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We study SDE and PDE models for opinion dynamics under bounded confidence, for a range of different
boundary conditions, with and without the inclusion of a radical population. We perform exhaustive
numerical studies with pseudo-spectral methods to determine the effects of the boundary conditions,
suggesting that the no-flux case most faithfully reproduces the underlying mechanisms in the associated
deterministic models of Hegselmann and Krause. We also compare the SDE and PDE models, and use
tools from analysis to study phase transitions, including a systematic description of an appropriate order
parameter.
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1. Introduction and previous work

This work focuses on bounded confidence models for opinion dynamics under social influence
(Castellano et al., 2009; Proskurnikov & Tempo, 2017, 2018), which is part of the larger field of
mathematical modelling in the social sciences (Castellano et al., 2009; Turchin, 2016, 2018). In contrast
to graph-based models in which communication occurs only between connected individuals, here
communication is instead limited by the difference in their opinions, which is treated as a continuous
variable. A typical example of a continuous opinion is an individual’s political orientation, which is
not restricted to a few discrete choices, such as extreme left or right, but rather can vary across a
spectrum. The motivation for bounded confidence models comes from ‘biased assimilation’ (Lord
et al., 1979), which postulates that individuals are more strongly influenced by others with similar
opinions to their own. A related consideration is that genuine discussion generally only occurs between
individuals who already share some common ground, i.e., they already have sufficiently close opinions.
This can be modelled by the coupling between individuals increasing as their opinions become more
similar.
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2 B. D. GODDARD ET AL.

Here we consider models with a hard cut-off in opinion space; individuals with opinions differing by
more than the confidence bound R do not influence each other. Such models were originally proposed
as deterministic, discrete-time processes (Deffuant et al., 2000; Hegselmann & Krause, 2002; Weisbuch
et al., 2002), which have also been extended to include noise or randomness (Pineda er al., 2009,
2011, 2013; Su et al., 2017), modelling uncertainty in observations or external influences. Related
models include continuous time Ordinary Differential Equations (ODEs) (Blondel et al., 2010; Yang
et al., 2014), Stochastic Differential Equations (SDEs) and (in the limit of many individuals) Partial
Differential Equations (PDEs) (Kolarijani et al., 2019; Wang et al., 2017). See Castellano et al. (2009);
Proskurnikov & Tempo (2017, 2018) for comprehensive reviews. In the below, due to the inclusion
of noise in the SDE and (implicitly in) the PDE models, we refer to them as non-deterministic. More
general formulations arise in mathematical biology as the Keller-Segel model (Keller & Segel, 1970)
for slime mold, and other similar models (Mogilner & Edelstein-Keshet, 1999; Mogilner et al., 2003;
Topaz et al., 2006). Since the individuals which interact changes according to the dynamics, such models
are often described through ‘co-evolutionary networks’ (Proskurnikov & Tempo, 2018), e.g., the Vicsek
model of phase transitions (Vicsek et al., 1995), the Cucker-Smale model for flocking (Cucker & Smale,
2007a,b; Motsch & Tadmor, 2011) and robotics (Bullo er al., 2009; Canuto et al., 2012; Jadbabaie
et al., 2003). We also highlight recent mathematical work concerning the well-posedness and long-time
behaviour of related mean-field models (Carrillo et al., 2020; Chazelle et al., 2017; Goddard et al.,
2020).

A typical question one asks about such models is how a uniform, or disordered, initial condition
evolves under the interactions of individuals; typically the system is driven to a more ordered state
(Castellano et al., 2009; Kubo et al., 2012; Yeomans, 1992). This has clear analogues with order—
disorder phase transistions (Yeomans, 1992). Two popular models are due to Hegselmann and Krausse
(HK) (Hegselmann & Krause, 2002) and Deffaunt and Weisbuch (DW) (Deffuant et al., 2000; Weisbuch
et al., 2002). See Proskurnikov & Tempo (2018) for a recent review. Both are discrete in time and rely
on the idea of repeated averaging under bounded confidence. In DW, agents interact in randomly chosen
pairs who then either do or do not compromise (depending on the separation of their opinions). In HK,
an individual moves to the average opinion of all agents within a distance R of themselves in opinion
space. In such models, an initially homogeneous or uniform distribution of opinions is unstable. This
is due to boundary effects, in which those with extreme opinions can only be influenced by those with
less extreme opinions, and hence tend to move towards more moderate values, causing clusters. Three
possible outcomes are: (i) consensus (a single cluster); (ii) polarization (two distinct clusters); (iii) frag-
mentation (more than two distinct clusters, or no distinct clusters). It has been noted that the number of
clusters is typically 1/(2R), which is related to the 2R-conjecture (Blondel et al., 2007; Castellano et al.,
2009). This conjecture, which originally referred to the HK model, states that a uniform distribution of
agents converges to clusters separated by distances of roughly 2R. This was studied in Wang et al. (2017)
for a PDE model with periodic boundary conditions; it would be interesting to investigate this further
for the different boundary conditions proposed below. This is a topic of future work.

This convergence to a steady state is not normally observed in real-world systems (Ben-Naim,
2005; Carro et al., 2013; Yildiz et al., 2013). Two possible factors missing from these models are (i)
influence of external agents or information, such as ‘radicals’, leaders or advertising; (ii) uncertainty
in the dynamics. For (i), it is usually assumed that such influences are constant in time (Diiring et al.,
2009; Hegselmann & Krause, 2015; Kolarijani et al., 2019; Masuda, 2015; Wongkaew et al., 2015;
Yildiz et al., 2013), or weakly susceptible to other opinions (Zhao et al., 2016). Numerical simulations
have demonstrated counterintuitive effects concerning the introduction of radials, such as increasing
radical numbers decreasing the number of individuals sharing their opinion after long times. We
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will demonstrate similar effects in our non-deterministic models; see Section 5. For (ii), it has been
argued (Ben-Naim, 2005) that diffusion is an essential element of opinion dynamics, allowing the
modelling of realistic political systems with disorder-order transitions and complex lifecycles. This
has close links to the use of environmental noise in statistical physics models, which can lead to
phase transitions (Ben-Naim, 2005; Czirdk et al., 1999; Grauwin & Jensen, 2012; Kolarijani et al.,
2019; Pineda et al., 2009, 2011, 2013; Sznajd-Weron et al., 2011; Wang et al., 2017). Additionally,
in many applications, it is not only the equilibrium that is interesting, but also the dynamical path to
that equilibrium (Castellano er al., 2009). For example, if the opinion measures political persuasion,
then one would typically be interested in the distribution at a particular time (e.g., on an election date)
than in the long-term equilibrium. We note here that existing approaches fail to correctly model the
appropriate boundary conditions for such applications; we discuss this in detail later. In Sections 4
and 5, we systematically investigate both the effects of the noise strength and the dynamical paths to
equilibrium.

Due to the non-linear, non-local nature of many opinion dynamics models, and the resulting
challenges of analytical investigation, the use of careful and systematic computer simulations has been
important in social dynamics for decades, see e.g., Hegselmann & Flache (1998); Hotyst ez al. (2001);
Stauffer (2001); Wang et al. (2017); Zhao et al. (2016). For N individuals, the agent-based, ODE and
SDE models typically have computational costs that scale as N2, which is the cost of determining
the pairwise distances. An interesting regime, which is amenable to both mathematical analysis and
decreased computational cost, is the mean-field limit where the number of individuals becomes very
large, N — oo. Then the high-dimensional descriptions of individual opinions reduces to a 1+1
(space-time) dimensional non-local, non-linear PDE, for which there exist a range of accurate and
efficient numerical approaches (Gomes et al., 2020; Kolarijani ef al., 2019; Nold et al., 2017; Wang
et al., 2017). Such PDE models have been referred to by a variety of names, including density-based
(Lorenz, 2007), continuum (Blondel et al., 2010; Hendrickx & Olshevsky, 2016), Eulerian (Canuto
et al., 2012; Mirtabatabaei et al., 2014), hydrodynamic (Motsch & Tadmor, 2011, 2014), kinetic
(Boudin & Salvarani, 2016; Brugna & Toscani, 2015; Diiring et al., 2009) or mean-field (Garnier
et al., 2017; Kolarijani er al., 2019; Nordio et al., 2017; Wang et al., 2017). We note, in particular,
that kinetic models provide an intermediate level of coarse-graining, between the discrete, ‘particle’,
models and the continuum, "hydrodynamics-type’ PDEs. In kinetic models, interactions are modelled
through instantaneous, local ‘collisions’, or interactions, between individuals. This contrasts with the
‘soft’ interactions included in the PDE models presented here.

