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Data-driven coarse graining in action: Modeling and prediction of complex systems
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In many physical, technological, social, and economic applications, one is commonly faced with the task
of estimating statistical properties, such as mean first passage times of a temporal continuous process, from
empirical data (experimental observations). Typically, however, an accurate and reliable estimation of such
properties directly from the data alone is not possible as the time series is often too short, or the particular
phenomenon of interest is only rarely observed. We propose here a theoretical-computational framework which
provides us with a systematic and rational estimation of statistical quantities of a given temporal process, such
as waiting times between subsequent bursts of activity in intermittent signals. Our framework is illustrated with
applications from real-world data sets, ranging from marine biology to paleoclimatic data.
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I. INTRODUCTION

Over the last few years, there has been an increasing demand
for capturing generic statistical properties of complex systems
based on available data only. Such systems are often strongly
influenced by random fluctuations which play a crucial role
in the various intriguing phenomena emerging in temporal
observations [1,2]. Understanding the underlying complex
processes of such phenomena is a common task in many
disciplines, but often it is not possible to estimate statistical
properties directly from empirical data alone because, e.g.,
the phenomenon of interest occurs rarely. On the other hand,
often also a purely reductionist or bottom-up approach is
either impossible or results in computationally prohibitive
mathematical models.

An alternative approach is to identify a reduced (coarse-
grained) model from the experimental data which retains
the fundamental aspects of the original system. This is in
fact at the core of data-driven coarse graining, but despite
its fundamental significance, to date there does not exist a
systematic framework for this. Relying exclusively on the
observations and treating the corresponding reduced model as
a “black box” (that is, in technical terms using nonparametric
estimators [3]; see also Ref. [4] for a review of such techniques)
is, however, not reasonable since such an approach introduces
errors in regions where only a few observations exist [5],
e.g., rare phenomena, thus corrupting a model-based analysis.
An accurate and more general procedure is to follow a
semiparametric approach where we postulate a model, i.e.,
we introduce a parametric ansatz (in a “gray-box” modeling
approach) which is consistent with the essential characteristics
of the experimental data, such as, for example, dynamic state
transitions.

In this study we outline a unified generic theoretical-
computational framework for data-driven modeling based on
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the above semiparametric approach with the ultimate aim of
analyzing complex phenomena arising in a wide spectrum
of different systems. To exemplify the methodology we
use two representative examples of current interest, namely,
experimental observations of the foraging behavior of marine
predators [6] and the temperature record during the last glacial
period [7].

The paper is organized as follows. Section II presents the
data-driven modeling framework, which is then applied to a
test case in Sec. III. Section IV offers results of the analysis
of two real data sets, corresponding to movement pattern of
marine predators and climate transitions during the last glacial
period. We conclude in Sec. V.

II. GENERIC DATA-DRIVEN MODELING

A schematic representation of our methodology is shown
in Fig. 1 and consists of two main steps. The first one is
a model selection (postulate–assess and validate) procedure,
which allows us to select a simple coarse-grained model from
experimental observations. This model is then assessed and
validated and eventually used in a second step to predict
different quantities of interest.

We are interested in systems where the underlying noisy
process is continuous in time and thus consider the following
prototypical Itô stochastic differential equation (SDE):

dX(t) = f (X(t); θ ) dt + g(X(t); θ ) dW (t), (1)

X(t) ∈ Rd for t � 0, where f and g are the drift and
diffusion coefficients, respectively, with the latter controlling
the influence of the stochastic driving through a Wiener
process, W (t).

We postulate first several model candidates, i.e., the
functions f and g in (1), based on two criteria: (i) they must
support features which are observed in the empirical data (e.g.,
state transitions) and (ii) they have to reproduce functional
features observed in a preliminary nonparametric analysis
in regions where most discrete-time observations of (1) are
located. We note that the second criterion is primarily used
as a data-driven modeling guidance. We reiterate that a fully
nonparametric modeling approach is typically not feasible in
practice, as we will also illustrate in Sec. III. Due to the
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FIG. 1. (Color online) Flow chart of the data-driven modeling framework: Given observations (data) we postulate a coarse-grained stochastic
parametric model which is fitted (via statistical inference and time series analysis tools, which we refer to as Enabling Tools I) to the data and
refined via a model selection process (see main text). In particular, via an assessment and validation and fine-tuning procedure we determine
the structure of the model and the minimum number of parameters needed. Once the model has been validated, it is used to predict underlying
statistical properties by using critical phenomena and stochastic processes tools (Enabling Tools II). The far-left figure is a numerical example
of Brownian motion in a two-dimensional potential.

