of barriers in the underlying energy landscape, giving rise to a complex network of
metastable regions in configuration space. Such energy landscapes occur naturally in
macromolecular models of solvated systems, in particular protein dynamics. In such
cases the rugged energy landscape is due to the many competing interactions in the
energy function [10], giving rise to frustration, in a manner analogous to spin glass
models [11, 40]. Although the large scale structure will determine the minimum en-
ergy configurations of the system, the small scale fluctuations of the energy landscape
will still have a significant influence on the dynamics of the protein, in particular the
behaviour at equilibrium, the most likely pathways for binding and folding, as well as
the stability of the conformational states. Rugged energy landscapes arise in various
other contexts, for example nucleation at a phase transition and solid transport in
condensed matter.

To study the influence of small scale potential energy fluctuations on the system
dynamics, a number of simple mathematical models have been proposed which cap-
ture the essential features of such systems. In one such model, originally proposed by
Zwanzig [56], the dynamics are modelled as an overdamped Langevin diffusion in a
rugged two—scale potential V¢,

(1) dX{ = —-VVE(X)dt +V20dW,;, o=p""'=kpT,

where T is the temperature and kg is Boltzmann’s constant. The function V¢(z) =
V(x,z/€) is a smooth potential which has been perturbed by a rapidly fluctuating
function with wave number controlled by the small scale parameter € > 0. See Figure
1 for an illustration. Zwanzig’s analysis was based on an effective medium approxima-
tion of the mean first passage time, from which the standard Lifson-Jackson formula
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2 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

[33] for the effective diffusion coefficient was recovered. In the context of protein
dynamics, phenomenological models based on (1) are widespread in the literature, in-
cluding but not limited to [3, 28, 37, 53]. Theoretical aspects of such models have also
been previously studied. In [13] the authors study diffusion in a strongly correlated
quenched random potential constructed from a periodically-extended path of a frac-
tional Brownian motion. Numerical study of the effective diffusivity of diffusion in a
potential obtained from a realisation of a stationary isotropic Gaussian random field is
performed in [6]. More recent works include [23, 22] where the authors study systems
of weakly interacting diffusions moving in a multiwell potential energy landscape,
coupled via a Curie-Weiss type (quadratic) interaction potential and [34] in which the
authors consider enhanced diffusion for Brownian motion in a tilted periodic poten-
tial expressing the effective diffusion in terms of the eigenvalue band structure. It is
also worth mentioning a series of works [47, 4, 19, 54] studying multiscale behaviour
of diffusion processes with multiple-well potentials in which the limiting process is a
chemical reactions instead of a diffusion. We also mention [14], where the combined
mean field/homogenization limit for diffusions interacting via a periodic potential is
considered. The main result of this paper is that, in the presence of phase transitions,
the mean field and homogenization limits do not commute.
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Fig. 1: Example of a multiscale potential. The left panel shows the isolines of the
Mueller potential [49, 39]. The right panel shows the corresponding rugged energy
landscape where the Mueller potential is perturbed by high frequency periodic fluc-
tuations.

For the case where (1) possesses one characteristic lengthscale controlled by ¢ > 0,
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 3

the convergence of X§ to a coarse-grained process X; in the limit € — 0 over a finite
time interval is well-known. When the rapid oscillations are periodic, under a diffu-
sive rescaling this problem can be recast as a periodic homogenization problem, for
which it can be shown that the process X; converges weakly to a Brownian motion
with constant effective diffusion tensor D (covariance matrix) which can be calculated
by solving an appropriate Poisson equation posed on the unit torus, see for example
[46, 8]. The analogous case where the rapid fluctuations arise from a stationary ergodic
random field has been studied in [31, Ch. 9]. The case where the potential V¢ pos-
sesses periodic fluctuations with two or three well-separated characteristic timescales,
ie. V<(z) = V(z,z/e,z/e?) follow from the results in [8, Ch. 3.7], in which case the
dynamics of the coarse-grained model in the € — 0 limit are characterised by an Ito
SDE whose coefficients can be calculated in terms of the solution of an associated
Poisson equation. A generalization of these results to diffusion processes having N-
well separated scales was explored in Section 3.11.3 of the same text, but no proof of
convergence is offered in this case. Similar diffusion approximations for systems with
one fast scale and one slow scale, where the fast dynamics is not periodic have been
studied in [43].

A model for Brownian dynamics in a potential V' possessing infinitely many character-
istic lengthscales was studied in [7]. In particular, the authors studied the large-scale
diffusive behaviour of the overdamped Langevin dynamics in potentials of the form

n
n x

2 v =30 ().

obtained as a superposition of Holder continuous periodic functions with period 1. It
was shown in [7] that the effective diffusion coefficient decays exponentially fast with
the number of scales, provided that the scale ratios Ry41/Ry are bounded from above
and below, which includes cases where there is no scale separation. From this the au-
thors were able to show that the effective dynamics exhibits subdiffusive behaviour,
in the limit of infinitely many scales. See also the analytical calculation presented
in [15] for a piecewise linear periodic potential; in the limit of infinitely many scales,
the homogenized diffusion coefficient converges to zero, signaling that, in this limit,
the coarse-grained dynamics is characterized by subdiffusive behaviour.

In this paper we study the dynamics of diffusion in a rugged potential possessing
N well-separated lengthscales. More specifically, we study the dynamics of (1) where
the multiscale potential is chosen to have the form

(3) Ve(r)=V(z,x/e,x/e?, ... x/eV),

where V' is a smooth function, which is periodic with period 1 in all but the first
argument. Clearly, V can always be written in the form

(4) V(zo,z1,...,2n) = Vo(xo) + Vi(zo, 21, ..., 2N),

where (zg,z1,...,2y5) € R% x (']I‘d)N. We will assume that the large scale component
of the potential Vj is smooth and confining in R?, and that the perturbation V; is a
smooth bounded function which is periodic in all but the first variable. Unlike [7], we
work under the assumption of explicit scale separation, however we also permit more
general potentials than those of the form (2), allowing possibly nonlinear interactions
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4 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

between the different scales, and even full coupling between scales. ! To emphasize the
fact that the potential (4) leads to a fully coupled system across scales, we introduce
the auxiliary processes Xt(J) = X;/e¢’, j=0,...,N. The SDE (1) can then be written
as a fully coupled system of SDEs driven by the same Brownian motion Wy,

N
(a)  dxV ==Y v,V (Xfo)7Xt(1),...,Xt(N)) dt + /20 dW,
1=0
(1) = ©0) y (1) (M) 20
1 _ —(i+1) 0 1 N <o
(5b)  dX ;e vwiv(xt XD x| )dtﬂ/62 AW,

N
N Z G 0 1 N | 20
(5C) dXt( ): _ € (JFN)VIZV <Xt( )7Xt( ),,Xt( )) dt+ €2N th
i=0

in which case Xt(o) is considered to be a “slow” variable, while Xt(l), . ..Xt(N) are
“fast” variables. In this paper, we first provide an explicit proof of the convergence of
the solution of (1), X{ to a coarse-grained (homogenized) diffusion process X} given
by the unique solution of the following Ito SDE:

(6) dX) = —~M(X))VU(XD)dt + oV - M(X)) dt + /20 M(XD) AW,

where
U(z) = —olog Z(z),

denotes the free energy, for

Z(a;‘):/ / €7V1(m’y1""’yN)/gdy1...dyN,
Td Td

and where M (x) is a symmetric uniformly positive definite tensor which is indepen-
dent of e. The formula of the effective diffusion tensor is given in Section 2.

Our assumptions on the potential V¢ in (4) guarantee that the full dynamics (1)
is reversible with respect to the Gibbs measure p¢ by construction. It is important
to note that the coarse-grained dynamics (6) is also reversible with respect to the
equilibrium Gibbs measure

W (@) = Z(2)/Z.

Indeed, the natural interpretation of ¥(z) = —olog Z(z) is as the free energy cor-
responding to the coarse-grained variable XP. The weak convergence of Xf to X7
implies in particular that the distribution of X{ will converge weakly to that of X,
uniformly over finite time intervals [0, T'], which does not say anything about the con-
vergence of the respective stationary distributions u¢ to u°. In Section 4 we study the
equilibrium behaviour of X§ and X} and show that the long-time limit t — oo and the
coarse-graining limit € — 0 commute, and in particular that the equilibrium measure
u¢ of X¢ converges in the weak sense to u. We also study the rate of convergence
to equilibrium for both processes, and we obtain bounds relating the two rates. This

Lwe will refer to potentials of the form Ve(z) = Vp(z) + Vi(z/e,...,x/elV) where Vi is periodic

in all variables as separable.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 5

130 question is naturally related to the study of the Poincaré constants for the full and
131 coarse—grained potentials [41, 24].

132 We can summarize the above discussion as follows: the (Wasserstein) gradient
133 structure, reversibility and detailed balance property of the dynamics (the three prop-
134 erties are equivalent) are preserved under the homogenization/coarse-graining process:
135 the reversibility of X with respect to u¢ is preserved under the homogenization pro-
136 cedure. Indeed, any general diffusion process that is reversible with respect to u%(x)
137 will have the form (18), see [45, Sec. 4.7]. It is not necessarily always the case that the
138 gradient structure is preserved under coarse-graining, as has been shown recently [48].
139 The creation of non-gradient/nonreversible effects due to the multiscale structure of
140 the dynamics is a very interesting problem that we will return to in future work.

141 We also remark that the homogenized SDE corresponds to the kinetic/Klimontovich]j
142 interpretation of the stochastic integral [27], i.e. it can be written in the form

113 (7) dX0 = —M(XO)VU(X0) dt + /20 M(XP) KM gy,

144 where we use the notation o™ to denote the Klimontovich stochastic differen-
145 tial/integral. The Klimontovich interpretation of the stochastic integral leads to a
146 thermodynamically consistent Langevin dynamics, in the sense that it is reverible
147 with respect to the coarse-grained Gibbs measure.

148 The multiplicative noise is due to the full coupling between the macroscopic and
149 the N microscopic scales.? For one-dimensional potentials, we are able to obtain an
150 explicit expression for M(z), regardless of the number of scales involved. In higher

151 dimensions, M(x) will be expressed in terms of the solution of a recursive family
152 of Poisson equations which can be solved only numerically. We also obtain a vari-
153 ational characterization of the effective diffusion tensor, analogous to the standard
154 variational characterisations for the effective conductivity tensor for multiscale con-
155 ductivity problems, see for example [29]. Using this variational characterisation, we
156 are able to derive tight bounds on the effective diffusion tensor, and in particular,
157 show that as N — oo, the eigenvalues of the effective diffusion tensor will converge
158  to zero, suggesting that diffusion in potentials with infinitely many scales will exhibit
5

©

anomalous diffusion. The focus of this paper is the rigorous analysis of the homog-
160 enization problem for (1) with V¢ given by (4). More precisely, we are interested in
161 establishing the convergence of both the dynamics (over finite time domain) and of
162 the equilibrium measure of (1) as € tends to zero.

