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The dynamics of viscous immiscible pressure-driven multilayer flows in channels are
investigated using a combination of modelling, analysis and numerical computations.
More specifically, the particular system of three stratified layers with two internal
fluid–fluid interfaces is considered in detail in order to identify the nonlinear
mechanisms involved due to multiple fluid surface interactions. The approach adopted
is analytical/asymptotic and is valid for interfacial waves that are long compared
with the channel height or individual undisturbed liquid layer thicknesses. This
leads to a coupled system of fully nonlinear partial differential equations of Benney
type that contain a small slenderness parameter that cannot be scaled out of the
problem. This system is in turn used to develop a consistent coupled system of
weakly nonlinear evolution equations, and it is shown that this is possible only if
the underlying base-flow and fluid parameters satisfy certain conditions that enable a
synchronous Galilean transformation to be performed at leading order. Two distinct
canonical cases (all terms in the equations are of the same order) are identified in
the absence and presence of inertia, respectively. The resulting systems incorporate all
of the active physical mechanisms at Reynolds numbers that are not large, namely,
nonlinearities, inertia-induced instabilities (at non-zero Reynolds number) and surface
tension stabilization of sufficiently short waves. The coupled system supports several
instabilities that are not found in single long-wave equations including, transitional
instabilities due to a change of type of the flux nonlinearity from hyperbolic to
elliptic, kinematic instabilities due to the presence of complex eigenvalues in the
linearized advection matrix leading to a resonance between the interfaces, and the
possibility of long-wave instabilities induced by an interaction between the flux
function of the system and the surface tension terms. All of these instabilities are
followed into the nonlinear regime by carrying out extensive numerical simulations
using spectral methods on periodic domains. It is established that instabilities leading
to coherent structures in the form of nonlinear travelling waves are possible even at
zero Reynolds number, in contrast to single interface (two-layer) systems; in addition,
even in parameter regimes where the flow is linearly stable, the coupling of the flux
functions and their hyperbolic–elliptic transitions lead to coherent structures for initial
disturbances above a threshold value. When inertia is present an additional short-wave
instability enters and the systems become general coupled Kuramoto–Sivashinsky-type
equations. Extensive numerical experiments indicate a rich landscape of dynamical
behaviour including nonlinear travelling waves, time-periodic travelling states and
chaotic dynamics. It is also established that it is possible to regularize the chaotic
dynamics into travelling wave pulses by enhancing the inertialess instabilities through
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the advective terms. Such phenomena may be of importance in mixing, mass and
heat-transfer applications.

Key words: interfacial flows (free surface)

1. Introduction
Multilayer channel flows, either pressure or gravity driven, have received

considerable attention due to their rich dynamical behaviour and their enormous
range of scientific and industrial applications. The advancement of novel technologies
based on microfluidic platforms (e.g. lab-on-chip systems) has created numerous
of applications involving multilayer flows in microchannels. At the same time,
the accurate control and manipulation of multilayer microscale flows has become
increasingly popular in modern biomedical and other applications. Examples include
techniques for concentrating leukocytes from whole blood samples (see SooHoo &
Walker 2009), integrated lab-on-chip systems (see Figeys & Pinto 2000; Hibara
et al. 2001; Beebe, Mensing & Walker 2002; Surmeian et al. 2002) and the use
of microfluidic devices in food engineering (Skurtys & Aguilera 2008). Potential
applications in microelectromechanical system (MEMS) devices in the aerospace
industry have been suggested, such as microthrusters that can propel small-scale
spacecraft and satellites (see Polsin & Choueiri 2002). Furthermore, multilayer flows
are also encountered in oil production and transportation in the petrochemical industry
(Lovick & Angeli 2004), and in processing industries including multilayer coextrusion
processes (Nordberg & Winter 1988) and multilayer coating processes (Weinstein &
Ruschak 2004). One of the main objectives of the present study is to understand the
stability of such flows and in particular to follow instabilities into the nonlinear regime
in order to explore and quantify the different types of underlying nonlinear phenomena
that are crucial in applications.

The linear stability of two-layer flows in channels (either plane Couette or
Poiseuille), where only one interface is present and separates fluids of different
viscosities and densities, was first studied by Yih (1967). Yih considered the long-
wave limit and showed that there exists an unstable mode associated with the
jump in viscosity across the interface (termed an interfacial mode) at arbitrarily
small but non-zero values of the Reynolds number. Yih’s study suggests a simple
‘rule of thumb’ in finding linearly stable flows, at least at small Reynolds numbers:
arrange the less viscous fluid in the thinner of the two layers to stabilize long-
waves, and include sufficient amounts of surface tension to stabilize short waves.
Experimental observations and numerical calculations of the full linear eigenvalue
problem support this finding, and interestingly Rayleigh–Taylor unstable arrangements
(heavier fluid on top) can also be stabilized this way. For a detailed discussion of
the stability of two-layer Couette–Poiseuille flow, along with numerous references
on analysis, computations and experiments, the reader is referred to the monograph
by Joseph & Renardy (1991). Later studies by Tilley, Davis & Bankoff (1994a,b),
consider the linear and nonlinear stability of two-layer flow in an inclined channel
allowing for counter-flowing flows. Given the success of long-wave linear theories in
horizontal channels, analyses were carried out to derive weakly nonlinear long-wave
models described by the Kuramoto–Sivashinsky equation; see, for example, Hooper &
Grimshaw (1985) and Shlang & Sivashinsky (1985).



116 E. S. Papaefthymiou, D. T. Papageorgiou and G. A. Pavliotis

The present work is concerned with instabilities and nonlinear dynamics in three-
layer flows in an inclined plane channel, where two fluid–fluid interfaces are now
present and can interact among themselves and with the solid boundaries; the set-up is
a complex but amenable system allowing an extended study of nonlinear fluid–surface
interactions. Multilayer flows with several internal interfaces behave quite differently
from single interface (or single surface) flows in several important aspects. Multilayer
flows depend on additional physical parameters and perhaps more importantly support
a resonance mechanism between the interacting interfaces (or the interfaces and the
free surface in the case of open flows). As a result, such systems (both closed and
open) support instabilities that are not seen in two-layer flows. It has been established
that two-layer flows in inclined or pressure-driven channels and single-layer free-
surface flows down inclined planes, require fluid inertia for destabilization, at least
when the inclination to the horizontal is less than 90◦ (see Benjamin 1957; Yih
1963; Chen 1995). However, in the case of two-layer free-surface flows, Kao (1968),
Loewenherz & Lawrence (1989) and Chen (1993) showed that when the less viscous
fluid is adjacent to the wall, then a long-wave instability can appear in the absence of
inertia (zero Reynolds number); this instability has been termed inertialess instability.
Chen (1993) argues that the instability arises from an interaction between the free
surface and the interface, while an interpretation of the underlying mechanism has
been given recently by Gao & Lu (2008). An analogous linear stability study was
undertaken by Li (1969), for Couette flow of three superposed fluids of different
viscosities; it was shown that the flow can become unstable in the long-wavelength
limit for certain values of the depth and viscosity ratio due to resonance between the
interfaces, something that does not happen if the additional interface is not present. A
weakly nonlinear study of three-layer Poiseuille flow was considered by Kliakhandler
& Sivashinsky (1995), who derived a system of weakly nonlinear evolution equations
corresponding to Li’s instability, and observed two new kinds of long-wavelength
inertialess instabilities; one of entirely kinematic nature known as the ‘alpha’ effect,
and an additional surface-tension-induced instability. For a recent review of multilayer
instabilities in flows in channels and films (see Pozrikidis 2004).

Here we focus on the long-wavelength instabilities mentioned previously, both in
the absence and presence of inertia. The novel feature of multilayer flows is the
introduction of kinematic instabilities that are absent in single-interface problems. As
a result, careful asymptotic analysis must be performed to arrive at canonical lower-
dimensional systems not involving a small arbitrary parameter, and we will carry this
out in order to identify the correct models (we note that the weakly nonlinear models
suggested by Kliakhandler & Sivashinsky (1995, 1996) were not appropriately derived
as will be explained later). The difficulty lies in removing the leading order advective
terms present, to ensure that the evolution equation does not contain an arbitrary small
parameter. In general, for flows involving a single interface (or free surface) a single
evolution equation is found and an appropriate Galilean transformation can be used
to obtain an asymptotically correct evolution equation (see, for example, Papageorgiou,
Maldarelli & Rumschitzki (1990) for the derivation of equations in core-annular flows).
However, in the case of multilayer flows we obtain a system of evolution equations
(as in Kliakhandler & Sivashinsky 1995, for example), necessitating that the matrix of
the advective terms should be diagonal with equal eigenvalues to enable an appropriate
Galilean transformation to be performed. With a Galilean transformation identified,
an asymptotic detuning of the parameters (in the present physical problem there are
eight such parameters, two of each of the following ratios: viscosity, density, surface
tension, undisturbed layer thickness), along with nonlinear balances, provides the rich
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canonical systems of equations that form the basis of our analytical and computational
studies. This Galilean transformation requirement can be satisfied in the case of a
closed flow inside a channel, but for the open flow of a falling film multilayer system
we have verified that a similar transformation cannot be performed. Consequently,
the weakly nonlinear models derived by Kliakhandler (1999) for multilayer thin
films down an inclined plane require additional study. An extensive linear stability
study of such multilayer falling film flows, showing the existence of long-wave and
inertialess unstable modes has been carried out by Jiang et al. (2005). These authors
also performed experiments on aqueous gelatin systems to confirm the existence of
three-layer inertialess instability.

