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A detailed study of various distinguished limits of the Green—Kubo formula for the self-diffusion co-
efficient is presented in this paper. First, an alternative representation of the Green—Kubo formula in
terms of the solution of a Poisson equation is derived when the microscopic dynamics is Markovian.
Then the techniques developed@olden & Papanicolao(l983, Bounds for effective parameters of
heterogeneous media by analytic continuati@ammun. Math. Phys90, 473-491) andwellaneda &

Majda (1991, An integral representation and bounds on the effective diffusivity in passive advection by
laminar and turbulent flowsCommun. Math. Phys138, 339-391) are used to obtain a Stieltjes inte-
gral representation formula for the symmetric and antisymmetric parts of the diffusion tensor. The effect
of irreversible microscopic dynamics on the diffusion coefficient is analysed and various asymptotic
limits of physical interest are studied. Several examples are presented that confirm the findings of our
theory.

Keywords Green-Kubo formula; self-diffusion; homogenization theory; Markov processes; Stieltjes
integral representation formula.

1. Introduction
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The two main goals of non-equilibrium statistical mechanics are the derivation of macroscopic equa-
tions from microscopic dynamics and the calculation of transport coeffici@atiegcu,1975,1997;
Resibois & De Leenerl977). The starting point is a kinetic equation that governs the evolution of
the distribution function, such as the Boltzmann, the Vlasov, the Lenard—Balescu or the Fokker—Planc
equation. Although most kinetic equations involve a (quadratically) non-linear collision operator, it is
quite often the case that for the calculation of transport coefficients it is sufficient to consider a lin-
earized collision operator and, consequently, a linearized kinetic equation. In this case, it is well known>
that the transport coefficients are related to the eigenvalues of the linearized collision ojakesci,
1975, Chapter 131997, Chapter 10). The goal of this article is to present some results on the analysisg
of transport coefficients for a particularly simple class of kinetic equations describing the problem of
self-diffusion.

The distribution functionf (g, p, t) of a tagged particle satisfies the kinetic equation
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— +p-Vgqf =Qf, (1.1
ot
whereq and p are the position and momentum of the tagged particle@nsl a linear collision oper-
ator. Q is a dissipative operator that acts only on the momenta and with only one collision invariant,

corresponding to the conservation of the particle density.
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The macroscopic equation for this problem is simply the diffusion equation for the particle density
p(p,t) = [ f(p,q,t)dp (Schiter,1977):

d 2
op o“p
ot _iZ_: D"axiax,-’ (12)
wherethe components of the diffusion tenddrare the transport coefficients that have to be calculated
from the microscopic dynamics.

At least two different techniques have been developed for the calculation of transport coefficients.
The first technique is based on the analysis of the kinetic equéakidh &nd, in particular, on the ex-
pansion of the distribution function in an appropriate orthonormal basis, the basis consisting of the
eigenfunctions of the linear collision opera@r(Balescu 1975, Chapter 13,997, Chapter 10). Trans-
port coefficients are then related to the eigenvalues of the collision operator. The second technique
is based on the Green—Kubo formalism (Kuébal., 1991). This formalism enables us to express
transport coefficients in terms of time integrals of appropriate autocorrelation functions. In particu-
lar, the diffusion coefficient is expressed in terms of the time integral of the velocity autocorrelation
function

+00
D= / (p(t) ® p(0))dt. (1.3)
0

Theequivalence between the two approaches for the calculation of transport coefficients, the one based
on the analysis of the kinetic equation and the other based on the Green—Kubo formalism, has been
studied (Resibois, 1964). The Green—Kubo formalism has been compared with other techniques based
on the perturbative analysis of the kinetic equations (Begrosky,1999a,b;Brilliantov & Pdschel,

2005, and the references therein). Many works also exist on the rigorous justification of the validity of
the Green—Kubo formula for the self-diffusion coefficient (Jiang & Zh&®3;Durr et al,, 1990;Chen

et al.,2006;Spohn,1991).

Usually the linearized collision operator is taken to be a symmetric operator in some appropriate
Hilbert space. When the collision operator is the (adjoint of the) generator of a Markov process (which
is the case that we will consider in this paper), the assumption of the symme@risafquivalent to the
reversibility of the microscopic dynamic®fanet al.,2002). There are various cases, however, where
the linearized collision operator is not symmetric. As examples we mention the linearized Vlassov—
Landau operator in plasma physi&a{escu,1975, Equation 13.6.2) or the motion of a charged patrticle
in a constant magnetic field undergoing collisions with the surrounding mediatagcu1997, Section
11.3). It is one of the main objectives of this paper to study the effect of the antisymmetric part of the
collision operator on the diffusion tensor.

