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Abstract. We study optimal control of diffusions with slow and fast variables

and address a question raised by practitioners: is it possible to first eliminate
the fast variables before solving the optimal control problem and then use the

optimal control computed from the reduced-order model to control the original,

high-dimensional system? The strategy “first reduce, then optimize”—rather
than “first optimize, then reduce”—is motivated by the fact that solving op-

timal control problems for high-dimensional multiscale systems is numerically

challenging and often computationally prohibitive. We state sufficient and nec-
essary conditions, under which the “first reduce, then control” strategy can be

employed and discuss when it should be avoided. We further give numerical
examples that illustrate the “first reduce, then optmize” approach and discuss

possible pitfalls.

1. Introduction. Optimal control problems for diffusion processes have attracted
a lot of attention in the last decades, both in terms of the development of the
theory as well as in terms of concrete applications to problems in the sciences,
engineering and finance [20, 39]. Stochastic control problems appear in a variety
of applications, such as statistics [17, 16], financial mathematics [15, 53], molecular
dynamics [55, 28] and materials science [57, 6], to mention just a few. A common
feature of the models used is that they are high-dimensional and possess several
characteristic time scales. For instance, in single molecule alignment experiments,
a laser field is used to stabilize the slowly-varying orientation of a molecule in
solution that is coupled to the fast internal vibrations of the molecule, but ideally
the controller would like to base the control protocol only on the relevant slow
degree of freedom, i.e. the orientation of the molecule [56].

If the time scales in the system are well separated, it is possible to eliminate the
fast degrees of freedom and to derive low-order reduced models, using averaging
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and homogenization techniques [52]. Homogenization of stochastic control systems
has been extensively studied by applied analysts using a variety of different math-
ematical tools, including viscosity solutions of the Hamilton-Jacobi-Bellman equa-
tion [7, 18, 1, 42], backward stochastic differential equations [11, 12, 31], Gamma
convergence [41, 46] and occupation measures [37, 38, 36]. The latter has been also
employed to analyse deterministic control systems, together with differential inclu-
sion techniques [21, 58, 24, 5, 59]. The convergence analysis of multiscale control
systems, both deterministic and stochastic, is quite involved and non-constructive,
in that the limiting equations of motion are not given in explicit or closed form; see
[34, 22, 33] for notable exceptions, dealing mainly with the case when the dynamics
is linear. We shall refer to all these approaches—without trying to be exhaustive—
as “first optimize, then reduce”.

On the other side of the spectrum are model order reduction (MOR) techniques
for large-scale linear and bilinear control systems that are based on tools from lin-
ear algebra and rational approximation. MOR aims at approximating the response
of a controlled system to any given control input from a certain class, e.g., piece-
wise constant or square integrable functions; see, e.g., [25, 4] and the references
given there. A very popular MOR method is balanced truncation that gives eas-
ily computable error bounds in terms of the Hankel norm of the corresponding
transfer functions [44, 23], and which has recently been extended to deterministic
and stochastic slow-fast systems, using averaging and homogenization techniques
[29, 26, 27]. In applications MOR is often used to drastically reduce the system
dimension, before a possibly computational expensive optimal control problem is
solved. In most real-world applications, solving an optimal control problems on the
basis of the unreduced large-scale model is prohibitive, which explains the popular-
ity of MOR techniques. We will call this approach “first reduce, then optimize”.

1.1. The MOR approach: First reduce, then optimize. In this paper we
focus on optimal control of diffusions with two characteristic time scales. As a
representative example, we consider the diffusion of a driven Brownian particle in
a two-scale energy landscape in one dimension

dxεs = (σuεs −∇Φ(xεs, x
ε
s/ε)) ds+ σβ−1/2dws , (1)

where uε is any time-dependent driving force (or control variable) and wt is standard
one-dimensional Brownian motion. The potential consists of a large metastable part
with small-scale superimposed periodic fluctuations, Φ(x, y) = Φ0(x) + p(y) with
p(·) a 1-periodic function. A typical potential is shown in Figure 1.

Now, if uε is given as a function of time, say bounded and continuous, it is known
that xεs converges in distribution to a limiting process xs as ε→ 0, where xs solves
the homogenized equation [51]

dxs = (σAus −A∇Φ0(xs)) ds+
√
Aβ−1/2 dws . (2)

Here 0 < A < 1 is an effective diffusivity that accounts for the slowing down of
the dynamics due to the presence of local minima in the two-scale potential. The
property that xε weakly converges to x in the sense of probability measures will
be referred to as forward stability of the homogenized equation. Now imagine a
situation, in which uε depends on xεs via a feedback law

uεs = c(xεs; ε), (3)
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Figure 1. Bistable potential (shown in red) with superimposed
small-scale oscillations of period ε (in blue).

where c(·; ε) is a measurable function of x. (For simplicity, we do not consider the
case that c carries an explicit time-dependence.) Specifically, we choose u from an
admissible class of feedback controls so that the cost functional

J(uε) = E

(∫ τ

0

L(xεs, u
ε
s) ds

)
is minimized for some given running cost L ≥ 0 associated with the sample paths
of xεs and uεs up to a random stopping time τ of the process.

The aim of the paper is to study situations where the cost functional evaluated
at uε, converges to J(u), with u being the limit of uε (in some appropriate sense).
Specifically, we are dealing with the situation that

inf
u
J(uε)→ inf

u
J(u) ,

a property that we will refer to as backward stability. If the homogenized equation
is backward stable, it does not matter whether one first solves the optimal control
problem and then sends ε to 0 or vice versa, in which case the control u is simply
treated as a parameter. One of the implications then is that we can compute
optimal controls from the homogenized model, such as (2), and use them in the
original equation when ε is sufficiently small.

Unfortunately very few systems are backward stable in this sense, a notable
exception being a system of the form (1) when the running cost L is quadratic
in u, e.g. [38, Sec. 4.1]. The reader may wonder why one should first reduce
the equations before solving the optimal control problem anyway, rather than the
other way round. One answer is that solving optimal control problems for high-
dimensional multiscale systems is usually computationally infeasible, which often
leaves no other choice; another answer is that there may be situations, in which a
fully resolved model may not be explicitly available, but one only has a sufficiently
accurate low-order model that captures the relevant dynamics of the system. In
both cases one wants to make sure that the controls obtained from the low-order
reduced model can be used in order to control the original system.
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1.2. Mathematical justification of the MOR approach. In this article we
consider the exceptional cases of backward stability and give necessary and sufficient
conditions under which the reduced systems are indeed backward stable when the
control is simply treated as a parameter in the equations of motion. It turns out
that a class of optimal control problems that are backward stable are systems that
are linear-quadratic in the control variable; they may be nonlinear in the state
variables, though, and therefore cover many relevant applications in the sciences and
engineering. Moreover we find that an additional requirement is that the controls of
the multiscale system converge in a strong sense; an example of weak convergence,
in which the systems fails to be backward stable due to lack of sequence continuity,
is when the controls are oscillatory with rate 1/ε around its homogenization limit, in
case of which Jε(uε) does not converge to J(u) unless J is linear in u. For a related
discussion of weak convergence issues in optimal control, we refer to [3, 2]. Similar
problems for parameter estimation and filtering are discussed in [22, 51, 50, 32, 49].