Finally, we would like to draw attention to the kind of nonlinearities involved in
our weakly nonlinear models and to make a connection with several other applications
that potentially share the phenomena and mathematical structures elucidated here.
The nonlinearities are quadratic flux functions (the equations are quasilinear) and
for certain initial conditions and physical parameters of the problem, they can
themselves be a source of inertialess instability when the Jacobian matrix of the
flux function possesses complex conjugate eigenvalues (the nonlinearities in the partial
differential equations (PDEs) are of mixed hyperbolic–elliptic type). This feature has
been studied in the context of systems of conservation laws arising in fluid dynamics
problems such as stratified flows (Milewski et al. 2004; Chumakova et al. 2009), jet
flows (Papageorgiou & Orellana 1998), steady transonic flows (Cole & Cook 1996),
magneto-fluid dynamics (Kogan 1961), in fluids of van der Waals type (Slemrod 1983)
and in three-phase convection-driven flow in porous media modelling fluid flows in
petroleum reservoirs (Bell, Trangenstein & Shubin 1986). In addition, these quadratic
nonlinearities can be derived as an approximation of more general flux functions
in the neighbourhood of isolated singular points in the state space (Schaeffer &
Shearer 1987). Furthermore, even when the Jacobian matrix possesses real and distinct
eigenvalues, the nonlinearities can introduce instability into the system by interacting
with the other terms present, e.g. surface tension. Such kinds of instabilities were
found by Majda & Pego (1985) who studied admissible viscosity matrices for strictly
hyperbolic conservation laws. The present study develops PDEs that admit all of
the mathematical and physical features mentioned above, and additionally provides
physically meaningful systems with dissipation matrices of fourth order.

The remainder of the paper is organized as follows. Section 2 provides the governing
equations and boundary conditions for the three-phase flow under consideration and
also contains the derivation of the coupled fully nonlinear system of long-wave
equations that describe the spatiotemporal evolution of the two interfaces. This coupled
system contains a small parameter δ (proportional to the ratio of the channel depth
and a typical perturbation wavelength), and in § 3 we describe the asymptotically
correct derivation of canonical weakly nonlinear models. This is done for two
physically distinct situations, a symmetric case where inertial effects are felt at
higher order, and a non-symmetric case with inertia terms entering in the form of
short-wavelength instabilities (there is of course short-wavelength cutoff due to surface
tension effects ensuring that the models are well-posed). Section 3 provides also a
discussion of several instability conditions that can affect the evolving solutions
including hyperbolic–elliptic transitions as well as Majda–Pego instability. In § 4
we undertake a computational investigation of solutions to the canonical problems
and utilize highly accurate and stable implicit–explicit time integrators with spectral
spatial discretizations to investigate solutions at large times. Solutions are presented
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FIGURE 1. Schematic of a three-layer flow down an inclined channel. The undisturbed
interfaces are flat and given by y= H2 and H3.

to quantify all of the underlying instability mechanisms and to follow them into their
fully nonlinear regime. In § 5 we make some concluding remarks.

2. Mathematical formulation and derivation of fully nonlinear long-wave
systems

Consider a two-dimensional multilayer flow driven by gravity and an imposed
pressure gradient along an inclined channel of height d as depicted in figure 1. Three
immiscible, incompressible Newtonian liquids of constant densities ρi and viscosities
µi, i = 1, 2, 3, flow together in the channel which is inclined at an angle θ to the
horizontal as shown in the figure. A Cartesian frame of reference (x, y) is adopted
with x measuring distances down the channel and y the distance perpendicular to
it. The disturbed interface between fluids 1 and 2 is denoted by y = h2(x, t) while
that between fluid 2 and 3 is y = h3(x, t) (the corresponding undisturbed interfaces
are H2 and H3, respectively and here H2 > H3 > 0). Consequently, fluids 1, 2 and 3
occupy the evolving regions h2(x, t) < y< d, h3(x, t) < y< h2(x, t) and 0< y< h3(x, t),
respectively. Typically a pressure gradient acts in the x direction and gravitational
forces are also accounted for through the force g shown in the figure. In addition,
surface tension is present with values σ2 and σ3 on interface h2 and h3, respectively.

The governing equations are the incompressible Navier–Stokes equations in each
fluid region along with appropriate boundary conditions across h2,3(x, t). Letting the
velocity field in each layer i be ui = (ui, υi)

> (the superscript > denotes transpose)
and the corresponding pressure be Pi, the momentum and continuity equations in each
layer i= 1, 2, 3, are

ρi(∂tui + (ui ·∇)ui)=−∇Pi + µi∇
2ui + ρig (2.1)

∇ ·ui = 0. (2.2)

There are several boundary conditions to impose at liquid–solid and liquid–liquid
surfaces. These are no-slip conditions at liquid–solid and continuity of velocities at
liquid–liquid surfaces, yielding

u1 = 0, υ1 = 0 at y= d, (2.3)
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u3 = 0, υ3 = 0 at y= 0, (2.4)
ui−1 = ui, υi−1 = υi at y= hi, i= 2, 3. (2.5)

In addition we need to impose continuity of stresses at liquid–liquid interfaces, and
resolving these into their tangential and normal components at y= h2, h3, yields

t>i · Ti−1 ·ni = t>i · Ti ·ni, i= 2, 3, (2.6)

n>i · Ti−1 ·ni = n>i · Ti ·ni − σiκi, i= 2, 3. (2.7)

Here Ti is the stress tensor in region i given by

Ti =
[
−Pi + 2µiuix µi(uiy + υix)

µi(uiy + υix) − Pi + 2µiυiy

]
, (2.8)

(subscripts x, y denote partial derivatives), the outward-pointing unit normal is
ni = (−hix, 1)>/

√
1+ h2

ix, the corresponding unit tangent is ti = (1, hix)
>/
√

1+ h2
ix and

the curvature κi at interface i is κi = hixx/(1+ h2
ix)

3/2. After some algebra, the stress
balances (2.6) and (2.7) at y= hi, i= 2, 3, can be written in expanded form as

µ(i−1)υ(i−1)x − µiυix + µ(i−1)u(i−1)y − µiuiy =− 4hix

1− h2
ix

(µ(i−1)υ(i−1)y − µiυiy), (2.9)

P(i−1) − Pi − 2
1+ h2

ix

1− h2
ix

(µ(i−1)υ(i−1)y − µiυiy)= σiκi. (2.10)

Finally, we have kinematic boundary conditions at h2, h3 and these read

hit + uihix − υi = 0, i= 2, 3. (2.11)

In addition to conditions at the walls and interfaces we also need to specify conditions
in the x direction. Throughout this study we will impose periodic boundary conditions
along the channel.

In order to complete the mathematical statement of the physical problem, an
additional condition needs to be imposed concerning the overall flow rate. This is
given by ∫ h3

0
u3 dy+

∫ h2

h3

u2 dy+
∫ d

h2

u1 dy= Q, (2.12)

where Q is a constant; equation (2.12) is imposed by the continuity of the velocities
at the interfaces, as will be explained later. In this work, we adopt the scenario
where the overall flow rate is fixed and, for the sake of simplicity, equal to unity in
dimensionless terms (see below), suggesting that the pressure gradients in each layer
will be determined as part of the solution. Alternatively, one can impose a fixed overall
pressure gradient in the streamwise direction, in which case the overall flow rate will
be determined as part of the solution. Analogous conditions have been adopted by
Tilley et al. (1994b) in their study of two-layer flows, as well as (Kliakhandler &
Sivashinsky 1995) in multilayer flows.

2.1. Dimensionless equations

We non-dimensionalize the equations using d for lengths, Ū = (gd2ρ1 sin θ)/(2µ1) for
velocities, d/Ū for time, the viscous pressure scale (2µ1U)/d for pressures, and Ūd
for the overall flow rate. Furthermore, we define the ratio of viscosities and densities
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by mi = µi/µ1, ri = ρi/ρ1, respectively, and the Reynolds and capillary numbers Re
and C, representing the ratios of inertial to viscous forces, and viscous to capillary
forces, respectively, that are given by

Re= Ūρ1d

µ1
= gd3ρ2

1 sin θ
2µ2

1

, Ci = 2Ūµ1

σi
= gd2ρ1 sin θ

σi
. (2.13)

Consequently, the Navier–Stokes equations become, for i= 1, 2, 3,

Re(uit + uiuix + υiuiy)=− 2
ri

Pix + mi

ri
(uixx + uiyy)+ 2, (2.14)

Re(υit + uiυix + υiυiy)=− 2
ri

Piy + mi

ri
(υixx + υiyy)− 2 cot θ, (2.15)

uix + υiy = 0. (2.16)

The boundary conditions (2.9)–(2.11) at the ith interface y= hi, i= 2, 3, can be written
as

m(i−1)υ(i−1)x − miυix + m(i−1)u(i−1)y − miuiy =− 4hix

1− h2
ix

(m(i−1)υ(i−1)y − miυiy), (2.17)

P(i−1) − Pi − 1+ h2
ix

1− h2
ix

(m(i−1)υ(i−1)y − miυiy)= hixx

Ci(1+ h2
ix)

3/2 , (2.18)

hit + uihix − υi = 0. (2.19)

Finally, condition (2.12) for the overall flow rate becomes∫ h3

0
u3 dy+

∫ h2

h3

u2 dy+
∫ 1

h2

u1 dy= 1. (2.20)

Note that for simplicity we have used the same symbols to represent dimensionless
and dimensional dependent and independent variables.