In most cases (i.e. for most choices of the collision kernel), it is impossible to obtain explicit for-
mulas for transport coefficients. The best one can hope for is the derivation of estimates on transport
coefficients as functions of the parameters of the microscopic dynamics. The derivation of such esti-
mates is quite hard when using formulas of the foin3J. In this paper, we show that the Green—Kubo
formalism is equivalent to a formulation based on the solution of a Poisson equation associated to the
collision operatoQ. Furthermore, we show that this formalism is a much more convenient starting point
for rigorous and perturbative analysis of the diffusion tensor. The Poisson equation (cell problem) is the
standard tool for calculating homogenized coefficients in the theory of homogenization for stochastic
differential equations and partial differential equatioRaviotis & Stuart2008).
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The problem of obtaining estimates on the diffusion coefficient has been studied quite extensively
in the theory of turbulent diffusion—the motion of a particle in a random, divergence-free velocity
field (Majda & Kramer 1999). In particular, the dependence of the diffusion coefficient (eddy diffu-
sivity) on the Peclet number has been investigated. For this purpose, a very interesting theory has been
developed byAvellaneda & Majda1990,1991) (see alsGolden & Papanicolaou,983;Bhattacharya
et al.,1989). This theory is based on the introduction of an appropriate bounded (and sometimes com-
pact) antisymmetric operator and it leads to a very systematic and rigorous perturbative analysis of
the eddy diffusivity. This theory has been extended to time-dependent flows (Avellaneda & Vergassola
1995).

In this paper, we apply the Majda—Avellaneda theory to the problem of the derivation of rigorous
estimates for the diffusion tensor of a tagged particle whose distribution function satisfies a kinetic
equation of the formX.1). We study this problem when the collision operator is the Fokker—Planck
operator (i.e. thé 2-adjoint)of an ergodic Markov process. This assumption is not very restrictive when
studying the problem of self-diffusion of a tagged particle since many dissipative integrodifferential
operators are generators of Markov procesgdéaichi & Negorg 1997). We obtain formulas for both
the symmetric and the antisymmetric parts of the diffusion tensor and we use these formulas in order t
study various asymptotic limits of physical interest.

The rest of the paper is organized as follows. In Sec®ipwe obtain an alternative representation
for the diffusion tensor based on the solution of a Poisson equation and we present two elementarg
examples. In SectioB, we apply the Majda—Avellaneda theory to the problem of self-diffusion and we
study rigorously the weak and strong coupling limits for the diffusion tensor. Examples are presented in
Sectiond. Conclusions and open problems are discussed in Séxtion

jumoq
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2. The Green—Kubo formula

In this section, we show that we can rewrite the Green—Kubo formula for the diffusion coefficient
in terms of the solution of an appropriate Poisson equation. We will consider a slight generalization
of (1.1), namely we will consider the long-time dynamics of the dynamical system

dx
5 =V@. (2.1)

wherez is an ergodic Markov process with state spategeneratorl and invariant measure(dz).t
Thekinetic equation for the distribution function is

TT02Z ‘ST Arenuer uo uopuoT absjj0D reuadwy e 6io

of
= +V(2) - Vyxf =L*f, (2.2)

where£* denoteghe L?(Z)-adjointof the generatoL. The kinetic equation (1.1) is of the forra.Q)

for V(p) = p, and where we assume that the collision operator (which acts only on the velocities) is
the Fokker—Planck operator of an ergodic Markov process, which can be a diffusion process (e.g. the
Ornstein—Uhlenbeck process in which ca3) becomes the Fokker—Planck equation), a jump process
(as in the model studied iallis, 1973) or a [evy process.

