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Abstract A standard approach to computing expectations with respect to a given target mea-
sure is to introduce an overdamped Langevin equation which is reversible with respect to the
target distribution, and to approximate the expectation by a time-averaging estimator. As has
been noted in recent papers [30,37,61,72], introducing an appropriately chosen nonreversible
component to the dynamics is beneficial, both in terms of reducing the asymptotic variance
and of speeding up convergence to the target distribution. In this paper we present a detailed
study of the dependence of the asymptotic variance on the deviation from reversibility. Our
theoretical findings are supported by numerical simulations.

1 Introduction

1.1 Motivation

In various applications arising in statistical mechanics, biochemistry, data science and
machine learning [19,38,39,42], it is often necessary to compute expectations

π( f ) := Eπ f =
∫
Rd

f (x)π(dx)
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of an observable f with respect to a target probability distribution π(dx) on R
d with density

π(x) with respect to the Lebesgue measure, known up to the normalization constant.1 When
the dimension d is large, standard deterministic quadrature approaches become intractable,
and one typically resorts to Markov-chain Monte Carlo (MCMC) methods [19,39,63]. In
this approach, π( f ) is approximated by a long-time average of the form:

πT ( f ) := 1

T

∫ T

0
f (Xt ) dt, (1)

where Xt is a Markov process chosen to be ergodic with respect to the target distribution
π . The Birkhoff–von Neumann Ergodic theorem [31,34,60] states that, for every observable
f ∈ L1(π) we have

lim
T→∞

1

T

∫ T

0
f (Xs) ds = π( f ), π − a.e. X0 = x . (2)

If π possesses a smooth, strictly positive density, then a natural choice for Xt is the over-
damped Langevin dynamics

d Xt = ∇ logπ(Xt ) dt +√2 dWt , (3)

where Wt is a standard Brownian motion on R
d . Assuming that (3) possesses a unique

strong solution which is non-explosive, the process Xt is ergodic, with unique invariant
distribution π , such that (2) holds. Under additional assumptions on the distribution π and
on the observable, this convergence result is accompanied by a central limit theorem which
characterizes the asymptotic distribution of the fluctuations of πT ( f ) about π( f ), i.e.

√
T (πT ( f )− π( f ))

D
⇀N (0, σ 2

f ), (4)

where σ 2
f is known as the asymptotic variance for the observable f . For the reversible process

(3) started from stationarity (i.e. X0 ∼ π ), the Kipnis–Varadhan theorem [12,32] implies
that (4) holds with asymptotic variance

σ 2
f = 2〈 f − Eπ f, (−S)−1( f − Eπ f )〉π ,

where 〈·, ·〉π is the inner product in L2(π) and S is the infinitesimal generator of Xt defined
by

S = ∇ logπ(x)∇ · +�. (5)

Sampling methods based on Langevin diffusions have become increasingly popular due to
their wide applicability and relative ease of implementation. In practice, a discretisation of
(3) may be used, which in general, will not be ergodic with respect to the target distribution
π . Thus, the discretisation is augmented with a Metropolis–Hastings accept/reject step [65]
which guarantees that the resulting Markov chain remains reversible with respect to π . The
resulting scheme is known as the Metropolis-Adjusted Langevin Algorithm (MALA), see
[65].

The computational cost required to approximate π( f ) using πT ( f ) to a given level of
accuracy depends on the target distributionπ , the observable f and the process Xt overwhich
the long-time average is generated. Quite often, Xt will exhibit some form of metastability
[10,11,36,66]: the process Xt will remain trapped for a long time exploring one mode, with
transitions between different modes occurring over longer timescales. When the observable

1 With a slight abuse of notation, we will denote by π both the measure and the density.
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Fig. 1 Trajectories of a reversible MALA chain and a nonreversible Langevin sampler generating samples
from awarpedGaussian distribution. Themass of the distribution is concentrated along a one-dimensional sub-
manifold. Reversible samplers, such as MALA, perform a very slow exploration of the distribution, spending
large amounts of time concentrated around a small region of the submanifold. On the other hand, nonreversible
samplers are able to perform long “jumps” along the level-curves of the distribution, thus able to explore the
distribution far more effectively (Color figure online)

depends directly on the metastable degrees of freedom (i.e. the observable takes different
values in different metastable regions), the asymptotic variance σ 2

f of the estimator πT ( f )

may be very large. As a result, more samples are required to obtain an estimate of π( f ) with
the desired accuracy. A similar scenario arises when the mass of π is tightly concentrated
along a low-dimensional submanifold of Rd , as illustrated in Fig. 1. In this case, reversible
dynamics, such as (3)will cause a very slowexploration of the support ofπ . As a result,πT ( f )

will exhibit very large variance for observables which vary strongly along the manifold.
As there are infinitely2 many Markov processes with invariant distribution π , a natural

question is whether such a process can be chosen to have optimal performance. The two
standard optimality criteria that are commonly used are:

(a) With respect to speeding up convergence to the target distribution.
(b) With respect to minimizing the asymptotic variance.