163

164  Our proof of the homogenization theorem, Theorem 3 is based on the well known
165 martingale approach to proving limit theorems [8, 42, 43]. The main technical dif-
166 ficulty in applying such well known techniques is the construction of the corrector
167 field/compensator and the analysis of the obtained Poisson equations. This turns out
168 to be a challenging task, since we consider the case where all scales, the macroscale
169 and the N— microscales, are fully coupled. For recent applications of the techniques,
170 we refer the reader to [32, 50] where the authors study metastable behaviour of mul-
171 tiscale diffusion processes.

172

173

174

2For additive potentials of the form (2), i.e. when there is no interaction between the macroscale
and the microscales, the noise in the homogenized equation is additive.

This manuscript is for review purposes only.



175
176
177
178
179
180
181
182

183
184
185
186
187
188

158
191
192
193
194
195

196

6 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

The rest of the paper is organized as follows. In Section 2 we state the assumptions
on the structure of the multiscale potential and state the main results of this paper.
In Section 3 we study properties of the effective dynamics, providing expressions for
the diffusion tensor in terms of a variational formula, and derive various bounds. In
Section 4 we study properties of the effective potential, and prove convergence of the
equilibrium distribution of X§ to the coarse-grained equilibrium distribution p°. The
proof of the main theorem, Theorem 3, is presented in Section 5. Finally, in Section
6 we provide further discussion and outlook.

2. Setup and Statement of Main Results. In this section we provide con-
ditions on the multiscale potential which are required to obtain a well-defined ho-
mogenization limit. In particular, we shall highlight assumptions necessary for the
ergodicity of the full model as well as the coarse-grained dynamics.

We will consider the overdamped Langevin dynamics
(8) dX; = —-VV(X[)dt + V20 dW,,

where V¢(z) is of the form (3). The multiscale potentials we consider in this paper can
be viewed as a smooth confining potential perturbed by smooth, bounded fluctuations
which become increasingly rapid as € — 0, see Figure 1 for an illustration. More
specifically, we will assume that the multiscale potential V' satisfies the following
assumptions.”

ASSUMPTION 1. The potential V is given by

9) V(zo,z1,...,2n) = Vo(20) + Vi(zo,21,...,2N),

where (xg,1,...,y5) € R x (’]I‘d)N, and
1. Vg is a smooth confining potential, i.e. e="°®) ¢ LY(R?) and Vy(z) — oo as
2. The perturbation Vi(xg,x1,...,2N) is smooth and bounded uniformly in xg.

3. There exists C' > 0 such that ||V2VO|| <C.

Lo (R4)

REMARK 2. We note that Assumption 1 is quite stringent, since it implies that
Vo is quadratic to leading order. This assumption is also made in [/3]. In cases
where the process X§ ~ p, i.e. the process is stationary, this condition can be relazed
considerably.

The infinitesimal generator £¢ of X[ is the selfadjoint extension of
(10) Lf(x) = =VV(x)-Vf(x) + oAf(x), [eCZR?).

It follows from the assumption on Vj that the corresponding overdamped Langevin
equation

(11) dY, = —=VVo(Y2) dt + V20dWy,

is ergodic with the unique stationary distribution

1 —Vo(z)/o
/lref("E) = A exp(_VO(x)/U), Z’l"ef = Ade Vo(z)/ dx.

ref

3We remark that we can always write (4) in the form (9) where Vp(z) =
Jpa - Jra Vg 1, zn)dey ... day.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 7

Since V7 is bounded uniformly, by Assumption 1, it follows that the potential V¢ is
also confining, and therefore X; is ergodic, possessing a unique invariant distribution
= V(@)

given by p(z) = &———, where Z¢ = [, e~V @)/ Moreover, noting that the
generator £¢ of X[ can be written as

Lof(z) =0V @/oy. (e‘ve(“’)/"Vf(x)) e CHRY.
it follows that € is reversible with respect to the dynamics X§, c.f. [45, 20].

Our main objective in this paper is to study the dynamics (8) in the limit of infi-
nite scale separation ¢ — 0. Having introduced the model and the assumptions we
can now present the main result of the paper.

THEOREM 3 (Weak convergence of X{ to X)). Suppose that Assumption 1 holds
and let T > 0, and the initial condition Xg is distributed according to some probability
distribution v on RY. Then as € — 0, the process X converges weakly in (C[0, T]; R9)
to the diffusion process X? with generator defined by

(12) £05(@) = 55 Ve (Z@M@Vef @), f e C2RY,
and where

xT) = 7V1(13931 77777 ZN)/O'd d
(13) Z(x) /T /We ey .. doy
and
(14

/ / (14 Vo On) - (14 Vg, 0p)e V1 @T0@N)/0 oy
Td Td

The correctors are defined recursively as follows: define On_r = (0% _,.,...,0% ) to
be the weak vector-valued solution of the PDE

(15) vaik . (ICN_k(:L‘(], L ,SCN_k)(vaikeN_k(l’o, - ,:ZTN_k) + I)) =0,

where On _i(zo, ..., xN—_k—1,) € HY(T% R?), with the notation Ve, 0n] ; = A\
forj=1,....dandn=1,...,N and where

Kn_k(zo,. ., TN_k)

/Td /Td (I+VanOn) - (I + Vg o On—pi1)e” V7 dan ... doyn—ji1,
fork=1,...,N—1, and
(17) Kn(z,z1,...,c5) = e V1@Tan)/or

where I denotes the identity matriz in R¥*%.  Provided that Assumptions 1 hold,
Proposition 15 guarantees the existence and uniqueness (up to a constant) of solutions
to the coupled Poisson equations (15). Furthermore, the solutions will depend smoothly
on the slow variable xo as well as the fast variables x1,...,zn. The process Xy is the
unique solution to the Ito SDE

(18) dX) = ~M(X))VU(XD)dt + oV - M(XP) dt + /20 M(XD) AW,

This manuscript is for review purposes only.
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where
U(z) = —olog Z(x) = —olog (/ / e~ Vi@ Y yN) /o gy ..dyN> .
Td Td

The proof, which closely follows that of [43] is postponed to Section 5. Theorem 3
confirms the intuition that the coarse-grained dynamics is driven by the coarse-grained
free energy. On the other hand, the corresponding SDE has multiplicative noise given
by a space dependent diffusion tensor M(xz). We can show that the homogenized
process (18) is ergodic with unique invariant distribution
pl(x) = @ = ief‘l’(w)/", where Z = / Z(x) d.
VA A Rd

Other qualitative properties of the solution to the homogenized equation (6), includ-
ing noise-induced transitions and noise-induced hysteresis behaviour has been studied
n [15]. Tt is also important to note that the reversibility of X§ with respect to uc is
preserved under the homogenization procedure. Indeed, any general diffusion process
that is reversible with respect to p°(x) will have the form (18), see [45, Sec. 4.7]. See
Section 6 for further discussion on this point.

As is characteristic with homogenization problems, when d = 1 we can obtain, up to
quadratures, an explicit expression for the homogenized SDE. In this case, we obtain
explicit expressions for the correctors 61, ...,60y, so that the intermediary coefficients
K1,...,Kn can be expressed as (see also [15])

—1
Ki(mo,xl,...,xi) = (/€V1(IO’Il"”’zi’xi'*'l""’IN)/Ud$i+1...dJ,‘N) s L= 1,...,N.

Thus we obtain the following result.

ProposITION 4 (Effective Dynamics in one dimension). When d = 1, the effective
diffusion coefficient M(zx) in (18) is given by

1
Zl(ZL')Zl(CL')
where
Zi(x) = /--~/6_V1(”””1"“’””N)/” dxy...dzy,
and

21(96) :/--~/eV1(I’”“'1"“’IN)/Uda:1...d:vN.

Equation (19) generalises the expression for the effective diffusion coefficient for a two-
scale potential that was derived in [56] without any appeal to homogenization theory.
In higher dimensions we will not be able to obtain an explicit expression for M(x),
however we are able to obtain bounds on the eigenvalues of M(x). In particular, we
are able to show that (19) acts as a lower bound for the eigenvalues of M(x).

PROPOSITION 5. The effective diffusion tensor M is uniformly positive definite
over R®. In particular,

(20) 0 < e 08¢M)/o < <e-M(z)e<1l, zeR%

Z1(95)21(93)

This manuscript is for review purposes only.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 9

for all e € RY such that |e| = 1, where

OSC(‘/l): sup %(Iaylr"ayl\/)_ inf %(I’ylr"ayN)
m’GRd, mG]Rd,
Y1, yn ET? Y1, YN ET?

This result follows immediately from Lemmas 10 and 11 which are proved in Section
3.

REMARK 6. The bounds in (20) highlight the two extreme possibilities for fluctu-

ations occurring in the potential V€. The equality m =e- M(x)e is attained
1 1

when the multiscale fluctuations Vi(xg,...,xN) are constant in all but one dimension

(e.g. the analogue of a layered composite material, [12, Sec 5.4], [46, Sec 12.6.2]). In

the other extreme, the inequality e - M(x)e = 1 is attained in the absence of fluctua-

tions, i.e. when Vi = 0.

REMARK 7. Clearly, the lower bound in (20) becomes exponentially small in the
limit as 0 — 0.

While Theorem 3 guarantees weak convergence of X§ to X in C([0,T]; R?) for
fixed T, it makes no claims regarding the convergence at infinity, i.e. of u€ to uY.
However, under the conditions of Assumption 1 we can show that p¢ converges weakly
to u°, so that the T — oo and € — 0 limits commute, in the sense that:

lim lim E[f(X%)] = lim lim E[f(X%)],

e—=0T—o0 T—o00 =0

for all f € L(purey).

PROPOSITION 8 (Weak convergence of u€ to u®). Suppose that Assumption 1
holds. Then for all f € L*(pirer),

(21) y f@)yp(dz) = [ flz)p’(dz),

Rd
as € — 0.

If Assumption 1 holds, then for every € > 0, the potential V¢ is confining, so that
the process Xy is ergodic. If the “unperturbed” process defined by (11) converges to
equilibrium exponentially fast in L?(p,cr), then so will X§ and Xp. Moreover, we
can relate the rates of convergence of the three processes. We will use the notation
Var,(f) = E.(f —E,f)? to denote the variance with respect to a measure .

PROPOSITION 9. Suppose that Assumptions 1 holds and let P, be the semigroup
associated with the dynamics (11) and suppose that prer(x) = Zioe*VO(w)/" satisfies
Poincaré’s inequality with constant p/o, i.e.