1We remark that the procegscan bex itself or the restriction ok on the unit torus. This is precisely the case in turbulent
diffusion and in the Langevin equation in a periodic potential.
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PROPOSITION2.1 Let x(t) be the solution ofZ.1), letz(t) be an ergodic Markov process with state

spaceZ, generatorL and invariant measure(dz) and assume thaf (z) is centred with respect to
u(dz),

/ V(2)u(dz) = 0.
z

Then the diffusion tensor (1.3) is given by

0~ [ V@ 9 s@u. 23)
whereg is the solution of the Poisson equation
—L$ =V (2). (2.4)

Proof. Let e be an arbitrary unit vector. We will use the notatid§ = De- e andx® = x - e. The
Green—Kubo formula for the diffusion coefficient along the directas

+00
DE= / (XE(t)XE(0))dt
0

_ / " V) Ve (2.5)
0

We now calculate the correlation function i2.%). We will use the notatior = z(t; p) with
z(0; p) = p. We have

(Ve((t; PHVE((O; p)) = /Z /Z VE@VE(p)p (2. t; pu(dp)dz (2.6)

wherep(z, t; p) is the transition probability density of the Markov processhich is the solution of
the Fokker—Planck equation

op

i L, p(z,0;p)=0dzZ—p). (2.7)

We introduce thdunction
V= EVe@ = [ Vi@t piz
z
which is the solution of the backward Kolmogorov equation
oV
= LV®, V0, p) = V&(p). (2.8)
We can write formally the solution of this equation in tieem

V° = eLtve(p).
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We substitute this into(6) to obtain

(Ve(z(t; P)VEEO; p))) = /Z €EVE(P)VE(P)(dp).

We now use this in the Green—Kubo formufag) and, assuming that we can interchange the order of

integration, we calculate

e__ oo eLt e e
D®= | (e~ VE(P)VE(p)u(dp)dt

+00
_ / ( / e“vew)dt)ve(p)ﬂ(dp)
Z 0

_ L (—=£)"Ve(p)VE(p)u(dp)

- /Z $°Veu(dp),

where¢® is the solution of the Poisson equatienC¢® = V€. In the above calculation, we used the
identity (—£)~%- = [;7°° €t - dt (Pavliotis & Stuart 2008, Chapter 11Evans 1998, Chapter 7). O
From @.3), it immediately follows that the diffusion tensor is non-negative definite:

D¢ :=e-De= /Zve¢ -eu(dz) = /Z(—E)qﬁeqsey(dz) >0

since, by definition, the collision operator is dissipative.
When the generatof is a symmetric operator ih?(Z; x(dz)), i.e. the Markov process is re-
versible Qianet al.,2002), the diffusion tensor is symmetric:

Dij = /Z Vi @) (D u(d2) = /Z (L)1 (2] @D u(d2)

- /Z $(2)(—L)¢j @u(d2) = Dj;.

TT02Z ‘ST Arenuer uo uopuoT absjj0D feadwyi ye 610’ speuInolplojxo-fewrewi Wolj papeojumoq

Green-Kibo formulas for reversible Markov processes have already been studied since in this case
the symmetry of the generator of the Markov process implies that the spectral theorem for self-adjoint

operators can be useHipnis & Varadhan 1986; Jiang & Zhang 2003). Much less is known about

Green—Kubo formulas for non-reversible Markov process. One of the consequences of non-reversibility,

i.e. when the generator of the Markov process not symmetric inL2(Z; u(dz)), is that the diffusion

tensor is not symmetric, unless additional symmetries are present. The symmetry properties of the dif-

fusion tensor in anisotropic porous media have been studi€ddh & Brady(1988) (see alsPavliotis

2002). A general representation formula for the antisymmetric part of the diffusion tensor will be given

in the next section.
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2.1 Elementaryexamples

The Ornstein—Uhlenbeck process. The equations of motion are
a=np, (2.9)

P=—yp++/2y8~IW. (2.10)

Theequilibrium distribution of the velocity process is

w(dp) = | L7 dp.
2r

—Lp=p, L=—ypop+yp tod.

ThePoisson equation is

Themean zero solution is

1
$="p.
Y
Thediffusion coefficient is
1
D= /¢>pu(dp) -
yB

which is, of course, Einstein’s formula.

A charged particle in a constant magnetic field. We consider the motion of a charged particle in the
presence of a constant magnetic field in trdirection,B = Bes, while the collisions are modelled as
white noise (Balescu,997, Chapter 11). The equations of motion are

dg

= 2.11

=P (2.11)
d _ 5 25-1p\W 2.12
g = 9P xe—vp+ SHVW, (2.12)

whereW denotesstandard Brownian motion iR3, v is the collision frequency and

_eB
- me

is the Larmor frequency of the test particle.
The velocity is a Markov process with generator

L = Q(P2dp, — P10p,) +v(=p- Vp+ p 4p). (2.13)

Theinvariant distribution of the velocity process is the Maxwellian

3
p(dp) = (2%)2 e 2P dp.
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Thevector-valued Poisson equation is
—L¢ =p.