These criteria can be used in order to introduce a partial ordering in the set of Markov
chains or diffusion processes that are ergodic with respect to a given probability distribution
[50,59]. From a practical perspective, the definite optimality criterion is that of minimizing
the computational cost. We address this issue (at least partially) later in this paper.

Within the family of reversible samplers, much work has been done to derive samplers
which exhibit good (if not optimal) computational performance. This hasmotivated a number
of variants of MALA which exploit geometric features of π to explore the state space more
effectively, including preconditioned MALA [64], Riemannian Manifold MALA [20] and
Stochastic Newton Methods [45].

2 Formally, all diffusion processes Xt with driftb(x) and diffusionσ(x) and generatorL = b·∇+ 1
2σσ
 : ∇∇

such that π is the unique solution of the stationary Fokker-Planck equation L�π = 0 can be used to sample
from π .
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1.2 Nonreversible Langevin Dynamics

An MCMC scheme which departs from the assumption of reversible dynamics is Hamil-
tonian MCMC [53], which has proved successful in Bayesian inference. By augmenting the
state space with a momentum variable, proposals for the next step of the Markov chain are
generated by following Hamiltonian dynamics over a large, fixed time interval. The resulting
nonreversible chain is able to make distant proposals. Various methods have been proposed
which are related to this general idea of breaking nonreversibility by introducing an addi-
tional dimension to the state space and introducing dynamics which explore the enlarged
space while still preserving the equilibrium distribution. In particular, the lifting method
[15,27,71] is one such method applied to discrete state systems, where the Markov chain is
“lifted” from the state space� onto the space�×{1,−1}. The transition probabilities in each
copy are modified to introduce transitions between the copies to preserve the invariant distri-
bution but now promote the sampler to generate long strides or trajectories. Similar methods
based on introducing nonreversibility into the dynamics of discrete state chains to speed up
convergence have been applied with success in various applications [9,26,52,68,69]. These
methods are also reminiscent of parallel tempering or replica exchange MCMC [51], which
are aimed at efficiently sampling from multimodal distributions.

It is well documented that breaking detailed balance, i.e. considering a nonreversible
diffusion process that is ergodic with respect to π , can help accelerate convergence to
equilibrium. In fact, it has been proved that, among all diffusion processes with additive
noise that are ergodic with respect to π , the reversible dynamics (3) has the slowest rate
of convergence to equilibrium, measured in terms of the spectral gap of the generator in
L2(Rd ; π) =: L2(π), c.f. [37]. Adding a drift to (3) that is divergence-free with respect to π

and that preserves the invariant measure of the dynamics will always accelerate convergence
to equilibrium [28,29,37,54,61,72]. The optimal nonreversible perturbation can be identi-
fied and obtained in an algorithmic manner for diffusions with linear drift, whose invariant
distribution is Gaussian [37]; see also [72].

The effect of nonreversibility in the dynamics on the asymptotic variance has also been
studied. In [61] it is shown that small antisymmetric perturbations of the reversible dynamics
always decrease the asymptotic variance, and more recently in [62] Friedlin–Wentzell theory
is used to study the limit of infinitely strong antisymmetric perturbations. In [30] the authors
use spectral theory for selfadjoint operators to study the effect of antisymmetric perturbations
on diffusions on both Rd and on compact manifolds and provide a general comparison result
between reversible and nonreversible diffusions. This work is related with previous studies
on the behavior of the spectral gap of the generator when the strength of the nonreversible
perturbation is increased [13,18].

1.3 Objectives of This Paper

In this paper we present a detailed analytical and computational study of the effect of adding
a nonreversible drift to the reversible overdamped Langevin dynamics (3) on the asymptotic
variance σ 2

f . We will consider the nonreversible dynamics defined by [28,29] :

d Xγ
t =
(∇ logπ(Xγ

t )+ αγ (Xγ
t )
)

dt +√2 dWt , (6)

where the smooth vector field γ is taken to be divergence-free with respect to the distribution
π ,

∇ · (γπ
) = 0. (7)
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There are infinitely many vector fields that satisfy (7) and a general formula can be derived
using Poincaré’s lemma [29,62]. We can, for example, construct such vector fields by taking

γ (x) = J∇ logπ(x), J = −J T . (8)

In (6) we have already normalized the various vector fields and we have introduced a parame-
ter α which measures the strength of the deviation from reversible dynamics. The generator
of the diffusion process Xγ

t can be decomposed into a symmetric and an antisymmetric part
in L2(π), representing the reversible and irreversible parts of the dynamics, respectively [56,
Sect. 4.6]:

L = S + αA, (9)

where S is given in (5) and A = γ · ∇. We are particularly interested in quantifying the
reduction in the asymptotic variance obtained caused by breaking detailed balance. It is well
known [32,33] that for square integrable observables, the asymptotic variance, denoted by
σ 2

f (α) can be written in terms of the solution of the Poisson equation

− (S + αA)φ = f − Eπ f, (10)

as

σ 2
f (α) = 2

∫
φ(−L)φ π(dx). (11)