(22) Vary,., (1) < / VF @) tres(da), | € H (tre),

or equivalently®

(23) V(lruref (Ptf) < 6_2pt/0 Va'ruref(f)v f € Lz(uref)v

4The equivalence between (22) and (23) follows since P; is a reversible Markov semigroup with

respect to the measure p,.c¢. See [5].
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10 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

for allt > 0. Let Pf and P denote the semigroups associated with the full dynamics
(8) and homogenized dynamics (18), respectively. Then for all f € L*(tres),

(24) Var,e (P f) < e 2t/o Var,e(f),
and

(25) Var,o (PP f) < e~ Var,o (f).
for = pe=05CO/o qnd 5 — pe=205C(Vi)/a

The proof of Propositions 8 and 9 can be found in Section 4.

3. Properties of the Coarse—Grained Process. In this section we study the
properties of the coefficients of the homogenized SDE (18) and its dynamics.

3.1. Separable Potentials. Consider the special case where the potential V¢
is separable, in the sense that the fast scale fluctuations do not depend on the slow
scale variable, i.e.

V(l‘o,ﬂ?l,...,xj\[) = Vo(xo) —I—V1($1,I2,...,33N).

Then, it is clear from the construction of the effective diffusion tensor (14) that M(x)
will not depend on x € R?. Moreover, since

where K = [, [raexp(=Vi(y1,...,yn)/0)dys ...dyn, then it follows that the
coarse-grained stationary distribution x° equals the stationary distribution g, o
exp(—Vo(z)/o) of the process (11). For general multiscale potentials however, u° will
be different from p,.s. Indeed, introducing multiscale fluctuations can dramatically
alter the qualitative equilibrium behaviour of the process, including noise-inductioned

transitions and noise induced hysteresis, as has been studied for various examples in
[15].

3.2. Variational bounds on M(z). A first essential property is that the con-
structed matrices Ky,...,K; are positive definite over all parameters. For conve-
nience, we shall introduce the following notation

k
(26) Xp, = R? x _Z(le,

for k = 1,...,N, and set Xo = R? for consistency. First we require the following
existence and regularity result for a uniformly elliptic Poisson equation on T%.

LEMMA 10. Fork=1,...,N, forxo,...,xx_1 fixed, the tensor Ki(xo, ..., xr—1, )l
is uniformly positive definite and in particular satisfies, for all unit vectors e € RY,
1

(27) 7 (t0.x - )S6'/Ck($0,1171,---,wk—lawk)ea ), € T
k\L0, L1y y k-1

where
74 V(20,1 sTh—1y T yeees @
Zk(anxlw-wl‘kfl):/---/e (0,1 1Tk N)/deNdJ?N,l...dl‘k,

which is independent of xj,.

This manuscript is for review purposes only.
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Proof. We prove the result by induction on k starting from £k = N. For k = N
the tensor Ky is clearly uniformly positive definite for fixed xg,...,xny-1 € Xny_1.
By [8, Thms II1.3.2 and II1.3.3] there exists a unique (up to a constant) solution such
that Oy (2,21, ,2n_1,-) € H*(T4RY) of (15). In particular,

/ |VenOn (0,21, ... ,xN_l,.’,EN)ﬁ;v dry < oo,

’]Id

where || p denotes the Frobenius norm, so that Ky _; is well defined. Fix (xq,...,2n_2) €}
Xy_2. To show that Ky_1(zo,...,TN_2,-) is uniformly positive definite on T we

first note that

/Jl‘d (I + VINHN)T(I + VJJNQN)e_V/(7 drn

(28)

_ /d (I + Var Oy + Vo OF + Var 05 Var0y) e V/7day,
T

where V =V (zg,21,...,2x) and T denotes the transpose. From the Poisson equation
for O we have

/eN @V, (V7 (Vyuy0n + 1)) dzy =0,

from which we obtain, after integrating by parts:
(29) /T V% (vaeN + I)e_V/" dzy = 0.
From (28) and (29) we deduce that
Kn-1= /Td (I+ Vi 0n)e V7 dey
= /Td {I%— VanOn + Ve 08 (VanOn + I)} e VI%dey
- /Td(f  VarOn) (L4 Vo On)e V7 day.
Thus Kn_1 is well-defined and symmetric. We note that
/Ed(I—FVxNHN)de =1,

therefore, it follows by Holder’s inequality that

2
lv|> = vT/ (I+VnOn)dey| <v' (Ky_1)v </ evie de> ,
Td Td
so that
\”|2 T
= <v Ky-1(®o, .-, on—1)v, (20, T1,...,TN-1)
ZN(.’ﬂ(), e ,l’N_l)
Since ZN is uniformly bounded for (zg,...,xn_1) it follows Kny_1(x0,...,TNn_2,) is

uniformly positive definite, and arguing as above we establish existence of a unique
On_1, up to a constant, solving (15) for k = 2.
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Now, assume that the corrector y_ry1 has been constructed, and so Ky_g41 is
well defined. By multiplying the cell equation for 0 _j41

V:EN_k+1 : {K:kaJrl (V$N—k+1HN7k+1 + I)} =0

by On_r+1 then integrating with respect to zny_r+1 and using integration by parts
as well as the symmetry of y_j4+1 from the inductive hypothesis we obtain

/va,k+19]—\r/'_k+1]CN—k+1 (I+Vay w10N—t+1) don_g41 = 0.

Therefore, we have

Kn_r = /d KN—k+1(I + VN_p+10N—f+1) dTN k41
T

= /H‘d(I+ VrN—k-HaN*kJrl)TICN*kJrl(I—’_ VxN—k+19xN—k+1)de*k+1'

Thus Ky _j is also well-defined and symmetric. To show (27) we note that

/"'/(I+VzN9N)'"(I‘i'VwN,keN—k)de---de—k =1.

Therefore, for any vector v € R%:

[of? =

= (’UTK:N,]C(.%‘l, .. .,QTN,;C)U) 2(1’1, N

vl (//(I+VmN0N)(I—’_VIN—kgiEN—k)ded‘rNk)

S ’UT <//(I+VTNk0N—k)T (I+v1Nk0TNk)6V/adedfl;N_k) U/@V/UdI'N.,,

7',17N7k)-

The fact that we have strict positivity then follows immediately.

2

|

To obtain upper bounds for the effective diffusion coefficient, we will express the
intermediary diffusion tensors K; as solutions of a quadratic variational problem. This
variational formulation of the diffusion tensors can be considered as a generalisation
of the analogous representation for the effective conductivity coefficient of a two-scale
composite material, see for example [29, 36, 8].

LeEmMA 11. Fort=1,..., N, the tensor IC; satisfies

30)

e-Ki(xg,...,x;)e

_ inf / le + Vi1 (2o,
041 €C(X: HY(T?)) J(Ta)N
uN EC(XN.—UHI(Td))

for all e € RY.

...,xi+1)+...+V1}N(x0,...

This manuscript is for review purposes only.

,ZN)|

2 o= V(@o,-zn) /o

/d [/CkaH(I + VN_kt1ON—kt1) + va,kJrle]—\rl_k.;_llckaJrl(I + V1N7k+10ka+1):| dxN_j+1
T

dxn_k

dl‘N...,d.ri_H,
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 13

Proof. For i = 1,..., N, from the proof of Lemma 10 we can express the inter-
mediary diffusion tensor K; in the following recursive manner,

]Ci(an s 7xi)

= /d(1+vmi+10i+1($07'“axiaxi+1))TICi+1(an'~~axi+1)(-[+ in+19i+1($07~o,$i+1))d9€¢+1.l
T

Consider the tensor K; defined by the following symmetric minimization problem

(31)

eKi(xzo,...,xz;)e

(6 + VU(ZL'Q, NN 7xi+1)) . ]Ci-i-l(an ‘e ,CCH_l)(E + V’U(IQ, NN ,931‘_;,_1)) dxi_,_l.

= inf /
veC(X;;HY(T)) Ja
Since ;11 is a symmetric tensor, the corresponding Euler-Lagrange equation for the
minimiser is given by

v:l)prl : (]CiJrl(xO) cee 7xi+1)(vzi+1 X(:Uo, s 71'i+1) + 6)) = 0) Ti41 € Td?

with periodic boundary conditions. This equation has a unique mean zero solution
given by x(zo, ..., zi41) = 0:(20, ..., 7ir1) e, where 6; is the unique mean-zero solu-
tion of (15). It thus follows that e K;e = eTIEie, where K; is given by (31). Consider
now the minimisation problem

inf / / (e+ Vi, nvi(zo, ..., Tig2) + Vi, v2(x0, ... 7:@41))—r
v €C(Xi; HY(TY)) JTd JTd

’U1€C(Xi+1;H1(Td))
Kiva(zo, ... wit2)(€ + Va,,v1(2o, - -, Tit2) + Vo, 02(T0, - -+, @ig1)) dbigodmiya.
Optimising over vy for vy fixed it follows that v1 = (e + V., +11}2)T9i+27 where ;15 is

the unique mean-zero solution of (15). Thus, the above minimisation can be written
as

inf / / (e+ Vi 02(w0, - -y ig1)) (I + Vi, n0io) "
v €C(Xy; HY(T4)) J1d J14

Kite(zo, ..., Tig2)(I + Vo, ,0i42)(e + Va,,  v2(20, - . ., Tig1)) dripodriyy
= inf / (6 + Vwi+lvg(x0, . ,xi+1))—r’ci+1($0, ce ,$i+1)(6 + valUQ(xo, N ,$i+1)> dxi+2d1}i+1
2 €C(Xi—1;HY(TY)) Jd
=e Kse.
Proceeding recursively, we arrive at the advertised result (30). O

4. Properties of the Equilibrium Distributions. In this section we study
in more detail the properties of the equilibrium distributions u€ and p° of the full (8)
and homogenized dynamics (18), respectively. We first provide a proof of Proposition
8. The approach we follow in this proof is based on properties of periodic functions,
in a manner similar to [12, Ch. 2].