The solution is

b= v N Q Q + % 1
- V2+ QZ pl l)2+ Qz DZa V2+ QZ pl U2+ Qz sz v p3 .
Thediffusion tensor is

v _Q
V2402 12402

D= [podudp =" ~nn ol
0 0

(2.14)

< O O

Notethat the diffusion tensor is not symmetric. This is to be expected since the generator of the Markov

process?.13) is not symmetric.

3. Stieltjes integral representation and bounds on the diffusion tensor

When the Markov process is reversible, it is straightforward to obtain an integral representation

formula for the diffusion tensor using the spectral theorem for the self-adjoint oper&tipris( &
Varadhan1986). It is not possible, in general, to do the same whisra non-reversible ergodic Markov

process. This problem was solved Ayellaneda & Majda1991) in the context of the theory of turbu-
lent diffusion by introducing an appropriate bounded, antisymmetric operator. In this section, we apply

the Avellaneda—Majda theory in order to study the diffusion ten8@®) (whenz is an ergodic Markov
process inz.
We will use the notation_/% := L2(Z; u(dz)). We decompose the collision operatbrinto its

symmetric and antisymmetric parts with respect tolllﬁeinnerproduct:

L=A+7yS,

whered = —A* andS = S*. The parametey measures the strength of the symmetric part, relative to

the antisymmetric part. The Poisson equation (2.4), along the diregtiam be written as
—(A+78)¢p® = Ve (3.1)

Ourgoal is to study the dependence of the diffusion tensagr,on particular in the physically interesting
regimey < 1.
Let (-, -), denotethe inner product irLft. We introduce the family of seminorms

112 = (f, (=S)*f),.

Definethe function spacesi® := {f e Lft: | fllk < +oo} andsetk = 1. Then| - || satisfiesthe
parallelogram identity and, consequently, the completiokl bfwith respect to the norr - ||1, which

is denoted byH, is a Hilbert space. The inner produgt-) in H is defined through polarization and it
is easy to check that, fof, h € H,

A careful analysis of the function spageand of its dual is presented irandim & Olla (2005).

woJ} papeojumod
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Motivated byAvellaneda & Majdg1991) (see alsBhattacharyat al.,1989;Golden & Papanicolaqu
1983), we apply the operat¢+S)~* to the Poisson equatio3 (1) to obtain

(=G + 7 1)¢® = Ve, (3.2)

wherewe have defined the operat@r:i= (—S)~1.4 andwe have seV® := (—S)~1V®. This operator
is antisymmetric irfH.

LEMMA 3.1 The operatoti: H — H is antisymmetric.

Proof. We calculate

(G, h):/(—S)_lAf(—S)hﬂ(dz):/Afhy(dz)

_ / (—8)"(=8) f Ahu(dz) = — / F(—8)Ghu (d2)

O
We remark that, unlike the problem of turbulent diffusiéwéllaneda & Majdal1991;Bhattacharya
et al., 1989; Majda & McLaughlin,1993), the operatog is not necessarily bounded or, even more,
compact. Under the assumption tidais bounded as an operator fradhto 7, we can develop a theory
similar to the one developed Avellaneda & Majda1991). The boundedness of the operaareeds
to be checked for each specific example.
Using the definitions of the spa@¢, the operato and the vectoV, we obtain

Dij = (¢i, V). (3.3)

We will use the notatiorj - || for the norm in#. It is straightforward to analyse the overdamped
limit y — +o00.