Our first goal is to obtain an explicit formula for σ 2
f (α) in terms of S and A. Moreover,

through a spectral decomposition of the operator (−S)−1A we investigate the dependence
of the asymptotic variance on the strength of the nonreversible perturbation. Based on earlier
work by Golden and Papanicolaou [22], Majda et al. [3,44] and Bhattacharya et al. [7,8], in
[58], an expression is obtained for the effective self-diffusion coefficient for a tagged particle
whose microscopic behaviour is determined by a nonreversible Markov process. The basic
idea is the introduction of the operator

G := (−S)−1A, (12)

which is skewadjoint in the weighted Sobolev space

H1 = { f ∈ L2(π) : π( f ) = 0 and 〈(−S) f, f 〉π < ∞},
where 〈·, ·〉π denotes the L2(π) inner product; see Sect. 3. We follow a similar approach in
this paper, from which a quite explicit formula for the asymptotic variance σ 2

f (α) is derived
using the spectral theorem for selfadjoint operators. From this expressionwe can immediately
deduce that the addition of a nonreversible perturbation reduces the asymptotic variance and
we can also study the small and large α asymptotics of σ 2

f ; see Theorem 4. One of the results
that we prove is that the large α behaviour of the asymptotic variance depends on the detailed
properties of the vector field γ : when the nullspace of the antisymmetric part of the generator
A = γ · ∇ consists of only constants in H1, then the asymptotic variance converges to 0.
Indeed, in this case, in the |α| → ∞ limit, the limiting dynamics become deterministic,
characterized by the Liouville operator γ · ∇. On the other hand, when the nullspace of A
contains nontrivial functions in H1 there will exist observables for which the asymptotic
variance σ 2

f converges to a positive constant as |α| → ∞.
The effect of the antisymmetric part on the long time dynamics of diffusion processes has

been also studied extensively in the context of turbulent diffusion [43] and fluid mixing. The
effect of an incompressible flow on the convergence of the solution to the advection–diffusion
equation on a compact manifold to its mean value (i.e. when π ≡ 1) was first studied in [13].
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In particular, the concept of a relaxation enhancing flowwas introduced and it was shown that
a divergence-free flow is relaxation enhancing if and only if the Liouville operatorA = v ·∇
has no eigenfunctions in the Sobolev space H1. An equivalent formulation of this result is that
an incompressible flow is relaxation enhancing if and only if it is weakly mixing. Examples
of relaxation enhancing flows are given in [13]. This problem was studied further in [18],
where it also mentioned that there are very few examples of relaxation enhancing flows. In
[18] it is shown that the spectral gap of the advection-diffusion operator L = αv · ∇ + �,
for a divergence-free drift v and α ∈ R, remains bounded above in the limit as α → ±∞
by a negative constant if and only if the advection operator has an eigenfunction in H1.
These results are reminiscent of the results we mention above on the necessary and sufficient
condition to obtain a reduction of asymptotic variance in the limit α →±∞.

Our analysis of the asymptotic variance σ 2
f , based on the careful study of the Poisson

Eq. (10), enables us to study in detail the problem of finding the nonreversible perturbation
giving rise to minimum asymptotic variance for diffusions with linear drift, i.e. diffusions
whose invariant measure is Gaussian, over a large class of observables. Diffusions with linear
drift were considered in [37] where the optimal nonreversible perturbation with respect
to accelerating convergence was obtained. For linear and quadratic observables, we can
give a complete solution to this problem, and construct nonreversible perturbations that
provide a dramatic reduction in asymptotic variance. Moreover, we demonstrate that the
conditions under which the variance is reduced are very different from those of maximising
the spectral gap discussed in [37]. In particular, we show how a nonreversible perturbation
can dramatically reduce the asymptotic variance for the estimator πT ( f ), even though no
such improvement can be made on the rate of convergence to equilibrium.

Guided by our theoretical results, we can then study numerically the reduction in the
asymptotic variance due to the addition of a nonreversible drift for some toy models from
molecular dynamics. In particular,we study the problemof computing expectations of observ-
ables with respect to a warped Gaussian [23] in two dimensions, as well as a simple model
for a dimer in a solvent [38]. The numerical experiments reported in this paper illustrate that
a judicious choice of the nonreversible perturbation, dependent on the target distribution and
the observable, can dramatically reduce the asymptotic variance.