2.2. Steady states
Steady states emerge by making the interfaces flat, h2 = H2, h3 = H3 and setting υi = 0,
for i = 1, 2, 3. In addition the driving pressure gradient P̄ix is constant and is denoted
by P̄x. It follows from the momentum equation (2.15) that the hydrostatic pressure
gradient in the y direction is constant in each layer, and is given by

P̄iy =−ri cot θ. (2.21)

Finally, the steady horizontal velocity profile in each layer is parabolic in the y
direction and a function of y alone,

mi

ri
ūi =

(
−1+ P̄x

ri

)
y2 + c2iy+ c3i. (2.22)

The seven constants P̄x, c2i and c3i, i = 1, 2, 3, can be fully determined by solving
the system (2.22) along with the stress balance equation at the ith interface (2.17),
the condition for the flow rate (2.20) and the no-slip conditions for the velocities
(2.3)–(2.5) (these remain unaltered when non-dimensionalized, but the wall is now
at y = 1). The algebra is cumbersome and was carried out by a computer algebra
package.
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2.3. Long-wave asymptotic analysis

The mathematical model described in § 2.1 (equations (2.14)–(2.20)), when
supplemented with initial conditions constitutes a formidable multiphase nonlinear
moving-boundary problem. To make analytical progress we proceed asymptotically
and seek a system of nonlinear evolution equations that can describe the flow when
interfacial undulations are long compared with the channel height. More precisely we
assume that the typical interfacial deformation wavelength λ is large compared with
the channel height d, i.e. δ = d/λ� 1, providing scale separation. We write the flow
components ui, υi,Pi as the undistributed steady state (see (2.21) and (2.22)) plus a
disturbance of arbitrary size

ui = ūi + ũi, υi = υ̃i, Pi = P̄i + P̃i. (2.23)

The scale separation dictates the following canonical change of variables

x→ ξ

δ
, y→ y, t→ τ

δ
, (2.24)

ũi = ũi, υ̃i = δw̃i, P̃i = p̃i

δ
, (2.25)

where the new quantities ξ , τ , w̃i, p̃i are of order one, while other unscaled variables
retain their original definitions. The scaling for υi follows from the continuity equation
(2.16) and (2.24), while the order 1/δ pressures are required in order to retain a flow
driven by the horizontal pressure gradient to leading order. Changing variables in the
governing equations (2.14)–(2.16) we obtain, for i= 1, 2, 3,

δRe(ũiτ + ūiũiξ + ũiũiξ + w̃iūiy + w̃iũiy)=−2p̃iξ

ri
+ mi

ri
(δ2ũiξξ + ũiyy), (2.26)

δ2Re(w̃iτ + ūiw̃iξ + ũiw̃iξ + w̃iw̃iy)=−2p̃iy

δri
+ mi

ri
(δ3w̃iξξ + δw̃iyy), (2.27)

ũiξ + w̃iy = 0. (2.28)

The interfacial boundary conditions (2.17)–(2.19) (representing tangential/normal stress
balances and the kinematic condition) become for i = 2, 3 (note that (2.18) is
differentiated with respect to ξ )

m(i−1)δ
2w̃(i−1)ξ − miδ

2w̃iξ + m(i−1)(ū(i−1)y + ũ(i−1)y)− mi(ūiy + ũiy)

=− 4δ2hiξ

1− δ2h2
iξ

(m(i−1)w̃(i−1)y − miw̃iy), (2.29)

p̃(i−1)ξ − p̃iξ

δ
+ (ri − r(i−1)) cot θhiξ − δ

[
1+ δ2h2

iξ

1− δ2h2
iξ

(m(i−1)w̃(i−1)y − miw̃iy)

]
ξ

=
[

δ2hiξξ

Ci(1+ δ2h2
iξ )

3/2

]
ξ

, (2.30)

hiτ + (ūi + ũi)hiξ − w̃i = 0. (2.31)

In order to retain surface tension so that it competes with viscous stresses and density
stratification forces in (2.30), we assume small capillary numbers and introduce the



122 E. S. Papaefthymiou, D. T. Papageorgiou and G. A. Pavliotis

canonical limit Ci = δ2C̄i. The normal stress balance equation (2.30) becomes

p̃(i−1)ξ − p̃iξ

δ
+ (ri − r(i−1)) cot θhiξ − δ

[
1+ δ2h2

iξ

1− δ2h2
iξ

(m(i−1)w̃(i−1)y − miw̃iy)

]
ξ

=
[

hiξξ

C̄i(1+ δ2h2
iξ )

3/2

]
ξ

, i= 2, 3. (2.32)

Finally, the condition for the overall flow rate is given by∫ h3

0
(ū3 + ũ3) dy+

∫ h2

h3

(ū2 + ũ2) dy+
∫ 1

h2

(ū1 + ũ1) dy= 1. (2.33)

We will construct asymptotic solutions of the problem that are periodic in ξ of given
scaled dimensionless period 2L, say; the quantity L is a measure of the length of
the system and is an important parameter in that it controls the number of linearly
unstable modes about the trivial state.

2.3.1. Long-wave coupled evolution equations
Our objective is to derive a reduced-dimension system of equations that describes

the nonlinear dynamics of the three-layer flow. The system originates from the
dimensionless kinematic equation (2.31) evaluated at the appropriate asymptotic order,
with the fluid mechanics in the bulk fixing the various terms by matching across
interfaces. The following asymptotic expansions are introduced

(ũi, w̃i, p̃i)=
(

ũ(0)i , w̃(0)
i , p̃(0)i

)
+ δ

(
ũ(1)i , w̃(1)

i , p̃(1)i

)
+ δ2

(
ũ(2)i , w̃(2)

i , p̃(2)i

)
+ · · · . (2.34)

Substituting into (2.31) and retaining terms up to order δ we find

hiτ + ūihiξ + ũ(0)i hiξ − w̃(0)
i + δ(ũ(1)i hiξ − w̃(1)

i )= 0 at y= hi, i= 2, 3. (2.35)

This can be rewritten in an integral form by using the continuity equation (2.28) and
the no-slip boundary conditions (2.3) and (2.4), along with Leibniz’s rule to obtain

h2τ +
(∫ h2

ū1 dy+
∫ h2

1
ũ(0)1 + δũ(1)1 dy

)
ξ

= 0 at y= h2, (2.36)

h3τ +
(∫ h3

ū3 dy+
∫ h3

0
ũ(0)3 + δũ(1)3 dy

)
ξ

= 0 at y= h3. (2.37)

The leading-order horizontal velocities ũ(0)i are found by substituting (2.34) into the
momentum equation (2.26) and retaining order one terms. The vertical momentum
equation (2.27) gives p̃(0)iy = 0, hence p̃(0)i ≡ p̃(0)i (ξ, t), and the horizontal velocity
profiles in each layer are parabolic in y and given by

mi

ri
ũ(0)i =

p̃(0)iξ

ri
y2 + c4iy+ c5i. (2.38)

Here the nine functions p̃(0)iξ , c4i and c5i, i = 1, 2, 3, depend on the physical parameters
of the problem but also on the spatiotemporal interfacial dynamics hi(ξ, τ ), i = 2, 3.
They can be fully determined by considering the leading-order contributions of the
boundary conditions (2.3)–(2.5), (2.29), (2.32) and (2.33).
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The horizontal momentum equation (2.26) at order δ allows us to solve for ũ(1)i in
terms of leading-order quantities. The solution consists of two parts, one involving the
pressure gradient and an inertial part, and is given by

mi

ri
ũ(1)i =

p̃(1)iξ

ri
y2 + Re

∫∫ (
ũ(0)iτ + w̃(0)

i ūiy + w̃(0)
i ũ(0)iy

+ ũ(0)iξ ūi + ũ(0)iξ ũ(0)i

)
dy1 dy2 + c6iy+ c7i. (2.39)

Equation (2.27) implies that p̃(1)iξ are also independent of y, but now also depend
on the interfacial derivatives hiξ and hiξξξ , as can be seen from the stress balance
equation (2.32). The terms ũ(0)iτ can be calculated by differentiating (2.38) with respect
to τ and using leading-order terms of (2.36) and (2.37). Furthermore, the normal
velocities w̃(0)

i can in turn be found from the continuity equation (2.28), to obtain

w̃(0)
i =−

∫
ũ(0)iξ dy+ cwi, i= 1, 2, 3. (2.40)

The functions cwi(ξ, τ ) can be found by applying the four boundary conditions
(2.3)–(2.5) to the solution (2.40) and noting that the extra boundary condition (i.e. at
y = h2) is automatically satisfied due to the overall flow rate constraint (2.33); see
Appendix for details. Finally, substitution of (2.40) into (2.39) and use of the boundary
conditions (2.3)–(2.5), (2.29) and (2.32) along with the condition of the fixed flow
rate condition (2.33), enables the determination of the nine functions p̃(1)iξ , c6i and c7i,
i= 1, 2, 3.