Returning to the SDE and PDE models, there can be crucial differences between the two models:
Firstly, order—disorder phase transitions are rigorously defined only in the thermodynamic limit as only
then can there be non-uniqueness of invariant measures. However, such terms are still used for similar
behaviour in the finite-N models (Toral & Tessone, 2007). Secondly, there are questions about how
large the number of agents needs to be in order for the SDE and PDE models to be in good agreement.
Many techniques used to study PDE models arise from statistical mechanics, but care must be taken
when directly transferring them to the social sciences. This is due to the different notions of a ‘large’
number of individuals/particles; in molecular systems this could be of the order 1023, whereas in social
systems, it is more likely to be in the hundreds or thousands. In such cases, finite-size effects are likely
to be important (Toral & Tessone, 2007); we demonstrate this in Supplementary Material Section SM3.
However, these differences must be balanced by the relative computational complexities: as above, the
computational cost of the SDE, agent-based model scales as N2, whereas that of the PDE is independent
of N, depending instead on the discretization.
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The mean-field limit of a system of weakly interacting agents in the presence of noise is given by a
non-linear, non-local PDE of Fokker-Planck type. For such PDEs (as well as the corresponding SDEs),
it is necessary to specify boundary conditions. Previous work has been restricted to periodic domains,
presumably for mathematical and computational ease, see e.g., Garnier et al. (2017); Kolarijani et al.
(2019); Wang et al. (2017). However, care must be taken when comparing such implementations to
the original deterministic models. For example, in the original models, if all initial opinions lie in an
interval [a, b], then this holds for all time (Proskurnikov & Tempo, 2018). To aid comparison, it would
be natural to treat the non-deterministic models in the same way, requiring the individual opinions to lie
in some prescribed interval, which, without loss of generality, may be chosen to be [0, 1]. One criticism
of periodic boundary conditions is that they conflate the two extreme opinions at 0 and 1; this implies
that two opposite extremes (e.g., on the political spectrum) are close. This is clearly not a realistic
assumption. Whilst the even two-periodic choice in (Kolarijani ef al., 2019) overcomes this conflation,
it does so at the expense or introducing a mirror system, which can strongly influence the dynamics
and has (potentially) undesirable effects on quantities such as the order parameter; see Section 2.4.
Here we introduce an additional choice of boundary conditions, namely no-flux. This can be regarded
as a mixed (Robin) boundary condition for the mean-field Fokker-Planck-McKean-Vlasov PDE. As
in the existing two cases, this preserves the mass conservation property of the model, but does not
conflate extreme opinions nor require the introduction of an auxiliary system. We propose that no-
flux boundary conditions are much more compatible with the original, discrete HK models in terms of
the mechanism of cluster formation from a uniform initial condition. For example, as we will see in
Section 4, large R (confidence bound) and small o (noise) causes an initially uniform distribution to
develop a cluster in the middle of the interval, rather than remaining in a uniform steady state, which
is predicted when periodic boundary conditions are chosen. In particular, we note that previous results,
such as the numerical experiments and resultant phase diagrams in Wang et al. (2017) and the rigorous
analysis reported in Garnier et al. (2017) depend crucially on the assumption of periodic boundary
conditions. Given that the choice of periodic boundary conditions is clearly not optimal from a modelling
perspective, it is not obvious whether the numerical experiments reported in these papers are relevant to
the study of opinion dynamics.

The challenge with no-flux boundary conditions is both analytical and numerical. The additional
analytical challenges arise principally from the fact that, as already mentioned in Goddard et al. (2020),
the no-flux boundary conditions for the McKean-Vlasov PDE are non-linear and non-local. This means,
in particular, that the uniform distribution is no longer a stationary state. Furthermore, doing linear
stability analysis, in the form of Garnier er al. (2017) [Sec. 4.1] is more involved, since the perturbation
from the stationary state has to be chosen in such a way that it satisfies the boundary conditions and
that it has zero mass. We note that, at least formally and in the absence of radical groups, the mean
field PDE is a Wasserstein gradient flow for the free energy (Villani, 2003). We reiterate that care
has to be taken when dealing with the nonlinear and nonlocal boundary conditions that we consider
in this paper. See Goddard et al. (2020) for details. In terms of numerical methods for SDE models,
reflecting boundary conditions are known to be challenging (Pilipenko, 2014; Skorokhod, 1961), and the
corresponding PDE models can no longer use efficient Fourier methods. Here we implement efficient
and robust Fourier and Chebyshev pseudo-spectral methods, based on Goddard et al. (2017); Nold et al.
(2017). We emphasise the fact that, due to their greater realism and compatibility with the original
deterministic models, we favour the use of no-flux boundary conditions in future studies; we include the
periodic cases for comparison with the existing literature.

For completeness, we also briefly discuss the possible choice of zero Dirichlet boundary conditions.
The key disadvantage in such as choice is that the system no longer preserves mass, i.e., the number
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of agents can change over time. This may, however, be an appropriate boundary condition in some
situations, e.g., if people with extreme political views stop interacting with others. Of course, if one
considers extreme opinions to be rare, and the vast majority of the population has opinions localized
in the centre of opinion space, then Dirichlet boundary conditions will give essentially identical results
to any other choice. This could be achieved, e.g., in a low-noise system where the initial condition
is centred towards the middle of the opinion space. However, when considering models with radicals
who may aim to drive opinions to extremes, this is clearly not the case. An important example of such
a system is a binary referendum, where the extremes of the system correspond to a strong likelihood
of voting one way or the other. We do not consider such Dirichlet boundary conditions in this work,
primarily because the lack of mass conservation prevents a meaningful comparison to the other choices.
We mention that whether boundaries for mean-field SDEs modelling opinion formation are accessible
or not is an interesting question. In particular, it is possible that, for appropriate choices of the interaction
between agents, the dynamics never reaches the boundaries of opinion space. This is an interesting and
intriguing question — in particular, the development of a Feller-type classification for mean field SDEs
in a one dimensional bounded domain — that we plan to return to in future work.
Our main contributions are:

e a unification of existing and novel SDE and PDE models for bounded confidence opinion
dynamics;

e a systematic numerical study of the transient and long-time dynamics of these models, under
three different boundary conditions and a wide range of parameter regimes, with and without a
‘radical’ population;

e acareful discussion of an ‘order parameter’;

e the insight that the no-flux boundary conditions most faithfully reproduce the underlying
mechanisms of the original deterministic models.

The remainder of the paper is organized as follows: In Section 2, we introduce the models, as well
as the associated order parameter, and convergence to equilibrium. Section 3 describes the details of the
numerical methods for both the PDE and SDE models. In Sections 4 and 5, we present the numerical
experiments for systems without and with radicals, respectively. Section 6 contains our conclusions
and a description of some open problems. The Supplementary Material contains more discussion on
the order parameter, validation of the numerical methods against existing results from the literature, a
thorough comparison of the SDE and PDE models, as well as some further examples.

2. Model
2.1  Dynamics

The original model of HK is discrete in time and space. It considers a set of N agents, with agent i
having opinion x; with x = (x;,...,xy). Bounded confidence is introduced by defining a confidence
level R and a set for each agent I(i,x) = {1 <j <N : |x; —xj| < R}, i.e., the set of all individuals whose
opinion is within R of that of individual i. At each time the opinion of individual i is updated through

e+ =[Ex)| ™ D x5,

Jel(ix(®)
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where here |/| denotes the number of elements of /. In words, an individual’s opinion at the next time
step is given by the mean of the opinions of individuals within their confidence interval. It is clear to
see here that if two groups are separated by a distance of R or more then they will form decoupled
subsystems, which then never interact. Note that there exist alternative models in which the attraction
increases with separation (Motsch & Tadmor, 2014).