To compute πT ( f ) numerically, we use an Euler–Maruyama discretisation of (6). The
resulting discretisation error introduces an additional bias in the estimator for π( f ), see [47]
for a comprehensive error analysis. This imposes additional constraints on the magnitude of
the nonreversible drift, since increasing α arbitrarily will give rise to a large discretisation
error which must be controlled by taking smaller timesteps. A natural question is whether the
increase in the computational cost due to the necessity of taking smaller timesteps negates
any benefits of the resulting variance reduction. To study this problem, we compare the
computational cost of the unadjusted nonreversible Langevin sampler with the corresponding
MALA scheme.3 Our numerical results, together with the theoretical analysis for diffusions
with linear drift, show that the nonreversible Langevin sampler can outperform the MALA
algorithm, provided that the nonreversible perturbation is well-chosen. Finally, we consider a
higher order numerical scheme for generating samples of (6), based on splitting the reversible
and nonreversible dynamics. Numerically, we investigate the properties of this integrator,
and demonstrate that its improved stability and discretisation error make it a good numerical
scheme for computing the estimator πT ( f ) using a nonreversible diffusion.

3 As we illustrate in our paper, there is no point in considering the Metropolis adjusted sampler with a non-
reversible proposal, since the addition of the accept–reject step renders the resulting Markov chain reversible
and any nonreversibility-induced variance reduction is lost.
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The rest of the paper is organized as follows. In Sect. 2 we describe how the central limit
theorem (4) arises from the solution of the Poisson equation associated with the generator
of the dynamics. In Sect. 3 we analyse the asymptotic variance and formulate the problem
of finding the optimal perturbation with respect to minimising σ 2

f , for a fixed observable, or
over the space of square-integrable observables. Moreover, following the analysis described
in [58], we derive a spectral representation for the asymptotic variance σ 2

f , in terms of the
discrete spectrum of the operator G defined in (12), and recover estimates for the asymptotic
variance for any value of α. In Sect. 4, we consider the case of Gaussian diffusions, which are
amenable to explicit calculation to demonstrate the theory presented in this paper. In Sect.
5, we provide various numerical examples to complement the theoretical results. Finally,
in Sect. 6 we describe the bias-variance tradeoff for nonreversible Langevin samplers, and
explore their computational cost. Conclusions and discussion on further work are presented
in Sect. 7.

2 The Central Limit Theorem and Estimates on the Asymptotic Variance
via the Poisson Equation

In this section we make explicit some sufficient conditions under which the estimator

πT ( f ) = 1

T

∫ T

0
f (Xγ

s ) ds,

where Xγ
t denotes the solution of (6), satisfies a central limit theorem of the form (4). The

fundamental ingredient for proving such a central limit theorem is establishing the well-
posedness of the Poisson equation

− Lφ(x) = f (x)− π( f ), π(φ) = 0, (13)

for all bounded and continous functions f : R
d → R, where L is defined by (9), and

obtaining estimates on the growth of the unique solution φ. As described previously, we shall
assume that π possesses a smooth, strictly positive density, also denoted by π(x), such that∫
Rd π(x) dx < ∞ and that the SDE (6) has a unique strong solution for all α ∈ R. Applying
the results detailed in [21,49], we shall assume that the process Xγ

t possesses a Lyapunov
function, which is sufficient to ensure the exponential ergodicity of Xγ

t , [46,48], as detailed
in the following assumption.
Assumption A (Foster–Lyapunov Criterion) There exists a function U : R

d → R and
constants c > 0 and b ∈ R such that π(U ) < ∞ and

LU (x) ≤ −cU (x)+ b1C , and U (x) ≥ 1, x ∈ R
d , (14)

where 1C is the indicator function over a petite set. For the definition of a petite set we refer
the reader to [48]. For the generator L corresponding to the process (6), compact sets are
always petite. As noted in [65], a sufficient condition on π for (6) to possess a Lyapunov
function is the following.
Assumption B The density π is bounded and for some 0 < β < 1:

lim inf|x |→∞
(
(1− β)|∇ logπ(x)|2 +� logπ(x)

)
> 0. (15)

Lemma 1 [65, Theorem 3.3] Suppose that Assumption B holds then the Foster–Lyapunov
criterion holds for (3) with

U (x) = π−β(x).
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Moreover, if the nonreversible term is of the form γ (x) = J∇ logπ(x), for J ∈ R
d×d

antisymmetric, then this choice of U is a Lyapunov function for Xγ
t defined by (6) for all

α ∈ R.

Proof For this choice of γ the generator of (6) has the form

L = (I + α J )∇ logπ(x) · ∇ +�, α ∈ R,

For U (x) = π−β(x) we obtain:

LU (x) = −βπ−β(x)∇ logπ(x) · (I + α J )∇ logπ(x)− β∇ · (π−β(x)∇ logπ(x)
)

= −β
[
(1− β) |∇ logπ(x)|2 +� logπ(x)

]
π−β(x).

Thus, by assumption (15), there exists ε > 0 and M such that for |x | > M :

(1− β) |∇ logπ(x)|2 +� logπ(x) > ε,

and so

LU (x) ≤ −βεU (x)+ b1CM ,

where CM = {x ∈ R
d : |x | ≤ M} and b is a positive constant.