PrROPOSITION3.2 Assume tha§: H — H is a bounded operator. Then, foyoa such that| G|l n <
v, the diffusion coefficient along the directi@admits the following asymptotic expansion:

1 - — 1 ~
D® =~ VI3 + D 5716 VeI, (3.4)
7 k=1’
In particular,
R e _ \ve2
yﬂjﬂooy D = IV"Il3- (3.5)

Proof. We use (3.2), the definition of the spakeand the boundedness and antisymmetry of the operator

g to calculate
1 1\t .
Dé== (I——g) Ve ve
Y 4

+

8

<R |

=~
Il

1
oK
07

(GkVe, Ve
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1 - +o00 1 N
= ;nveui +>° e (G2kVe, Ve)
k=1

1 =1
= ZIVIG + D g Ig Vel m
Y k=1’

From (3.5) we conclude that the large asymptotics of the diffusion coefficient is universal: the
scalingD® ~ % isindependent of the specific properties4f S or Ve. This is also the case in problems
where the operatay is not bounded, such as the Langevin equation in a periodic potedtakef &
Pavliotis 2008).

Of course, the expansioB.@) is of limited applicability since it has a very small radius of conver-
gence. This expansion cannot be used to study the snzaymptotics of the diffusion coefficient. The
analysis of this limit requires the study of a weakly dissipative system since the antisymmetric part of
the generatord represents the deterministic part of the dynamics, whereas the symmetri§ et
noisy, dissipative dynamics. It is well known that the dynamics of such a system in the limit O
depends crucially on the properties of the unperturbed deterministic system (Freidlin &,\2ebd&r
Freidlin & Wentzel| 1984;Constantiret al.,2008). The properties of this system can be analysed by
studying the operatad. For the asymptotics of the diffusion coefficient, the null space of this operator
has to be characterized. This fact has been recognized in the theory of turbulent diffvsbeneda &
Majda,1991;Majda & McLaughlin,1993;Majda & Kramer,1999). We will show that a similar theory
to the one developed in these papers can be developed in the abstract framework adopted in this pape!

Assume thatj: # — H is bounded. LetV' = {f € H: Gf = 0} denote the null space ¢f. We
haveH = N @ Nt. We take the projections ok” and /! to rewrite (3.2) as

vén =N, (=G +7 DN = Vpe. (3.6)

S[euInolpIojxo-TewewI Wolj papeojumod

10

We can now write
De = yfn\?ﬁn; gy, VEL).
ProPOSITION3.3 Assume that there exists a functipre H such that
—gp= vﬁr
Then

TT02Z ‘ST Arenuer uo uopuo absjjo) feuadw re 6

lim y D€ = |VE|2,. 3.7
y_)OV I N”’H (3.7)

In particular,D® = 0o(1/y) When\7§ =0.
Proof. We write¢y . = p + y, wherey solves the equation
(=G+7y Dy =-yp.
We usey as a test function and use the antisymmetrg @ # to obtain the estimate

lyln <C

from which we deduce thdfipy 1| < C and(3.7) follows. O
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Let G be a bounded operator. Since it is also skew-symmetric, we can @rite iI", wherel”

is a self-adjoint operator ii. From the spectral theorem of bounded self-adjoint operators, we know

that there exists a one-parameter family of projection opera@@#g which is right-continuous and
P(4) < P(u) whenl < x andP(—o0) = 0, P(4+00) = | so that

f(I) :/R f(2)dP (1)

for all bounded continuous functions. Using the spectral resolutiol’ efe can obtain an integral
representation formula for the diffusion coefficient (Avellaneda & Maj91):

1 ~ +00 d#e
D& = Z|VE|5, +2 / e 3.8
y” N”’H+ Y 0 y2+/125 ( )

wheredue = dP(/l)V
diffusion tensor

NJ-’ > We can obtain a similar formula for the antisymmetric part of the

_ 1o _pT
=50-D").

In particular, we have the following.

PrRoPOSITION3.4 Assume that the operatGr 7 — H is bounded. Then the antisymmetric part of the
diffusion tensor admits the representation

[ Aduii(d)
A= [ S (3.9)

where
duij = dp(/l)VNL: L)

Proof. We calculate, using3(6),
1
Aij =§(Dij — Dji)

1 . .
= §(<¢i,VJ) — (¢, V')

1 P P
= SU@Dn Vo) = (@ne. V)

1
= E((Ry VI

Vi V) — (R, V]

NL° VII\IJ_>)
l *
SRy = ROVAL V),

wherewe have used the notatioR, = (-G + y 1)~1. We have also used the fact that, sinces
symmetric, we have th&} = (G + y 1)~L. Now we use the representation formula

+o00
R, = / e 7t el dt,
0
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togethemith the definitionG = i7", to obtain

o~

Aij = |m(<Ry V,I\]J_a \7,3“))

Ry —REN o
=((F7) %9
1

+o00 ) ) s
=—.</ e 7t —e—'“)dtvi,vj>
2i\Jo

+o0 L
:</ e’tsin(I)dtV!, Vi>
0

~+00
:// e 7t sin@A)dt dua; (2)
RJO

Aduii (4
_ / zﬂlj ( 2). 0
RV +4
REMARK 3.5 The antisymmetric part of the diffusion tensor is independent of the projectﬁlmito

the null space of.