Strong convergence of the control is a necessary, but not sufficient condition for
backward stability of the model reduction approach (first reduce, then optimize),
in which the control variable is treated as a parameter during the homogenization
procedure. The class of control problems, which can be homogenized in the above
way are systems of SDEs that can be transformed to systems in which the controls
are absent. The class of such systems are linear-quadratic in the controls (but
possibly nonlinear in the states), and can be transformed by a suitable logarithmic
transformation of the value function of the optimal control problem:

V ε(x) = inf
uε

E

(∫ τ

0

L(xεs, u
ε
s) ds

∣∣∣∣xε0 = x

)
.

It can be shown (see [20]) that the log-transformed value function solves a linear
boundary value problem that does not involve any control variables and can be
homogenized using standard techniques. Once the linear equation has been homog-
enized, it can be transformed back to an equivalent optimal control problem that
is precisely the limiting equation of the original multiscale control problem. A nice
feature of the logarithmic transformation approach is that the optimal control can
be expressed in terms of the solution of the linear boundary value problem, which
can be solved efficiently using Monte-Carlo methods. This approach is helpful when
the dynamics are high-dimensional, in which case any grid-based discretization of
the above linear boundary value problem is prohibitive. (The case when the stop-
ping time τ is deterministic and the log-transformed value function solves a linear
transport PDE can be treated analogously.)

Our approach is summarized in Table 1.

V ε = minu J
ε(u) ψε = exp(−βV ε)

−−−−−−−−−−−−−→
linear PDE for ψε

ε→ 0

y
yε→ 0

V = minu J(u) V = −β−1 logψ
←−−−−−−−−−−−−−

linear PDE for ψ

Table 1. Schematic approach of the homogenization procedure
using logarithmic transformation.
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The article is organized as follows: In Section 2 the model reduction approach
for the indefinite time-horizon control problem with multiple time scales is outlined,
with a brief introduction to dynamic programming and logarithmic transformations
in Section 2.1. The model reduction problem is illustrated in Section 3 with three
different numerical examples: the overdamped limit of a second-order Langevin
equation (Sec. 3.1), diffusion in a highly-oscillatory potential (Sec. 3.2), and the
Gaussian linear quadratic regulator (Sec. 3.3). The article contains three appen-
dices: Appendix A discusses weak convergence under logarithmic transformations,
Appendix B introduces the infinite time-horizon problem associated with the lin-
ear quadratic regulator example, Appendix C contains the proof of Theorem 4 and
records various identities to bound the cost functional and the value function when
using suboptimal controls.

2. Multiscale control problem. We start by setting the notation which we will
use throughout this article. We denote by O ⊂ Rn a bounded open set with
sufficiently smooth boundary ∂O. Further let (zε,us )s≥0 be a stochastic process
assuming values in Rn that is the solution of

dzε,us = (b(zε,us ; ε) + σ(zε,us ; ε)uεs) ds+ σ(zε,us ; ε)β−1/2dws , (4)

where uεs ∈ U ⊆ Rn is the control applied at time s and w = (ws)s≥0 is n-
dimensional Brownian motion and β > 0 is the (dimensionless) inverse temperature
of the system. We assume that, for each ε > 0, drift and noise coefficients, b(·; ε)
and σ(·; ε), are continuous functions on Ō, satisfying the usual Lipschitz and growth
conditions that guarantee existence and uniqueness of the process [47].

Cost functional. We want to control (4) in such a way that an appropriate cost
criterion is minimized where the control is active until the process leaves the set O.
Assuming zε,u0 = z ∈ O, we define τ to be the stopping time

τ = inf{s > 0 ; zε,us /∈ O} , (5)

i.e., τ is the first exit time of the process zε,us from O. Our cost criterion reads

J(uε; z) = E

(∫ τ

0

L(zε,us , uεs) ds

∣∣∣∣ zε,u0 = z

)
(6)

where L is the running cost that we assume to be of the form

L(z, u) = G(z) +
1

2
|u|2 , (7)

with G being continuous on Ō. Note that the ε-dependence of the cost functional
J comes only through the dependence of the control on zε,us . We will omit the
dependence on z in J(u; z) and write it as J(u) whenever there is no ambiguity.

2.1. Logarithmic transformation. In order to pass to the limit ε→ 0 in (4)–(7),
we resort to the technique of logarithmic transformations that has been developed by
Fleming and co-workers (see [20] and the references therein). We start by recalling
the dynamic programming principle for stochastic control problems of the form
(4)–(7). To this end we make the following assumptions (see [20, Secs. VI.3–5] for
further details on the first two of the following assumptions) :

Assumption 1. For every ε > 0, the matrices a(·; ε) = σ(·; ε)σ(·; ε)T are positive
definite with uniformly bounded inverse a(·; ε)−1.
Assumption 2. The running cost G(z) is continuous, nonnegative, and G(z) ≤M1

for all z ∈ Ō with bounded first order partial derivatives in z.
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Assumption 3. There exist constants γ,C1 > 0, which are independent of ε, such
that E(exp(γτ)|zε0 = z) ≤ C1 < +∞.

We define the generator of the dynamics zε,us by

Lε(u)ψ =
1

2β
a(z; ε) : ∇2ψ + (σ(z; ε)uε + b(z; ε)) · ∇ψ .

Notice that the generator depends on the control u. When the control is absent
we will use the notation Lε := Lε(0). The next result is standard (e.g., see [20,
Sec. IV.5]) and stated without proof.

Theorem 1. Let V ε ∈ C1,2(O) ∩ C(Ō) be the solution of the Hamilton-Jacobi-
Bellman (HJB) equation

0 = min
c∈Rn

{Lε(c)V ε + L(z, c)} ,

0 = V ε|∂O .
(8)

Then
V ε(z) = min

u
Jε(z;uε) ,

where the minimum goes over all admissible feedback controls of the form uεs =
c(zε,us , s ; ε). The minimizer is unique and is given by the feedback law

ûε = −σ(z; ε)T∇V ε(z) = argmin
c∈Rn

{Lε(c)V ε + L(z, c)} . (9)

The function V ε is called value function or optimal cost-to-go. The homogeniza-
tion problem for (4)–(7) can be studied using a multiscale expansion of the nonlinear
PDE (8) in terms of the small parameter ε; see, e.g., [8, 38]. In this article we re-
move the nonlinearity from the equation by means of a logarithmic transformation
of the value function. Specifically, let

ψε(z) = e−βV
ε(z) .

By chain rule,

β−1eβV
ε

Lεe−βV
ε

= −LεV ε +
1

2
|σT∇V ε|2 ,

which, together with the relation

−1

2
|σT∇V ε|2 = min

c∈Rn

{
σc · ∇V ε +

1

2
|c|2
}
,

implies that (8) is equivalent to the linear boundary value problem

(Lε − βG)ψε = 0 ,

ψε|∂O = 1 ,
(10)

for the function ψε. By the Feynman-Kac formula, (10) has an interpretation as a
control-free sampling problem (see [47, Thm. 8.2.1]):

ψε(z) = E

(
exp

(
−β
∫ τ

0

G(zεs) ds

) ∣∣∣∣ zε0 = z

)
, (11)

where zεs solves the control-free SDE

dzεs = b(zεs; ε) ds+ σ(zεs; ε)β
−1/2dws .