Finally, we note that since π is bounded, then U is bounded above from zero uniformly.
Thus,U can be rescaled to satisfy the conditionU ≥ 1, as is required by the Foster–Lyapunov
criterion. ��
Remark 1 Note that Assumption B holds trivially when π is a Gaussian distribution in R

d .
More generally, following [64, Example 1], consider π(x) ∝ exp(−p(x)), where p(x) is a
polynomial of order m such that p(x) →∞ as |x | → ∞ (necessarily m ≥ 2 and m is even).
Clearly

lim inf|x |→∞
|∇ logπ(x)|2
|� logπ(x)| = ∞,

and

lim inf|x |→∞ (1− β) |∇ logπ(x)|2 > 0,

so that (14) holds. On the other hand, consider the case when when π is a Student’s t-
distribution, π(x) ∝ (1 + x2/ν)− ν+1

2 with ν ≥ 2. Then it is straightforward to check that
(14) will not hold. Indeed, since |∇ logπ(x)| → 0, by [65, Theorem 2.4] this process is not
exponentially ergodic.

If condition (14) holds for Xγ
t , then the process will be exponentially ergodic. More

specifically, the lawof the process Xγ
t started fromapoint x ∈ R

d will converge exponentially
fast in the total variation norm to the equilibrium distribution π . In particular, denoting by
(Pγ

t )t≥0 the semigroup associated with the diffusion process (6), we have the following
result.

Theorem 1 [12, Thm 8.3], [16, Thm 3.10, 3.12], [17, Thm 5.2.c] Suppose that Assumption
A holds for (6), with Lyapunov function U. Then there exist positive constants c and λ such
that, for all x, ∣∣∣∣pγ

t (x, ·)− π
∣∣∣∣

T V ≤ cU (x)e−λt ,
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where pγ
t (x, ·) denotes the law of Xγ

t given Xγ
0 = x and ||·||T V denotes the total variation

norm. In particular, for any probability measure ν such that U ∈ L1(ν),

lim
t→+∞

∣∣∣∣(Pγ
t )∗ν − π

∣∣∣∣
T V = 0,

where (Pγ
t )∗ denotes the L2(Rd) adjoint of Pγ

t . ��
For a central limit theorem to hold for the process Xγ

t , and thus for σ 2
f to be finite, it is

necessary that the Poisson Eq. (10) is well-posed. The Foster-Lyapunov condition (14) is
sufficient for this to hold.

Theorem 2 [21, Thm3.2] Suppose that Assumption A holds for the diffusion process (6)with
Lyapunov function U. Then there exists a positive constant c such that for any | f |2 ≤ U, the
Poisson Eq. (10) admits a unique zero mean solution φ satisfying the bound |φ(x)|2 ≤ cU (x).
In particular, φ ∈ L2(π). ��

The technique of using a Poisson equation to obtain a central limit theorem for an additive
functional of a Markov process is widely known, [5,6,55]. The approach is based on the fact
that, at least formally, we can decompose πt ( f )−π( f ) into a martingale and a “remainder”
term:

πt ( f )− π( f ) = 1

t

∫ t

0
f (Xγ

s ) ds − π( f ) = φ(Xγ
0 )− φ(Xγ

t )

t
+
√
2

t

∫ t

0
∇φ(Xγ

s ) · dWs

=: Rt + Mt .

Considering the rescaling
√

t (πt ( f )− π( f )), the martingale term
√

t Mt will converge
in distribution to a Gaussian random variable with mean 0 and variance

σ 2
f = 2
∫
Rd
|∇φ(x)|2 π(dx),

by the central limit theorem for martingales [25]. It remains to control the remainder term√
t Rt . We distinguish between two cases: If Xγ

0 ∼ π , then since φ ∈ L2(π),
√

t Rt converges
to 0 in L2(π) and the result follows. In themore general case wemust resort to a “propagation
of chaos” argument (c.f. [12, Sect. 8]), i.e. apply Theorem 1 to show that

EX0=x

[
H

(
1√
t

∫ t+r

r
f (Xγ

s )− π( f ) ds

)]

−EX0∼π

[
H

(
1√
t

∫ t

0
f (Xγ

s )− π( f ) ds

)]
→ 0,

as r →∞, for all continuous bounded functions H . The result then follows by decomposing

πt+r ( f )− π( f ) = 1

t

∫ r

0
f (Xγ

s ) ds + 1

t

∫ t+r

r
f (Xγ

s ) ds,

and applying the propagation of chaos argument to the second term. The conclusion is
summarized in the following result, which provides a central limit theorem for Xγ

t starting
from an arbitrary initial distribution ν.

Theorem 3 [21, Thm 4.4] If Assumption A holds for Lyapunov function U, then for any f
such that f 2(x) ≤ U (x), there exists a constant 0 < σ 2

f < ∞ such that
√

t(πt ( f )− π( f ))
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converges in distribution to an N (0, σ 2
f ) distribution, as t →∞, for any initial distribution

ν, where

σ 2
f = 2
∫
Rd
|∇φ(x)|2 π(dx). (16)

��
In the remainder of this paper we shall study the dependence of φ, and thus σ 2

f on the
choice of non-reversible perturbation γ . We note that (16) is precisely the Dirichlet form
associated with the dynamics L evaluated at the solution φ of the Poisson Eq. (13).