In the SDE models (Kolarijani et al., 2019; Wang et al., 2017), which originate in statistical physics,
the mean is taken not over the set /, but over all individuals, with zero weight on those outside /, i.e., |/|
is replaced by N in the normalization. This leads to a simpler mean-field PDE but it is also possible to
retain the original normalization (Garnier ef al., 2016). The original choice of normalization is perhaps
more physically relevant, especially in swarming/flocking models, in which the bounded confidence is
based on physical, rather than opinion, distance (Cucker & Smale, 2007a,b). In such cases, it is plausible
to assume that an individual is completely unaware of those outside its confidence bound. In opinion
dynamics models, it is perhaps more reasonable to assume that an individual polls the opinion of all
other individuals (as if in a completely connected network) and simply ignores the opinion of those
individuals outside their confidence bound. Introducing the 1/N scaling results in dynamics, which are
slowed down by the presence of individuals who do not interact, and are, in fact, unaware of each
other (Motsch & Tadmor, 2011); other works have claimed that the results are insensitive to this choice
(Canuto et al., 2012; Garnier et al., 2016).

For a system of N individuals with opinions x;, and a confidence bound R, the dynamics that we
consider in this paper, given a suitable initial condition, are described by (Wang et al., 2017)

dy=—= > (—x)dr+odw,”, Q2.1

1
Jilxi—xj| <R

where W,(l) are independent Wiener processes. As described in Section 1, the motivation for including
noise comes from agents’ ‘free will’, or uncertainty in measurement and communication. Taking the
mean-field limit of N — oo results in a Fokker-Planck PDE for the density of opinions p(x, f) (Garnier
etal.,2017; Wang et al., 2017):

2
9,p(x, 1) = 9, (p (x,1) / x=pO D1y <) dy) + %%p(x, 1, (2.2)

where p corresponds to the empirical measure p" (x,7) = N -1 Zj (SX/_ (dx) as N — oo.

2.2 Boundary conditions

It remains to discuss the boundary conditions (BC) imposed on Equations (2.1) and (2.2). As discussed
above, we consider three separate cases: (i) periodic; (ii) no-flux; (iii) even two-periodic, all on [0, 1],
representing opinion space. For BC (i) [Periodic] the natural interpretation is that p(x,?) is extended
periodically to the whole of R with the periodicity condition p(x + 1,7) = p(x, 1), Vx € R. We note that
p (-, 1) is not a probability density on R, but does serve as a (normalized) probability density on [0,1].
If [0,1] represents the whole of opinion space then this is clearly not a good modelling assumption; in
particular it conflates the two extreme opinions. For BC (ii) [No-Flux], it is helpful to rewrite (2.2) in
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terms of the flux, j:

2
dp(1) = =3 i), jlnD) = —px.1) / (= D0 Dy g0 dy = S0P D). (23)

We then impose no-flux boundary conditions, i.e., j(0,f) = j(1,f) = 0. We emphasize that these
boundary conditions are non-local and non-linear due to the nature of the flux in the PDE (2.2).

The mean field PDE (2.3) can be written as a gradient flow in the sense of Jordan-Kinderlehrer-Otto
(Carrillo et al., 2020)[Sec. 6.2]:

8.F
9006 1) = . (paxg) , 2.4)

where the free energy for the Hegselmann-Krause model is

02
Flpl = > / plog(p) dx + / W(x —y)px)p(y) dxdy, (2.5)

with

R 2
Wx) = — ((IXI - 5) ) (2.6)

where (-)_ denotes the negative part of a function. In Carrillo et al. (2020)[Sec. 6.2] it was shown that,
for periodic boundary conditions and at sufficiently small R, an appropriately rescaled Hegselmann-
Krause model exhibits a discontinuous phase transition. Similar results for the nonlinear, nonlocal no-
flux boundary conditions that we consider in this paper will be presented elsewhere (Goddard et al.,
2021).

For BC (iii) [Even two-Periodic], we follow Kolarijani ef al. (2019). Rather than considering p (x, )
on x € [0, 1], we consider its unique even, two-periodic extension which satisfies p(—x, ) = p(x,t) and
p(x+2,1) = px,t), Vx € R. Again, p(-,?) is a probability density on [0, 1]. For clarity, in this case the
sum over j in (2.1) is over the full, even two-periodic system with 2N individuals. We will show that the
no-flux boundary conditions most faithfully reproduce the behaviour of the original HK models, e.g.,
the instability of a uniform initial condition, and the physical interpretation of the domain.

2.3 Radicals

As described in Hegselmann & Krause (2015); Kolarijani ef al. (2019), a natural extension of bounded
confidence models is to include N, > 0 radicals, or extreme groups. These should be thought of as
individuals with fixed opinions who, nevertheless, affect the opinions of those who interact with them.
As discussed in Hegselmann & Krause (2015), such a formalism can also be used to model advertising,
charismatic leaders and other external effects. In the language of statistical mechanics, radicals act as an
external potential. Radicals (or stubborn agents) have also been included as a generalization of the voter
model, see, e.g., Yildiz ef al. (2011, 2013).
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For the SDE, we retain the indexing of the ‘normal’ individuals as 1,...,N, and add in radicals
indexed by N 4 1,...,N + N,.. The dynamics are then governed by

dy, = — — z (xi—xj)dt+adW(i), i=1,...N

1
Jilxi—x; <R

dx; =0, i=N+1,...,N+N,.
Note that the sum in the first equation now runs over j = 1,...,N + N,. The corresponding Fokker-
Planck PDE is

8tp(-x’ t) = _a)(j(xs t)a

2

) = =p(t) [ (6= 3)(000 + Mo )1y <)y = G000,

where p, determines the (fixed) distribution of the radicals. We find it convenient to fix p, as a
probability distribution (in the senses described above for the periodic boundary conditions) and scale
the mass with a parameter M. For physical reasons, p, should be non-negative (although it is interesting
to consider negative/repulsive opinions), and also M <« 1, otherwise the interpretation as p, as the
density of ‘radicals’ is lost. However, these restrictions are not intrinsic to the model itself. Note that, in
the case of even two-periodic boundary conditions, x € [—1, 1], the full space, and the convolution is
also taken over this whole domain.

2.4 Order parameter

To enable quantification of the resulting opinion densities, Wang et al. (2017) introduced the order
parameter, which has both a discrete and continuum definition:

. 1 & .
Qd(l) = ]W Z 1|X,‘(t)—xj(t)‘§R’ Qc(t) = //,O(X’ [),O(y, t)llx—yISR(y) dXdy

ij=1

In the sequel, we denote both quantities by O, as their use is unambiguously defined by the data to which
they refer. We will shortly explain the seemingly extraneous tilde notation.

The order parameter measures the order (or disorder) of the opinions. One interpretation is
that it measures the proportion of pairs of individuals within a radius R of each other in opinion
space. Naturally, disorder is described by a uniform distribution, whereas clustering (localized states)
corresponds to consensus. For a uniform distribution x; = i/N, for each i we find ZJ- lx; — xj| = 2RN,

and so Q = 2R, which provides an R-dependent lower bound for Q; the same holds for p(x,7) = 1,
Vx € [0,1] in the continuum case. For a single cluster of individuals of width less than R, we find
Q = 1, which is the maximum value of Q for both the periodic and no-flux boundary conditions. For
n equal clusters, of width less than R, and separated by at least R, we find that Q = 1/n, suggesting
that the order parameter is essentially the inverse of the number of well-separated clusters. Note that
there is not an injective mapping between densities and order parameters. The systematic derivation of
order parameters for models of opinion dynamics will be studied in future work. We emphasize that the

120Z 18que0aQ 1 U0 }sonB Aq /+//Z#9/vF0dEXUAeWEWI/EE0 L0 1/I0P/o[oIE-80UBAPE/JBWEIY/WOD dNO"0IWapEoe)/:Sdjjy WO} POPEOJUMOQ



NOISY BOUNDED CONFIDENCE MODELS FOR OPINION DYNAMICS 9

identification of the order parameter for models of opinion dynamics is not a straightforward matter,
since it is not clear what the ‘physical’ significance of such an order parameter is. This contrasts with
other situations such as the magnetization in Ising-type models.

We now note that the order parameter for the even two-periodic case is somewhat different. We
now have (at least) two choices: compute the order parameter for N individuals on [0, 1], or for 2N
individuals on [—1, 1]. In the first case, it is unclear how one should define the distance between two
individuals on [0, 1], since the dynamics are defined on [—1, 1] with even/periodic boundary conditions.
It is also desirable to use the same definition of / in both the dynamics and the order parameter; this is
only possible when defining Q using p on the whole domain [—1, 1].