combination of phenomena-driven and data-driven aspects
we instead use a semiparametric approach here. That is, we
consider expansions (e.g., Taylor or Fourier) of both drift and
diffusion coefficients that support aspects observed in the time
series. Different models can then be constructed by varying
the number of unknown parameters in these expansions. The
postulated models are then compared and refined within the
framework’s model assessment and postulation feedback loop
by combining statistical model selection criteria with further
data-driven considerations (e.g., intermittency or shape of the
probability density function).

A. Parametric inference for SDEs and model selection

Given a model candidate, we proceed then to estimate the
parameter vector θ ∈ � ⊂ Rm using a maximum likelihood
framework due to its favorable theoretical properties (see,
e.g., [8,9]). Specifically, let Xn be the sample with true
parameter θ∗, that is, Xn := (Xi)0�i�n at sampling times
0 = t0 < t1 < · · · < tn = T with Xi ≡ X(ti). The maximum
likelihood estimator for θ∗ based on the observations Xn

is defined as the maximizer of the likelihood function
over �,

θ̂n ∈ arg maxθ∈�Ln(θ ;Xn), (2)

where Ln(θ ;Xn) denotes the likelihood function

Ln(θ ;Xn) =
n−1∏
i=0

pθ (ti+1 − ti ,Xi+1|Xi)pθ (X0), (3)

with pθ (x) being the probability density function (PDF) of
the initial condition and pθ (�t,x|y) denotes the conditional
probability density function. The conditional probability den-
sity function is usually not known in closed form, and we
approximate it by adopting the closed-form expansion due to
Aı̈t-Sahalia [10]. The main idea is to transform the problem
into one with transition densities that can be approximated
accurately by means of an expansion in terms of Hermite
polynomials. Truncating this expansion and inverting the
transformation, an approximation of pθ (·, · |·) can be obtained
in closed form. The coefficients determining this expansion
depend on the considered functional form of both drift and
diffusion coefficient in (1) and can become rather involved.

Using a careful combination of symbolic and numerical
computations, it is possible nonetheless to evaluate these
coefficients accurately and efficiently.

It is worth emphasizing that while the MLE approach works
well for data sets (time series) with a single characteristic time
scale, it becomes asymptotically biased when applied to data
coming from multiscale stochastic systems. For such systems,
statistical inference methodologies that take into account the
multiscale nature of the data set have to be used [11,12]. We
emphasize, though, that the general framework as illustrated
in Fig. 1 remains unaltered even in that case.

Once we have obtained the parameter vector and the
corresponding likelihood function for several model candi-
dates, we proceed to select a few of them (typically two) by
making use of two model selection techniques, the sample
size-corrected Akaike Information Criterion (AICc) and the
Bayesian Information Criterion (BIC), both of which provide
measures of the relative quality of the SDE parametrization (1)
based on the given set of data; see, e.g., Ref. [13]. These two
techniques rely on the maximized likelihood function of the
considered model and the available observations Xn; that is,
they depend on Ln(θ̂n;Xn), where θ̂n denotes the estimated
m-dimensional parameter vector defining the SDE model (1).
In particular, the finite sample size-corrected AICc is given
by

AICc = 2m(n + 1)/(n − m) − 2 ln [Ln(θ̂n;Xn)],

and the BIC is defined as

BIC = m ln (n + 1) − 2 ln [Ln(θ̂n;Xn)].

We note that both techniques are designed to penalize overfit-
ted models; that is, a parametrization with many parameters
is not as valuable as a parametrization with fewer parameters
unless it significantly improves the goodness of the fit. The
only difference between these two techniques is how this trade-
off between complexity and goodness of the fit is realized: the
AICc penalizes the number of parameters not as strongly as
the BIC does. In both cases the preferred model is the one with
a minimum value. Although the AICc has demonstrated to
be both theoretically and practically advantageous in some
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applications (e.g., in regression problems) [13], we also
monitor the BIC here.