3 Analysis of the Asymptotic Variance

3.1 Mathematical Setting

We present a few definitions from [33] that will be useful in the sequel. Let L2
0(π) denote the

set of L2(π)-integrable functions with zero mean, with corresponding inner product 〈·, ·〉π
and norm ||·||π . Consider the operator S given by (5) densely defined on L2

0(π). For k ∈ N,
given the family of seminorms

‖ f ‖2k := 〈 f, (−S)k f 〉π , (17)

we define the function spaces

Hk := { f ∈ L2
0(π) : ‖ f ‖k < +∞} .

It follows that ||·||k is a norm on Hk . For k ≥ 1, the norm ‖ · ‖k satisfies the parallelogram
identity and, consequently, the completion of Hk with respect to the norm ‖ · ‖k , which
is denoted by Hk , is a Hilbert space. The inner product 〈·, ·〉k in Hk is defined through
polarization. It is easy to check that, for f, g ∈ D(L),

〈 f, g〉1 = 〈 f, (−S)g〉π = 〈∇ f,∇g〉π . (18)

We note that H0 = L2
0(π). A careful analysis of the function space Hk is presented in [33].

The operatorS is symmetric with respect toπ and can be extended to a selfadjoint operator
on L2

0(π), which is also denoted by S, with domainD(S) = H2.We shall make the following
assumption on π which is required, in addition to Assumption B, to ensure that L possesses
a spectral gap in L2

0(π).
Assumption C

lim|x |→+∞ |∇ logπ(x)| = ∞. (19)

In the following lemma we establish a number of fundamental properties relating to the
spectrum of L. Using these results, we then establish the well-posedness of the Poisson Eq.
(13) for any f ∈ L2

0(π).

Lemma 2 Suppose that Assumptions B and C hold. Then the embedding H1 ⊂ L2
0(π) is

compact. For all α ∈ R, the operator L satisfies the following Poincaré inequality in L2
0(π):

λ ||g||2π ≤ 〈g, (−L)g〉π , g ∈ H1, (20)

where λ is a positive constant, independent of the nonreversible perturbation. Moreover, for
all f ∈ L2

0(π) there exists a unique φ ∈ H1 such that −Lφ = f .
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Proof Assumption B clearly implies that

−� logπ(x) ≤ (1− δ) |∇ logπ(x)|2 + M1, x ∈ R
d , (21)

for some δ ∈ (0, 1) and M1 > 0. Applying [40, Theorem 8.5.3], relations (19) and (21)
imply the compactness of the embeddingH1 ⊂ L2

0(π). As a result, following [40, Theorem
8.6.1], this is sufficient for the Poincaré inequality to hold for S, i.e.

λ ||g||2π ≤ ||g||21 = 〈g, (−S)g〉π , g ∈ H1.

from which (20) follows by the antisymmetry of A in L2
0(π). The existence of this Poincaré

inequality implies that the semigroup Pγ
t associated with (6) converges exponentially fast to

equilibrium, that is, for all f ∈ L2
0(π):

∣∣∣∣Pγ
t f
∣∣∣∣

π
≤ e−λt || f ||π , t ≥ 0. (22)

Given f ∈ L2
0(π), define

φ(x) =
∫ ∞

0
Pγ

s f (x) ds. (23)

By (22) it follows that φ ∈ L2
0(π) and from (23) we have−Lφ = f . Moreover, we have the

bound

||∇φ||2π = 〈φ, (−L)φ〉π = 〈 f, φ〉π ,

so that

||φ||1 ≤ C‖ fπ < ∞.

��
Throughout this section, we shall assume that Assumptions B and C hold, and moreover, for
simplicity we shall make the following additional assumption:
Assumption D The nonreversible perturbation γ is smooth and bounded in L∞.

We believe that this assumption could be relaxed, see in particular [30] for more general
assumptions under which the following results should hold. We stick here to a simple pre-
sentation. In practice, this assumption is not very stringent. Indeed, suppose that there exists
a smooth function ψ : R→ R≥0 such that

ψ(V (x))|∇V (x)| ≤ 1, for all x ∈ R
d , (24)

where V = − logπ . Define
γ = J∇V ψ(V ), (25)

then γ satisfies (7) since

∇ · (πγ ) = − 1

Z
∇ ·
(

J∇e−V ψ(V )
)

= − 1

Z
∇ ·
(

J∇e−V
)