Proof of Proposition 8. Let f € L?(yres) and § > 0. Clearly C°(R?) is dense in
L*(pirer) and so, by Assumptions 1 there exists fs € C2°(R?) such that

(32) f(x)e™V @/ qg — fs(z)e ™V @/ dgl <
R R

Wl

)

This manuscript is for review purposes only.
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14 A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

and

Wl >

(33)

)

/]Rd /Td . ../Td(f(;(x) — f(x))e—V(w,yl,.“,yN)/o dy ... dys dz| <

uniformly with respect to e. Now, we partition R? into pairwise disjoint translations
of [0,1]% as R% = UgenYy, where

Vi = My, + €V[0,1]9,

for {zy >0 = Z¢. With this decomposition we obtain

fs(x)e™V @/ dg = Z fs(x)e™V @)/ dy
R ken Y Yk

= €Nd / fé(ﬁN ('Tk} + y))e_v(eN(xk+y)""1€(mk+y)7y)/o- dy’
ken V [0:1]7

where in the last equality we use the periodicity of V' with respect to the last variable.
Since the integrand is smooth with compact support, we can Taylor expand around
eNz to obtain

fg(x)e_ve(‘”)/" dr = 6Nd / fé(eka)e—V(eka,...,eﬂck,y)/o dy + 067
R4 [0,1]4

keN

where C is a constant depending on the derivatives of V' with respect to the first NV
variables, and the volume of the support of fs.
Noting that the above sum is a Riemann sum approximation, we can write

6Nd / f5(eka)e—V(eNmk,...,emk,y)/a dy
ken ¥ [0,1]

— (Nd Z/ / fg(éN(l'k + y/))e—V(eN(wk+y'),...7e(wk+y/)7y)/o dy dy' +Cye
keN [Ovl]d [Oxl]d

:/ / Fs(@)e V@ /N0 gy o 4 Cre,
Rd J[0,1]¢

where (' is a constant. Repeating the above process IV — 1 times, we obtain that
(34)

where C'y > 0 is a constant depending on the support of fs and derivatives of V' with
respect to the first NV variable. Thus, choosing € < §/(3Cy) and combining (32), (33)
and (34) we obtain

(35)

R R T T

Choosing f = 1 we obtain immediately that

26:/ e*VE(I)/Udl»%ZO:/ / / er(:v,yL.-.,yN)dyN“'dyldx’
R R4 JTd Te
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 15

and so for f € L?(uef) we obtain

fl@)p(@)de — [ fz)u’(z) de,
/ /

as € — 0, as required. O
Proof of Proposition 9. Since Vi is bounded uniformly by Assumption 1, it is
straightforward to check that

(36) pire g (2)e™ V7 < (@) < pryep(x)e V1),

It follows from the discussion following [5, Prop 4.2.7], that u¢ satisfies Poincaré’s
inequality with constant

which implies (24). An identical argument follows for the coarse—grained density
pO(x). Finally, by (20) of Proposition 5 we have |[v|2e=2%¢(V1)/e < v . M(x)v, for all
v e R and so

Var,o(f)

IN

7 gose(i)/o / V(@) 10(x) da
p R

%e%sc(%)/a / Vi(2) - M)V f(2) () da,

IN

from which (25) follows. |

REMARK 12. Note that one can similarly relate the constants in the logarithmic
Sobolev inequalities for the measures piref, p¢ and p° in an almost identical manner,
based on the Holley-Stroock criterion [26].

REMARK 13. Proposition 9 requires the assumption that the multiscale perturba-
tion V1 is bounded uniformly. If this is relaxed, then it is no longer guaranteed that
€ will satisfy a Poincaré inequality, even though jiy.r does. Consider, for example,
the following one dimensional potential

Ve(x) = 2*(1 + acos(x/e)),

then the corresponding Gibbs distribution p(x) will not satisfy Poincaré’s inequality
for any e > 0. Following [25, Appendiz A] we demonstrate this by checking that this
choice of ut does not satisfy the Muckenhoupt criterion [38, 2] which is necessary and
sufficient for the Poincaré inequality to hold, namely that sup, cp B+ (r) < 0o, where

Byi(r) = </Ti°° 1 () dm) (/[O’ir] Metx) dx>; )

=

This manuscript is for review purposes only.
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307 Givenn € N, we set r/e = 2mn + 7w/2. Then we have that

1/2 1/2
e(2mn+4m/3) e(2mn+m/3)
398 By(r) > (/ e~lol*(1-a/2)/o dm) </ elel’+a/2)/o dx)

(2mn+2m/3) (2mrn—m/3)

2me |Te(2n +4/3)]2 ! |Te(2n —1/3)]2 !
39 ol 7 1——) —(1 —)
Y —<3>6Xp< 2% ( )" % 3

2 2

2me 2men|? (14 &) a |2men|? (1 — &) a
o () (B gy R
v (3>eXp< 2% ( ) " 2% 3

, 2me |27en|? .

401 ~ | — |exp (a+o(n™h) ) =00, asn— oo,
402 3 20
403 so that Poincaré’s inequality does not hold for uc.

404 A natural question to ask is whether the weak convergence of u¢ to u° holds

5 true in a stronger notion of distance such as total variation. The following simple
406 one-dimensional example demonstrates that the convergence cannot be strengthened
407 to total variation.

ExAMPLE 14. Consider the one dimensional Gibbs distribution

1 _ (xz)/o
/”’E(x)zie V()/7

where
22

Ve(z) = - tacos (%) ,

and where Z€ is the normalization constant and o # 0. Then the measure u converges
weakly to u° given by
1
‘uO(x) _ 6_12/20.
2o
408 From the plots of the stationary distributions in Figure 2a it becomes clear that the
109 density of uc exhibits rapid fluctuations which do not appear in u°, thus we do not
410 expect to be able to obtain convergence in a stronger metric. First we consider the
111 distance between u¢ and p° in total variation °

0 0 e—w2/2o e~ % cos(2mx /€)
w2 = ey = [ @) - )] do = - d,
113 R R V20 Ke
14 where K¢ = Z¢/\/2no. It follows that
e(2mn+m/3) 6712/20 e
415 ||,u‘67,u0||TVZZ\/ —dx 1*?
n>0 e(2mn—m/3) 2no
—e2(2nn+7/3)? /20 Tl
416 > Z 26% £ 1-— eKi
"0 2wo
00 9 6—27r2(w+e/6)2/0' e~ 35
417 > / — 1-— ,
118 o 3 2mo Ke

5we are using the same notation for the measure and for its density with respect to the Lebesgue

measure on R.
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where we use the fact that e=*/?7 /K€ < 1 for e sufficiently small. In the limit € — 0,
we have K¢ — Iy(a/o), where I,,(-) is the modified Bessel function of the first kind
of order n. Therefore, as € — 0,

00 9 6727r2(m+e/6)2/0' 67% 1 67%
37 €0 >/ — 1-— -1 = —|,
I A N 7|5 1o
which converges to % as & — oo. Since relative entropy controls total variation

distance by Pinsker’s theorem, it follows that u¢ does not converge to pu° in relative
entropy, either. Nonetheless, we shall compute the distance in relative entropy between
1€ and p° to understand the influence of the parameters o and a. Since both u° and
ue have strictly positive densities with respect to the Lebesque measure on R, we have

that
i (z) = 27mefveo(z)+%.
dpd A
Then, for Z° = \2roly(1/0),
el ,0 1 1 € —Ve(x)/o
H (p|p’) = Ze §log(27ra) —logZ¢|e dx
1

+ 7e (=V(x)/o + 2*/20) eV @/ dy

=0, _ o —z2/20—a cos(2nx/€) /o
— —logIy(a/o) =70 ll_r)r(l)/cos(%rx/e)e dx

ali(a/o)

= —log Ip(a/o) — o Iy(a)o)

=: K(a/o).
and it is straightfoward to check that K(s) > 0, and moreover

0 as s — 0,

K(s) —
+00  as s — o0.

In Figure 2b we plot the value of K(s) as a function of s. From this result, we see

that for fized oo > 0, the measure p¢ will converge in relative entropy only in the limit

as 0 — 00, while the measures will become increasingly mutually singular as o — 0.

K(al/o)

10

=
—

alo

1 10 100 1000  10% 10° 108

(a) Plot of u° and p’with e = o = 0.1
and o = 1.0 (b) Plot of K(a/o) as a function of a/o.

Fig. 2: Error between u¢(x) o< exp(—V¢(x)/o) and effective distribution u°.
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132 5. Proof of weak convergence. In this section we show that over finite time
433 intervals [0, T], the process X converges weakly to a process X! which is uniquely
434 identified as the weak solution of a coarse-grained SDE. The approach we adopt is
435 based on the classical martingale methodology of [8, Section 3]. The proof of the
436 homogenization result is split into three steps.

437 1. We construct an appropriate test function which is used to decompose the
138 fluctuations of the process X; into a martingale part and a term which goes
439 to zero as € — 0.
440 2. Using this test function, we demonstrate that the path measure P¢ corre-
441 sponding to the family {(Xf)te[o T]} is tight on C([0, T]; R?).

1) o<e<t
442 3. Finally, we show that any limit point of the family of measures must solve a
443 well-posed martingale problem, and is thus unique.
444 The test functions will be constructed by solving a recursively defined sequence

145 of Poisson equations on R%. We first provide a general well-posedness result for this
146 class of equations.

447 PROPOSITION 15. Let Xi, k= 0,1,..., N be the space defined in Section 3.2. For
448 fized (xo,...,xk—1) € Xk_1, let Sk be the operator given by
1

149 (38 Spu = —mm
( ) g p(x07"'7xk)

ka ' (P(Z'Oa s ,xk)D(ﬂfO, s 7xk)vwku(x05 s a'rk))a

50 for uw € C?(T9), where p is a smooth and uniformly positive and bounded function,
451 and D is a smooth and uniformly positive definite tensor on X;. Let h be a smooth
5

452 function with bounded derivatives, such that for each (xo,...,xp—1) € Xp_1:
153 (39) h(zxo, ..., zK)p(xo, ..., xK)dry = 0.
Td
154 Then there exists a unique solution u € C(Xy_1; H*(T)) to the Poisson equation on
55

T given by
156 (40)  Spu(xo,...,xr) = h(zo,...,Tk), /d u(zg, - .., xk)p(zo, . .., xk) dxy = 0.
T

157 Moreover u is smooth and bounded with respect to the variable xj, € T% as well as the
458 parameters xg,...,Tp—1 € Xgp_1-

Proof. Since p and D are strictly positive, for fixed values of zg,...,zr_1, the
operator Sy is uniformly elliptic, and since T¢ is compact, Sy has compact resolvent
in L?(T?), see [18, Ch. 6] and [46, Ch 7]. The nullspace of the adjoint S* is spanned
by a single function p(zo,...,Zk_1,-). By the Fredholm alternative, a necessary and
sufficient condition for the existence of u is (39) which is assumed to hold. Thus, there
exists a unique solution u(xg,...,75_1,) € H'(T?) having mean zero with respect
to p(zo, ..., z). By elliptic estimates and Poincaré’s inequality, it follows that there
exists C' > 0 satisfying

llu(zo, .. s 2e—1, )1 rey < Cllh (20, - ., T—1, )| L2(T9),
459 for all (zg,...,xx—1) € Xk_1. Since the components of D and p are smooth with re-
160 spect to xz, standard interior regularity results [21] ensure that, for fixed g, ..., zx—1 € Xp_1,}]

461 the function u(zg,...,Tk—1,-) is smooth. To prove the smoothness and boundedness

This manuscript is for review purposes only.