Consider a uniform distribution of 2N individuals on [—1, 1] with periodic boundary conditions,
which results in 2125\7:1 1| v—xj|<R = 2N2R. Hence, to obtain the same value of Q as in the periodic case,
one requires a prefactor of 1/(2N?). The same normalization gives the corresponding results for single
and multiple clusters which are well-separated from each other and the domain boundaries. Motivated
by this, we redefine the order parameters, removing tildes:

Nic

1
0,0 = CBCIW Z 1|x,-(t)—xj-(t)\§R’ 0.(t) = cpc // p(x,0)p(y, t)llx—yISR(y) dxdy.

ij=1

where cgc = 1, Ngc = N for periodic and no-flux boundary conditions and cgc = 1/2, Ngc = 2N for
even two-periodic boundary conditions. Note that, as above, if R is small, or the opinion distribution is
located away from the boundaries of the domain, then our definition is equivalent to that used previously
(Kolarijani et al., 2019). However, this leads to some non-standard results for Q in the even two-periodic
case. Consider a single cluster of particles in [1 — R/2,1], and the corresponding mirror cluster in
[—1,—1 4+ R/2]; this leads to a value of Q = 2. We use Q > 1 as a signature that the even two-
periodic boundary conditions have had a significant effect on the dynamics. We give some examples of
the behaviour of the order parameter in Supplementary Material Section SM1.

2.4.1 Stationary states and convergence to equilibrium. First, we remind the reader that stationary
states for the HK dynamics are defined as stationary solutions of the mean field PDE, either in the
absence or in the presence of radicals. When writing the mean field PDE as a conservation law, Equation
(2.3), then the stationary Fokker-Planck equation becomes

2
~8,j0 =0, j@=—pE / (&= DOy <p () dy = -0, (0. 2.7)

In view of the no-flux boundary conditions j(0) = j(1) = 0, the stationary Fokker-Planck equation
becomes

j(x) = 0.

Since the HK PDE admits a gradient flow formulation (2.4), it is possible to give a variational
characterization of stationary states in terms of critical points of the free energy functional (2.5). The
equivalence between the different characterizations of stationary states of the mean field PDE with
periodic boundary conditions, as (a) stationary solutions of the Fokker-Planck equation, (b) critical
points of the free energy functional, (c) global minimizers of the entropy dissipation functional and (d)
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solutions of the Kirkwood-Monroe integral equation is presented in Carrillo ef al. (2020)[Prop. 2.4].
Similar results for the case of no-flux boundary conditions will be presented elsewhere (Goddard et al.,
2021).

Away from the phase transition, we expect that we have exponentially fast convergence to
equilibrium, measured either in relative entropy or in an appropriately weighted L? norm. It is useful to
have a measure of how quickly the solution of (2.2) converges to equilibrium, i.e., of the exponent in
the exponential estimate. We have found that a robust measure of being close to equilibrium is that the
maximum value of 9, is lower than a given tolerance &.,. When this first happens defines an equilibrium
time leg for the system. We note that this time clearly depends on the tolerance chosen, and so should be
regarded as a measure of relative time to equilibrium for different parameter regimes, rather than a firm
statement that we have reached equilibrium. Unless otherwise stated, we choose Eoq = 1074,

3. Numerical methods

In this section, we give some details of the numerical methods employed for the SDE and PDE models,
which were described in the previous section.

3.1 Continuum model

There are two principal methods that have been used to obtain accurate solutions of the continuum
equations (2.2). The first, used by Wang et al. (2017), is a semi-implicit pseudo-spectral method, which
is a standard approach used in fluids dynamics and statistical mechanics. Their method approximates
the solution at a finite number of points in real space, with a corresponding Fourier transform.
The derivatives are straightforward to approximate in Fourier space, by multiplication, whereas the
convolutions can be approximated by inverse Fourier transformation to real space. For smooth solutions,
such methods are exponentially accurate in the number of collocation points, and automatically satisfy
the periodic boundary conditions and mass conservation. Time-stepping is performed with a semi-
implicit update.

A related method is used in Kolarijani ef al. (2019) where, rather than approximating the solution
on a spatial grid, it is expanded in a basis of the corresponding Hilbert space, with the expansion
truncated on a finite set. This leads to a system of ODEs for the coefficients of the basis functions,
which then produce an approximation to the solution of the PDE. Once again, this is particularly suited
to periodic geometries, as there is a clear basis set to use (Fourier or complex exponentials), and the
periodic boundary conditions are applied through the use of periodic functions.

We note now that the no-flux case is more challenging in this regard. The boundary condition is now
non-local, since the flux (see (2.3)) contains the interaction term. Our approach is based on the Matlab
package 2DChebClass (Goddard et al., 2017), which utilizes a Chebyshev pseudo-spectral method in
which the convolution integrals are computed in real space. This has been shown to give highly accurate
and efficient solutions for related non-local, non-linear PDEs in one and two dimensions. The main
challenges over standard implementations (Boyd, 2001; Trefethen, 2000) are: (i) how to compute the
convolutions with a finite support ([x — R, x + R]); (ii) how to enforce the boundary conditions.

3.1.1 Computation of convolutions. For (i), we note that the problem has already been solved in
2DChebClass (Goddard et al., 2017), in particular for the computation of hard-rod free energies in
(dynamical) density functional theory. In short, for a given computational point y,, the interval of interest
is JR’n = [max(0,y, — R),min(1,y, + R)]. For a pseudo-spectral method, given a vector of M spatial
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collocation points y = {y,,}, a function f is approximated by a vector of values at each of these points,
which we denote by f[y], such that f,, = f(y,,). Suppose we wish to evaluate the convolution

C — K _/ /d/
) /jR (v = )p(¥)dy

for some explicit function K, an interval .#, = [max(0,y — R), min(1,y" + R)], and a general p. This
can be computed straightforwardly through matrix multiplication, as follows:

e Discretize the whole domain [0, 1] with a vector of N Chebyshev collocation points,y = {y,};

e Choose a discretization point y; and determine the interval % ; = [max(0, y, —R), min(1,y, +
R
o Discretise the interval 7, with N Chebyshev collocation points, §; = {3, ;};

e Compute the corresponding integration weight (row) vector corresponding to y;, denoted w;,

such that, w; x f[j;]1 ~ [z f()dy;

e Compute the NxN (barycentric) interpolation matrix, B;, from y to y;, such that B; x f[y] ~
VAL

o Evaluate the (explicit) kernel K at y; —y; with values placed on the diagonal of a N x N matrix,
with all other entries zero. We denote this matrix Kj;

e The i-th row of the N x N convolution matrix Cp is then given by (Cg ;) = W; X K; X B;.

Then, for any length N vector p with p, = p(y,), we have C x p ~ ffk Kby —y)pOdy.

In words, for each collocation point, we first interpolate p from the full interval [0, 1] onto the
convolution domain .#, giving p(y"). We then multiply by the kernel evaluated at y—y’, giving K (y—)").
Taking the product of these two results and multiplying by w; then results in an approximation to
the convolution. The main advantage of this procedure is that the convolution matrix depends only
on R and K, and thus needs only to be computed once for each such pair. It can then be reused
at each timestep within a single computation and, indeed, for any computations involving the same
convolution. Additionally, exactly the same procedure may be applied to the periodic domains, but with
the simplification that the length of the convolution domain is the same for each collocation point.

3.1.2 Enforcing boundary conditions. It remains to determine how to accurately enforce the no-flux
boundary conditions, i.e., point (ii) above. After discretizing space with a set {y,} of N collocation
points, a PDE is reduced to a set of N (coupled) ODEs, describing the value of p at each of the y,. In
particular, there are N — 2 collocation points in the interior of the domain, and 2 collocation points on
the boundary (here, the points at 0 and 1). Two standard approaches to tackling boundary conditions
in pseudo-spectral methods are interpolant restriction and boundary bordering (Boyd, 2001; Trefethen,
2000).

For interpolant restriction, one would typically solve a problem with zero Dirichlet (or other simple)
boundary conditions and then add on a particular solution that satisfies the desired boundary conditions.
The challenge when applying this method lies primarily in determining a particular solution of the (non-
local, non-linear) equations which satisfies the boundary conditions; this is far from straightforward in
general, and also leads to a problem-specific numerical method.
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Suppose the system of ODEs is written as dp/dt = Lp, for some matrix L corresponding to a
discretized linear operator. Then the boundary conditions may be imposed by deleting rows and columns
of the matrix L and replacing them by rows and columns which impose the desired boundary conditions.
Note that this is again a problem-specific approach, and the substitution effectively has to be performed
‘by hand’. It is also still unclear how this could be performed straightforwardly for a non-local, non-
linear problem, such as those studied here.