The leading-order velocities appearing in equations (2.36) and (2.37) are now known
and the final form of the long-wave coupled system that describes the spatiotemporal
dynamics of the two interfaces takes the form

hiτ + Fiξ + δ
2∑

j=1

[
(Re Sij + cot θ Gij)hjξ + 1

C̄i

Dijhjξξξ

]
ξ

= 0, i= 2, 3. (2.41)

The 2×1 matrix Fi and the 2×2 matrices Sij,Gij,Dij are rational polynomial functions
of the interfacial deformations hi as well as the physical parameters of the problem
Hi, mi and ri. Their exact determination is tedious but straightforward and in this work
we used the Matlab R© symbolic manipulation software for their efficient and error-free
calculation. The system (2.41) is to be solved subject to periodic boundary conditions
hi(ξ + 2L, τ )= hi(ξ, τ ).

Depending on the physical parameters, the leading-order (δ = 0) system (2.41)
of conservation laws can be strictly hyperbolic in which case it would support
shocks (thus, violating the long-wave assumption), but can also be elliptic (or mixed
hyperbolic–elliptic) making the system susceptible to short-wave instabilities and
hence ill-posed. Consequently, the higher-order terms must be retained to regularize
the equations in order to allow the possibility of long-time existence of the long-
wave solutions. The regularized equations (2.41) depend on the small parameter δ
that cannot be scaled out of the problem. For a single interface (two fluid phases)
the system reduces to a Benney-type equation (Benney 1966), and it is well-known
from the numerical work of Pumir, Manneville & Pomeau (1983) and Rosenau, Oron
& Hyman (1992) that solutions can become unbounded in finite time for certain
coefficients. Such difficulties motivate the derivation of canonical weakly nonlinear
equations that do not contain δ, directly from (2.41). Such equations provide the initial
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stages of the nonlinear dynamics by restricting the amplitudes to be small but not
infinitesimal, and their derivation and study is considered next.

3. Weakly nonlinear coupled evolution equations
Here we aim to capture the initial nonlinear stages of the instability by imposing the

restriction that the departure of the interfaces from the steady-state layer thicknesses is
small (i.e. δηi = h(i+1) − H(i+1), where ηi = O(1)), and we can use Taylor expansions
about the undisturbed states H(i+1). The system (2.41) now reduces to

ηiτ +
2∑

j=1

[
qijηjξ +

2∑
k=1

δβijk(ηjηk)ξ + δ(Re sij + cot θ gij)ηjξξ + δ

C̄i

dijηjξξξξ

]
= 0, (3.1)

where i = 1, 2. The constant coefficients qij, βijk, sij, gij, dij are rational polynomial
functions of the physical parameters of the system (Hi,mi, ri). System (3.1)
incorporates advective terms, Burgers-type coupled nonlinearities (ηjηk)ξ , buoyancy

effect cot θηjξξ , inertia Reηjξξ and surface-tension (1/C̄i)ηjξξξξ terms. The matrix of the
surface tension is always positive definite providing damping for large wavenumbers;
on the other hand, the matrix gij provides damping for stably density stratified
flows, and introduces Rayleigh–Taylor instability otherwise. Furthermore, the matrix
gij vanishes when the densities of the three layers are equal.

We remark that a system of equations similar to (3.1) is valid for arbitrarily many
interfaces constrained in an inclined channel. However, as can be observed the system
(3.1) includes terms of different magnitude, since the advective term is of unity
order while the other terms are of order δ. As a result, the advective part of the
system shadows the nonlinear dynamics. In order to retain the δ-order dynamics,
the advective term should be removed by an appropriate Galilean transformation
as in the case of the single interface problem. However, in the case of two or
more interfaces, this transformation is possible only if the matrix of the advective
term is diagonal to leading order, with equal eigenvalues λ say. Consequently, we
proceed by defining the six-dimensional vector of the physical parameters of the
problem T = (H2,H3,m2,m3, r2, r3)

>, where 0< H3 < H2 < 1, and identifying specific
parameter vectors that allow a Galilean transformation. This analysis suggests two
distinct cases corresponding to basic states that are symmetric or non-symmetric about
y= 1/2. We analyse these individually since they provide distinct dynamical systems.

3.1. The symmetric case: nonlinear advective–dissipative systems
In this case the basic flow is parabolic and symmetric about y = 1/2 as depicted
in figure 2(a), and in general corresponds to the parameter vector T ≡ T̄ =
(1− ω,ω, 1, 1, 1, 1)>, where 0 < ω < 1/2. Importantly, this implies that the advective
term is diagonal with equal eigenvalues λ(ω), so that qij(T̄) = λ(ω)δij, the nonlinear
terms βijk(T̄) = β̄i(T̄) decouple, and the inertial and buoyancy terms become zero, i.e.
sij(T̄)= 0 and gij(T̄)= 0. The resulting weakly nonlinear system (3.1) is

ηiτ + ληiξ + δβ̄i(T̄)(η2
i )ξ + δ

2∑
j=1

1

C̄i

dij(T̄)ηjξξξξ = 0, i= 1, 2. (3.2)

It is easy to deduce that (3.2) is a stable advective–dissipative system (note that dij

is positive definite) with decoupled Burgers-type nonlinearities; consequently, at large
times the system attains the trivial solution for rather general periodic initial conditions
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FIGURE 2. Steady-state velocity profiles for different fluid properties T̄ =
(H2,H3,m2,m3, r2, r3)

>: (a) symmetric case T̄ = (2/3, 1/3, 1, 1, 1, 1)>; (b) the non-
symmetric case T̃ = (0.79132, 0.4, 2, 4.8457, 1, 1)>.

(e.g. a finite number of random Fourier coefficients); this can be proven easily using
simple energy estimates. In what follows we investigate these inertialess instabilities of
the symmetric case by detuning the value of the parameter vector T̄ to derive general
canonical systems.

We proceed by perturbing the system (3.1) about the symmetric case by writing
T = T̄ + δZ, where Z = (H̃2, H̃3, m̃2, m̃3, r̃2, r̃3)

>
is a constant vector acting as a

detuning parameter; retaining terms up to order δ yields

ηiτ + ληiξ + δβ̄i(T̄)(η2
i )ξ + δ

2∑
j=1

(q(1)ij (T̄ ,Z)ηjξ + 1

C̄i

dij(T̄)ηjξξξξ )= 0, (3.3)

where

q(1)ij (T̄ ,Z)=
6∑

l=1

Zl
∂qij

∂Tl
(T̄), i= 1, 2. (3.4)

The vector β̄i and matrix dij depend on ω alone since they are leading-order quantities.
As an example, when T̄ = (2/3, 1/3, 1, 1, 1, 1)> (i.e. ω = 1/3), we have

β̄i(T̄)=
(
−1
1

)
, dij(T̄)=

(
73
100

1
2

1
2

73
100

)
, (3.5)

and emphasize that other physically relevant cases can be determined analogously.
To obtain the final form of the equations we perform a Galilean transformation

x∗ = ξ − λτ , introduce a new slow time scale t∗ = δτ , and normalize the equations
to 2π-periodic domains by introducing new scaled coordinates t∗∗ = (π/L)2t∗, x∗∗ =
(π/L)x∗, η∗i = (L/π)ηi; the resulting bifurcation parameter ν = (π/L)2 > 0, where 2L is
the period of the solutions introduced earlier, plays a central role in the dynamics and
is analogous to the ‘viscosity’ parameter found in the Kuramoto–Sivashinsky equation.
Dropping the asterisks yields the following system of nonlinear coupled evolution
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equations:

ηit + β̄i(T̄)(η2
i )x +

2∑
j=1

(
1√
ν

q(1)ij (T̄ ,Z)ηjx + ν

C̄i

dij(T̄)ηjxxxx

)
= 0, i= 1, 2. (3.6)

Previous work by Kliakhandler & Sivashinsky (1995) derived model equations that are
not of the canonical form derived here; the difference lies in the fact that the weakly
nonlinear expansion was performed on a scaled Benney equation (equivalent to our
(2.41) but with δ = 1), hence leading to a system with arbitrary coefficients in front
of the advective and nonlinear terms. These terms play a crucial role in the instability
mechanisms and nonlinear dynamics as we explain in more detail below and in § 3.
The canonical model (3.6) derived here, enables us to evaluate the competing physical
effects of nonlinearity, advective instability due to the presence of two interfaces, and
short-wave dissipation due to surface tension. An effective way to reveal the nature
of the underlying instabilities is to rewrite the system in quasilinear matrix form as
follows:

∂η

∂t
+ A(η)

∂η

∂x
+ νD

∂4η

∂x4
= 0, (3.7)

where

η =
(
η1(x, t)
η2(x, t)

)
, A=

−2η1(x, t)+ q(1)11 (T̄ ,Z)√
ν

q(1)12 (T̄ ,Z)√
ν

q(1)21 (T̄ ,Z)√
ν

2η2(x, t)+ q(1)22 (T̄ ,Z)√
ν

 (3.8)

and

D ≡ 1

C̄i

dij(T̄). (3.9)

The matrix A varies in space and time and the nature of the instabilities depends
crucially on its eigenvalues λ1,2(x, t). Given a solution η(x, t), these eigenvalues
depend on η(x, t) and can be either real or complex conjugates. In the latter
case the non-dissipative system becomes elliptic and induces catastrophic short-wave
instabilities, i.e. the system is ill-posed with short waves growing the fastest (for
a brief introduction to PDEs of mixed type the reader is referred to Zauderer
(2006) and Evans (2010)). Dissipation as it appears in (3.7) regularizes such short-
wave instabilities and more surprisingly can destabilize the long-wave modes when
the eigenvalues are real. Noting that in our systems the diagonal elements of the
dissipation matrix dij are equal, then we find that such instabilities can only happen
when the off-diagonal entries are non-zero. In what follows we illustrate these
mechanisms with particular physical examples.

First we consider the linear stability of (3.7) about η = η̄ = (0, 0)> so that the
eigenvalues of A are complex. The flow is long-wave unstable to linear disturbances
proportional to e(iκx+st), as depicted in figure 3(a). There are two modes with growth
rates s1 and s2, the latter of which is stable for all wavenumbers κ . The effect of
surface tension is to stabilize short waves and provide a finite band of instability,
and the unstable mode has growth rates proportional to κ for κ � 1. This instability
is known as the ‘alpha’-effect; see Kliakhandler & Sivashinsky (1995) for references.
We illustrate this by calculating the marginal stability of the system (3.7) for the
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FIGURE 3. Linear stability results in the presence of the ‘alpha’ effect for the system (3.7)
about the flat states η̄ = 0 when T̄ = (2/3, 1/3, 1, 1, 1, 1)>, ν = 1 and 1/C̄1 = 1/C̄2 = 1:
(a) growth rates with Z = (1/10, 0, 78/100, 8/10, 0, 0)>; (b) marginal stability curves for
Z= (H̃2, 0, m̃2, m̃3, 0, 0)

>
.

case T̄ = (2/3, 1/3, 1, 1, 1, 1)>, and Z = (H̃2, 0, m̃2, m̃3, 0, 0)
>

. Physically, the chosen
detuning parameter vector allows us to evaluate the role of viscosity and depth ratios.
Figure 3(b) depicts the marginal stability curves; for each value of H̃2 the marginal
stability curve is a closed circular region in the m̃2–m̃3 plane. The figure shows a
collection of these regions for −15/100 6 H̃2 6 15/100, the locus of which defines
the two triangular regions inside which the system is unstable. Furthermore, it can
be observed that the instability vanishes when H̃2 = 0, while it is present when the
layer adjacent to the wall is more viscous than the intermediate one, i.e. m̃2 < m̃3.
The results also show that the instability region increases as H̃2 increases, which
corresponds to the upper layer depth decreasing with respect to the bottom layer depth.
Analogous results hold for negative H̃2, where now the upper layer depth increases
relative to the bottom one and instability is found when m̃2 > m̃3.

A more surprising and interesting finding is that even when A possesses real and
distinct eigenvalues, the system (3.7) can be unstable due to an interaction between the
nonlinear flux and the dissipation terms due to surface tension. This kind of instability
has been proposed in the context of viscously regularized quasilinear systems by
Majda & Pego (1985). They studied strictly hyperbolic 2 × 2 systems of conservation
laws with second-order viscosity terms, i.e. ηxx in our notation, and show that when A
is symmetric and D is positive definite, then their system (as well as ours) is stable for
every constant state η = η̄ satisfying

li(η̄)Dri(η̄) > 0, (3.10)

where li and ri, i= 1, 2, are the left and right eigenvectors of A. One can also consider
fixed viscosity matrices (in our notation the surface tension matrices D) and determine
stable and unstable constant states (usually by studying Riemann problems; see Canic
& Plohr (1995)). It follows, therefore, that solutions η of (3.7) can be unstable in the
sense of Majda and Pego for fixed values of x and t when (note that we rewrite (3.10);
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see proposition (5.12) in Canic & Plohr (1995))

tr(D−1[−λi(x, t)I + A(η)])
tr(−λi(x, t)I + A(η))

< 0, (3.11)

where I is the identity matrix, for either i = 1 or 2. The Majda–Pego instability in our
problem is illustrated next by the linear stability about η = η̄ = (0, 0)>, for a slightly
different flux function and dissipation matrix as in figure 3, and slightly different
values of Z to place us just outside the elliptic region. Typical results are depicted
in figure 4(a) with parameter values shown in the caption; the results show that in
the long-wave limit κ � 1, we have Re(s) ∼ κ2, indicating the different nature of the
dissipative mechanism of the instability compared with the kinematic one discussed
earlier. The boundary of the region inside which Majda–Pego instability occurs is
depicted in figure 4(b) by the outer grey closed circular curve which is constructed
using the condition (3.11). The topology of the elliptic, Majda–Pego and hyperbolic
regions shown in figure 4(b) is quite generic and has been described by Peters &
Canic (2000) in the context of three-phase reservoir flow in porous media. Note that
condition (3.11) will be used in our numerical computations to determine the presence
or absence of Majda–Pego instability of nonlinear solutions in the spatiotemporally
evolving dynamics. This condition is clearly much stronger than the linear conditions
about the null state used by Kliakhandler & Sivashinsky (1995). We remark that the
analysis of Majda & Pego (1985) applies to second-order viscosity matrices; to our
knowledge the analysis for higher-order dissipation, e.g. fourth order as in the present
problem, remains open. Our numerical results indicate that condition (3.11) is still
valid for our dissipation matrices in (3.7).

3.2. The non-symmetric case: kinematically modified coupled Kuramoto–Sivashinsky
systems

In this case the overall steady-state velocity profiles do not possess any symmetry
about the channel midplane as depicted in figure 2(b). This case corresponds, in
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general, to the following parameter vector T ≡ T̃ = (H2,H3,m2 6= 1,m3 6= 1, r2 6= 1,
r3 6= 1)>. Hence, the system (3.1) can be written as follows:

ηiτ +
2∑

j=1

[
qij(T̃)ηiξ +

2∑
k=1

δβijk(T̃)(ηjηk)ξ + δ(Re sij(T̃)+ cot θ gij(T̃))ηjξξ

+ δ

C̄i

dij(T̃)ηjξξξξ

]
= 0, i= 1, 2. (3.12)

As previously the advective term dominates the order δ dynamics. Hence, we can
remove it by using a Gallilean transformation by identifying parameter vectors T̃ = T̃d

that make the matrix qij(T̃d) diagonal with equal eigenvalues λ, yielding, correct to
order δ:

ηiτ +
2∑

j=1

[
ληiξ +

2∑
k=1

δβijk(T̃d)(ηjηk)ξ + δ(Re sij(T̃d)+ cot θ gij(T̃d))ηjξξ

+ δ

C̄i

dij(T̃d)ηjξξξξ

]
= 0, i= 1, 2. (3.13)

Note that the buoyancy term gij vanishes in the case of equal densities, and
we proceed with this term absent: similar systems that have analogous qualitative
behaviour can be derived when the densities are unequal. Physically, the presence of
Rayleigh–Taylor instability (more dense fluid on top of lighter fluid), will produce
linear instabilities with the combined matrix Re sij(T̃d) + cot θ gij(T̃d) being positive
definite. The system (3.13), in contrast to (3.2), involves coupled nonlinearities as
well as inertial terms (of order δ). An asymptotically correct canonical system that also
retains kinematic terms follows by introducing T̃ = T̃d+δZ into (3.13), and performing
an appropriate Galilean transformation to find

ηit +
2∑

j=1

[
1√
ν

q(1)ij (T̃d,Z)ηjx +
2∑

k=1

βijk(T̃d)(ηjηk)x + Re sij(T̃d)ηjxx

+ ν

C̄i

dij(T̃d)ηjxxxx

]
= 0, i= 1, 2, (3.14)

where q(1)ij (T̃d,Z) is defined by (3.4). In this study we introduce a constant parameter
ζ so that Z→ ζZ to enable us to control the size of the advective term relative
to inertia (as we will see later, the competition between these terms influences
the large time dynamics and resulting coherent structures). However, retaining the
six independent parameters Zl, l = 1, . . . , 6, provides the freedom to control the
numerical values of qij. Equations (3.14) are a kinematically modified coupled
Kuramoto–Sivashinsky (cKS) system and contains all of the physical mechanisms
of the single Kuramoto–Sivashinsky equation in addition to the instability mechanisms
described in § 3.1. Our main objective is to describe the ensuing nonlinear dynamics of
such complex systems. We proceed by rewriting (3.14) in the following matrix form