Equations (8)–(11) express a Legrendre-type duality between the value of an optimal
control problem and cumulant generating functions [14, 20]:

V ε = −β−1 logψε . (12)
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In other words,

−β−1 log E

(
exp

(
−β
∫ τ

0

G(zεs)ds

) ∣∣∣∣ zε0 = z

)
= inf

us
E

(∫ τ

0

L(zε,us , us)ds

∣∣∣∣ zε,u0 = z

)
,

where zε,us satisfies the controlled SDE (4) and zεs = zε,0s .
By the above assumptions and the strong maximum principle for elliptic PDEs it

follows that (10) has a classical solution ψε ∈ C1,2(O)∩C(Ō). Moreover, combining
Assumption 3, (11) and Hölder’s inequality, we have that

ψε ≥ E(exp(−βM1τ)|zε0 = z)

and
E(exp(−βM1τ)|zε0 = z)1/pE(exp(γτ)|zε0 = z)1/q ≥ 1

where p = βM1/γ + 1 and q = γ/(βM1) + 1, and thus

0 < C2 ≤ ψε ≤ 1, ε > 0

for a constant C2 = C
−βM1/γ
1 that is independent of ε.

Remark 2. The specific form of the control term in (4) that is scaled with the noise
coefficient σ is not merely conventional, but rather a consequence of Girsanov’s the-
orem [47, Thm. 8.6.8] that expresses an equivalence between the probability distri-
butions of two diffusion processes with the same diffusion coefficient but different
drift terms. In our case, the equivalence between controlled and the uncontrolled
processes requires that the control is of the form σ(·; ε)u, up to the multiplication
with a scalar parameter that can be absorbed in the log transformation. However,
in many relevant applications, including the viscosity approximation of certain de-
terministic control problems, the noise coefficient is a constant scalar parameter,
which is why we consider the restriction on the controls non-serious.

Remark 3. In the course of the paper we will drop the assumption that the op-
erator Lε is uniformly elliptic and instead require only that is hypoelliptic [43].
In this case the matrix σσT can be semidefinite, if the vector field b satisfies an
additional controllability assumption, known as Hörmander’s condition [10], which
guarantees that the transition probability has a strictly positive density with respect
to Lebesgue measure, in which case (10) and (8) have classical solutions; cf. [20,
Sec. IV].

2.2. Homogenization problem. We now specify the class of multiscale systems
considered in this article. Specifically, we address slow-fast systems of the form

dxεs =

(
1

ε
f0(xε, yε) + f1(xε, yε)

)
ds+ β−1/2α1(xε, yε)dw1

s , (13a)

dyεs =

(
1

ε2
g0(xε, yε) +

1

ε
g1(xε, yε)

)
ds+

β−1/2

ε
α2(xε, yε)dw2

s , (13b)

together with an exponential expectation

ψε(x, y) = E

(
exp

(
−β
∫ τ

0

G(xεs, y
ε
s) ds

) ∣∣∣∣ xε0 = x, yε0 = y

)
. (14)

Letting Lε denote the infinitesimal generator of (13), it holds that

(Lε − βG)ψε = 0, (15)
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where

Lε =
1

ε2
L0 +

1

ε
L1 + L2 ,

with

L0 = g0 · ∇y +
1

2
β−1α2α

T
2 : ∇2

y,

L1 = f0 · ∇x + g1 · ∇y,

L2 = f1 · ∇x +
1

2
β−1α1α

T
1 : ∇2

x .

Let us assume that ψε admits the following perturbation expansion in powers of ε:

ψε = ψ0 + εψ1 + ε2ψ2 + · · · .

By substituting the ansatz into (15) and comparing different powers of ε we obtain
a hierarchy of equations, the first three of which are

L0ψ0 = 0,

L0ψ1 = −L1ψ0,

L0ψ2 = −L1ψ1 − L2ψ0 + βGψ0 .

(16)

We suppose that for each fixed x, the dynamics (13b) of the fast variables are
ergodic, with the unique invariant density ρx(y). Then by construction ρx is the
unique solution of the equation L∗0ρx(y) = 0, which together with the first equation
of (16) implies that ψ0 is independent of y. In order to proceed, we further assume
that f0(x, y) satisfies the centering condition:∫

f0(x, y)ρx(y) dy = 0 .

The centering conditions, together with the strong maximum principle implies that
the solution of the cell problem

L0Θ(x, y) = −f0(x, y) ,

∫
Θ(x, y)ρx(y) dy = 0 (17)

is unique, with ψ1(x, y) = Θ(x, y) ·∇xψ0(x). Multiplying ρx(y) on both sides of the
third equation in (16) and integrating with respect to y, we obtain

L̄ψ0 − βḠψ0 = 0, (18)

where

L̄ = f̄(x) · ∇x +
1

2
β−1ᾱᾱT : ∇2

x, (19)

with

f̄(x) =

∫
[∇xΘ(x, y)f0(x, y) +∇yΘ(x, y)g1(x, y) + f1(x, y)] ρx(y) dy,

Ḡ(x) =

∫
G(x, y)ρx(y) dy,

ᾱ(x)ᾱ(x)T =

∫ [
β
(
Θ(x, y)f0(x, y)T + f0(x, y)Θ(x, y)T

)
+ α1(x, y)α1(x, y)T

]
ρx(y) dy .

(20)
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Homogenized control system. It follows using standard homogenization theory
for linear elliptic equations (e.g. [48, 52]) that for ε → 0 the solution of (15)
converges to the leading term of the asymptotic expansion:

ψ0(x) = E

(
exp

(
−β
∫ τ

0

Ḡ(xs) ds

) ∣∣∣∣ x0 = x

)
, (21)

where xs is the solution of the homogenized SDE

dxs = f̄(xs)ds+ ᾱ(xs)β
−1/2dws , (22)

with coefficients as given in (20).
The corresponding asymptotic expansion of the value function V ε for ε → 0 is

obained by the logarithmic transformation (12):

V ε = −β−1 log(ψ0 + εψ1 +O(ε2)) = −β−1 logψ0 − β−1ψ1

ψ0
ε+O(ε2).

Therefore, using the ansatz V ε = V0 + εV1 + ε2V2 + · · · it follows that

V0 = −β−1 logψ0, V1 = −β−1ψ1

ψ0
.

Using the log-transformation property of the cumulant generating function (p. 284),
we conclude that V0 is the value function of the optimal control problem

V0(x) = inf
u

E

(∫ τ

0

[
Ḡ(xus ) +

1

2
|us|2

]
ds

∣∣∣∣ xu0 = x

)
,

where the minimization is subject to the homogenized dynamics

dxus = (f̄(xus ) + ᾱ(xus )us)ds+ ᾱ(xus )β−1/2dws . (23)

According to (9), the optimal feedback law for the homogenized problem reads

ût = −ᾱ(xut )T∇V0(xut ). (24)

2.3. Control of the full dynamics using reduced models. Our goal is to find
the optimal control policy ûε = (û1,ε, û2,ε) for the multiscale control problem (4)–(7)
that is associated with the equivalent fast/slow system (13)–(14) for ε � 1. Using
Theorem 1 and the asymptotic expansion of V ε, we have

û1,ε = −αT1∇xV ε = −αT1∇xV0 +O(ε),

û2,ε = −1

ε
αT2∇yV ε = −αT2∇yV1 +O(ε) = −αT2∇yΘ∇xV0 +O(ε).