Instead, we use a similar, but more general approach of differential-algebraic equations. We replace
the set of N ODEs with the N —2 ODEs on the interior, and two algebraic boundary conditions. This set
of equations may then be solved with a standard numerical scheme, such as Matlab’s odel5s. The key
benefits here are that it is straightforward to implement for non-local, non-linear boundary conditions
and one does not need to determine anything ‘by hand’.

3.1.3 Even two-periodic boundary conditions. We now briefly describe how to enforce the even
two-periodic boundary conditions. This is done by working on a periodic domain [—1, 1], using an
analogous discretization as in the standard periodic case. To enforce the evenness of the solution, we
define it only on half of the domain, [0, 1] and then, when operations such as differentiation, integration
or interpolation need to be applied, we mirror it to the full domain [—1, 1]. Note that, for technical
reasons, our numerical implementation actually stores p on [—1, O], but the overall idea is identical. This
‘mirroring’ operation automatically satisfies the periodic boundary conditions of the solution. However,
we note that it can lead to numerical challenges since it does not enforce smoothness of the solution at
0 or £1. This can be overcome by choosing an initial condition which is smooth on the whole domain
as, at least morally, the diffusive part of the PDE ensures that this smoothness is conserved. However,
in our examples, since we define the initial condition as a periodic function on [0, 1], such smoothness
is not guaranteed.

3.1.4 Computational details. As described above, we use pseudo-spectral methods with Fourier
(periodic, even two-periodic) or Chebyshev (no-flux) collocation points. In each case, we use 200 such
points, distributed either on [0, 1] (periodic, no-flux) or on [—1, 1] (even two-periodic), and interpolate
to 400 evenly spaced points for plotting. For the convolution integrals, we choose N = 100. We note
that these numbers may seem high for pseudo-spectral approaches, but here there are (at least) two
motivating reasons. Firstly, we require highly accurate solutions over very long times (e.g., up to time
10* or 10°) and, secondly, in many parameter regimes, the densities become strongly peaked with very
high derivatives. We have found that these constraints lead to a requirement for a relatively large number
of points for certain parameter regimes, notably those with small o and large R. This is unexpected as
such problems become highly advection-dominated. For ease of comparison, we use the same number
of points for all computations. We note that a typical dynamical computation takes significantly less
than a second on a standard laptop, whilst precomputing the convolution integral matrices (which needs
to be done only once for each set of {function, boundary condition, R}) takes on the order of 20-30s for
the periodic geometries, and 5s for the Chebyshev case.

For the resulting discretized system of ODEs, we use Matlab’s odel5s routine, with relative and
absolute tolerances of 107® and Eoq = 10~4. We note that for the vast majority of the computations

shown here it is possible to reduce the tolerances to around 107! or even 10712, with correspondingly
smaller Eeq but, again for consistency, we fix these values for all computations, unless otherwise stated.
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3.1.5 Validation against existing results. We refer the reader to Section SM2 of the Supplementary
Material for an extensive validation of our numerical codes against existing results from Wang et al.
(2017) and Kolarijani et al. (2019).

3.2 Discrete dynamics

For the numerical solution of the SDE, we use the standard Euler-Maruyama method. We note that,
since the noise in the model is purely additive, in our case this is equivalent to the Milstein method,
and hence has both weak and strong orders of convergence equal to the time step, df. Unless otherwise
stated, we average our results over 10 runs of 10* particles with dr = 1072,

Since the method is standard, we only highlight some particular subtleties with the implementation
of the boundary conditions. Here we consider a set of positions x (1) = {x; (¢), ..., Xy (®), Xy 15 - - Xy4n,}
at time ¢, where the first N positions correspond to the normals, and the remaining N, to the radicals.
We define the (signed) separation between two positions x; and x; by S(x;, x;); for the no-flux case this
is simply x; — x;, whilst for the periodic cases it is the minimum separation of the two particles. For
example, for a periodic interval of length 1, S§(0.8,0.2) is —0.4, rather than 0.6. Note that the lengths of
the periodic and even two-periodic intervals are one and two, respectively. We define the set of particles
within the bounded confidence interval of particle i as .Z;(x) = {j : |S (xl-,xj) <R}.

Given x(¢), the proposed positions, ignoring the boundary conditions, at the next time step ¢ 4 dr are
given by

%,(t+ dr) = x;(1) — % > SGi.&) +ovdrxw (), i=1,....N
jeJi®
x(t+d)=x(), i=N+1,...,N+N,
where w;(?) is a random variable drawn from a normal distribution with mean zero and variance one.
Here, for the periodic and no-flux boundary conditions, X = x, whereas for the even two-periodic case,
X = x U —x, i.e., the union of the positions and their reflections.

Given the proposed positions at time ¢ + d¢, it is necessary to apply the boundary conditions. The
periodic case is standard; after each time step we ensure that the positions lie in the interval [0, 1] by
taking x;(t+dr) = X;(z4+df) mod 1. For the no-flux case, we use standard reflective boundary conditions
(Pilipenko, 2014): If X;( + df) € [0, 1] then set x;(t + df) = X;(t +d¢). If X;(t + dr) ¢ [0, 1] then propose
a new X,;(¢ + dr) by reflecting at the closest boundary (i.e., 0 or 1); repeat until X;(t 4+ df) € [0, 1] and
then set x;(¢ + df) = X;(¢ + dr). Note that, in practice, for sufficiently small dt, it is highly unlikely to
require more than one reflection at a given time step to ensure that X; lies in the interval. For the even
two-periodic case, by the symmetry of the problem any individual moving out of the interval [0, 1] has a
corresponding ‘mirror’ individual that moves exactly the same distance into the interval across the same
boundary. Thus, one way of implementing the even two-periodic boundary conditions is to apply the
same procedure as for the no-flux case. Note that this does not result in the same dynamics due to the
different choices of x.

Finally, we note that it is necessary to be able to sample from a given density of particles, both for the
initial condition and for the radical population. For simple distributions, such as uniform or Gaussian,
this can be achieved using standard pseudo-random number generators. However, to provide a general
approach, e.g., to sample from the triangular radical distribution used in Kolarijani et al. (2019), we
implemented a sampling algorithm using slice sampling, which is a Monte-Carlo approach capable of
sampling from any given density. To compare such densities, and the results of the SDE dynamics, to
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the PDE results, it is necessary to histogram the results and correctly normalise them; for a system with
N particles, which is to be averaged over N, runs, and binned into a histogram with bin width dx, with

runs
bin counts {b,}, the correct normalization is b;/(NN,,.dx).

runs

3.3 Comparison between the discrete and continuum models

We direct the reader to Sections SM3 and SM4 of the Supplementary Material for a comparison between
the SDE and PDE models. Of particular note is that a relatively large number of agents (of the order
103-10%) are required to ensure good agreement between the two models. This is a significantly larger
number of agents than used in previous studies, e.g., Kolarijani et al. (2019); Wang et al. (2017).

4. Numerical experiments: opinion dynamics in the absence of radicals

We begin our numerical experiments by studying noisy opinion dynamics models without radicals. For
a given boundary condition, there are only three other properties of the model: the values of R and o,
and the initial condition.

4.1  Uniform initial condition

Our first system has a uniform initial condition, which is standard in many opinion dynamics models,
see, e.g., Hegselmann & Krause (2015, 2002); Holzer & Khatri (2017); Kolarijani ez al. (2019); Motsch
& Tadmor (2014); Pluchino et al. (2006); Wang et al. (2017). This initial condition is a steady state for
both the periodic and even two-periodic boundary conditions, which can be seen in 1, and easily shown
using the stationary PDE. Here the different values of the order parameter are due only to the intrinsic
dependence of Q on R. However, this is the first demonstration of the significant effect of the boundary
conditions on the dynamics; the uniform distribution is not a steady state for the no-flux case, and the
density tends to cluster in the centre of the interval. This is a result of the density being zero outside the
domain [0, 1], so there tends to be an inwards net force on the individuals. There is a clear trend as R and
o change: increasing R tends to enhance the cluster formation, whilst the opposite is true for increasing
o . This has a simple explanation: for larger R there is more interaction, and hence the individuals tend
towards what is essentially the global mean, rather than the local mean with a small confidence interval;
increasing o adds more diffusion to the system, which tends to disperse clusters.