162
463
464
465
466

467

468
469

470

472

479

480
481

BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 19

with respect to the other parameters zq,...,zr_1, we can apply an approach either
similar to [8], by showing that the finite differences approximation of the derivatives
of u with respect to the parameters has a limit, or otherwise, by directly differentiat-
ing the transition density of the semigroup associated with the generator Sy , see for
example [43, 55, 44] as well as [21, Sec 8.4]. 0

REMARK 16. Suppose that the function h in Proposition 15 can be expressed as
h(zg,...,zK) = a(xg,x1,...,2%) - Vdo(xo)

where a is smooth with all derivatives bounded. Then the mean-zero solution of (40)
can be written as

(41) u(xo, x1, ..., xk) = xX(To, 1, .-, Tk) - Voo(z;),
where x is the classical mean-zero solution to the following Poisson equation
(42) Skx(.’lfo,...,mk) :a(x07...,:£k), (.%‘07...,$k) € Xg.

This can be seen by checking directly that u given in (41) with x satisfying (42) solves
(40), which implies it is the unique solution of (40) due to the uniqueness of a solution.
In particular, x is smooth and bounded over xg,...,xk, so that given a multi-index
a = (ap,...,a) on the indices (0, ..., k), there exists Co > 0 such that

[e 73}
IVu(xo, ..., z1)|p < Co » V¥ Go(z0)lp,  Vao,1,..., 2k,
k=0

where |-|F denotes the Frobenius norm. A similar decomposition is possible for
9(zo, ..., xx) = A(zo, 21, ..., xk) : Vio(xo),
where V? denotes the Hessian.

5.1. Constructing the test functions. It is clear that we can rewrite (8) as

N
(43) dXf == 'V, V(z,afe,....x/eN)dt+ V20 dW;.
=0

The generator of X; denoted by £ can be decomposed into powers of € as follows

N
(L) @) == e 'Va V(za/e,...,x/eN) V() +oAf(w).
i=0
For functions of the form f¢(z) = f(x,x/e,...,x/e"), we have
N N
(Lf)(z) = Z eV V(x,x)e,. . x)eN)- (Z €IV, flz,xfe, ... 7an/eN))
i=0 j=0
k
+o Z 6_(i+j)Vizjf(x,x/e, conxfe)
§,j=0
N J
= e | Viey, . ge*V/"vxjf (z,z/e,...,x/eV)
PIL e AN )
2N
(44) :Ze_"(ﬁnf)(x,x/e...,x/eN),
n=0
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where for n =0,...,2N

(Lof)(@,x)e,...,x)e") = [ev/” Z Va, - (O'e_v/ova;jf):|($,$/€7...,$/6N).
SIS

Given a function ¢g, which will be specified later, our objective is to construct a test
function ¢¢ of the form

o (x) =do(x) + epr(z,2/€) + ...+ Non(x,x /e, ..., x/N)
+ N oy, a/e, . x)eN) o+ N oy (x,a)e, ..z /)
such that
(45) (£56%)(2) = F(z) + O(e),

for some function F which is independent of €. The above form for the test function
is suggested by the calculation(44). Using (44) we compute

2N
(L9 () = Zek(£¢k)(x,x/e, cx)eY)

k=
ZNO 2N
=S (Y e Lt @ e /)
k=0  n=0
2N
= Z (L) (/e .. x)eY),
k,n=0
where
(Logi)@,afe..ofe¥) =[S0 Vo (0 0V 00 ) [ e, afe).
,j€{0,...N'}

i+j=n

Note that V. ¢, = 0 for j > k. By equating powers of ¢, from O(e=™) to O(1)
respectively, in both sides of (45), we obtain the following sequence of N +1 equations

(46a) Londn + Lon—1¢N-1+ ...+ Lndo =0,
(46b) LondN+1+ Lon—1dN + ...+ Ln_1¢ =0,
(46¢) Lonpan—1+ ...+ Lido =0,

(46d) Londan + ...+ Logo = F.

This system generalizes the system written for three scales in [8, IT1I-11.3]. We note
that each nonzero term in (46a), (46b) to (46c) has the form

O_e\/(xo,...,mN)/Uin . (e—V(mo,...,rN)/avmj¢k> ,

where 1 < i+ j — k < N. Furthermore, all the terms appearing in (46a), (46b) to
(46¢) must satisfy ¢ > 0. Indeed ¢ = 0 would imply j > k+1 > k and so V¢, = 0
by construction of the test function. Since

V(zo,...,zn) = Vo(zo) + Vi(zo, ..., zN),
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all the terms £, ¢ appearing (46a), (46b) to (46¢) can be simplified as

Loy = eVotVi)/e Z V. ~(ae VotWVi)/og ¢5k>

ie{l,...N}
J€{0,...N'}
i+j=n

—Vi/o Z V., < —Vl/aij(bk)?

ie{l,..
j€{0,.. N }
i+j=n
where we have used the fact that Vj is independent of z; for ¢ € {1,... N} to pull the
term e"° out from the divergence operator. Thus, we can rewrite the first N equations
as

(47a) Aanon + Aon—10N-1+ ... Ango =0,
(47b) Aonodni1 + Aan—10n + ... An—1¢0 =0,
(47¢) Aondan—1+ ...+ A1 =0,

where

-A'n,f _ UeVl(aco,...,xN)/a Z sz ( —Vi(zo,.- :cN)/anJf)

ie{l,...,N}
j€{0,....N}
1+j=n

Before constructing the test functions, we first introduce the sequence of spaces on
which the sequence of correctors will be constructed. Define H to be the space of
functions on the extended state space, i.e. H = L?(Xy), where Xy is defined by (26).
We construct the following sequence of subspaces of H. Let

Hy = {fe?—t : /f(aco,...,xN)e_Vl/”da:N:0},

Then clearly H = Hy & ’Hﬁ Suppose we have defined Hy_j1 then we can define
Hn_r inductively by

Hy_r = {f S HkaJrl : /f(.’[o, - ,iL’N,k)ZN,k(l'(),. . .,CUN,]C) dry_L = 0},

where Z;(xg,. .. 7:Ei) = [...[eVil@oraN)/o gy, 1 drits ... duy. Clearly, we have
that H1 @ H{ & ... & Hy = H.

Applying Proposition 15 we can now construct the series of test functions ¢, ..., pan
that solve (47).

PROPOSITION 17. Given ¢o € C>(R?), there exist smooth functions ¢; for i =
., 2N —1 such that equations (47a)-(47¢c) are satisfied, and moreover we have the
following pointwise estimates, which hold uniformly on xg, ...,z € Xi:

ap+2

(48) IV@i(zo,....ax)|r <C Z IV, do(z0)ll s
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for some constant C' > 0, and all multiindices @ on (0,...,k), and all 0 < k < i <
2N — 1. Finally, equation (46d) is satisfied with

1
(49) F(x) = mvmo - (K1(2)Vaydo()) .

Proof. Guideline of the proof. Given ¢ as in the hypothesis of the proposition,
we will find the test functions ¢;,i = 1,...,2N from the system (47). This system
consists of N equations. The other N equations come from solvability (compatibility)
conditions, which are applications of the Fredholm alternative [46, Theorem 7.9].
More specially, the solvability condition for the O(e~(N=%))-equation in (47), viewing
as an equation for ¢y in terms of ¢g, ..., dnyr—1, Will give rise to an equation for
¢N_k in term of ¢q,...,¢n_k_1, for k =1,..., N. The latter is an elliptic equation
of the form (38) with p = 1 and D = Kny_i. According to Lemma 10, Ky_j is
uniformly positive definite. Hence, the existence of ¢n_j follows from Proposition
15. Therefore, the solvability condition for ¢ is fulfilled guaranteeing the existence
of ¢n1k. By inductively repeating this process for all k = 1,..., N, we can construct
the test functions ¢1, ..., ¢an satisfying the system (47). Finally, the function F is
then determined from (46d).

Now we implement this strategy in details. We start from Equation (47a), which
can be viewed as an equation for ¢y in term of ¢g,...,Pn_1

(50) Asxn = —(Aov-10n-1+.. .+ Aodo),  Aonf =0TV, (7Y, f).

Since the operator Asy has a compact resolvent in L?(T?), by the Fredholm alter-
native a necessary and sufficient condition for (47a) to have a solution is that the
following compatibility condition holds

(51) /(A2N71¢N—1 + Aon_2dN—2+ ...+ Anco) e~ V17 dan = 0.
Note that every term in this summation is of the form
(52) Aon_kPn_k =0 Z Bvl/avxj ‘ (67V1/U($)in¢N—k) ;
0<z,j<N
i+j=2N—k

For V,,én_1 to be non-zero it is necessary that ¢ < N — k. To enforce the condition
i+ j = 2N — k it must be that ¢ = N — k and j = N, and thus the only non-zero
terms in the above summation are:

(53) Aoyt = 07T (VT

for k = 1,...,N. It follows that the compatibility condition (51) holds, by the
periodicity of the domain. Therefore (47a) has a solution. In addition, it can be
written as

N
Asngn ==Y Aon - kdN &

k=1

N
_ ZUeVl/ngN . (E_VMGVIN,,C(ﬁN—k)
k=1

= (O-eVI/UVIN . (e*VI/O'I)> . (ivwkmk)

k=1
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Note that for k = 0, the Poisson equation (15) can be expressed as
AonOn = 0e"V/ov, - (e7V/T).

which has unique mean—zero solution 6. According to Remark 16, the test function
¢n can be written as

(54) On =0n - (Vax_1ON-1+ ...+ Vagdo) + Tg\})(xoy S TN-1),
where
On - (Vexy—10N—1+ ...+ Vy,00) € Hy
and for some 7’](\}) € Hz;, which will be specified later. Next we consider the O(e=(V=1)) —I
equation, that is (47b) viewing as an equation for ¢n 41 in terms of ¢y, ..., ¢Po:
(55) Aondnt1 = —(Aan—10n + ... + An_100),

where Ay is given in (50). According to the Fredholm alternative, a necessary and
sufficient condition for the above equation to have a solution is

(56) /(AQN—1¢N 4+ An_2d1 + An_1¢0) eV day = 0.
Similarly as in (53), for k =1,..., N + 1, we have
AN kN1 = o€V /7 [VIN,I ' (G_VI/UVxN_HﬁkaH)
+ Vay - (e7/oV, ¢N—k+1)]

Substituting this into (55) we obtain
0= /Va;Nf1 : {e_vl/U(VquﬁN +Vaony 1 ON—1+ ...+ Vmo¢0)} dry
= va—1 . (/ 67V1/UVIN0N (er_1¢N—1 R vzogbo) d:ZZN)

+V37N,1 . (/evl/a' (va71¢N_1 ++vx0¢0)> d,ﬁlj]\,'7

where in the last equality we use the fact that rj(\}) is independent of . Thus we

obtain the following equation for ¢n_1:

(57) VIN71 : (ICN71V13N71¢N71) = _VIN71 : (’CNfl (VIN72¢N72 + ...+ vm0¢0) )7

where
Kn-1(zo,21,...,2n8-1) = /(I+VZN9N)6_V1/U dxy.