(25)

Notice that the leading terms in (25) are related to the value function of optimal
control problem for the reduced SDE. This indicates that we may design the con-
trol policy from the reduced problem and use it to control the original multiscale
equation. This assertion is justified by the following result for the general optimal
control problem (4)–(7).

Theorem 4. Let Assumptions 1,2 and 3 hold and, furthermore, suppose that ε <
(γ/β)1/2 and |ut − ût| ≤ ε uniformly in t. Then we have

|J(u)− J(ûε)| ≤ Cε2. (26)
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The proof of the theorem can be found in Appendix C.
Upon combining the above theorem with the formula for the optimal control

policy in (25) we conclude that when the two time scales in the system are well
separated, ε � 1, the optimal control policy is well approximated by the leading
order terms in (25) and results in a cost value that is nearly optimal.

Remark 5. All considerations in this paper readily generalize to the averaging
problem, i.e. when f0 = g1 = 0 in (13). This is not surprising since for averaging
problems strong convergence ψε → ψ is expected to hold (when the diffusion coeffi-
cient α1 in (13) is independent of the fast variable y). Related problems have been
addressed in [49], in which the authors study parameter estimation and convergence
of the maximum likelihood function under averaging and homogenization.

3. Three prototypical applications. In this section we apply the results pre-
sented in the previous section to three typical multiscale models. For each model
we first state the optimal control problem along with its log-transformed counter-
part, then we study the asymptotic limits of the value function and of the optimal
control policy and give explicit formulae for the solution. The first two examples
are taken from [49], while the third is adapted from [25].

3.1. Overdamped Langevin equation. We consider the second-order Langevin
equation

ε2
d2xε

ds2
= −dx

ε

ds
−∇Φ(xε) +

√
2β−1/2 dw

ds
, (27)

where ε � 1, x ∈ Rn, β > 0, and Φ being a smooth the potential energy function.
Introducing the auxiliary variable yε we can recast (27) as

dxε

ds
=

1

ε
yε, (28a)

dyε = −
(

1

ε
∇Φ(xε) +

1

ε2
yε
)
dt+

1

ε

√
2β−1/2dw . (28b)

We consider the solution of the optimal control problem

V ε(x, y) = inf
uε

E

(∫ τ

0

[
G(xε,us ) +

1

2
|uεs|2

]
ds

∣∣∣∣ xε,u0 = x, yε,u0 = y

)
(29)

under the controlled Langevin dynamics

dxε,us
ds

=
1

ε
yε,us , (30a)

dyε,us =

(
1

ε

√
2uεs −

1

ε
∇Φ(xε,us )− 1

ε2
yε,us

)
dt+

1

ε

√
2β−1/2dw. (30b)

We notice that (28) is somewhat different to the form specified in Section 2, since
there is no noise and hence no control term in the equation for xε. The infinites-
imal generator correpsonding to (28) is hypoelliptic (rather than elliptic). Yet the
standard homogenization arguments apply, for here the fast variable is y and the
noise is acting uniformly in y. As a consequence the generator of the fast dynamics
is uniformly elliptic, and hence the standard theory applies. Let

ψε(x, y) = E

(
exp

(
−β
∫ τ

0

G(xεs) ds

) ∣∣∣∣ xε0 = x, yε0 = y

)
.
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Assuming that the linear boundary value problem (10) associated with ψε has a
classical solution, then the dual relation V ε = −β−1 logψε holds and the results of
the previous section carries over without alternations.

Homogenized control system. From the above and the considerations from the
previous section we can conclude that the leading term of V ε(x, y) satisfies the
optimal control problem of the homogenized SDE, which is

V0(x) = inf
u

E

(∫ τ

0

[
G(xus ) +

1

2
|us|2

]
ds

∣∣∣∣ xu0 = x

)
(31)

subject to the homogenized equation

dxus = −∇Φ(xus )ds+
√

2usds+
√

2β−1/2dws. (32)

Equation (32) is called the overdamped Langevin equation that is obtained from
(27) by letting the inertial second-order term tend to zero [45].

We now derive an explicit asymptotic expression for the optimal feedback law
ûεt := û2,ε

t , with ûεt = ĉε(xε,ut , yε,ut ) and

ĉε = −
√

2ε−1∇yV ε(x, y) .

From (30) and the expansion ψε(x, y) = ψ0(x) + εψ1(x, y) +O(ε) we find

ĉε = −
√

2∇yV1 +O(ε) = −
√

2∇yΘ∇xV0 +O(ε). (33)

As before Θ is the solution to the associated cell problem. To solve it we notice
that the infinitesimal generator of (28) has the form

L =
1

ε2
L0 +

1

ε
L1

with

L0 = −y · ∇y + β−1∆y (34)

L1 = y · ∇x −∇Φ · ∇y , (35)

which implies that the cell problem for Θ reads

L0Θ = −y ,

with unique solution Θ(x, y) = y. Combining it with (33), we obtain the sought
asymptotic expression for the optimal feedback law:

ĉε = −
√

2∇xV0 +O(ε) , (36)

with V0 as given in (31). We therefore conclude that the optimal control ûε for
the Langevin equation (27) converges to the optimal control of the overdamped
equation (32) as ε → 0. Moreover, Theorem 4 guarantees that the control value

is asymptotically exact if we replace ûε with the control û = −
√

2∇xV0 in the
multiscale dynamics (30). Hence the overdamped equation is backward stable.

Langevin dynamics in a double-well potential. As an example consider the
case n = 1, with running cost G(x) = 1 in (29) and random stopping time

τ = inf{s > 0 : xε,us > 2} .

The dynamics are governed by the double-well potential

Φ(x) =
1

4
(x2 − 1)2
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Figure 2. Overdamped Langevin equation. (A) Double-well po-
tential Φ(x). (B) Leading term of optimal control in (36).

depicted in Figure 2A. As the homogenized problem is one-dimensional, the leading
term V0 of the value function V ε can be computed by solving a two-point boundary
value problem. The resulting leading term (36) for the optimal control

ûεt = ĉε(xε,ut )

is shown in Figure 2B. We then computed the cost function Jε = J(ûε) starting
from three different initial points x0 = 1.0, 1.2, 1.5, using the approximation

ûεt ≈ −
√

2∇xV0(xε,ut ) .

Figure 3 clearly shows that Jε approaches its infimum V0(x0) as ε → 0. A clear
advantage of controlling the full dynamics using the optimal control obtained from
the reduced model here is that the infinitesimal generator Lε of the original Langevin
dynamics is not self-adjoint, whereas the infinitesimal generator L̄ of the reduced
dynamics is essentially self-adjoint. That is, not only do we benefit from a lower
dimensionality of the reduced-order model (by a factor of 2), but we also avoid
solving a boundary value problem with a non-self-adjoint operator.