B. Prediction

The second step is the model-based prediction step where
we use the predictive capabilities of the selected model
to estimate and predict the behavior of several underlying
statistical quantities of interest which cannot be obtained from
the original data, e.g., a mean-first-passage time (MFPT) of the
process (see Appendix A for a detailed description of how to
compute exit times). The key point of the proposed framework
hence is that it is a synergistic interdisciplinary approach
that combines elements from physics and mathematics, in
particular statistical physics, theory of critical phenomena,
and stochastic processes. In the following we apply it first
to a synthetic data set which is used as a test case, and, second,
to two representative examples for which the underlying model
is not known.

III. TEST CASE

To illustrate the estimation step of our data-driven coarse-
graining framework, we perform a numerical experiment based
on a computer-generated time series. Specifically, we consider
the SDE

dX(t) = [αX(t) + βX(t)3] dt + √
γ dW (t), (4)

for which we set the true parameter vector θ∗ to θ∗ ≡
(α,β,γ ) = (1, − 1,0.1). Figure 2 shows a time series on
the time interval [0,1000] with sampling period �t = 0.5
(i.e., n = 2001 observations). The time series was obtained
by integrating the SDE (4) numerically using the Euler-
Maruyama scheme with a step size of δt = 10−3; see, e.g.,
Ref. [14] for details. The objective now is to fit an appropriate
SDE model to this time series.

Since the time series shows a transition between two
metastable states, we consider various candidate models that
support metastability. Details of these parametric models are
given in Table I.
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FIG. 2. Time series of SDE model (4) with (α,β,γ ) = (1,

−1,0.1) over the time interval [0,1000] with sampling period �t =
0.5.

TABLE I. A list of considered parametric SDE models for the
test case.

Model f (x; θ ) g(x; θ )

M1
∑1

j=0 θjx
2j+1 θ2

M2
∑3

j=0 θj x
j θ4

M3
∑3

j=0 θj x
j

√
θ4 + θ5x2

M4
∑3

j=0 θj x
j

{
θ4, if x < θ6

θ5, if x � θ6

M5
∑5

j=0 θj x
j θ6

The outcome of the framework’s model selection step is
then summarized in Table II. Here the various models are
compared with respect to the number of parameters m, the
negative value of the log-likelihood function evaluated at
the estimated parameter vector [i.e., L̂ ≡ Ln(θ̂n;Xn)], and
the statistical model selection criteria. By comparing the
selection criteria for the different models, we find that model
M1 is clearly the preferred model among those considered.
That is, the framework’s model selection step does not only
identify the underlying true SDE structure correctly, it also
provides accurate estimates of the coefficients in Eq. (4),
the relative error of the estimated parameter vector being
approximately 8%, despite the relatively high sampling period
�t = 0.5.

The results provided by our framework’s selection are
even more satisfactory when compared with the results
obtained through a fully nonparametric (black-box) approach,
something that has, e.g., been used in Ref. [4]. Here both the
drift f and the diffusion coefficient g are approximated using
their infinitesimal definitions; cf. Ref. [15]. Specifically, for
the drift function

f (x) = lim
t→0

1

t
E[X(t) − X(0)|X(0) = x]

≈
∑n−1

i=0 K
(

x−Xi

κ

)
(Xi+1 − Xi)

�t
∑n−1

i=0 K
(

x−Xi

κ

) =: f̂ (x)

is used, while the diffusion coefficient is approximated
via

g(x)2 = lim
t→0

1

t
E{[X(t) − X(0)]2|X(0) = x}

≈
∑n−1

i=0 K
(

x−Xi

κ

)
(Xi+1 − Xi)2

�t
∑n−1

i=0 K
(

x−Xi

κ

) =: ĝ(x)2,

TABLE II. Comparison of different estimated SDE models for
the test case.

Model m − ln (L̂) AICc BIC

M1 3 943.56 −1881.11 −1864.31
M2 5 934.04 −1858.06 −1830.08
M3 6 838.72 −1665.41 −1631.84
M4 7 859.74 −1705.43 −1666.28
M5 7 853.03 −1692.00 −1652.85
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FIG. 3. (Color online) Comparison of estimated drift (top) and
diffusion (bottom).

where K(z) = exp(−z2/2)/
√

2π and κ denotes a bandwidth
parameter, which can be selected via least-squares cross-
validation techniques; see, e.g., Refs. [16,17] for details.
Clearly both nonparametric estimators depend crucially on
the size of the sampling period �t and can be expected
to yield accurate estimates only if �t 	 1. To illustrate
that this intuitive statement is indeed correct, we depict in
Fig. 3 the true drift and diffusion coefficients f and g together
with the estimators obtained from our framework (i.e., model
M1) and the ones obtained with a fully nonparametric approach
(labeled by NP). While the results obtained from M1 provide
also visually very accurate approximations of the true drift
and diffusion coefficients used to generate the time series,
the nonparametric counterparts deviate significantly from the
true coefficients and show spurious and erratic effects. These
effects are essentially due to the exclusively large sampling
period �t , as can be seen by repeating the same experiment
with a very small sampling period (not shown here). As a
consequence of these erratic effects, any further model-based
analysis of the corresponding complex system using the fully
nonparametric approach is bound to be ineffective since the
artifacts associated with the sampling period would introduce
nonphysical effects to the results.