By Lemma 10, for fixed xg, 1, ..., xn—1 the tensor Ky _; is uniformly positive definite
over xx_1 € T%. As a consequence, the operator defined in (57) is uniformly elliptic,
with adjoint nullspace spanned by Zy(zg,21,...,Zn—1). Since the right hand side
has mean zero, this implies that a solution ¢ _1 exists. We recall that the corrector
On—1 satisfies equation (15) with k = 1, that is

Yoy, - [/CN,l (va,leNfl + I)} —0.
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According to Remark 16, we can write ¢_1 as

dn-1=0N-1" (Vay_oON—2+ ...+ Vo) + 7“5\})_1(%07 C O TN—2),

for some 7“1(\}),1 € Hz_,. Since (56) has been satisfied, it follows from Proposition 15

that there exists a unique decomposition of ¢ 11 into

¢N+1("E0,x1,...7$]\]) = $N+1($0>3317---,$N) +7"1(\}1rl(9307$1,~~7$N71)a

582  where ggNH € Hy and for some rﬁll € ’HJA‘,. For the sake of illustration we now
583 consider the O(e~(N=2)) equation in (47)

N+1

584 A2N¢N+2 = — Z AN+k—2¢k7

k=0

585 which, again by the Fredholm alternative, has a solution if and only if

586 (58) /(A2N—1¢N+1 + Aon 2N + ...+ An_260) e”V/7dzy = 0.

ot
co
-~

For k=1,..., N + 2, we have

W -V Y
588 AaN_kPN_kt2 = O€ e |:va72 : (6 I/vaN7k+2¢N—k+2> + Vayo, - (e l/gvakarl(bN—/H‘Q)

550 Vo (€77 0N ks2)]- i
591 Fixing the variables xg,...,xn_2, we can rewrite (58) as an equation for r](\}) =
592 rg\})(xo,...,xN,l)
. T 1) ._ . 1y _
593 (59) ‘AQN*QTN = VmN—l ZNflva_lT'N = RHS,
where

IN-1= /6_V1(z)/0 dan,
and the RHS contains all the remaining terms. We note that all the functions of
xny_1 in the RHS are known, so that all the remaining undetermined terms can be
viewed as constants for fixed xg,...,xny_2 € Xy_2. By the Fredholm alternative, a

necessary and sufficient condition for a unique mean zero solution to exist to (59) is
that the RHS has integral zero with respect to x_1, which is equivalent to:

vN—Z . <// (va(bN + va71¢:CN71 + ..+ vaﬁo¢0) 67V/a dede—1> = 07

or equivalently:
VIN72 : (ICNfszN72¢N72) = _V:EN72 . (’CN72 (V$N73¢N*3 + .. + vw0¢0)> N

Once again, this implies that

ON—2=0N—2" (Vax_sON-3+ ...+ Va,d0) + TE\})_Q(ZEO, c e TN-3),
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where rg\})_Q € Hi_, is unspecified. Since the compatibility condition holds, by

Proposition 15 equation (59) has a solution, so that we can write

T](\})(.T07...,,’EN,1) = ;‘J(]\})(Qio,...,x]\/,l) +T§3)($0,...7.’1¢N72),

where ?{1\}) € Hy—_1 is the unique smooth solution of (59) and for some rﬁ) €My,

We continue the proof by induction. Suppose that for some k < N, the functions
ON, - PN+ (k—1) have all been determined. We shall consider the case when k is even,
noting that the k odd case follows mutatis mutandis.

From the previous steps, each term in

ON+k—2s ON+k—dy - - s ON—k—2,
admits a decomposition such that in each case we can write:

~ k/2—i
ON+k—2i = ON4k—2i + rxik,ﬁp

where
ON+k—2i € Hio—i,
has been uniquely specified, and the remainder term

(k/2—1) 1
TNy r—2i € Hija—in

remains to be determined. The O(e¥ %) equation is given by

(60) AoNdNk + AoN—1ONyk—1 + ... F An_rdo = 0.

Following the example of the O(¢V~2) step, in descending order we successively ap-

ply the compatibility conditions which must be satisfied for the equations involving

Tﬁlk, ceey r%:;)ﬁ of the form

(61) -'Z(QN—Qk—QiT'E\];_{_Zk__iQ)i = RHS,

where in (61), all terms dependent on the variable xy, /o _; have been specified uniquely
and where

A2N72k‘72iu = VIN_)C_j : (Zka‘f’ivl’N_k_iu) .

This results in (60) being integrated with respect to the variables N,... ;N — k + 1.
In particular, all terms Aoy —j¢n4k—j; for 5 =0,...,k—1 will have integral zero, and
thus vanish. The resulting equation is then

(62) / . / (AQN_k¢N +...+ AN—k¢0) e_Vl/g dzy . ~-d-TN—k+1 =0.

Moreover, since the function ¢x_; depends only on the variables xq,...,zNy_; , then
(62) must be of the form

vak'</-~-/(va¢N+-~-VwN1¢N—1+~-~vw0¢0) E_V/deN...dZ‘N_k+1> :OI
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We now apply the inductive hypothesis to see that (to shorten the notations, we

A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

denote den,. N_k+1 ' =dTN - dTN_ky1 €tC)

/(VQ:N¢N+...

= //(V:ENHN + 1) don (Vay_dN-1+ ..+ Vi, d0) e Vo den 1 Nk

— [ [ [ (T 1) oy (T o1 + 1) donos (Tayabnoa oot Vo) 07 day s

Vaoto) e V7 den  n_gi1

=Kn-kt1 (Vany_ o ON—k + .. Vo) .

Thus, the compatibility condition for the O(eN~F) equation reduces to the elliptic

PDE

V£N,k : (]CN—kva,kng—k) = 7V$N,k : (ICN—]C (va,k,,lqu—k—l + e va’,‘o¢0)) = O)

so that ¢n_i can be written as

(63) Nk =ON & (Van_y 1 ON-k-1+ - Vaud0) + s

where rg\})_ i is an element of HJA‘,_ &> Which is yet to be determined. Moreover, each

remainder term r

where

](\];iiiigi can be further decomposed as

(kj2—i) _ ~(kj2—1) (k/2—i+1)
TNYk—2i = TNyk—2i T T"NYk—2i >

k/2—i
PN 2 € Hija-ien,

is uniquely determined and

is still unspecified. Continuing the above procedure inductively, starting from a

(k/2—it1) i
"NYr—2i € Mija—iy1s

smooth function ¢y we construct a series of correctors ¢1,...,¢an_1.

We now consider the final equation (46d). Arguing as before, we note that we can

rewrite (46d) as

(64)

A necessary and sufficient condition for ¢on to have a solution is that

(65)

N
AsnGon + - Antidngr = Flo) = Y Lidi.
=1

/d (Aon_1dan—1+ -+ Ans10n11) e/ day
T

N
= / <F(l‘) _Z£z¢z> €_V1/U d{L‘N.
Te i=1
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At this point, the remainder terms will be of the form

n @ ) o
r2N727{r2N747 .. 'TQN—2k7 e 7’]"2

such that rg]z,_% € M, is unspecified. Starting from TS\),_Q a necessary and sufficient
condition for the remainder Tézjz,_zi to exist is that the integral of the equation with

respect to dxy_; vanishes, i.e.

)

F(,T)Z(.’E) == / (AQNfl(Z)gN,l —+ ... AN+1QJ)N+1) €_V1/U d;CNda:N,l . dl‘l
(THN
(66)
+/ (£N¢5N+...£1¢1)e_v1/‘7 dendrn_1...dx1
(THN

Z(Q}):/ / e_vl/adl'N...dl‘l.
Td Td

As above, after simplification, (66) becomes
vﬂco : (VIN¢N +.o vwo¢0) = Z(l‘)F(l‘),

which can be written as

where

g

S VI / (I +VarOn) oo I+ Ve, 01) e 7 day ... de Vi, o | = F(z),
Z(l‘) (Td)N

or more compactly

Fl@) = 7=V, - (K1(2) Vay0(@))

where the terms in the right hand side have been specified and are unique. Thus,
the O(1) equation (66) provides a unique expression for F'(z). Moreover, for each
i=1,...,N —1, there exists a smooth unique solution réljz,f% € H;—1 and ¢pony € Hn
by Proposition 15.

Note that we have not uniquely identified the functions ¢1, ..., ¢on, since after the
above N steps there will be remainder terms which are still unspecified. However,
conditions (47a)-(47¢) will hold for any choice of remainder terms which are still un-
specified. In particular, we can set all the remaining unspecified remainder terms to
0. Moreover, every Poisson equation we have solved in the above steps has been of
the form:

Sru(zo, ..., x5) = al(zo, ..., xk) - Vasdo(ro) + A(zo, ..., 2k) : Viogbo(xo),

where Sy, is of the form (38), and a and A are uniformly bounded with bounded
derivatives. In particular, from the remark following Proposition 15 the pointwise
estimates (48) hold. 0

REMARK 18. Note that we do not have an explicit formula for the test functions,
fori=1,...,N. However, by applying (63) recursively one can obtain an explicit
expression for the gradient of ¢; in terms of the correctors 0;:

v$1¢l = Vﬂ:;el(l + v1i—197;_1) Tt (I + V1191)V10¢0'

Since these are the only terms required for the calculation of the homogenized diffusion
tensor we thus obtain an explicit characterisation of the effective coefficients.
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5.2. Tightness of Measures. In this section we establish the weak compactness
of the family of measures corresponding to {Xf : 0 < ¢t < T}oce<1y in C([0,T];RY)
by establishing tightness. Following [43], we verify the following two conditions which
are a slight modification of the sufficient conditions stated in [9, Theorem 8.3].

LEMMA 19. The collection {X{ : 0 <t < T}ioce<ty is relatively compact in
C([0, T]; R?) if it satisfies:
1. For all 6 > 0, there exists M > 0 such that

IE”( sup |X§|>M> <9, 0<e<l.
0<t<T
2. For any § >0, M > 0, there exists ey and 7y such that

v sup  sup IP’( sup |Xffoo|25; sup |X§|§M> <.
0<e<eo 0<to<T  \ te[to,to+] 0<s<T

To verify condition 1 we follow the approach of [43] and consider a test function
of the form ¢g(x) = log(1 + |z|?). The motivation for this choice is that while ¢q(x)
is increasing, we have that

3
(67) > 1+ [2)Vigo(2)lr < C,
=1

where || denotes the Frobenius norm. Let ¢q,...,¢an_1 be the first 2N — 1 test
functions constructed in Proposition 17. Consider the test function

¢6(‘T) = ¢O(x) + 6(]51({17,1}/6) +.o.. 6N¢N(£L',£E/€, B ~ax/6N)
+ N oy (zafe, . /) d o+ EN T pon o (x e, x)eN).