ψ(V )− 1

Z
ψ ′(V )∇V · J∇V e−V

= 0,

using the fact that J is antisymmetric. Moreover, it is clear that γ (x) is bounded and smooth,
thus satisfying Assumption D. In particular, if V has compact level sets (which holds for
example if V is a nonnegative polynomial function), then condition (24) is satisfied by
chosing ψ to be a smooth non-negative function with compact support.
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We note that γ of the form (25) leaves the potential V invariant under the flow żt = γ (zt ),
i.e. V (zt ) is constant for all t ≥ 0. Thus, for large |α|, the flow αγ will result in rapid
exploration of the level surfaces of V , but the motion of Xt between level surfaces is entirely
due to the reversible dynamics of the process. In particular, for potentials with energy barriers,
the transition time for Xγ

t to cross a barrier will still satisfy the same Arrenhius law as the
corresponding reversible process. Other choices of flow γ are possible. For example, one
could alternatively consider a skew-symmetric matrix function J (x) as detailed in [41]. The
corresponding flow would then be defined by

γ (x) = −J (x)∇V (x)+ ∇ · J (x), x ∈ R
d (26)

It is straightforward to check that∇ ·(γ π) = 0, using the fact that J (x) is skew-symmetric. If
additionally, the matrix function J is smooth with bounded derivative and compact support,
then γ satisfies Assumption D. As detailed in [41] one can further generalise this choice of
dynamics by additionally introducing a space dependent diffusion tensor, and an appropriate
correction of the drift to maintain ergodicity with respect to π . We do not consider this choice
of dynamics in this paper, noting that most of the presented results can be readily generalized
to this scenario.

Given that Assumption D holds for all function u ∈ H1, then we have

||Au||π ≤ ||γ ||L∞(Rd ) ||u||1 and
∫

γ (x) · ∇u(x)π(dx)

= −
∫
∇ · (γ (x) · π(x)) u(x) dx = 0,

by (7), so that the operator A : H1 → L2
0(π) defined by A = γ · ∇ is well defined.

3.2 An Expression for the Asymptotic Variance

The main objective of this paper is to study the effect of the nonreversible perturbation γ on
the asymptotic variance σ 2

f , with the aim of choosing γ so that σ 2
f is minimized. Integrating

(16) by parts we can express σ 2
f in terms of the Dirichlet form for L as follows:

1

2
σ 2

f =
∫
|∇φ(x)|2 π(dx)

= −
∫

φ(x)∇ · (∇φ(x)π(x)) dx

= −
∫

φ(x) (�φ(x)+ ∇ logπ(x) · ∇φ(x)) π(x) dx

= 〈φ, (−S)φ〉π
= 〈φ, (−L)φ〉π , (27)

where the last line follows from the fact that A is antisymmetric in L2
0(π).

Starting from (27) we can obtain a quite explicit characterisation of σ 2
f . Indeed, given

f ∈ L2
0(π), we can rewrite the last line of (27) as

σ 2
f = 2〈 f, (−L)−1 f 〉π = 2

〈
f,
[
(−L)−1

]S
f
〉
π
, (28)

where [·]S denotes the symmetric part of the operator. Using the fact that −L is invertible
on L2

0(π) for all α ∈ R by Lemma 2, the following result yields an expression for σ 2
f (α) in

terms of S, A and α.

123



Variance Reduction Using Nonreversible Langevin Samplers

Lemma 3 Let L = S + αA, for α ∈ R. Then we have
[
(−L)−1

]S = [−S + α2A∗(−S)−1A]−1 , (29)

where A∗ = −A denotes the adjoint of A in L2
0(π). In particular, for all f ∈ L2

0(π),

σ 2
f (α) = 2〈 f, (−L)−1 f 〉π ≤ 2〈 f, (−S)−1 f 〉π = σ 2

f (0). (30)

Proof Since−S is positive, the operatorQ = (−S)− 1
2 : L2

0(π) → H1 can be defined using
functional calculus. Consider the operator C := QA. We can write −S + α2A∗(−S)−1A =
−S + α2C∗C, which can be shown to be closed in L2

0(π) with domain H2. Moreover, this
operator has nullspace {0}, so that the inverse is also densely defined on L2

0(π). To show that
(29) holds, we expand the left hand side to get

[
(−L)−1

]S = 1

2

[
(−S + αA)−1 + (−S − αA)−1

]

= 1

2
Q [(I + αQAQ)−1 + (I − αQAQ)−1

]Q.

Since

(I + αQAQ)−1 + (I − αQAQ)−1 = (I + αQAQ)−1 (I − αQAQ)−1 (I − αQAQ)

+ (I − αQAQ)−1 (I + αQAQ)−1 (I + αQAQ)

= [I − α2QAQ2AQ]−1 2I,

therefore[
(−L)−1

]S = Q [I − α2QAQ2AQ]−1 Q = [−S + α2A∗(−S)−1A]−1 ,

as required. The inequality (30) is then simply a consequence of the fact that

−S + α2A∗(−S)−1A � −S
where � denotes the partial ordering between selfadjoint operators on L2

0(π). ��
Thus, the asymptotic variance is never increased by introducing a nonreversible pertur-

bation, for all f ∈ L2
0(π). This had already been noted in [61] where an expression for the

the asymptotic was derived as the curvature of the rate function of the empirical measure,
and also in [30] using an approach similar to that above. Expression (28) provides us with a
formula for σ 2

f in terms of a symmetric quadratic form which is explicit in terms ofA and S.