IV. REPRESENTATIVE EXAMPLES OF
REAL-WORLD DATA SETS

A. Movement patterns of marine predators

The study of foraging behavior in marine life is an active
research topic in ecology that has received considerable
attention over the last few years. For example, analysis of the
movement displacements of marine predators has suggested
that, in certain cases, e.g., when prey is sparse, predators
adopt an optimal search strategy based on Lévy flights [6,18].
Understanding how such complex behavior is linked to, e.g.,
environmental conditions and the available prey distribu-
tion [19] or the predator’s physiological capabilities [20], and,
more importantly, how to predict it in terms of simple models,
has become a major goal [21].

We consider the experimental observations of the move-
ment pattern of an ocean sunfish (Mola mola) obtained by
Humphries et al. [6] in a recent study to identify Lévy flights
and Brownian movements in marine predators. Figure 4(a)
shows the time series of the predator’s diving depth (in positive
value with respect to the sea surface) over a period of 4.5 days.
It is evident that the predator’s behavior is characterized by
complex intermittent dynamics which we approximate by
means of a stochastic model. To account for the sea surface
as a natural boundary in the problem, and as the diving
depth should be always non-negative, we change variables
to Y = ln (X) so that Y solves an SDE of form (1) with drift
and diffusion coefficients f̂ and ĝ, which are expressed in
terms of the new variable Y . As the result of the framework’s
model selection step we obtain the following two preferred
models (see Appendix B for the full study comparing different
models):

M1 f̂ (Y ; θ ) = ∑5
j=0 θjY

j ; ĝ(Y ; θ ) = θ6,

M2 f̂ (Y ; θ ) = ∑7
j=0 θjY

j ; ĝ(Y ; θ ) = θ8.
The dynamics of the diving depth is then given by X =

exp (Y ) with the following generic SDE:

dX(t) = f (X(t); θ ) dt + 2σX(t) dW (t), (5)

which has multiplicative noise and where 2σ equals θ6 or θ8 in
models M1 or M2, respectively. Figure 4(c) depicts an example
of a time series generated from model M1, and Fig. 4(b)
shows the theoretical PDFs associated with both models
superimposed on the experimental histogram, observing a
good match between them. The fact that the drift coefficient
of model M1 is contained in the drift of model M2 together with
the observation that the associated model PDFs are almost
identical indicates the robustness of the parametrization. It
is important to emphasize that although our formulation is
based on stochastic models, which can give rise to unrealistic
local fluctuations at small time scales, it fully captures the
macroscopic dynamics of the predator and the underlying
quantities of interest.

We now use models M1 and M2 to accurately and confidently
compute several quantities describing the dynamics of the
predator. First, based on the bimodal PDF we define three
regions of interest (habitats) as follows. Region I, which is the
low-depth preferred habitat, corresponds to X < XI, where
XI = 10.5 m is the local minimum between both peaks of
the PDF. Region II, which is the deeper preferred habitat, is
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FIG. 4. (Color online) Analysis of marine predator movements: (a) Diving depth time series of an ocean sunfish (data from Ref. [6]).
(b) PDF of the experimental observations (histogram in gray) and the numerical ones obtained from models M1 and M2. (c) Time series of the
fitted coarse-grained process X computed by using model M1. (d) PDF of the waiting times between large bursts of activity computed numerically
by using model M1 and M2 (both models give the same results). The solid line corresponds to a fit with the function P (z) = az−γ exp (−bz)
with γ = 1.54 ± 0.06. (e) PDF of the total diving length �. The solid line corresponds to a truncated power law P (�) ∼ �−μ exp (−�/L0) with
μ = 1.83 ± 0.09. Different points correspond to different values of the threshold, which is used to define the rare events (see text), in the range
Xth ∈ [35,45].