3.2. Diffusion in a periodic potential. We now consider the SDE [16, 52]

dxεs = −∇Φε(xεs)ds+
√

2β−1/2dws (37)

where β > 0 and Φε(x) = Φ0(x) + p(x/ε), with p(y) being a smooth, 1-periodic
function (see Fig. 4 below). We study the optimal control problem

V ε(x) = inf
uε

E

(∫ τ

0

G(xε,us ) +
1

2
|uεs|2ds

∣∣∣∣ xε,u0 = x

)
, (38)

where

dxε,us = −∇Φε(xε,us )ds+
√

2uεsds+
√

2β−1/2dws (39)

and τ = τ ε,u is the first hitting time of the set {x ≥ 1.5} (blue region in Fig. 4).
In order to relate this system with the homogenization problem studied in Sec-

tion 2.2, we introduce the auxiliary variable yε = xε/ε and reformulate (37) as

dxεs = −1

ε
∇p(yεs)ds−∇Φ0(xεs)ds+

√
2β−1/2dws, (40a)

dyεs = − 1

ε2
∇p(yεs)ds−

1

ε
∇Φ0(xεs)ds+

1

ε

√
2β−1/2dws, (40b)
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where xεs, y
ε
s are driven by the same noise ws. The associated value function reads

Ṽ ε(x, y) = inf
uε

E

(∫ τ

0

G(xε,us ) +
1

2
|uεs|2ds

∣∣∣∣ xε,u0 = x, yε,u0 = y

)
,
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with

dxε,us = −1

ε
∇p(yε,us )ds−∇Φ0(xε,us )ds+

√
2uεs ds+

√
2β−1/2dws, (41a)

dyε,us = − 1

ε2
∇p(yε,us )ds− 1

ε
∇Φ0(xε,us )ds+

1

ε

√
2uεs ds+

1

ε

√
2β−1/2dws . (41b)

Notice that the same noise and the same control are applied to both equations.

Clearly V ε(x) = Ṽ ε(x, x/ε) and the dual relation Ṽ ε(x, y) = −β−1 logψε(x, y)
applies, where ψε is defined as in Section 2.2. The generator of (40) now is

Lε =
1

ε2
L0 +

1

ε
L1 + L2,

with

L0 = −∇p · ∇y + β−1∆y,

L1 = −∇p · ∇x −∇Φ0 · ∇y + 2β−1∇x∇y,
L2 = −∇Φ0 · ∇x + β−1∆x .

Homogenized control system. Applying the results of Section 2, we conclude
that the leading term of V ε(x) is the value function of the following reduced-order
optimal control problem: minimize

J(u) = E

(∫ τ

0

G(xus ) +
1

2
|us|2ds

)
, (42)

subject to the homogenized dynamics

dxus = −K∇Φ(xus )ds+
√

2Kusds+
√

2Kβ−1/2dws, (43)

with the effective diffusivity

K =

∫
(I +∇yΘ(y))(I +∇yΘ(y))T ρ(y) dy .

In the above formula ρ(y) = Z−1 exp(−βp(y)) denotes the invariant density of the
fast variable y and Θ(y) is the solution of the Poisson equation

L0Θ(y) = ∇p(y).

Specifically, we have (cf. [51] for details)

K−1 =

∫ 1

0

exp(−βp(y)) dy

∫ 1

0

exp(βp(y)) dy .

The value function of the homogenized control problem (42)–(43) and the corre-
sponding optimal control satisfy

V0(x) = −β−1 logψ0(x)

and

ût = −
√

2K∇V0(xût ), (44)

where

L̄ψ0(x) = KL2ψ0(x) = βG(x)ψ0(x), ψ0(x)
∣∣
∂O

= 0,

as given in (18).
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Reduced model is not backward stable. The LQ form of the optimal control
problem is a necessary, but not a sufficient condition to guarantee backward stability
of the reduced system. There are cases in which the controls are highly oscillatory
and do not converge to the optimal control of the homogenized equation in a strong
sense, but only weakly. As a consequence J(ûε) does not converge to J(û) as ε→ 0
and using a reduced-order models for optimal control is not recommended.

The effect of highly oscillatory feedback controls can be understood by noting
that the optimal control the original dynamics is given by the feedback law

cε(x) = −
√

2∇V ε(x) =
√

2β−1∇xψε(x, x/ε)
ψε(x, x/ε)

=
√

2β−1∇xψ0(x) +∇yψ1(x, x/ε)

ψ0(x)
+O(ε),

(45)

which can be formally derived from the expansion

ψε(x, x/ε) = ψ0(x) + εψ1(x, x/ε) + . . . .

After some manipulations we find that the asymptotic expression for cε reads

cε(x) =
√

2β−1 exp(βp(x/ε))∫ 1

0
exp(βp(z)) dz

ψ′0(x)

ψ0(x)
+O(ε)

=
exp(βp(x/ε))

√
K
∫ 1

0
exp(βp(z)) dz

c(x) +O(ε),

(46)

where we used the shorthand c(x) = −
√

2K∇V0(x) in the last row. Therefore we
conclude that cε must be of the form

cε(x) = c̃(x, x/ε) +O(ε) .

Yet c̃(x, x/ε) does not converge to c(x) in any reasonable norm, for the x/ε part
keeps oscillating as ε→ 0. What does converge, however, is the average:∫ 1

0

c̃(x, y)ρ(y)dy =

∫ 1

0

c̃(x, y)
e−βp(y)∫ 1

0
e−βp(z)dz

dy =
√
Kc(x) .

This fact is illustrated in Figure 5 which shows the oscillations of order one that are
a consequence of the ε-periodic oscillations of the value function; since the optimal
control law involves the derivative of the value function, oscillations of size ε in the
value function turn into O(1) contributions to the optimal control. Figure 6 shows
the difference between the homogenized value function V0(x) and its multiscale
counterpart V ε(x) in the L2-norm. The figure also shows the L2-difference between
the multiscale optimal feedback law cε(x) and the corrected homogenized feedback
law c̃(x, x/ε), including the oscillatory correction. This demonstrates strong O(ε)
convergence in L2 of both value function and optimal control.

Remark 6. The above case is an example in which using a reduced-order models for
optimal control of the original dynamics will produce erroneous results, for J(ûε)
does not converge to J(û) in the limit ε → 0. Nonetheless, Theorem 4 suggests
that we can use the leading term of cε in (46) as an approximation of the feedback
law for the multiscale dynamics (39). The effect of the corrector estimate (46), is
to enforce convergence of the derivative of the value function, which entails (weak)
convergence of the optimal control and convergence of the optimal cost value (cf. [16]
for an application in importance sampling).
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Mean first passage time and value function. As a specific example, we have
solved the optimal control problem (38)–(39) for the mean first passage time, with
G(x) = 1 and τ being the first passage time of the set {x ≤ 1.5}, and compared it
with the solution of the homogenized system (42)–(43). The potential Φ0 is chosen
to be a tilted double-well potential,

Φ0(x) = −5(exp (−0.2(x+ 2.5)2) + exp (−0.2(x− 2.5)2)) + 0.01x4 + 0.8x ,

with periodic perturbation

p(y) = 0.5 sin 2πy .