When the operatog: H — H is compact, we can use the spectral theorem for the compact, self-
adjoint operator/” = iG to obtain an orthonormal basis for the spa¢é. In this case, the integrals
in (3.8) and 8.9) reduce to sums. The analysis of the weak noise mit> 0 in this case is based
on a careful analysis of the spectrum of the compact operat@iviajda & McLaughlin 1993). The
weak noise (large Peclet number) asymptotics for the symmetric part of the diffusion tensor for the
advection—diffusion problem with periodic coefficients were studieBhattacharyaet al. (1989) and
Majda & McLaughlin(1993). The asymptotics of the antisymmetric part of the diffusion tensor for the
advection—diffusion problem were studiedRavliotis(2002).

4. Examples
4.1 The generalized Langevin equation

The generalized Langevin equation (gLE) in the absence of external forces reads as

t
d=—/y0—$M$%+F®, @.1)
0

where the memory kernel(t) and noiseF (t) (which is a mean zero stationary Gaussian process) are
related through the fluctuation—dissipation theorem

(FOF@) =Yyt —9). (4.2)

We approximate the memory kernel by a sum of exponentialgferman,2004):

N
y ()= AFeuilt, (4.3)
j=1
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Underthis assumption, the non-Markovian gLE ) can be rewritten as a Markovian system of equa-
tions in an extended state space:

a=mp, (4.4a)
N
b= 4uj, (4.4b)
j=1
Uj = —ajuj — Ajp+,/28~Laj Wj, j=1,...,N. (4.4c)
This example is of the forn®2(1) with the driving Markov process beirg, u1, ..., un}. The generator

of this process is

N 0 L 02
=1

Thisis an ergodic Markov process with an invariant measure

2

2 u
pp.0) = ze (5210, 45)

wherez = (Znﬂ—l)(N+1)/2. The symmetric and antisymmetric parts of the generator L2(RN*L;
p(p, udpdu) are, respectively,

82
S= - u— Loy~
3 G
and
N P N
= A
A= (X p+,§( P )

It is possible to study the spectral propertieg-fS)~1.4. However, it is easier to solve the Poisson
equation

—Lo=p

and to calculate the diffusion coefficient. The solution of this equation is

N
Ak
ak KPP
ket MRl 1(1k Dk=lge
Thediffusion coefficient is
1

D= [ Péo(p.udpdu=p—=—s.
R DI
'
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We remark that in the limit abl — 400, the diffusion coefficient can become 0. Indeed,

-1 400 A _ ~-1
im p |/ G Zeia=cT

N—+oco too 42
0, Zk k

:105_k = +OO,

Thus, phenomena of anomalous diffusion, in particular of subdiffusion, can appear in this simple model.
The rigorous analysis of this problem, in the presence of interactions, will be presented elsewhere (Ot-

tobre & Pavliotis 2009).

4.2 The generalized Ornstein—Uhlenbeck process

We consider the following stochastic differential equation:

q=p, (4.6a)
p=(ad —yp++/2y871W, (4.6b)
whereq,p e RY, J = —JT,a,y > 0 andW is a standard Brownian motion @&f.

The presence of the antisymmetric terdp in the equation foip implies that the velocity is an
‘irreversible’ Markov process. The generator of the Markov propeiss

L=(@d—y)p-Vp+yp 14, 4.7)

It is easy to check thatp, - (J p e—élplz) = 0. Hencethe equilibrium distribution of the velocity process
is the same as in the reversible case:

d
up(dp) = (%)2 e 2P dp.

We can decompose the generafanto its L2(RY; x 4(dp))-symmetricand -antisymmetric parts:
L=aA+yS,

whereAd = Jp-VpandS = —p-Vp +p714 p- Usingthe results fromLunardi(1997) (or, equivalently,
the fact that the eigenfunctions and eigenvalueS afe known), it is possible to show that the operator
G = (=S)~Ais bounded front{ := H(RY; u5(dp)) andthe results obtained in Secti@apply?