defined as XI � X < XII, where XII = 41.3 m is the inflection
point of the PDF for depths larger than the second maximum;
and Region III, which consists of unlikely and rare events,
is defined as depths X � XII [see Fig. 4(b)]. Based on these
definitions, we can compute several transition times, obtaining
for example that, based on model M1 (model M2), the predator
spends on average approximately τ = 1.24 h (τ = 1.41 h)
in Region I before diving into II (see Appendix B). We
look next at the PDF of the waiting times T between two
consecutive deep dives, i.e., the periods for which X � Xth at
a stretch, where Xth is a chosen threshold (typically around
XII). Figure 4(d) shows the results obtained with modelsM1 and
M2 (both models give virtually identical results) observing that
the PDF of T (which is normalized to its mean value) follows
a truncated power law, P (T ) = aT −γ exp (−T/T0), with ex-
ponent γ � 1.54 which does not depend on Xth. Interestingly,
this particular type of PDF (with exponent close to 3/2) has
been observed ubiquitously in many different biological and
physical systems exhibiting intermittent behavior (a signature
usually of critical phenomena), from neuronal activity in the
cortex [22], electroconvection of nematic liquid crystals [23],
and fluid flow in porous media [24] to colloidal quantum
dots [25] and noise-induced transitions in infinite dimensional
dissipative systems [26]. By studying the mean first passage
time (MFPT) properties, the exponent 3/2 was obtained
recently for SDEs of the form (5) with lineal multiplicative
noise term [27].

Finally, we analyze the statistics of the total diving length
during a rare event, which we denote as �(Xn), for a single
time seriesXn = (Xi)0�i�n. We define the total traveled length
as � ≡ �(Xn) = ∑n−1

i=0 |Xi+1 − Xi | · w(Xi), where w(z) = 0
for z � XII and w(z) = 1 otherwise, and compute the PDF

of �. We conclude that for long distances it follows a
truncated power law, P (�) ∼ �−μ exp (−�/L0) with exponent
μ = 1.83 ± 0.09 [see Fig. 4(e)]. It is noteworthy that the
statistics of � follow a similar behavior with the statistics of the
experimental step length defined in Ref. [6] where an exponent
of μ = 1.92 is reported indicating that the predator follows a
Lévy flight description within a certain step length range.

B. Climate transitions during the last glacial period

Ice core records from Greenland reveal many intriguing
phenomena of Earth’s past climate, and in particular records
covering the last glacial period, approximately from 70 ky
(1 ky = 1000 y) until 20 ky before present, are dominated
by repeated rapid climate shifts, the so-called Dansgaard-
Oeschger (DO) events [28], which are characterized by abrupt
transitions from cold to warm periods. While the origin of
these shifts is still actively debated [29], there seems to be
a general consensus that DO events are transitions between
two metastable climate states: a cold stadial and a warm
interstadial state. Understanding how long it takes between
DO events would potentially yield indicators for the causes,
and earlier research based on previously obtained ice core
records reported a periodic occurrence of the DO events
with period of approximately τDO ≈ 1.5 ky [30], which has
been subsequently refined to 1.47 ky [31,32]. However, recent
work based on the newer and more accurate North Greenland
Ice Core Project (NGRIP) record has reported that there is
not significant statistical evidence supporting the periodicity
hypothesis, and it is argued that DO shifts are most likely
due to stochastic events [33,34]. Here we use our data-driven
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FIG. 5. (Color online) Analysis of paleoclimatic data during the last glacial period: (a) Paleoclimatic record time series [7]. (b) PDF of
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coarse-grained process X computed by using model M2. (d) and (e) PDF of the residence times τw at the cooler state and PDF of the duration τd

of the DO events, normalized to their mean values, and for different values of the threshold (Xth ∈ [−42.5, − 42]). The solid lines correspond
to P (z) = exp (−z). As in Fig. 4 both models give very similar or almost identical results.

framework to investigate the DO events without relying on the
periodicity hypothesis.

We consider the δ 18O isotope record (as a proxy for
Northern Hemisphere temperature) during the last glacial
period which was obtained from the NGRIP [7]; see Fig. 5(a).
We observe a noisy temporal signal where the temperature
increases up to a warm state until it abruptly goes down to a
colder state (corresponding to an DO event), giving rise to a
bimodal histogram; see Fig. 5(b). To account for transitions
between two states, we consider two different parametrizations
in the SDE model (1) (see Appendix C for full model candidate
comparison):

M1 f (X; θ ) = ∑3
j=0 θjX

j ; g(X; θ ) = θ4,

M2 f (X; θ ) = ∑3
j=0 θjX

j ; g(X; θ ) =
{
θ4 if X < θ6

θ5 if X � θ6
.