We have solved the associated boundary value problems using the finite-volume
method presented in [40] using a mesh sufficiently fine for the error to be smaller
than a certain threshold. The resulting value functions are presented in Figure 7.
For comparison, we have also simulated the multiscale system driven by the optimal
control for the homogenized system (44),

dxε,ûs = −1

ε
∇p(xε,ûs /ε)ds−∇Φ0(xε,ûs )ds+

√
2ûs ds+

√
2β−1/2dws , (47)

with ût = ĉ(xε,ut ) and ĉ = −
√

2K∇V0. This situation amounts to using the (wrong)
homogenized control in the original multiscale dynamics. To illustrate the short-
coming of such an approach, we have calculated the control value

J(û;x) = E

(
τ +

∫ τ

0

1

2
|ûs|2ds

∣∣∣∣ xû0 = x

)
,

by Markov-jump Monte Carlo (MJMC) simulations (see [40]). As it is shown in
Figure 7, equation (47) does not capture the control value J(ûε) as ε→ 0; in order
to reproduce the control value correctly, one must instead use the corrected control

ũt = c̃(xε,ut , xε,ut /ε) , (48)

as given in (46).

3.3. Linear-quadratic regulator. The third example is a multiscale linear qua-
dratic regulator (LQR) problem that slightly falls out of the previous category.
Specifically, we seek to minimize the time-averaged quadratic cost

Jε(u) = lim sup
T→∞

E

(
1

T

∫ T

0

{
|xε,us |2 + |yε,us |2 +

1

2
|uεs|2

}
ds

)
(49)

subject to the linear dynamics

dxε,us =

(
A11x

ε,u
s +

1

ε
A12y

ε,u
s +

√
2B1u

ε
s

)
ds+

√
2β−1B1dws

dyε,us =

(
1

ε
A21x

ε,u
s +

1

ε2
A22y

ε,u
s +

1

ε

√
2B2u

ε
s

)
ds+

1

ε

√
2β−1/2B2dws

(50)

where x ∈ Rk, y ∈ Rn−k, u ∈ Rl, and Aij , Bi are real matrices of appropriate size.
Note that both slow and fast equations are driven by the same noise and control.
Further let

A =

(
A11 ε−1A12

ε−1A21 ε−2A22

)
, B =

√
2

(
B1

ε−1B2

)
.

We make the following additional assumptions (we suppress the ε in the matrix
definition in order to keep the notation compact):
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Figure 7. Optimal value function for different values of ε. Solid
line: numerical solution of eq. (10). Dashed line: numerical solution
of eq. (18). ?: MJMC sampling of (47). �: MJMC sampling using
(48). Throughout the simulations we have set β = 2

1. The initial values (xε0, y
ε
0) = (x0, y0) are independent of ε and satisfy

E[|x0|2] <∞ , E[|y0|2] <∞ .

2. For all ε > 0, the spectrum of A lies entirely in the open left half complex
plane, i.e., all eigenvalues of A have strictly negative real part.

3. The spectrum of A22 lies entirely in the open left half complex plane.
4. For all ε > 0, the matrix pair (A,B) is controllable, i.e., the matrix

Kε = (B AB A2B . . . An−1Bε)

has maximum rank n.
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For the control problem (49)–(50), the analog of (8) for the case of an infinite-time
horizon with time-averaged cost and unbounded domain reads [54, 55]

ηε = min
c∈Rn

{
Lε(c)V ε + |z|2 +

1

2
|c|2
}

(51)

where z = (x, y) and

Lε(u) = (2β)−1BBT : ∇2 + (Az +Bu) · ∇
The unknown parameter ηε ∈ R in the Hamiton-Jacobi-Bellman equation (51)
needs to be determined along with the function V ε = V ε(x, y), in fact (51) can be
regarded as a nonlinear eigenvalue equation for the pair (ηε, V ε); for details we refer
to Appendix B.

LQR problems of this kind have quadratic value functions and admit an explicit
solution in terms of an algebraic Riccati equation

ATSε + SεA− 2SεBBTSε + In×n = 0 , (52)

where In×n denotes the n× n identity matrix. Specifically, plugging the ansatz

V ε(z) = zTSεz

into (51), it readily follows that Sε solves (52). Hence the optimal control for the
linear quadratic regulator (49)–(50) is given by the linear feedback law

ûεt = −BTSεzt .
Under the above assumptions, the Riccati equation has a unique symmetric positive
definite solution Sε for all values of ε > 0. Moreover, it follows that

ηε = BBT : Sε ,

which is the principal eigenvalue of the linear eigenvalue equation

(2β)−1BBT : ∇2ψε + (Az) · ∇ψε − β|z|2ψε = −βηεψε (53)

for the log-transformed eigenfunction ψε = exp(−βV ε). Notice that the eigefunction
ψε corresponding to the principal eigenvalue −βηε ≤ 0 is strictly positive as a
consequence of the Perron-Frobenius theorem, hence its log transformation is well
defined.

Reduced Riccati equation. Given the above assumptions on the matrices A
and B, the homogenized version of the linear eigenvalue equation (53) can be easily
computed, since the cell problem has an explicit solution. We find

(2β)−1B̄B̄T : ∇2ψ + (Āz) · ∇ψ − β(|x|2 +Q)ψ = −βηψ (54)

with the homogenized coefficients

Ā = A11 −A12A
−1
22 A21 , B̄ =

√
2
(
B1 +A12A

−1
22 B2

)
and

Q = 2β−1tr

(∫ ∞
0

eA22tB2B
T
2 e

A22tdt

)
,

denoting the sum of the eigenvalues of the asymptotic covariance matrix of the fast
degrees of freedom. The limiting eigenpair (η, ψ) is given by

η = B̄B̄T : S +Q , ψ(x) = e−βx
TSx

where S is the solution of the homogenized Riccati equation

ĀTS + SĀ− 2SB̄B̄TS + Ik×k = 0 , (55)
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in accordance with the solution of the algebraic Riccati equation of singularly-
perturbed LQR problems that has been discussed in the literature; see [22] and the
references therein. It can be shown by perturbation analysis of the Riccati equation
(52) using the Chow transformation (see, e.g., [35] and the references therein) that
S corresponds to the top left k × k block of the matrix S up to O(ε2). Moreover,
for any open and bounded subset Ω ⊂ Rn with smooth boundary, we have

‖V ε − V ‖H1(Ω̄) ≤ C1ε
2 .

for V = −β−1 logψ and some constant 0 < C1 <∞. The latter implies that

|ûεs − ûs| ≤ C2ε

uniformly on [0, τΩ] where τΩ is the first exit time from Ω ⊂ Rn and 0 < C2 < ∞.
For large values of β the probability that the process exits from Ω is exponentially
small in β, i.e., the exit from the domain is a rare event (see, e.g., [60]) and hence
we can employ the approximation τΩ ≈ ∞ for all practical purposes.