For this problem, we can also obtain an explicit formula for the diffusion tensor.

PropPoOsITION4.1 The diffusion tensor is given by the formula
D=g"Y-ad" +y1H L (4.8)
Proof. The Poisson equation is

_‘C¢ =p,

2Note, however, that this operator is not compact frafrto .
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wherethe boundary condition is thgt e (L2(RY; up(d p)))¥ andwe take the vector fielgh to be mean
zero. The solution to this equation is linearn

¢=Cp
for some matrixC € R9%9 to be calculated. Substituting this formula in the Poisson equation, we obtain
(componentwise)
> QuepeCik = pi,
k¢

wherethe notationQ = —a J+y | was introduced. Note that sin€gis positive definite, itis invertible.
We now take theL2(RY; ﬂﬁ(dp)))d inner product with py, (denotedby (-, -) ) and use the fact that
(P> Pm)p = B~ 10m to deduce

ZkaCikZ(Sim, i,m=1,...,d.
k
Or
Q'C=lI,

and,consequentlyC = (QT)~1 = (—aJT + y I)~L. Furthermore,

Dij = (i, Pj)p = >_(CikPk: Pj)p
k

Zﬁ_lzCikéjk = p~'Cij,
k

from which (4.8) follows. O
The smally asymptotics ofD depends on the properties of the null spacgat= (—S)~1A or,
equivalently,A. For the problem at hand, it is sufficient to consider the restrictionat®)) (or N'(A))
onto linear functions ip. Consequently, in order to calculaké(A) we need to calculate the null space
of J, N(J) = {b e R%: Jb = 0}.
As an example, consider the case- 3 and set

0 1 1
J=|-1 0 1]. (4.9)
-1 -10

In this case, it is straightforward to calculate the diffusion tensor:

72+0‘2 —a(y +a) —a(y —a)
D=——5—5|a((y —a) 24+ a? —a (y +a)
y B2+ | * Y ’ !

a(y+a) (y—a) y2 4 a2
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a b
0.35 T T T T 3.5 T T
0.3 3
0.25 25
0.2 2
L] o
[a] [a]
0.15 1.5
0.1 1
0.05 0.5
0 L 0
0 20 40 60 80 100 0 2 4 6 8 10
¥ y
e £=0 e £#0

FiG. 1. Diffusion coefficient (4.10).

The null space of] is 1D and consists of vectors parallelfo= (1,—1,1). From the analysis
presented in the previous section, it is expected that the diffusion tensor vanishes in the }imit 8s
along the directions L£. Indeed, from the above formula for the diffusion coefficient, we get that (with
lel =1)

1
D€ = m(yz + le- &1%a?). (4.10)
Clearly, where - ¢ = 0 we have
lim D® =0,
y—0
whereas whem - ¢ # 0 we obtain
Cx2
iim y e = 122¢1°
y—0 3

The diffusion coefficient as a function gfand fora = 1 is plotted in Figurel.
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5. Conclusions

The Green—Kubo formula for the self-diffusion coefficient was studied in this paper. It was shown that
the Green—Kubo formula can be rewritten in terms of the solution of a Poisson equation when the col-
lision operator is linear and it is the generator of an ergodic Markov process. Furthermore, the effect of
irreversibility in the microscopic dynamics on the diffusion coefficient was investigated and the Majda—
Avellaneda theory was used in order to study various asymptotic limits of the diffusion tensor. Several
examples were also presented.

There are several directions in which the work reported in this paper can be extended. First, a similar
analysis can be applied to the linear Boltzmann equation (i.e. for a collision operator that has five colli-
sion invariants) in order to obtain alternative representation formulas for other transport coefficients, in


http://imamat.oxfordjournals.org/

966 G.A. PAVLIOTIS

additionto the self-diffusion coefficient. In this way, it should be possible to obtain rigorous estimates
on other transport coefficients.
Second, the effect of external forces on the scaling of transport coefficients with respect to the

various parameters of the problem can be studied: the techniques presented in this paper are applicable

to a kinetic equation of the form

of
whereF (q) is an external force.
Finally, phenomena of subdiffusion (i.e. the linfit— 0) and superdiffusion (i.ed — oo) can also
be analysed within the framework developed in this paper. A simple example was given in Section
All these problems are currently under investigation.
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