Applying It6’s formula, we have that

(68)

N 2N-1

o (X /GXG ds+V20) Y €” l/V 105 AW,

i=0 j=0

where G(z) is a smooth function consisting of terms of the form:

(69) F=HDVioy, . (efv/" oVq, qﬁk) (z,z/e,...,x/eV),

where k > i+ j, by construction of the test functions. Moreover, V,,¢; = 0 for j < i.

To obtain relative compactness we need to individually control the terms arising in
the drift. More specifically, we must show that the terms

t
(70) E sup / ‘eV/UVmi . (e—"/ﬂaijqsk) (XS, X e,...,XE/eN) ds

0<t<T Jo
2
(71) sup /szqbk X/e ..., XE)eNYaw,|
0<t<T
and
(72) sup [ (X7)|.
0<t<T
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are bounded uniformly with respect to € € (0,1]. Terms of the type (70) can be
bounded above by:

E sup / |(Va, V- Vo, i) (XS, ., X/ + [0Va, « Vi, du(XE, ..., XE/eN)] ds.
0<t<T

If ¢ > 0, then V.,V is uniformly bounded, and so the above expectation is bounded
above by

T
E/ IV, 60 (XEs oo XS] 1 Vi, - Vo 0K, XEJeN) s

SCE/O Z\v

using (67), for some constant K > 0 independent of e. For the case when ¢ = 0, an
additional term arises from the derivative V,,Vy and we obtain an upper bound of
the form

ds<KT

E/ Z V7 60 (X7 (14 [V Vo (X)) dt
(73)

<E / Z 920000 (14 [V 9Voll i 7]
0

and which is bounded by Assumption 1 and (67). For (71), we have

2

sup /V%@C (XS, X e, ..., XE/eN) aw,

0<t<T

T 3
<CE [ 3 V(X0 ds
(U—

which is again bounded. Terms of the type (72) follow in a similar manner. Condition
1 then follows by an application of Markov’s inequality.

To prove Condition 2, we set ¢o(z) = z and let ¢1,...,¢Pan_1 be the test func-
tions which exist by Proposition 17. Applying It6’s formula to the corresponding
multiscale test function (68), so that for ¢t € [0, 7] fixed,

N 2N-1 +
(74) / Gds+v20 Y 3 @ [ V0,4,
i=0 j=0 to

where G is of the form given in (69). Let M > 0, and let
(75) Ty = inf{t > 0; | X;| > M}.

Following [43], it is sufficient to show that
(76)

tATy,
E sup/
to<t<T Jtonrg,

14+v
V7V, - (e*V/Uvjm) (X;,X;/g...,XSf/eN)ds‘ ] <
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and

24-2v

(77) E sup < 00

to<t<to+vy

t/\‘rfu
/ Va6 (X, XSy XEJEN) AW,
t

3
oNT s

for some fixed v > 0. For (76), when ¢ > 0, the term V.,V is uniformly bounded.
Moreover, since V¢q is bounded, so are the test functions ¢q, ..., ¢an+1. Therefore,
by Jensen’s inequality one obtains a bound of the form

to+y 14+v
Cv”E/ ‘eV/UVL.-(e_v/avjqbk)(X;,X;/e,...,Xse/eN) ds

to

to+y
SC'YV/ |K|1+v ds S K”}/l-H/.

to

When i = 0, we must control terms involving V. Vp of the form,

tATy
E l sup / ‘VVO . Vchﬁk’HV ds}
t

to<t<to+vy 0/\7';'/[

where 7§, is given by (75). However, applying Jensen’s inequality,

ATy 1w (to+V)ATy 1+v
E| sup / |VVo - Vo, ds gcw/ E|VVo-Va, 0| ds
to<t<to+v JtoAT, toATE,
(to+7)NATA, 1
<oy | E [V V(X" ds
t()/\T;/I
1w (to+Y)ATHy,
<oyl [ e as
toATHy
v 1+v
(78) < OMy™ [|V¥Wh [ o 1

as required. Similarly, to establish (77) we follow a similar argument, first using the
Burkholder-Gundy-Davis inequality to obtain:

t to+y I4v
E ( sup |V, 5 dWS|2+2”> <E (/ Ve, ds)

to<t<to+v Jto to

< to+y 912y
e E |Vxl¢]| ds

to

S C’Yl—’_l/.

We note that Assumption 1 (3) is only used to obtain the bounds (73) and (78).
A straightforward application of Markov’s inequality then completes the proof of
condition 2. It follows from Prokhorov’s theorem that the family {X;¢ € [0,T]}o<e<1
is relatively compact in the topology of weak convergence of stochastic processes
taking paths in C([0,7]; R?). In particular, there exists a process X° whose paths lie
in C([0,T]; RY) such that {X*;t € [0,T]} = {X° ¢ € [0,T]} along a subsequence ¢,,.
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5.3. Identifying the Weak Limit. In this section we uniquely identify any
limit point of the set {X§;t € [0,T]}o<c<1. Given ¢g € C°(R?) define ¢ to be

QSG(I') = ¢0($)+6¢1(£L‘/6)+. e €N¢N(xv 1[,’/6, cee ’x/EN)—’_' : '+62N¢2N(xa (E/E, ce 7x/€N)a

where ¢1,...,¢N are the test functions obtained from Proposition 17. Since each test
function is smooth, we can apply Itd’s formula to ¢°(Xf) to obtain

(79) o) - [ cro ooy 2] = o

We can now use (45) to decompose L¢€ into an O(1) term and remainder terms which
vanish as € — 0. Collecting together O(e€) terms we obtain

B 00(X0) — [ 55 Voo (ZXOMXT0(XD) du+ e

fs] — b(X),

where R, is a remainder term which is bounded in L?(x¢) uniformly with respect to
¢, and where the homogenized diffusion tensor M(x) is defined in Theorem 3. Taking
€ — 0 we see that any limit point is a solution of the martingale problem

E |:¢O(Xt0) —/ ﬁvwo (Z(X)M(X)) Vo (X)) du)]:sil = ¢o(X7).

This implies that X° is a solution to the martingale problem for £° given by

Lof(@) = 75V - (2@ M@V (@),
From Lemma 10, the matrix M(x) is smooth, strictly positive definite and has
bounded derivatives. Moreover,

Z(x):/ / e V@z1 N/ go da
Td Td

:e*VO(JE)/U/ / e Vi@ TN g
Td Td

where the term in the integral is uniformly bounded. It follows from Assumption 1,
that for some C' > 0,

IM(z)VE(x)] < C(1+|z|), VzeR?

where ¥ = —logZ. Therefore, the conditions of the Stroock-Varadhan theorem
[51, Theorem 24.1] holds, and therefore the martingale problem for £° possesses a
unique solution. Thus X is the unique (in the weak sense) limit point of the family
{X*“}o<e<1. Moreover, by [51, Theorem 20.1], the process {XP;¢ € [0,T]} will be the
unique solution of the SDE (18), completing the proof.

6. Further discussion and outlook. In this paper, we have shown the conver-
gence of the multi-scale diffusion process (8) to the homogenized (effective) diffusion
process (18), as well as the convergence of the corresponding equilibrium measures.
We have employed the classical martingale approach based on a suitable construction
of test functions and analysis of the related Poisson equations. A notable feature
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is that the effective (macroscopic) process is a multiplicative diffusion process where
the diffusion tensor depends on the macroscopic variable, whereas the noise in the
microscopic dynamics is additive. This is due to the full coupling between the macro-
scopic and the microscopic scales. As discussed in the introduction, both processes are
reversible diffusion processes satisfying the detailed balance condition. Therefore, ac-
cording to [1], the corresponding Fokker Planck equations at all scales are Wasserstein
gradient flows for the corresponding free energy functionals [30]. Thus, the rigorous
analysis presented in this work leads to the conclusion that the Wasserstein gradient
flow structure is preserved under coarse-graining. This raises the interesting question
whether coarse-graining and, in particular, homogenization can be studied within the
framework of evolutionary Gamma convergence [52, 4, 35, 17]. Another interesting
question is obtaining quantitative rates of convergence [16] and also understanding
the effect of coarse-graining on the Poincaré and logarithmic Sobolev inequality con-
stants, using the methodology of two-scale convergence [41, 24]. We will return to
these questions in future work.

Acknowledgments. The authors thank S. Kalliadasis and M. Pradas for useful
discussions. They also thank B. Zegarlinski for useful discussions and for pointing out
Ref. [25]. The authors are also very grateful to the anonymous referees whose com-
ments have greatly improved the content of this work. GAP and ABD acknowledge fi-
nancial support by the Engineering and Physical Sciences Research Council of the UK
through Grants Nos. EP/J009636, EP/L020564, EP /1024926, EP/P031587/1 and
EP/L025159. GAP was partially funded by JPMorgan Chase & Co under J.P. Mor-
gan A.I. Research Awards in 2019 and 2021. ABD was supported by Wave 1 of The
UKRI Strategic Priorities Fund under the EPSRC Grant EP/W006022/1, particularly
the Ecosystems of Digital Twins theme within that grant and The Alan Turing Insti-
tute. MHD was supported by EPSRC Grants EP/W008041/1 and EP/V038516/1.

Data Availability. Data sharing not applicable to this article as no datasets
were generated or analysed during the current study.

REFERENCES

[1] S. Apawms, N. DIRR, M. PELETIER, AND J. ZIMMER, Large deviations and gradient flows, Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 371 (2013), p. 20120341.

[2] C. ANE ET AL., Sur les inégalités de Sobolev logarithmiques, Société mathématique de France,
2000.

[3] A. ANSARI, Mean first passage time solution of the Smoluchowski equation: Application to
relazation dynamics in myoglobin, The Journal of Chemical Physics, 112 (2000), pp. 2516—
2522.

[4] S. ArNRICH, A. MIELKE, M. A. PELETIER, G. SAVARE, AND M. VENERONI, Passing to the
limit in a wasserstein gradient flow: from diffusion to reaction, Calculus of Variations and
Partial Differential Equations, 44 (2012), pp. 419-454.

[5] D. BakRy, I. GENTIL, AND M. LEDOUX, Analysis and geometry of Markov diffusion operators,
vol. 348, Springer Science & Business Media, 2013.

[6] S. BANERJEE, R. Biswas, K. SEKI, AND B. BAGCHI, Diffusion in a rough potential revisited,
2014, arXiv:1409.4581.