270-dimensional ISS model. We consider the 270-dimensional model of a com-
ponent of the International Space Station (ISS) that is taken from the SLICOT
benchmark library [13]. In this case, n = 270 and l = 3 in equation (49); the di-
mension of the slow subspace is set to k = 4, because the spectrum of dimensionless
Hankel singular values of the full system shows a significant spectral gap at k = 4
when the slow variables are chosen as the observed variables; see [26] for details.
The original system is Hamiltonian, but we pay no attention to the specific geo-
metric structure of the equations here; cf. [29] for related work. The corresponding
control task for the 4-dimensional reduced system thus is to minimize

J̄(u) = lim sup
T→∞

E

(
1

T

∫ T

0

{
|xus |2 +

1

2
|us|2

}
ds

)
(56)

subject to the dynamics

dxus =
(
Āxus + B̄us

)
ds+ β−1/2B̄dws , (57)

with Ā and B̄ as in (55). Without loss of generality, we have ignored the additive
constant Q in the cost term that appears in the homogenized eigenvalue equation
(54). As before the optimal control is given by the linear feedback law

ûs = −B̄TSxs .

where S denotes the solution of (52). To verify the convergence of the value function
numerically, we have computed eigenvalues of S and Sε, the matrix norms of S−Sε11

and the norm of the matrix Sε with the Sε11 block set to zero, called Sεr. Here Sε11

refers to the upper left k×k block of the matrix Sε, in accordance with the notation
in (50). Figure 8 shows this comparison for β = 0.01, which, given the parameters
of the ISS model, amounts to the small noise regime; the plots clearly show that
the convergence is of O(ε2). We refrain from testing the convergence ηε → η of the
corresponding nonlinear eigenvalue since the 1/ε2 singularity makes the evaluation
of the trace term BBT : Sε numerically unstable for all interesting values of ε.
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first 40 Hankel singular values (out of 270) when the slow variables
are observed; the Hankel singular values are independent of ε.

Appendix A. Weak convergence under logarithmic transformations. As
we have seen in Section 3.2 loss of backward stability of the model reduction ap-
proach is related to weak convergence of the multiscale controls. Weak convergence
is mainly an issue for homogenization problems with periodic coefficients that do
not involve any explicit time-dependence. For control problems on a finite time-
horizon, a well-known result (e.g., see [48, Sec. 3] or [52, Sec. 20]) that is based on
the maximum principle states that the convergence of the log-transformed parabolic
equation is uniform on bounded time intervals under fairly weak assumptions.

In the indefinite time-horizon case considered in this paper, however, the lowest
order approximation gives only weak convergence. In general, weak convergence is
not preserved under nonlinear transformation. That is, given a weakly convergent
sequence ψε on R and a nonlinear continuous function F : R→ R, we have

ψε ⇀ ψ 6⇒ F (ψε) ⇀ F (ψ) .

In our case, however, weak convergence follows from the properties of the logarithm
and the fact that ψε is bounded away from 0. Let ψε be the solution of the elliptic
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boundary value problem (10) for T →∞ and recall that

ψε → ψ strongly in L2(Ō)

and

ψε ⇀ ψ weakly in H1(Ō) .

Moreover, we have that

0 < C ≤ ψε ≤ 1 ε > 0

for some C ∈ (0, 1).

Lemma 7. We have

logψε → logψ strongly in L2(Ō)

Proof. Since C ≤ ψε ≤ 1 the monotony of the logarithm entails that

logC ≤ logψε ≤ 0 .

Since logC > −∞ and O ⊂ Rn is bounded it follows that logψε ∈ L2(Ō) and, by
the same argument, logψ ∈ L2(Ō). Convergence now follows from the fact that
log(x) is Lipschitz continuous with a Lipschitz constant L <∞ if x ≤ C > 0:

‖ logψε − logψ‖2L2(Ō) =

∫
Ō

| logψε − logψ|2dz

≤ L2

∫
Ō

|ψε − ψ|2dz ,

which vanishes in the limit ε→ 0 as ψε → ψ in L2(Ō).

This implies strong convergence of the value function. For the optimal control,
the above conditions give only weak convergence, which is implied by:

Lemma 8. We have

logψε ⇀ logψ weakly in H1(Ō)

Proof. It suffices to show that ∇ logψε ⇀ ∇ logψ in L2(Ō). To this end recall
that ∇ψε ⇀ ∇ψ in L2(Ō) since ψε converges weakly in H1(Ō). Then, for all test
functions φ ∈ L2(Ō), using again that ψε ≥ C > 0 pointwise and uniformly in ε,∫
Ō

(
∇ψε

ψε
− ∇ψ

ψ

)
φdz =

∫
Ō

(ψ∇ψε − ψε∇ψ)
φ

ψεψ
dz

≤ 1

C2

∫
Ō

(ψ∇ψε − ψε∇ψ)φdz

≤ 1

C2

∫
Ō

(ψ∇ψε − ψ∇ψ)φdz︸ ︷︷ ︸
I1

+
1

C2

∫
Ō

(ψ∇ψ − ψε∇ψ)φdz︸ ︷︷ ︸
I2

We look at the two integrals separately. Using that 0 < ψ ≤ 1 it follows that

|I1| ≤
∣∣∣∣∫
Ō

(∇ψε −∇ψ)φdz

∣∣∣∣→ 0

since φ ∈ L2(Ō) and ∇ψε ⇀ ∇ψ weakly in L2(Ō). Now for the second integral:
since the weakly convergent sequence ψε and its limit ψ are bounded in H1(Ō) we
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conclude that ∇ψ ∈ L2(Ō), which together with the boundedness of |ψε−ψ| implies
that (ψε − ψ)∇ψ ∈ L2(Ō). So, by the Cauchy-Schwarz inequality,

|I2|2 ≤
(∫

Ō

|(ψε − ψ)∇ψ|2 dz
)(∫

Ō

|φ|2 dz
)

= ‖φ‖2L2(Ō)

∫
Ō

|(ψε − ψ)∇ψ|2 dz

≤M‖φ‖2L2(Ō)

∫
Ō

|(ψε − ψ)∇ψ| dz

for some constant 0 < M <∞. Reiterating the preceding argument it follows that

|I2|2 ≤M‖φ‖2L2(Ō)‖ψ
ε − ψ‖2L2(Ō)‖∇ψ‖

2
L2(Ō) → 0

as ψε → ψ in L2(Ō) and ∇ψ ∈ L2(Ō). Hence∣∣∣∣∫
Ō

(∇ logψε −∇ logψ)φdz

∣∣∣∣→ 0

which, together with the last Lemma yields the assertion.

Appendix B. Ergodic control problem. We briefly discuss the ergodic control
problem of Section 3.3 that is known to be related to an elliptic eigenvalue problem
[30, 9, 19]. In principle, the equivalence of (53) and (51) directly follows from the
logarithmic transformation. Here, we give an alternative derivation of the associated
HJB equation, starting from the underlying Kolmogorov backward equation. To this
end let

ηε = − lim sup
T→∞

1

βT
log E

(
exp

(
−β
∫ T

0

G(zεt ) dt

))
. (58)

for a continuous bounded function G : Rn → [0,∞) Further let ϕ(z, t) be given by

ϕε(z, t) = E

(
exp

(
−β
∫ t

0

G(zεs) ds

) ∣∣∣∣ zε0 = z

)
. (59)

By the Feynman-Kac formula ϕε(z, t) is the solution of(
∂

∂t
− Lε

)
ϕε = −βGϕε

ϕε(z, 0) = 1 .

(60)

Here

Lε =
1

2
β−1σ(z; ε)σ(z; ε) : ∇2 + b(z; ε) · ∇

denotes the infinitesimal generator of our generic uncontrolled diffusion process.
Setting V ε = −β−1 logϕε, we can rewrite Equation (58) in the form

ηε = lim
t→∞

V ε(z, t)

t
.