There is another striking feature of the middle plot in 1, namely that there seems to be a sudden
switch in behaviour as R and/or o are varied, with the long-time density being either strongly peaked
or almost flat. This is particularly noticeable when o is small. As such, in the middle panel of Figure 1,
we zoom in to a transition region (left panel) and also consider smaller values of o (right panel). The
bottom panels of Figure 1 show the time to equilibrium, as defined in Section 2.4.1, on a log scale.
The dynamics take appreciably longer to reach equilibrium in regions where the long-time dynamics
is particularly sensitive to the choice of parameters. Note that in the small-o case, it was necessary to
increase the equilibration tolerance to g, = 5x 10~%; there is overlap between the two plots at ¢ = 0.05
to aid comparison.

In Figures 2 and 3, we show the dynamics of parameter pairs labelled in the middle and right
subplots of Figure 1, respectively. We show snapshots of the density at various times (top) and the
order parameter as a function of time (bottom), with coloured dots corresponding to the time—Q values
for the snapshots in the upper panels. For the cases A—E in Figure 2, we see how the behaviour changes
for fixed o = 0.05 and increasing R. For small R, a shallow, almost uniform, cluster slowly develops.
As R increases the dynamics become richer. At first, the density develops two peaks, with the order

q
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parameter rising to a plateau. The two peaks then move together, before merging into a single cluster,
indicated by a larger Q. In particular, for case E, where R = 0.21, the initial state has Q ~ 0.4 ~ 2R, as
expected, it then rises to Q = 0.5, indicating the presence of two clusters, before ending at Q ~ 1, and
a single cluster. Cases (B, F, G) and (H, I, J) demonstrate the effects of fixing R and increasing o. In
(B, F, G), we begin in the small-o regime (B), where a single, steep cluster forms almost directly from
the uniform state, As o increases (F, G), diffusion dominates resulting in an approximately uniform
distribution. Similar behaviour is observed for larger R (H, I, J).

Figure 3 shows the corresponding dynamics for the small-o case, fixing R = 0.125 (see the right
hand plot of Figure 1). Here we observe a much richer collection of possible long-time states and
dynamics; to aid visualization, we plot the density as a function of time and space in the bottom panels.
For small ¢ = 0.0225 (A), we observe a final state with three clusters, and final-order parameter
approximately 1/3. For slightly larger 0 = 0.025 (B), the final state has two clusters, with order
parameter around 1/2, but the dynamics clearly pass through a transient state with three, non-equal
clusters (see the snapshots in panel B at times 100 and 500). Increasing o further next results in a direct
transition to a two-cluster state (C), followed by direct formation of a single cluster (D) and eventually
an essentially disordered/uniform long-time state (E). We note that there are similar transitions when
fixing o and varying R (not shown).

Here we find it informative to compare the right panel of Figure 1 with Figure 3 of the original HK
paper (Hegselmann & Krause, 2002), which shows the long-time equilibria (for noiseless dynamics) as
R is increased. For small R, the state is homogeneous, whilst increasing R results first in two clusters and
then a single, central cluster, with rapid transitions as R increases. As stated in Hegselmann & Krause
(2002), as R increases ‘we step from fragmentation (plurality) over polarization (polarity) to consensus
(conformity)’. This is a direct analogue of our results just described. In contrast, for the two periodic
boundary conditions, the uniform initial condition is an equilibrium, and we see no such R-induced
transitions. This suggests that no-flux boundary conditions more faithfully reproduce the results, and
underlying mechanisms, of the original models.

We also compare to Figure 1 of Proskurnikov & Tempo (2018), which demonstrates the dependence
on R (their d) of the final number of clusters and equilibration time. They note that both dependencies
are non-monotonic, whereas it may be intuitively expected that increasing R causes a reduction in
the number of clusters and a decrease in the equilibration time. Such effects are also visible when,
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e.g., fixing 0 = 0.2 and varying R in the right panel of Figure 1. This phenomenon of ‘abnormally’
slow convergence has also been demonstrated in Lorenz (2006), who described the resulting states as
metastable. Similar sensitivities have also been observed in a noisy DW model (Carro et al., 2013),
which also noted the importance of the initial condition on determining the long-time dynamics; we
will now investigate the further choices of initial condition. In Supplementary Material SM4, we show
a comparison with the SDE for short times; the agreement is very good. The phenomenon of dynamical
metastability for noisy opinion dynamics PDE models, also observed in Garnier ef al. (2016), will be
studied in future work.

4.2 Single Gaussian initial condition

In this section, we investigate the effects of a non-uniform initial condition with a single, relatively broad
cluster/consensus. Following Wang ef al. (2017), we choose

Po () = Z " exp (= Cld(, y)1%), (4.1)
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FiG. 3. As Figure 2, but for smaller values of o; labels correspond to captions in the right panel of Figure 1. Additionally, we
show time-space plots of the densities in the bottom row.

where C = 20 and Z is the normalization constant. Here d(x,y) denotes the one-periodic distance
between two points. In Wang er al. (2017), y, was chosen to be 0.5 but this is irrelevant beyond
visualization in the periodic case. However, for the no-flux and even two-periodic cases, the choice
of y, can result in qualitatively different dynamics. For example, if y, = 0.5 then the initial condition is
symmetric and the periodic and even two-periodic cases are identical; for other y, this is not the case.

In the top panels of Figure 4, we display the final order parameters, densities and equilibration times
for a range of values of R and o, for all three boundary conditions, and y,, equal to 0.3 (left), and 0.2
(right). We also show a zoom in parameter space for y, = 0.3 (bottom left), and results for an initial
condition which is a Gaussian mixture (bottom right); see Section 4.3. White regions in the equilibration
times denote simulations which have not converged.

We first discuss some general trends. With the exception of y, = 0.2 and even two-periodic boundary
conditions (top right plot), the final result is either a single cluster, or an (almost) uniform state. This
is to be expected as the only force which can break up the initial cluster is diffusion, which favours
the uniform state. The formation of one large cluster on the left and one small cluster on the right for
vo = 0.2, even two-periodic boundary conditions, small o and large R is due to the periodicity of the
initial condition. A small amount of mass is originally concentrated at the right end of the domain, near
y = 1, and gets trapped due to the attraction to its periodic image near y = —1. Relatedly, we note
the additional range of Q for the even two-periodic case, in particular for large R, where the density
is significantly influenced by its periodic/even image. As expected, increasing o also causes a trend
to disordered states, whereas increasing R tends to increase the sharpness of the resulting cluster, with
increased time-to-equilibrium in regions separating qualitatively different final densities.
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FiG. 4. As Figure 1 but for a Gaussian initial condition (4.1) with yg = 0.3 (top left, bottom left) and yy = 0.2 (top right), and
an initial condition which is a linear combination of Gaussians (4.2) (bottom right) for different boundary conditions. Note the
additional colour bar scale from 1 to 2 for the even two-periodic case. White denotes simulations which have not converged by
the final time (10%).

There are also some unexpected observations. A feature of the no-flux boundary conditions is the
movement towards 0.5 of the final maximum opinion for fixed R, as o increases. This is likely a
consequence of the competition between diffusion and attraction; for smaller values of o, the noise is
not sufficiently strong to disperse the original cluster, whereas larger noise can cause the cluster to move.
Examples of this dynamics can be seen in Figures 5; case B (R = 0.23, 0 = 0.11) shows a clear drift in
the mean opinion over time for the no-flux boundary conditions. Parameter sets B (R = 0.23, 0 = 0.11)
and C (R = 0.23, 0 = 0.13) for the even two-periodic case demonstrate the significant effect that this
choice of boundary condition has on the dynamics, with a strong cluster forming at the left hand edge. It
is also interesting to note that the behaviour of the order parameter is not monotonic in a number of cases.
We have found excellent agreement with the associated SDE agent-based model, at least for short times
for which the computational cost of the SDEs is reasonable; see Supplementary Material Section SM4.

4.3  Two Gaussians initial condition

To demonstrate the effect of multi-modal initial conditions, we study a linear combination of two
Gaussians, or a Gaussian mixture:

po) =27 [exp (= CldG 3o DP) + exp (= Cld o) P) |, 4.2)
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F1G. 5. As Figure 3 but for a Gaussian initial condition. Labels correspond to those in the bottom left panel of Figure 4, for A
(R=0.23,0 =0.07),B(R=0.23,0 =0.11),C(R=0.23,0 = 0.13) and D (R = 0.23, o = 0.15).

where Z is the normalization constant. We note that there are many parameters in this setup, and
presumably also a correspondingly large number of interesting transitions between regimes as the
parameters are varied, but for conciseness, we fix C = 80, y; ; = 0.2 and o = 0.03. In the bottom right
plot of Figure 4, we show the final-time density, corresponding order parameter and equilibration time as
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R and y,, , are varied. We note a general trend, as in previous cases, that (with a few notable exceptions)
increasing R for fixed y, , increases the tendency for consensus to form, and also for consensus to be
closer to the centre of the interval. For fixed R, increasing y , (i.e., separating the initial clusters) tends
to favour the formation of two clusters, rather than a single consensus.