Figure 5(b) depicts the model-based PDFs in comparison
with the histogram of the original time series, illustrating a very
good agreement between them. Due to its piecewise constant
diffusion coefficient, the PDF associated with model M2 also
captures the drop in the histogram around X = −42. It is
noteworthy that although from a purely model selection criteria
point of view model M1 appears to be marginally preferable
(see Appendix C), M2 is a rather novel model in this field and
shows strong statistical resemblance with the NGRIP data;
something that should advocate the use of models with a
state-dependent diffusion coefficient also in other fields. Model
M1 has been postulated before as a dynamical model for the
NGRIP record [29,35]; however, in these studies, the accuracy
of the model was not assessed and predictions were not made,
as is done here. Moreover, the estimation procedure was ad
hoc in that it made use of the same data set repeatedly several
times.

Using the identified models, we compute the average time
τDO between DO events during the last glacial period by

using the MFPT techniques described in Appendix A. In
particular, we calculate the time τDO as the average time to
exit from a warm state plus the average time to exit from
a cold state, obtaining τDO ≈ 1.602 ky (τDO ≈ 1.511 ky)
from M1 (M2) which are in very good agreement with the
values previously reported (the most accurate being 1.47 ky
[31,32]). Note, however, that these values were obtained
by considering a deterministic periodic model, something
recently questioned [33,34], whereas the values reported here
are from a purely stochastic model.

We next look at the statistics of both the residence times in
the cooler state, i.e., the waiting times τw between DO events
and the duration τd of the DO events. To this end, we define
a threshold Xth separating the two states to be at around the
signal’s mean value −42.13. Figures 5(d) and 5(e) show the
PDFs for both magnitudes (normalized to their corresponding
mean value) highlighting that they follow an exponential
behavior, P (z) = exp (−z) for z = τw/〈τw〉 or τd/〈τd〉, which
can be understood analytically as follows.

We first note that the SDE for the variable X can be rewritten
as

dX = −∂XV (X; θ ) dt + g(X,θ ) dW (t), (6)

where V (X; θ ) represents the potential function of the system
so that f (X; θ ) = −∂XV (X; θ ). From the empirical data we
obtain that this potential is described by a function with two
minima (see Fig. 6), one of them being stable (cold state) and
the other one metastable (warm state). To study the statistics of
the waiting times, consider the duration for which the variable
X remains around one of the local minima until it jumps to
the next state, the transition point of which is defined via the
threshold. We can approximate this local dynamics with a
simpler model corresponding to a particle fluctuating around a
harmonic potential; i.e., we consider Eq. (6) with an effective
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FIG. 6. (Color online) Particle model for the climate transitions
during the last glacial period: Schematic representation of the
dynamics of a particle fluctuating around one of the local minima
of the potential V (X; θ ) obtained from the empirical data (dashed
line). The solid line corresponds to an effective harmonic potential,
which is used to model the local dynamics before the particle jumps
into the other equilibrium state. The dashed-dot line corresponds to
the position of the threshold.

potential given by

Ve(X) = V0 + a

2
(X − X0)2, (7)

where V0 corresponds to the minimum value of the potential
and a and X0 are effective parameters, respectively (Taylor
expansion around the cold state); see Fig. 6. The dynamics
of Eq. (6) can then be reduced to the well-known Ornstein-
Uhlenbeck SDE dX(t) = a[X0 − X(t)] dt + θ4 dW (t), for
which the first-passage properties are known to exhibit an
exponential behavior [36,37]. It is noteworthy that this type of
process appears in many other areas such as mathematical
finance [38] and neuronal dynamics [39], thus unifying
seemingly unrelated complex systems. A similar argument
can be used to explain the behavior of the duration time τd .