∂η

∂t
+ ∂Q(η; ζ, ν)

∂x
+ S

∂2η

∂x2
+ νD

∂4η

∂x4
= 0, (3.15)
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where the matrix S ≡ sij is positive definite and the flux function Q(η) is the following
non-homogeneous quadratic polynomial

Q =

β111η
2
1 + (β112 + β121)η1η2 + β122η

2
2 +

ζ√
ν

q(1)11 η1 + ζ√
ν

q(1)12 η2

β211η
2
1 + (β212 + β221)η1η2 + β222η

2
2 +

ζ√
ν

q(1)21 η1 + ζ√
ν

q(1)22 η2

 . (3.16)

We denote the eigenvalues of the Jacobian ∇ηQ by λ1,2(x, t). Note that the Reynolds
number Re has been removed from the problem by rescaling η1,2 and time t.
The problem has two important parameters measuring competing mechanisms: ζ
corresponding to kinematic effects and ν measuring the size of the system. In what
follows we solve the problem numerically in order to describe the effect of these
parameters on the nonlinear dynamics.

4. Numerical experiments

We begin by describing the numerical schemes used to solve the canonical systems
(3.7) and (3.15). The spatial domains are 2π-periodic and random initial conditions are
used unless otherwise stated. We use spectral methods for the spatial discretizations
with implicit time stepping due to the stiffness of the fourth-order derivatives (we
implemented and tested the Matlab R© integrator ode23tb as well as home-grown
explicit–implicit BDF algorithms; Akrivis, Papageorgiou & Smyrlis (2009)). Briefly,
we represent the solutions by their Fourier series

ηi(x, t)=
∞∑
µ=1

(ηc
iµ(t) cosµx+ ηs

iµ(t) sinµx), (4.1)

to find an infinite-dimensional system of coupled nonlinear ordinary differential
equations (ODEs) for the Fourier coefficients ηc

iµ(t), η
s
iµ(t). The main difficulty

involves the Fourier representation of the nonlinearities: this is done analytically
and can be found in Akrivis et al. (2009), for instance. The system is truncated to
M terms (we are assuming that the dynamics are low modal as in the case of the
single Kuramoto–Sivashinsky equation, and this is checked numerically a posteriori)
and solved as an initial value problem using a stiff ODE solver to maintain stability
and accuracy; the analytical expressions for the nonlinearities are computed efficiently
(i.e. with an operation count which is much less than O(M2)) using vectorized matrix
multiplications provided by Matlab R©.

One of the diagnostics we use in order to check boundedness of solutions is the
evolution of their energy (or L2 norm). Parseval’s theorem shows that the L2-norm can
be calculated spectrally and is given by the following expression:

Ei(t)≡ ‖ηi‖2 =
√√√√π M∑

µ=1

((ηc
iµ)

2 + (ηs
iµ)

2), i= 1, 2. (4.2)
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Furthermore, in order to construct the phase plane (Ei, Ėi) of the solutions we
differentiate (4.2) with respect to t to obtain

Ėi =

√
π

M∑
µ=1

(
2ηc

iµ(dη
c
iµ/dt)+ 2ηs

iµ(dη
s
iµ/dt)

)
2‖ηi‖2

, i= 1, 2. (4.3)

Expression (4.3) is spectrally accurate making the phase plane characteristics spectrally
accurate too. This is important in determining complex dynamics (e.g. period-doubling
bifurcation routes to chaos) from the numerical data. Our numerical diagnostic
tools have been described elsewhere (see Smyrlis & Papageorgiou 1991; Akrivis,
Papageorgiou & Smyrlis 2012). In what follows we describe results for the symmetric
and non-symmetric cases, respectively, i.e. (3.7) and (3.15).

4.1. Interfacial dynamics: nonlinear advective–dissipative systems
In this section, we investigate numerically the interfacial dynamics exhibited by the
advective–dissipative system (3.7). The initial conditions typically contain the first 10
harmonics with amplitudes chosen randomly in the interval [−0.5, 0.5]. The number of
modes M depends on the parameter ν and M is always chosen so that the numerical
solution has an exponentially decaying spectrum in Fourier space.

The large time behaviour of the solutions depends crucially on the eigenvalues of
matrix A in (3.7). Denoting these by λ1,2 we find that they are real or complex
conjugates depending on whether the sign of D , defined by

D = 1
ν

[
(−2
√
ν
(
η1(x, t)+ η2(x, t)

)+ q11 − q22)
2 + 4q12q21

]
, (4.4)

is positive or negative, respectively. In the former case the flux function is hyperbolic
and as a result (due to the presence of diffusion) the solutions decay to zero at large
times independent of initial conditions: a sufficient condition for this to happen is
q12q21 > 0. Hence, we concentrate on situations where the flux function can provide
mixed type (i.e. hyperbolic–elliptic) behaviour.

The eigenvalues λ1,2 depend on the values of qij (recall that these correspond to
different physical situations and can be chosen to take a wide range of values), and the
initial conditions. For example, if the qij are such that the flat state is linearly unstable
(either due to Majda–Pego instability or the ‘alpha’ effect), then any arbitrary initial
condition will evolve to nonlinear travelling wave states. We illustrate this scenario in
figure 5 for ν = 1 (other parameters given in the caption) and qij given by

qij =
(
−0.519 0.123
−0.247 −0.341

)
. (4.5)

The figure shows the evolution of η1(x, t) and η2(x, t) in figure 5(a,b) correspondingly,
and the corresponding evolution of their energy norms in figure 5(c), indicating that
the solutions evolve to finite energy travelling wave states. These phenomena can
be understood by considering the spatiotemporal evolution of the matrix A and in
particular the nature of its eigenvalues according to (4.4). As the solutions η1,2(x, t)
evolve, we track the regions in the x–t plane where D takes on negative (black) or
positive (grey) values as shown in figure 5(d). In addition we indicate regions of
Majda–Pego instability (see (3.11)) with a white colour and these can be found on the
edges of the elliptic regions (as also described earlier; see figure 4). Even though the
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FIGURE 5. (Colour online) Emergence of steady-state travelling waves of system (3.7),
when T̄ = (2/3, 1/3, 1, 1, 1, 1)>, Z = (1, 0.9405, 10, 15, 0, 0)>, ν = 1 and 1/C̄1 = 1/C̄2 = 1.
The matrix of the advective term qij possesses conjugate complex eigenvalues. (a,b)
The spatiotemporal evolution of the interfaces; (c) the evolution of the energy; (d) the
spatiotemporal evolution of underlying instability regions, where black-shaded regions
correspond to complex eigenvalues, white-shaded regions to Majda–Pego instability and grey-
shaded regions indicate hyperbolicity.

systems studied here are parabolic (fourth-order diffusion), non-trivial states can only
emerge if there exist dynamic transitions resulting from the nonlinearities and their
interaction with the damping; these transitions (hyperbolic to elliptic) are the hallmark
of the emerging dynamics.

Through extensive numerical experiments we have established that when the flat
states are linearly stable, the emerging dynamics depend on the energy input of the
initial conditions. If the initial energy is below a threshold value (this value clearly
depends on problem parameters, e.g. ν) then a trivial state emerges at large time,
whereas above threshold non-trivial travelling wave states emerge as found earlier.
Results near threshold for the case ν = 1 and

qij =
(
−1 0.123
−0.247 −0.341

)
, (4.6)

are given in figure 6 (other parameters given in the caption). Figure 6(a,c) are below
threshold (the initial energy input is 1.1636), while figure 6(b,d) are just above (with
energy 1.1639). Figure 6(c,d) depict the type of the flux function eigenvalues as
explained earlier. In both cases (below and above threshold) there exist elliptic regions
initially, and these either disappear or persist depending on the initial energy. Below
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system (3.7), with T̄ = (2/3, 1/3, 1, 1, 1, 1)>, Z = (1.2405, 0.9405, 10, 15, 0, 0)>, ν = 1
and 1/C̄1 = 1/C̄2 = 1: (a,c) initial conditions below threshold; (b,d) initial conditions
above threshold. The energy evolution is shown along with the evolution of the instability
regions (black-shaded regions correspond to complex eigenvalues, white-shaded regions to
Majda–Pego instability and grey-shaded regions indicate hyperbolicity).

threshold, the damping is sufficient to drive the system to a uniformly hyperbolic state
thus leading to trivial solutions, whereas above threshold ellipticity persists leading to
non-trivial states. We can conclude, therefore, that the linear stability is a necessary
but not sufficient condition for the emergence of non-trivial nonlinear states.