We focus on three particular pairs of parameters (yo’z,R), denoted A (0.65,0.3), B (0.7,0.3) and C
(0.75,0.3) in Figures 4 and 6. In Figure 6, we plot the results up to # = 10, which captures much of
the interesting dynamics and enables comparison to the SDE results for 10* particles. In all cases, the
even two-periodic boundary condition result is qualitatively different; the long-time behaviour has two
clusters, one close to zero and one close to the mean of the second initial cluster. The cause of this
is the ‘mirror’ density, which attracts the initial clusters at 0.2 and —0.2 together. Note that the order
parameter is close to 1, rather than the usual value of 1/2 denoting two clusters. Increasing y, , in the
other two boundary conditions results in a switch from a single cluster for y,, = 0.65 (A) to two
clusters for y, , = 0.70 (B). The cause of this seems to be that increasing the separation of the clusters
for fixed R causes the two clusters to sharpen, before they can begin to coalesce, and they are then too
well-separated to be drawn together. This is related to the 2R-conjecture regarding the separation of
stable clusters (Wang ef al., 2017). Finally, increasing y, , to 0.7 (C) demonstrates an additional effect
of periodic boundary conditions. The long-term behaviour reverts to a single cluster, this time centred
near 1, rather than towards the centre of this interval. The cause of this is the periodic nature of the
domain — there are two ‘distances’ between the initial clusters, and the shorter of the two now crosses
the 0—1 point. This causes the cluster to form to the right of the initial cluster at 0.7, rather than to the
left. This is an issue for interpretation in terms of extreme opinions, and suggests that if this is an aim
of the model then the no-flux boundary conditions are a more appropriate choice, both for stability and
interpretability.

5. Numerical experiments: the effect of radicals

In this section, we will introduce a distribution of radicals, and investigate the sensitivity of the dynamics
on this distribution. Motivated by the observation that the most interesting dynamics occur for small o
and a uniform initial distribution, we restrict to this regime here.

5.1 Uniform initial condition and Gaussian radicals

We first consider a single Gaussian radical distribution of the form

Mp,(y) = MZ" " exp (= Cld(y, y))1?), (5.1)

where Z is a normalization constant, and M determines the mass of the radical population. We now have
five parameters in the system: R and o, as before, and y,, C and M, which describe the mean, width and
mass of the radicals, respectively. To reduce the number of parameters, and to set the radical distribution
to be relatively narrow, we fix C = 800.

In Figure 7, we fix two of the remaining parameters, and vary the other two: 0—R (y, = 0.7, M =
0.1), M-R (¢ = 0.02, y; = 0.7), yp—0 (R = 0.1, M = 0.1) and y,—R (0 = 0.02, M = 0.1). The
corresponding snapshots are given in Figures 8—10. The radical populations are shown in red (Fig. 7),
or black (Figs 8 —10) although due to their small size and strongly peaked normal distributions, they are
sometimes hard to distinguish.
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FiG. 6. As Figure 3 but for an initial condition which is a linear combination of Gaussians. Labels correspond to those in the
bottom right panel of Figure 4, for A (R = 0.3, yg» = 0.65), B(R = 0.3, 92 = 0.7), and C (R = 0.3, yp » = 0.75). Additionally,
we show the solutions of the corresponding SDEs with 10% particles. Densities shown by circles, order parameter by dashed lines
and squares, and time-space plots in the bottom row of each panel.

5.1.1 R-o [Figures 7 (top left) and 8]. For small, fixed R, in all three boundary conditions we see
a similar behaviour as in the case of no radicals; small o results in a single cluster, which is now
centred around the mean of the radical distribution, whilst increasing o results in a uniform, or almost-
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FiG. 7. As Figure 1 but for a uniform initial condition and a Gaussian radical distribution (5.1). Here we vary: (top left) the
strength of the noise (o) and the size of the confidence interval (R); (top right) the mass of the radicals (M) and the confidence
bound (R); (bottom left) the mean position of the radical distribution (yg) and the strength of the noise (o); (bottom right) the
mean position of the radical distribution (yg) and the confidence bound (R). Radical distributions are shown in red.

uniform distribution. This is perhaps what one would expect intuitively. For larger R, the long-time
dynamics is less intuitive. For the periodic and no-flux boundary conditions, fixing R and increasing o
causes a transition from multiple clusters (two or three) to a single one; one cluster is always centred
around the radical distribution. For the even two-periodic case, there are three qualitatively different
long-time distributions. For small sigma, two clusters emerge, as for the other boundary conditions, and
for larger o, there is once again a single cluster. However, for intermediate o there is a different state
with a cluster centred around the radical distribution, and another narrow cluster at zero; once again
this additional state is due to the attractive nature of the mirror population. As before, we observe much
longer equilibration times for regions of phase space on the border of different long-time distributions.

In Figure 8, we focus on two pairs of parameters with (R,0) equal to (0.1,0.02) [A] and (0.1,0,03)
[B]. For A, the boundary condition has a strong effect on the dynamics. The periodic case rapidly forms
three clusters, corresponding to an order parameter of around 1/3. As can be seen from the white region
in Figure 7 this simulation has not reached our definition of equilibrium, so it is possible that this is
not the final state. However, slightly increasing R appears to make the three-cluster state stable. In the
no-flux case, there are initially four clusters, two of which are relatively weak, which eventually merge
into two strong clusters, once centred around the radicals, and one at the other side of the interval. As
with the other boundary conditions, this suggests that, with these parameter values, the radicals cause an
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F1G. 8. As Figure 3 but for a uniform initial condition and a Gaussian radical distribution. Labels correspond to parameter values
in the top left panel of 7, for A (6 = 0.02 and R = 0.1) and B (¢ = 0.03 and R = 0.1).

initial division in the population, but do not have enough influence to cause a single consensus to form.
Finally, in the even two-periodic case, the dynamics is even more complex; this is well demonstrated by
the order parameter. The four clusters at times around time 102, look similar to those in the no-flux case,
and once again the final state has two clusters. However, here the additional clusters persist for much
longer, and the second cluster is near to zero, rather than centred at approximately 0.2.

For B, the final state for all three boundary conditions is relatively similar, with a single, strong
cluster centred around the radicals. However, once again, the dynamical path to this distribution depends
on the boundary conditions. In all three cases, at times up to around 100, a secondary cluster on the left
of the interval is visible. In the periodic case, this then rapidly merges with the final cluster, whilst in the
other two cases it is longer-lived, first moving away from the final cluster, before eventually merging
into it. At time 500, the secondary cluster in the no-flux case is located near zero, as in case A; here
we suggest that a larger value of o increases the diffusion to a point at which the weaker clusters are
dispersed and can be captured by the strong cluster centred around the radicals. The clusters, especially
the large one, are also slightly wider with the increased value of o, which may aid this coalescence.

5.1.2  M-R [Figures 7 (top right) and 9 (left)]. From Figure 7, it is clear that the dependence on
M is very weak in the two periodic cases, unless R is very small. For larger R, and no-flux boundary
conditions, varying M can produce unintuitive results. Comparing A and B on the left of 9 we see
that increasing M causes the long-time distribution to switch from a single cluster around the radical
distribution (which is something one would expect), to a bimodal distribution, in which the increase in
the number of radicals has caused polarization. A possible explanation for this is that a larger radical
cluster attracts the nearby normal population more quickly, causing a split in the distribution after short
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F1G6. 9. As Figure 8 but for: (left) the labels in the top right panel of Figure 7 for A (M = 0.0625 and R = 0.275) and B (M = 0.075
and R = 0.275); (right) the labels in the bottom left panel of Figure 7 with B (yg = 0.85 and o = 0.025).

times; this can be seen in both cases A and B. In case A, the two clusters move towards each other
(with the one near the radicals actually moving away from the radical population), before forming a
single cluster away from the radical distribution, which then migrates towards the radicals. In case B,
it appears that the radicals are now sufficiently strong to prevent the initial cluster around them from
moving towards the centre of the interval, leaving the two polarized clusters.