V. CONCLUSIONS

To conclude, we have presented a framework that allows
to extract reliable statistical properties from a short set
of available data (experimental observations) in a rational,
systematic, and efficient manner. Our approach aims to find
a coarse-grained (reduced) description of the full system,
which in turn necessitates the introduction of an appropriate
stochastic process to account for the unresolved degrees of
freedom [40,41]. The systems under consideration must be
such that a coarse-grained model exists, something which quite
often can be rigorously proved by making use of multiscale
techniques [42]. We have exemplified the methodology with
two representative examples from the areas of marine biology
and climate modeling. The two chosen examples belong to two
generic classes of systems described by truncated power-law
and exponential PDFs linked to the presence of multiplicative
and additive noise, respectively, thus connecting complex
systems whose dynamics is difficult if not impossible to model
and subsequently understand with well-studied stochastic
processes. Moreover, the SDE models are versatile and enable
us to consider both regular diffusion processes but also
intermittent systems characterized by bursts of activity. The

fact that fundamentally different phenomena can be described
by the same type of model, Eq. (1), is a testimony of its wide
applicability. Another key point is that the semiparametric
approach we follow here is sufficiently flexible in that it allows
other approaches, e.g., nonparametric, which tend to be more
restrictive, or even analytic if the governing model is known,
to be easily adapted into our methodology. Our hope is that the
outlined methodology can be applied to many other settings
such as ranking processes [43] or cellular networks [44], to
name but a few.
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APPENDIX A: EXIT FROM A DOMAIN

For a given SDE model such as (1), we wish to compute the
mean first passage time (MFPT), which is defined as follows.
For a domain D ⊂ Rd we wish to know how long it takes on
average for the process X to leave the domain D for the first
time when the process is initially started at x ∈ D:

τ (x) := E(inf {t � 0 : X(t) �∈ D, X(0) = x}). (A1)

Note that if x �∈ D, then τ (x) = 0 by definition. To approxi-
mate τ one typically resorts to Monte Carlo techniques based
on numerically solving the SDE (1) [45]. For small dimensions
(i.e., d � 3), an alternative way of approximating τ is to exploit
the relation between statistical properties of the solution to
SDE (1) and partial differential equations (PDEs). In fact, τ

solves the deterministic PDE

f · ∇τ + 1
2ggT : ∇∇aτ = −1 in D,

equipped with appropriate boundary conditions on ∂D; see,
e.g., Refs. [15,37]. The boundary conditions (e.g., reflection
or absorption on ∂D) depend on the problem at hand, i.e.,
on the statistical property one is interested in. The fact that τ

solves a PDE is particularly useful in one dimension (d = 1). In
this case, the two point boundary value problem can be solved
analytically. Let D := (l,r), then the MFPT τ (x), x ∈ D, can
be written as

τ (x) = −2
∫ x

l

∫ y

l

exp [ψ(z) − ψ(y)]

g(z)2 dz dy

+ c1

∫ x

l

exp [−ψ(y)] dy + c0,

where ψ(x) = 2
∫ x

l
g(z)−2f (z) dz and the constants c0,c1 are

determined from the boundary conditions. The accuracy of
the approximation of τ obtained from this integral form is
then given by the tolerance of the numerical quadrature rule,
which is typically 10−8 [46].
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TABLE III. Specifications of the considered SDE models for the
transformed process Y = ln (X).

Model f̂ (y; θ ) ĝ(y; θ )

M1
∑5

j=0 θj y
j θ6

M2
∑7

j=0 θj y
j θ8

M3
∑3

j=0 θj y
j θ4

M4 ĝ(y; θ )2 ∑3
j=0 θj y

j
√

θ4 exp(−θ5y)

M5 ĝ(y; θ )2 ∑5
j=0 θj y

j
√

θ6 exp (−θ7y)

APPENDIX B: MODEL SELECTION FOR
REPRESENTATIVE EXAMPLE A

For the transformed (auxiliary) process Y = ln (X), we
considered the parametric models shown in Table III. For
these models, Table IV then summarizes the outcome of
the framework’s model selection step (cf. Fig. 1). Here the
different models for the auxiliary process Y are compared
with respect to the number of parameters m, the negative
value of the log-likelihood function evaluated at the estimated
parameter vector [i.e., L̂ ≡ Ln(θ̂n;Xn)], the statistical model
selection criteria, and whether or not the estimated model
provides a normalizable probability density function (PDF)
for the original process X. The check mark in the last column
of Table IV means that the estimated model provides a
normalizable PDF, while the x means that it does not. As
explained in the Sec. II, the preferred SDE parametrization is
the one which has the smallest value with respect to a model
selection criteria, i.e., with respect to AICc or BIC. Selecting
a model based only upon the values of these statistical model
selection criteria could result in the choice of an SDE model
with unrealistic properties, in the sense that the model might
not provide a normalizable PDF contrary to the empirical
observations. Combining both aspects, Table IV thus reveals
that models M1 and M2 are the two preferable models among
those providing a normalizable PDF. In fact, the AICc selects
model M2 as the preferred model, while the BIC favors model
M1 (an interpretation of the magnitude of these differences is
given in Ref. [47]).