4.2. Interfacial dynamics: kinematically modified cKS systems

In this section we study flows that include inertia and are governed by the cKS
systems (3.15). We carried out extensive numerical experiments as the parameters ν
and ζ vary. In the results that follow we take the vector of the physical parameters to
be T̃ = (0.79132, 0.4, 2, 4.8457, 1, 1)> and the detuning vector Z= (0.1, 0, 8, 8, 0, 0)>.
These values correspond to a physical situation with the upper and lower undisturbed
interfaces at H2 = 0.79132, H3 = 0.4, and the viscosity ratios m2 = 2, m3 = 4.8457 (in
this scenario the upper layer is less viscous than the other layers and the lower layer
is the most viscous); the densities of the three layers are equal in this example. With



134 E. S. Papaefthymiou, D. T. Papageorgiou and G. A. Pavliotis

Attractor ζ Description

I .0.82056× 10−4 Chaotic oscillations
II .0.28088× 10−3 Periodic travelling waves
III .0.44184× 10−3 Steady-state travelling waves

TABLE 1. Attractors of the kinematically modified cKS system for fixed ν = 0.003 and
1/C̄1 = 1/C̄2 = 1. The values of ζ denote an approximate upper bound for the described
attractor.

these values the matrices β1jk, β2jk, sij, dij, qij are calculated to be

β1jk =
(
−1.5774 −0.0209
−0.0209 0.1919

)
, β2jk =

(
0.2477 −0.0509
−0.0509 1.3278

)
, (4.7a)

sij =
(
−5.30615 5.4011
−5.2902 8.2255

)
× 10−4, dij =

(
0.0020 0.0015
0.0015 0.0033

)
, (4.7b)

qij =
(
−0.445 0.052
−0.075 −0.504

)
. (4.7c)

Note also that with this choice of T̃ we ensure that the nonlinear flux function
is of mixed hyperbolic–elliptic type, thus avoiding strictly hyperbolic nonlinearities
that could provide more standard Kuramoto–Sivashinsky dynamics. In addition, the
detuning parameter ζ is selected to provide kinematic instability of the zero states,
i.e. the matrix qij has complex eigenvalues. This example may be difficult to access
experimentally due to the simultaneous variation of four physical parameters in the
detuning vector. Nevertheless, analogous dynamics have been found for simpler cases
that vary the layer depths alone (e.g. Z = (−0.0799, 0.1, 0, 0, 0, 0)> that increases the
thicknesses of the undisturbed upper and lower layers).

Our main interest here is in quantifying the kinematic effect through the parameter
ζ . We present numerical results as ζ varies for a fixed value of ν = 0.003 to
ensure that we start with chaotic dynamics when ζ = 0 as seen in figure 7(a,b).
Figure 7(a) shows the evolution of the energy norms of η1 and η2 and figure 7(b)
shows the corresponding phase plane of η1. We note that evidence of chaotic dynamics
is deduced from the ever-increasing and non-overlapping number of loops in the
phase plane as time increases (this was quantified further by constructing return
maps (see Akrivis et al. 2012); but these are not included for brevity). Note that
in this case both inertial and inertialess instabilities contribute to the dynamics of
the system. Cases where the energy input due to inertia dominates are considered
later and are interesting due to the fact that the dynamics are closer to those of the
single Kuramoto–Sivashinsky equation. The effect of increasing ζ is to regularize the
dynamics from chaos to time-periodic travelling waves and ultimately to steady-state
nonlinear travelling waves. Table 1 contains the first three windows as ζ increases that
show this regularization. We note that for ζ larger than approximately 0.44184× 10−3,
the dynamics is of type I, II or III (as categorized in the table), but when ζ is larger
than 0.0026, approximately, the flow is attracted to steady-state nonlinear travelling
waves. Figure 7(c,d) shows a typical time-periodic travelling wave from attractor II
having ζ = 0.15811 × 10−3. The energy norms (figure 7c) are time-periodic signals
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FIGURE 7. Regularization of chaotic oscillations for the non-symmetric system (3.15) as the
value of the parameter ζ increases for fixed ν = 0.003 and 1/C̄1 = 1/C̄2 = 1: (a,b) ζ = 0,
giving chaotic dynamics; (c,d) ζ = 0.15811× 10−3, providing time-periodic travelling waves.
The energy evolution is shown along with the phase planes of (E1(t), Ė1(t)).

and this is clearly seen in the phase plane in figure 7(d) that is seen to contain three
repeating loops.

In what follows we solve an analogous system to that above with the same matrices
β1jk, β2jk, dij, qij but with a different inertia-associated matrix given by

sij =
(

3.5655 3.4635
−4.0635 −7.6411

)
× 10−4. (4.8)

This model is motivated by the fact that the energy input due to the inertia-associated
matrix sij given by (4.8) dominates and produces slaved dynamics, meaning that
the dynamics of one interface lock into those of the other, resulting in mostly
hyperbolic nonlinearities. Hence, the inertia terms due to (4.8) lead to mostly single
Kuramoto–Sivashinsky-type dynamics when ζ = 0. Next we quantify the effect of ζ
with particular interest in the way that it affects the slaved dynamics mentioned above;
we illustrate this by starting with the case ν = 0.015 and ζ = 0. Results are given in
figure 8 that depicts the energy norms of η1(x, t) and η2(x, t). The large time dynamics
are chaotic homoclinic bursts (the solution is attracted to steady states which then
loose stability, become chaotic and then return to the original steady state but shifted
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FIGURE 8. The evolution of the energy norms for the non-symmetric system (3.15) when
the inertia-associated matrix sij is given by (4.8). Emergence of chaotic homoclinic bursts for
ζ = 0, ν = 0.015 and 1/C̄1 = 1/C̄2 = 1.

horizontally as seen in the figure) analogous to the single Kuramoto–Sivashinsky case
(see Smyrlis & Papageorgiou 1990). Note that due to the scale of the horizontal axis
the bursts appear to contain fast oscillations but on closer inspection typical times
between oscillations are of the order of approximately 103 time units, implying that
the slow time scale assumption remains valid.

Extensive numerical experiments (recall that ν = 0.015 is fixed) were carried
out to produce the attractors given in table 2 and labelled as regions I–V (these
results were obtained by computing the most attracting solutions according to our
initial-value problem). In region I where ζ is non-zero but sufficiently small (i.e.
ζ . 0.34415 × 10−3), the dynamics are chaotic and the homoclinic burst behaviour
found when ζ = 0 is lost. This was confirmed numerically for values of ζ as small
as 4 × 10−5. Typical results are shown in figure 9 for ζ = 0.3162 × 10−3; the absence
of time intervals supporting steady-state solutions is evident from the figure, and
the dynamics are chaotic. We find that the advective term introduced when ζ 6= 0,
extends the elliptic and Majda–Pego regions (due to the flux terms) in the x–t plane,
and destroys the appearance of steady-state attractors. These regions can be seen in
figure 9(b).

As ζ is increased further the chaotic attractor gives way to the time-periodic
travelling wave attractor II (the solutions at large times are time-periodic travelling
waves with periods depending on the value of ζ ). The dynamics inside region II are
intricate and appear to follow a period-halving bifurcation scenario until a critical
value of ζ is reached, after which a period-doubling cascade takes place and leads to
the chaotic dynamics of region III. As ζ increases further, another periodic-travelling
wave window is found, region IV.

The time-period at the start of region IV is large and as ζ increases we observe
a period-halving bifurcation (inverse Feigenbaum) that eventually leads to the steady-
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Attractor ζ Description

I >0 Chaotic oscillations
II &0.34415× 10−3 Periodic travelling waves
III &0.34848× 10−3 Chaotic oscillations
IV &0.36651× 10−3 Periodic travelling waves
V &0.72416× 10−3 Steady-state travelling waves

TABLE 2. Overview of the solutions of the kinematically modified cKS system when the
inertia-associated matrix sij is given by (4.8), ν = 0.015 and 1/C̄1 = 1/C̄2 = 1. The values
of ζ denote an approximate lower bound for the described attractor.

state travelling waves of region V, similar to those found in the symmetric case in
§ 4.1 where the inertial terms were absent. To illustrate the dynamics in region IV we
present the phase-plane of (E1(t), Ė1(t)) for four values of ζ (shown on figure 10) that
show three successive period-halving bifurcations. The transition from time-periodic
solutions to steady-state travelling waves is monotonic in the sense that the single
phase plane loop illustrated in figure 10(d), shrinks to a single point heralding steady-
state dynamics. We can conclude, therefore, that when the kinematic terms dominate
(relatively large ζ ), chaotic or time-periodic dynamics are regularized into steady-state
travelling wave pulses. Illustrative results are given in figure 11 for three different
values of ζ = 0.94868 × 10−3, 1.3 × 10−3, 1.6 × 10−3. The solutions have been shifted
horizontally (allowed due to Galilean invariance of the equations) for comparison
purposes, and further analysis and computations of the large ζ limit will be considered
elsewhere. This regularization is caused by terms that provide linear instability (elliptic
advective terms) as opposed to more familiar dispersive regularizations encountered in
single Kuramoto–Sivashinsky equations (see Akrivis et al. 2012).
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FIGURE 10. Phase planes of (E1(t), Ė1(t)) in region IV as ζ increases: (a) ζ = 0.36682 ×
10−3; (b) ζ = 0.36999 × 10−3; (c) ζ = 0.37315 × 10−3; (d) ζ = 0.47434 × 10−3. Three
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right one. The dynamics transition from a period-8 solution (8 turns in the phase plane), to a
period-4, -2 and -1 solution. At larger ζ time-periodicity gives way to steady-state travelling
waves; the phase plane shrinks to a point.