Assuming that the limit exists, this motivates the following asymptotic ansatz for
large t:

ϕε(z, t) ∼ ψε(z) exp(−ηεβt) , ψε > 0 .

Plugging the separation ansatz into (60) it follows that ψε solves the eigenvalue
equation (

G− β−1Lε
)
ψε = ηεψε ,
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or, equivalently,

(Lε − βG)ψε = −βηεψε ,
As a consequence of the Perron-Frobenius theorem the eigenfunction ψε correspond-
ing to the principal eigenvalue −βηε is strictly positive. The equivalent nonlinear
eigenvalue problem for the log-transformed eigenfunction V ε = −β−1 logψε reads

LεV ε − 1

2
|σT∇V ε|2 +G = ηε .

which, as before, can be rewritten in the form

min
c∈Rn

{
(LεV ε + (σc) · ∇V ε +G+

1

2
|c|2
}

= ηε .

The last equation is recognized as the dynamic programming equation of the ergodic
optimal control problem, of which (49)–(50) is a special case: minimize

Jε(u) = lim sup
T→∞

E

(
1

T

∫ T

0

(
G(zεs) +

1

2
|us|2

)
ds

)
subject to

dzε,us = (b(zε,us ; ε) + σ(zε,us ; ε)uεs) ds+ σ(zε,us ; ε)β−1/2dWs .

B.1. Homogenized ergodic control problem. Let z = (x, y) and consider the
expansion ψε = ψ0+εψ1+· · · and ηε = η0+εη1+· · · , as in the previous subsections.
The leading term in the expansion ψ0 is independent of y and satisfies

(L̄ − βḠ)ψ0 = −βη0ψ0 ,

with L̄, Ḡ defined in (20). Now suppose V ε = V0 + εV1 + · · · , then again

V0 = −β−1 logψ0, V1 = −βψ1

ψ0
.

This indicates that the leading nonlinear eigenpair (η0, V0) satisfies

η0 = lim sup
T→∞

E

(
1

T

∫ T

0

(
Ḡ(xs) +

1

2
|ᾱ(xs)

T∇V0(xs)|2
)
ds

)
,

where xs solves the optimally controlled SDE

dxs =
(
f̄(xs)− ᾱ(xs)ᾱ(xs)

T∇V0(xs)
)
ds+ ᾱ(xs)β

−1/2dws .

By ergodicity of the controlled process, the above expectation is independent of the
distribution of the initial values; see [55] and the references therein.

Appendix C. Entropy bounds for the cost function. In this section we study
the cost function of the optimal control problem from the point of view of change
of measure. Consider the SDE

dzs = b(zs) ds+ β−1/2σ(zs) dws

z0 = z
(61)

and the controlled SDE

dzs = (b(zs) + σ(zs)us) ds+ β−1/2σ(zs) dws

z0 = z,
(62)
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where us is any bounded measurable control that is adapted to zs. Let µ and
µu denote the path measures generated by (61) and (62), respectively. Then by
Girsanov’s theorem [47], we have that

dµu
dµ

= exp

(
−β1/2

∫ τ

0

us dws −
β

2

∫ τ

0

|us|2 ds
)
. (63)

Let a cost functional be given by

J(u) = Eµu

(∫ τ

0

(
G(zs) +

1

2
|us|2

)
ds

∣∣∣∣ z0 = z

)
, (64)

where G satisfies Assumption 2 from Section 2.1. Here we use the notation Eµu to
indicate that the expectation is understood with respect to the probability measure
µu. Moreover the dependence of J on the initial value z is omitted.

Let û = argminJ(u), then from Theorem 1 we know ûs only depends on zs. Let µ̂
denote the measure µû for simplicity. Our purpose here is to estimate |J(u)−J(û)|
when ||u− û||L∞ is small. We will make use of the following definition.

Definition 9. For two probability measures µu, µ with µu � µ, the Kullback-
Leibler divergence of µu relative to µ̂ is defined as

I(µu | µ̂) =

∫
log

(
dµu
dµ̂

)
dµu. (65)

We also assume that Assumption 3 from Section 2.1 holds: there exists γ > 0,
such that Eµ(eγτ ) = C1 < +∞. As in Section 2.1, we have that

Eµ

(
exp

(
− β

∫ τ

0

G(zs) ds
))
≥ C−βM1/γ

1

Here and in the following, the conditioning on the initial value is omitted.
We also need two technical estimates in order to study the convergence of the

cost functional. We start with the following estimate.

Lemma 10. Eµ̂(eγτ ) ≤ C1+βM1/γ
1 .

Proof. we have Eµ̂(eγτ ) = Eµ(eγτ dµ̂dµ ). Using the dual relation

−β−1 log Eµ

(
exp

(
− β

∫ τ

0

G(zs) ds
))

= inf
u
J(u) = J(û)

and Jensen’s inequality, we know that

exp
(
− β

∫ τ

0

G(zs) ds
)dµ
dµ̂

= Eµ

(
exp

(
− β

∫ τ

0

G(zs) ds
))
≥ C−βM1/γ

1 , µ− a.s.

(66)

where we have assumed the equivalence of µ and µ̂. Since G is nonnegative,

Eµ̂(eγτ ) = Eµ

(
eγτ

dµ̂

dµ

)
≤ CβM1/γ

1 Eµ(eγτ ) = C
1+βM1/γ
1 .

The following lemma provides us with an estimate on the relative entropy when
the control u is close to û.
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Lemma 11. Suppose there is an ε > 0, such that |us − ûs| ≤ ε, for all s > 0, and
let ε < (γ/β)1/2. Then

I(µu | µ̂) ≤ βC3ε
2 , Eµu(τ) ≤ 2C3 ,

with the constant C3 = γ−1(1 + βM1/γ) logC1.

Proof. From (63), we know

I(µu | µ̂) =

∫
log

(
dµu
dµ̂

)
dµu =

β

2
Eµu

(∫ τ

0

|us − ûs|2ds
)
≤ β

2
ε2Eµu(τ).

On the other hand, by Jensen’s inequality,

log Eµ̂(eγτ ) ≥ γEµu(τ)− I(µu | û).

The conclusion follows from the last two inequalities.

Now we are ready to prove Theorem 4, which is restated here more precisely.

Theorem 12. Let Assumption 1,2 and 3 from Section 2.1 hold. Further suppose
that ε < (γ/β)1/2 and |us − ûs| ≤ ε, for all s > 0. Then it holds that

J(u) = J(û) + β−1I(µu| µ̂) ≤ J(û) + C3ε
2. (67)

Proof.

J(u) = Eµ̂

{[∫ τ

0

(
G(zs) +

1

2
|us|2

)
ds
]dµu
dµ̂

}

It follows from (66) that we can write the above as

J(u) = J(û) + Eµ̂

[(
β−1 log

dµ

dµ̂
+

∫ τ

0

1

2
|us|2 ds

)dµu
dµ̂

]
(68)

Combining this with (63), we get

J(u) = J(û) + β−1I(µu| µ̂) .

The conclusion now readily follows from Lemma 11.
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