G. BEN AROUS AND H. OWHADI, Multiscale homogenization with bounded ratios and anomalous

slow diffusion, Communications on Pure and Applied Mathematics, 56 (2003), pp. 80-113.

[8] A. BENSOUSSAN, J. L1ONs, AND G. PAPANICOLAOU, Asymptotic analysis for periodic structures,
vol. 5, North Holland, 1978.

[9] P. BILLINGSLEY, Probability and measure, John Wiley & Sons, 2008.

. D. BRYNGELSON, J. N. OnucHIC, N. D. Socct, AND P. G. WOLYNES, Funnels, pathways,

and the energy landscape of protein folding: a synthesis, Proteins: Structure, Function,

=
k=
[

This manuscript is for review purposes only.


http://arxiv.org/abs/1409.4581

BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 33

and Bioinformatics, 21 (1995), pp. 167-195.

J. D. BRYNGELSON AND P. G. WOLYNES, Spin glasses and the statistical mechanics of protein
folding, Proceedings of the National Academy of Sciences, 84 (1987), pp. 7524-7528.

D. CIORANESCU AND P. DONATO, Introduction to homogenization, 2000.

D. S. DEAN, S. GupTA, G. OSHANIN, A. R0SsO, AND G. SCHEHR, Diffusion in periodic, corre-
lated random forcing landscapes, Journal of Physics A: Mathematical and Theoretical, 47
(2014), p. 372001.

M. G. DELGADINO, R. S. GVALANI, AND G. A. PAvLIOTIS, On the Diffusive-Mean Field Limit
for Weakly Interacting Diffusions Exhibiting Phase Transitions, Arch. Ration. Mech. Anal.,
241 (2021), pp. 91-148, http://dx.doi.org/10.1007/s00205-021-01648-1, https://doi.org/
10.1007/s00205-021-01648-1.

A. B. DuncaN, S. KALLIADASIS, G. A. PAVLIOTIS, AND M. PRADAS, Noise-induced transitions
in rugged energy landscapes, Phys. Rev. E, 94 (2016), p. 032107.

M. H. Duong, A. LaMAcz, M. A. PELETIER, A. SCHLICHTING, AND U. SHARMA, Quantification
of coarse-graining error in langevin and overdamped langevin dynamics, Nonlinearity, 31
(2018), pp. 4517-4566.

M. H. DuoNgG, A. LAMACZ, M. A. PELETIER, AND U. SHARMA, Variational approach to coarse-
graining of generalized gradient flows, Calculus of Variations and Partial Differential Equa-
tions, 56 (2017), p. 100.

L. C. EvANs, Partial differential equations, Graduate Studies in Mathematics, 19 (1998).

L. C. Evans AND P. R. TABRIZIAN, Asymptotics for scaled kramers—smoluchowski equations,
SIAM Journal on Mathematical Analysis, 48 (2016), pp. 2944-2961.

C. GARDINER, Stochastic methods, Springer Series in Synergetics, Springer-Verlag, Berlin,
fourth ed., 2009. A handbook for the natural and social sciences.

D. GILBARG AND N. S. TRUDINGER, Elliptic partial differential equations of second order,
springer, 2015.

S. N. GoMES, S. KALLIADASIS, G. A. PAVLIOTIS, AND P. YATSYSHIN, Dynamics of the desai-
zwanzig model in multiwell and random energy landscapes, Phys. Rev. E, 99 (2019),
p. 032109.

S. N. GoMESs AND G. A. PAVLIOTIS, Mean field limits for interacting diffusions in a two-scale
potential, J. Nonlinear Sci., 28 (2018), pp. 905-941.

N. GRUNEWALD, F. OtTO, C. VILLANI, AND M. G. WESTDICKENBERG, A two-scale approach
to logarithmic Sobolev inequalities and the hydrodynamic limit, Annales de I'Institut Henri
Poincaré, Probabilités et Statistiques, 45 (2009), pp. 302 — 351.

W. HEBISCH AND B. ZEGARLINSKI, Coercive inequalities on metric measure spaces, Journal of
Functional Analysis, 258 (2010), pp. 814-851.

R. HOLLEY AND D. STROOCK, Logarithmic Sobolev inequalities and stochastic Ising models,
Journal of statistical physics, 46 (1987), pp. 1159-1194.

M. HUTTER AND H. C. OTTINGER, Fluctuation-dissipation theorem, kinetic stochastic integral
and efficient simulations, Journal of the Chemical Society, Faraday Transactions, 94 (1998),
pp. 1403-1405.

C. HYEON AND D. T., Can energy landscape roughness of proteins and RNA be measured by us-
ing mechanical unfolding experiments?, Proceedings of the National Academy of Sciences,
100 (2003), pp. 10249-10253.

V. V. Jikov, S. M. Kozrov, AND O. A. OLEINIK, Homogenization of differential operators and
integral functionals, Springer Science & Business Media, 2012.

R. JOrRDAN, D. KINDERLEHRER, AND F. OTTO, The variational formulation of the Fokker-
Planck equation, STAM J. Math. Anal., 29 (1998), pp. 1-17.

T. KOMOROWSKI, C. LANDIM, AND S. OLLA, Fluctuations in Markov processes: time symmetry
and martingale approximation, vol. 345, Springer Science & Business Media, 2012.

C. LANDIM AND 1. SEO, Metastability of one-dimensional, non-reversible diffusions with peri-
odic boundary conditions, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), pp. 1850—
1889.

S. LIFSON AND J. L. JACKSON, On the self-diffusion of tons in a polyelectrolyte solution, The
Journal of Chemical Physics, 36 (1962), pp. 2410-2414.

N. J. L6pEzZ-ALAMILLA, M. W. JACK, AND K. J. CHALLIS, Enhanced diffusion and the eigen-
value band structure of brownian motion in tilted periodic potentials, Phys. Rev. E, 102
(2020), p. 042405.

A. MIELKE, On Evolutionary I'-Convergence for Gradient Systems, Springer International Pub-
lishing, Cham, 2016, pp. 187-249.

G. W. MILTON, The theory of composites, Materials and Technology, 117 (1995), pp. 483-93.

D. MoNDAL, P. K. GHOSH, AND D. S. RAY, Noise-induced transport in a rough ratchet potential,

This manuscript is for review purposes only.


http://dx.doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1007/s00205-021-01648-1

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

[43]
[44]

(45]

53]

[54]

[55]

[56]

A. B. DUNCAN, M. H. DUONG AND G. A. PAVLIOTIS

The Journal of chemical physics, 130 (2009), p. 074703.

B. MUCKENHOUPT, Hardy’s inequality with weights, Studia Mathematica, 44 (1972), pp. 31-38.

K. MULLER, Reaction paths on multidimensional energy hypersurfaces, Angewandte Chemie
International Edition in English, 19 (1980), pp. 1-13.

J. N. ONucHIC, Z. LUTHEY-SCHULTEN, AND P. G. WOLYNES, Theory of protein folding: the
energy landscape perspective, Annual review of physical chemistry, 48 (1997), pp. 545-600.

F. OrTo AND M. G. REZNIKOFF, A new criterion for the logarithmic sobolev inequality and
two applications, Journal of Functional Analysis, 243 (2007), pp. 121-157.

G. C. PAPANICOLAOU, D. STROOCK, AND S. R. S. VARADHAN, Martingale approach to some
limit theorems, in Duke Turbulence Conference (Duke Univ., Durham, NC, 1976), vol. 6,
1977.

E. PARDOUX AND A. Y. VERETENNIKOV, On the Poisson equation and diffusion approximation.
I, Ann. Probab., 29 (2001), pp. 1061-1085.

E. PARDOUX AND A. Y. VERETENNIKOV, On Poisson equation and diffusion approximation. I1,
Ann. Probab., 31 (2003), pp. 1166-1192.

G. A. PAvLIOTIS, Stochastic processes and applications, vol. 60 of Texts in Applied Mathe-
matics, Springer, New York, 2014. Diffusion processes, the Fokker-Planck and Langevin
equations.

G. A. PavLioTis AND A. M. STUART, Multiscale methods: averaging and homogenization,
Springer Verlag, 2008.

M. A. PELETIER, G. SAVARE, AND M. VENERONI, From diffusion to reaction via -y-convergence,
SIAM Journal on Mathematical Analysis, 42 (2010), pp. 1805-1825.

M. A. PELETIER AND M. C. SCHLOTTKE, Gamma-convergence of a gradient-flow structure to a
non-gradient-flow structure, 2021, http://dx.doi.org/10.48550/ARXIV.2105.03401, https:
//arxiv.org/abs/2105.03401.

W. REN AND E. VANDEN-EIINDEN, Probing multi-scale energy landscapes using the string
method, (2002), arXiv:0205528.

F. REZAKHANLOU AND 1. SEO, Scaling limit of small random perturbation of dynamical systems,
2018, http://dx.doi.org/10.48550/ ARXIV.1812.02069, https://arxiv.org/abs/1812.02069.

L. C. G. ROGERs AND D. WiLL1AMS, Diffusions, Markov processes and martingales: Volume
2, Ité calculus, vol. 2, Cambridge university press, 2000.

E. SANDIER AND S. SERFATY, Gamma-convergence of gradient flows with applications to
ginzburg-landau, Communications on Pure and Applied Mathematics, 57 (2004), pp. 1627—
1672.

J. G. SAVEN, J. WANG, AND P. G. WOLYNES, Kinetics of protein folding: the dynamics of glob-
ally connected rough energy landscapes with biases, J. Chem. Phys., 101 (1994), pp. 11037—
11043.

I. SEO AND P. TABRIZIAN, Asymptotics for scaled kramers—smoluchowski equations in several
dimensions with general potentials, Calculus of Variations and Partial Differential Equa-
tions, 59 (2019), p. 11.

A. Y. VERETENNIKOV, On Sobolev solutions of Poisson equations in R® with a parameter, J.
Math. Sci. (N. Y.), 179 (2011), pp. 48-79. Problems in mathematical analysis. No. 61.

R. ZwaNziG, Diffusion in a rough potential, Proceedings of the National Academy of Sciences,
85 (1988), pp. 2029-2030.

This manuscript is for review purposes only.


http://dx.doi.org/10.48550/ARXIV.2105.03401
https://arxiv.org/abs/2105.03401
https://arxiv.org/abs/2105.03401
https://arxiv.org/abs/2105.03401
http://arxiv.org/abs/0205528
http://dx.doi.org/10.48550/ARXIV.1812.02069
https://arxiv.org/abs/1812.02069

	Introduction
	Setup and Statement of Main Results
	Properties of the Coarse–Grained Process
	Separable Potentials
	Variational bounds on M(x)

	Properties of the Equilibrium Distributions
	Proof of weak convergence
	Constructing the test functions
	Tightness of Measures
	Identifying the Weak Limit

	Further discussion and outlook
	References