1. Numerically computed transition times

Once we select the SDE model we can use it, of course,
to study additional transition times between the different
habitats of the marine predator compared the one presented
in the main text. We recall the definitions of the marine

TABLE IV. Comparison of different SDE models for the trans-
formed process Y = ln(X) related to the foraging data of a marine
predator.

Model m − ln (L̂) AICc BIC PDF of X

M1 7 −59331.0 −118648.0 −118588.2 �
M2 9 −59335.2 −118652.4 −118575.5 �
M3 5 −59094.9 −118179.8 −118137.1 �
M4 6 −74000.1 −147988.2 −147937.0 ×
M5 8 −74366.3 −148716.6 −148648.3 ×

TABLE V. Specifications of the considered SDE models for X

describing the δ 18O isotope record.

Model f (x; θ ) g(x; θ )

M1
∑3

j=0 θjx
j θ4

M2
∑3

j=0 θjx
j

{
θ4, if x < θ6

θ5, if x � θ6

M3
∑5

j=0 θjx
j θ6

M4 g(x; θ )2 ∑3
j=0 θj x

j
√

θ4 exp(−θ5x)

M5 g(x; θ )2 ∑5
j=0 θj x

j
√

θ6 exp(−θ7x)

M6
∑5

j=0 θjx
j

√
θ6 + θ7(x − θ8)2

predator’s habitats. Based on the bimodal PDF three regions
of interest (habitats) can be defined as follows [see Fig. 5(b)
and associated text in the manuscript]. Region I, which is the
low-depth preferred habitat, is defined as depths which are
shorter than the local minimum between peaks of the PDF
that is located at XI = 10.5 m, and so Region I corresponds
to X < XI. Region II, which is the deeper preferred habitat,
is defined as XI � X < XII, where XII = 41.3 m is defined as
the inflection point of the PDF for depths larger than the second
maximum. Finally, Region III, which consists of unlikely and
rare events, is defined as the depths X � XII.

Based on these definitions, we look at how long it takes on
average to make the transition from Region I to II. Specifically,
based on model M1 (model M2), the individual spends on
average approximately τ = 1.24 h (τ = 1.41 h) in lower
depths corresponding to Region I before diving to deeper
depths of Region II. Conversely, when situated in its deeper
favorable habitat II, it takes on average approximately τ =
4.48 h (τ = 4.87 h) before ascending to Region I according
to model M1 (model M2). On the other hand, we also look
at the statistics of the rare events when the individual dives
deeper into Region III. We compute the transition time that
it takes for the individual to dive from Region II deep into
Region III; specifically we consider dives to 150 m or deeper.
We obtain that it takes on average approximately τ = 44.32 h
(τ = 48.18 h) in view of model M1 (model M2).

APPENDIX C: MODEL SELECTION FOR
REPRESENTATIVE EXAMPLE B

For Example B we postulated the SDE models shown in
Table V for the process X. The results of the model selection
step are then summarized in Table VI, where these different
SDE models for the process X are again compared with respect

TABLE VI. Comparison of different SDE models for the climate
data.

Model m − ln L̂ AICc BIC PDF of X

M1 5 1123.4 2256.8 2281.3 �
M2 7 1188.1 2390.4 2424.6 �
M3 7 1111.3 2236.8 2271.0 ×
M4 6 5180.0 10372.1 10401.4 �
M5 8 4969.6 9955.3 9994.4 �
M6 9 1193.7 2405.7 2449.6 �
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to the number of parameters m, the negative value of the
log-likelihood function evaluated at the estimated parameter
vector, the statistical model selection criteria, and whether or
not the estimated model provides a normalizable PDF.

Comparing both model selection criteria in Table VI (i.e.,
AICc and BIC) for parametrizations that provide a normaliz-

able PDF (indicated by the check mark in the last column),
we find that model M1 offers the preferred parametrization
with respect to these criteria. Due to its excellent agreement
with the features shown by the histogram of the empirical data
(see main text), we also selected model M2 for the subsequent
analysis.
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