5.1.3 yy—o [Figures 7 (bottom left) and 9 (right)]. As is clear from Figure 7, the results of the
periodic case are independent of y, up to a shift in the opinion axis. In the other cases, the final order
parameter and shape of the distribution are essentially independent of y, for all but small o, or for
large (or, by symmetry, small) y, when the no-flux and even two-periodic BCs become influential.
As y, increases, there is a clear, corresponding shift in position of final-time cluster, and, as before,
increasing o leads to disorder. Case A corresponds to Case A in Figure 8. Case B (see right of Figure 9)
corresponds to slightly larger o and increased y,,, for which the dynamics is strongly-dependent on the
choice of boundary conditions. The periodic case has a single cluster, whilst no-flux has two, which are
almost the same size, and even two-periodic has two, but with one near zero and significantly taller.

5.1.4  yy—R [Figures 7 (bottom right) and 10]. In Figure 7, we see that the different regimes of the
no-flux and even two-periodic cases are much richer, with multiple parameter regions with qualitatively
different long-time dynamics. As could be expected, increasing R, and hence the interaction range, leads
to bigger differences between the results for different boundary conditions. In Figure 10, we show some
representative dynamics, demonstrating the richness and complexity as the parameters are varied.
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F1G. 10. As Figure 8 but for the labels in the bottom right panel of Figure 7, with A (yg = 0.7 and R = 0.1), and B (yp = 0.7 and
R =0.3).

5.2 Uniform initial condition and double-Gaussian radicals

As a second example, we consider a double-Gaussian distribution of radicals

Mp,(y) =Mz~ [x exp (= Cld(y, o)1) + (1 — 2 exp ( — Cld(y, y0,2>12)], (5.2)

where, once again, Z is the normalization constant for the term in square brackets, and M is the
mass of the radical distribution. Here, A € [0, 1] is a parameter describing the relative masses of the
two Gaussians. The physical interpretation here is that we have two competing groups of radicals.
To simplify exposition, whilst demonstrating interesting effects, we first fix C = 800 (to ensure a
concentrated radical distribution) and M = 0.1. We consider two choices of A, namely A = 0.5, which
corresponds to a completely even split of radicals, and A = 0.499, which is a slight bias towards one of
the radical opinions.

In Figure 11, we choose choose yy; = 1 — yy, = 0.2, and vary R and o with 2 = 0.5 (left) and
A = 0.499 (right). By symmetry, the periodic and even two-periodic cases are identical, for A = 0.5. We
note similar trends to before: increasing R favours the formation of a single cluster, whilst increasing
o tends to produce an almost uniform distribution. For the periodic and even two-periodic cases, for
moderate R, increasing o causes a transition from two clusters to a single one; we interpret this as
the noise becoming large enough to overcome the attraction of the radical distribution. This does not
occur in the no-flux case, at least for the range of parameters studied here. When a single cluster is
formed, we see significant effects of the boundary conditions. For no-flux, the cluster is centred either
in the middle of the interval (A = 0.5), or on top of the dominant radical cluster (A = 0.499). In
contrast, the periodic and even two-periodic cases result in clusters centred around 0/1, caused by the
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FiG. 11. As Figure 1 but for a uniform initial condition and a double-Gaussian radical distribution (5.2) with A = 0.5 (left) and
A = 0.499 (right). Here we vary the strength of the noise (o) and the confidence bound (R).

shortest distance between the radical clusters being across 0/1, rather than through 0.5. Physically, this
means that two competing populations of radicals can result in either a moderate cluster (for no-flux),
or two extreme clusters (for periodic and even two-periodic). This is a significant effect of the boundary
conditions, and suggests issues when interpreting such results without giving careful consideration to
the modelling choices. Similar sensitivities with respect to the choices of y, ; and y, are demonstrated
in Supplementary Material Section SM5.

Incases A (0 = 0.035 and R = 0.25) and B (o = 0.035 and R = 0.3), we see that strong dependence
on the choice of A. In the periodic case with parameters A, the short-time dynamics are similar for both
values of A, but the symmetry breaking with A = 0.499 is very clear in the long-time dynamics. For
the no-flux case with parameters B, two initial clusters merge into a single cluster at the centre of the
interval, with the asymmetry becoming visible only at longer times when the cluster migrates to the right
with A = 0.499. We highlight that these are far from the only interesting and non-intuitive results from
the model. For parameters C (o = 0.025 and R = 0.1), we show only the A = 0.5 periodic case, as the
other cases are very similar. Here we interpret the two radical clusters as competing political viewpoints.
Whilst the long-time behaviour in all cases is a pair of equal clusters centred around the radicals, our
interest here lies in the intermediate dynamics, where there is a clear third peak centred around zero. As
discussed in Boudin & Salvarani (2016) in the context of the Scottish independence referendum, this
is a common feature of such situations in which the population mostly polarizes, but leaves a number
of ‘undecided’ individuals, who only move to one of the popular opinions after long times. It would be
interesting to study such situations further.

6. Conclusions and outlook

We have demonstrated the significant effect of the choice of boundary condition in SDE and PDE
bounded confidence models, as well as the sensitivity of such models to small changes in various
parameters, with and without the inclusion of radical distributions. This work clearly demonstrates
that no-flux boundary conditions are the correct choice from a modelling perspective, and also in
terms of bridging the gap between agent-based (Hegselmann & Krause, 2015, 2002) and PDE models.
In particular, the no-flux choice most faithfully recreates the underlying dynamics of the original
deterministic models Hegselmann & Krause (2015, 2002).
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There are many possible extensions, some of which have been studied in the literature for other
models in opinion dynamics: confidence intervals which are asymmetric (Hegselmann & Krause, 2002),
heterogeneous (Hendrickx & Olshevsky, 2016; Mirtabatabaei & Bullo, 2012; Zhao et al., 2016) or
time-dependent (Morarescu & Girard, 2010); influence that is negative (Proskurnikov & Tempo, 2018),
or which increases with separation (Motsch & Tadmor, 2014); stubbornness or inertia (Proskurnikov
& Tempo, 2018); persuasiveness or supportiveness (Hotyst er al., 2001); multi-dimensional models
(Bhattacharyya et al., 2013; Etesami & Bagar, 2015; Etesami et al., 2013; Fortunato et al., 2005;
Martinsson, 2016; Nedi¢ & Touri, 2012; Pluchino et al., 2006); more general models for the noise, e.g.,
coloured, multiplicative or non-Gaussian (see Gomes et al. (2020)); slowly varying radical distributions;
a rigorous, systematic derivation of the order parameter, perhaps using data-driven approaches. We
note that most of these can be incorporated in both our models and numerical schemes in relatively
straightforward ways, although there are open questions regarding SDEs with no-flux boundary
conditions (Lions & Sznitman, 1984).

On the analytical side, there are interesting questions regarding rigorous analysis of the SDE model,
as well as the rigorous derivation of the PDE model, For the no-flux case, the linear stability analysis of
the stationary state(s) is a challenging problem, due to the non-linear and non-local boundary conditions.
Furthermore, the study of fluctuations around the mean field limit, in particular close to the phase
transition will provide us with detailed information about the behaviour of the finite-agent system. In
the absence of radical groups and when the underlying network has fully connectivity (corresponding
to the large R limit) and for when o sufficiently small, a centred Gaussian is an approximate stationary
state when we consider no-flux boundary conditions. This is similar to the case of periodic boundary
conditions (Garnier ef al., 2017; Wang et al., 2017), and follows from the fact that localized stationary
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states do not feel the effect of the boundary conditions. The stability of such approximate localized
states, corresponding to clusters, is a very interesting problem that we plan to address in future work.

In terms of applications, we plan to use real-world data, particularly from referenda, to study the
use of such models in practical settings, with a focus on the transient dynamics rather than the long-
term behaviour. There are also interesting questions regarding the use of such models when applied to
advertising, or charismatic leaders (Hegselmann & Krause, 2015). Another important open question
is how to determine the modelling parameters ¢ and R. This is related to inference for McKean
SDEs, and we hope to address this topic in future work. We direct the interested reader to a study
of estimating parameters in mean field models (Sharrock et al., 2021), which could act as a starting
point for such studies. By estimating modelling parameters, such as the noise, it should be possible to
develop diagnostic tools for predicting consensus formation, or lack thereof.

Supplementary material

Supplementary material is available at IMAMAT online.
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