5. Conclusions
In this paper we considered the linear and nonlinear stability of stratified multilayer

flows in channels driven by gravity and horizontal pressure gradients. Fairly general
physical systems have been considered in the case of three layer flows in channels
characterized by immiscible fluids of different viscosities and densities. In addition,
our models allow the underlying basic states to have different thicknesses for each
liquid layer and in particular they support scenarios where less viscous fluids are
occupying thicker or thinner liquid layers, respectively. Ten dimensionless parameters
emerge (two of each of viscosity, density, surface tension and basic state thickness
ratios, along with a Reynolds number and a Capillary number), making the problem
challenging and physically rich. Our focus has been in making analytical progress
by deriving asymptotically correct coupled systems of weakly nonlinear evolution
equations that can be used to understand the dynamics. The derivation of the models
is carried out in two stages. First, a system of nonlinear equations is derived valid
for interfacial deformations that are long compared with typical undisturbed layer
thicknesses; in addition, the wave amplitudes scale with the layer thicknesses (or
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FIGURE 11. Emergence of steady-state travelling wave pulses as the values of parameter ζ
increased considerably for fixed ν = 0.015 and 1/C̄1 = 1/C̄2 = 1.

equivalently the channel height). This system is worked out to second-order in the
slenderness parameter δ in order to regularize the leading order system that typically
encounters singularities in finite time (if a solution exists for small times at all) that
violate the long-wave approximation. The resulting equations are a system extension
to the Benney-type equations obtained for flows with a single interface, and this
has a crucial effect on carrying out consistent asymptotic approximations. Since
the parameter δ in the regularized system cannot be scaled out of the problem,
we proceed with a weakly nonlinear analysis to produce canonical models (without
small parameters present) that retain nonlinearities and all the different stabilizing and
destabilizing physical mechanisms of the problem. The main technical issue involved
in correctly carrying out a weakly nonlinear expansion is the fact that the linearized
(about the flat states) leading-order Benney system has unequal eigenvalues in general,
so that there are two unequal speeds of wave propagation. In single interface problems
such terms are removed by a Galilean transformation with the weakly nonlinear
models following by balancing first-order terms with the nonlinearity. In the present
case we require the eigenvalues to be real and equal so that a Galilean transformation
can be applied to the system simultaneously. This condition defines, in general, a six-
parameter family of admissible basic states and we have reduced the solution space,
for relative simplicity, by taking the three fluid densities to be equal, leaving us with
the two viscosity and two depth ratios as the controlling parameters (the general case
can be analysed in a directly analogous manner). Basic states satisfying this condition
(the resulting parameters are such as to give what is known as an umbilic degenerate
point for the unregularized system of conservation laws) were explored in detail and
two canonical cases arise. The first case, termed symmetric (see figure 2(a) and § 3.1),
emerges by perturbing parameters and carrying out a weakly nonlinear analysis about
a flow with all layers having equal viscosity and with the thicknesses of the top and
bottom layers being equal. The resulting evolution equations (3.7) are inertialess (the
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viscosity stratification instability enters at higher order) but contain nonlinear fluxes
of mixed hyperbolic–elliptic type. The second canonical case, termed non-symmetric,
perturbs about basic states with different layer viscosities and thickness ratios and the
analysis is described in § 3.2 (see figure 2b for a typical base flow profile), resulting
in the system of evolution equation (3.15). In this case inertia enters and was found
to destabilize the flow for viscosity and thickness ratios explored here. The nonlinear
flux functions are again of mixed type and consequently enhance the rate of energy
input that comes from the inertial terms (note that surface tension provides short-wave
stabilization rendering the equations well-posed).

The symmetric inertialess systems generically evolve to produce nonlinear travelling
wave coherent structures such as those depicted in figure 5. These nonlinear structures
can emerge in one of two ways: (i) from infinitesimally small initial perturbations
in the case when the system is linearly unstable with respect to the flat states
(η1 = η2 = 0); here the instability is either due to Majda–Pego instability or the
‘alpha’ effect (see § 3.1); (ii) from initial disturbances of amplitudes above a threshold
value in the case when the flat states are linearly stable to all wavelengths. We note
that the required threshold amplitudes are moderate; for example, in the computations
depicting this phenomenon in figure 6, the initial energy required is approximately
1.164 which is equivalent to a scaled amplitude 0.657 of an equivalent monochromatic
sinusoidal initial condition. We have established that the reasons for this are due
to the underlying hyperbolic–elliptic transitions and Majda–Pego instabilities found
in our systems of multilayer equations. An important conclusion that can be drawn
from these findings is that in the case of three stratified layer flow (we surmise that
systems with additional interfaces will behave analogously), linear stability analysis
is a necessary but not sufficient condition for the emergence of non-trivial nonlinear
coherent structures.

The presence of inertia found in the non-symmetric case can provide a destabilizing
mechanism that enriches the dynamics of the system and in general enables complex
chaotic dynamics to emerge in many parameter regimes. Note that such mechanisms
can arise even at zero Reynolds numbers due to capillary and Marangoni instabilities
(see for example Papageorgiou et al. 1990; Kalogirou, Papageorgiou & Smyrlis
2012). Illustrative examples have been given in the absence (ζ = 0) and presence
(ζ 6= 0) of the linear kinematic terms in the flux function of (3.15); we consider
two cases (following unslaved and slaved dynamics, respectively) characterized by
strongly chaotic dynamics and chaotic homoclinic bursts, respectively, when ζ = 0
(see figures 7 and 8). The kinematic terms (measured through ζ in our models) can
promote hyperbolic–elliptic transitions as well as Majda–Pego types of instabilities,
and comprise an additional source of instability even in the presence of ‘negative
diffusion’ caused by the inertia (see the positive definite second-order diffusion matrix
S in (3.15)). We have carried out extensive numerical experiments to determine the
effect of increasing ζ on the dynamics, and have found that solutions which are time-
periodic or chaotic when ζ is zero or small, ultimately become regularized into steady-
state travelling waves at sufficiently large ζ . In particular, for the slaved dynamics
case, table 2 summarizes these findings and two interesting dynamical phenomena
emerge: (i) the behaviour as ζ increases is non-monotonic, i.e. there are alternating
windows supporting chaotic dynamics and time-periodic solutions; (ii) the transition
from chaotic dynamics to the ultimate nonlinear travelling waves that emerge at ‘large’
ζ (in the example of table 2 these waves appear at ζ > 0.72416×10−3, approximately),
takes place through a reverse Feigenbaum cascade via a sequence of period-halving
bifurcations. Our numerical findings are consistent with the Feigenbaum universal
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theory but a significant amount of additional simulations is required to establish this.
We also emphasize that the regularization of the underlying complex dynamics by
enhancing the kinematic instability terms is a novel regularization phenomenon that
is quite distinct from the more familiar dispersive regularizations found in single
nonlinear evolution equations (e.g. the dispersively modified Kuramoto–Sivashinsky
equation; see Akrivis et al. (2012)). In the present problem large ζ enables the system
to promote the kinematic terms compared to the inertial ones thus pushing the system
towards the canonical symmetric case equations that produce travelling-wave states at
large times.
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Appendix. The extra condition for the velocities w̃(0)
i

Using (2.40), the integral expression for the leading-order normal velocity w̃(0)
3 in the

bottom fluid layer 3 reads

w̃(0)
3 =−

∫ y

0
ũ(0)3ξ dy, (A 1)

while in the top layer 1 we have

w̃(0)
1 =−

∫ y

h2

ũ(0)1ξ dy+ cw1. (A 2)

The no-slip condition at y= 1 gives

cw1 =
∫ 1

h2

ũ(0)1ξ dy. (A 3)

The normal velocity in the middle layer 2 is given by

w̃(0)
2 =−

∫ y

h3

ũ(0)2ξ dy+ cw2, (A 4)

and continuity of velocities at the lower-most interface y= h3 gives

cw2 =−
∫ h3

0
ũ(0)3ξ dy. (A 5)

Consequently, the remaining extra condition corresponding to continuity of normal
velocities at y= h2 reads∫ h3

0
ũ(0)3ξ dy+

∫ h2

h3

ũ(0)2ξ dy+
∫ 1

h2

ũ(0)1ξ dy= 0. (A 6)

This condition can also be obtained by differentiating the overall flow-rate equation
(2.33) with respect to ξ and using the Leibniz formula since the limits of integration
are functions of ξ .
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