3.3 Quantitative Estimates for the Asymptotic Variance

In this section we derive quantitative versions of (29) and (30), using techniques developed
in [58] for the analysis of the Green–Kubo formula, which is itself based on earlier work on
the estimation of the eddy diffusivity in turbulent diffusion [2,8,44,57].

Following the approach of [22,58], to quantify the effect of the antisymmetric perturbation
αA on the asymptotic variance, we define the operator G = (−S)−1A : H1 → H1. First we
note that we can rewrite (29) as follows:

[
(−L)−1

]S = [−S + α2A∗(−S)−1A]−1
= [I + α2(−S)−1A∗(−S)−1A]−1 (−S)−1 (31)

= [I − α2G2]−1(−S)−1
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and therefore, from (28) and (29):

1

2
σ 2

f (α) =
〈
(−S) f̂ ,

[
I − α2G2]−1 (−S)−1(−S) f̂

〉
π

=
〈

f̂ , (−S)
[
I − α2G2]−1 f̂

〉
π

=
〈

f̂ ,
[
I − α2G2]−1 f̂

〉
1
. (32)

From the boundedness of the nonreversible perturbation we have the following properties:

Lemma 4 Suppose that Assumption D holds, then the operator G = (−S)−1A is skew-
adjoint on H1.

Proof For f, g ∈ H1:

〈G f, g〉1 = 〈(−S)−1A f, (−S)g〉π = −〈 f,Ag〉π = −〈 f, (−S)(−S)−1Ag〉π = −〈 f,Gg〉1,
so that G is antisymmetric. Since G is also bounded, it follows that G is skewadjoint onH1. ��

Moreover, under appropriate assumptions on the target distribution π , one can show that
the operator G is compact.

Lemma 5 Suppose that Assumptions B, C and D hold, then the operator G is compact on
H1.

Proof By Lemma 2, the embedding H1 ⊂ L2
0(π) is compact, and it follows immediately

that H2 ⊂ H1 is a compact embedding. Moreover, since γ is bounded we have,

||G f ||22 = 〈(−S)G f, (−S)G f 〉π = 〈A f,A f 〉π ≤ || f ||21 , f ∈ H1,

from which the result follows. ��
ExtendingH1 to its complexification, there exists a compact selfadjoint operator � onH1

such that G = i�. From the spectral theorem for compact selfadjoint operators [24, Theorem
6.21], the eigenfunctions of � form a complete orthonormal basis inH1, and the eigenvalues
of� are real.We can partition the eigenfunctions into those spanningN := Ker[�] = Ker[A]
and those spanning N⊥. We denote by

{λn}n=1,2,3,... , and {en}n=1,2,3,... ,
the eigenvalues and corresponding eigenfunctions of the operator � restricted to N⊥. For
f ∈ L2

0(π) we have the following unique decomposition for f̂ = (−S)−1 f in H1:

f̂ = f̂N +
∞∑

n=1
f̂nen, (33)

where f̂N ∈ N and f̂n = 〈 f̂ , en〉1. Consequently, using this spectral decomposition, we can
rewrite (32) as

σ 2
f (α) = 2

〈
f̂ ,
[
I − α2G2]−1 f̂

〉
1
.

= 2
〈

f̂ ,
[
I − α2(i�)2

]−1
f̂
〉
1

= 2
〈

f̂ ,
[
I + α2�2]−1 f̂

〉
1

= 2
∣∣∣
∣∣∣ f̂N
∣∣∣
∣∣∣2
1
+ 2

+∞∑
n=1

1

1+ α2λ2n

∣∣∣ f̂n

∣∣∣2 . (34)
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The conclusion of the above computation is summarized in the following result.

Theorem 4 Suppose that Assumptions B, C and D hold. Let f ∈ L2
0(π) and α ∈ R, then the

asymptotic variance σ 2
f (α) corresponding to Xγ

t is given by (34). In particular, we obtain
the following limiting values for the asymptotic variance:

lim
α→0

σ 2
f (α) = σ 2

f (0) = 2‖ f̂ ‖21, (35)

and,
lim

α→±∞ σ 2
f (α) = 2‖ f̂N ‖21. (36)

��
From (34) we obtain the following bounds on the asymptotic variance

σ 2
f (α) = 2‖ f̂N ‖21 + 2

+∞∑
n=1

| f̂n |2
1+ α2λ2n

≤ 2‖ f̂N ‖21 + 2
+∞∑
n=1

| f̂n |2 = 2|| f̂ ||21 = σ 2
f (0).

The problem of choosing the optimal nonreversible perturbation in (6) to minimize the
asymptotic variance over all observables in L2

0(π) can be expressed as the followingmin-max
problem:

min
γ∈AM

max
f ∈L2

0(π)

〈
f, (−S −A(−S)−1A)−1 f

〉
π

|| f ||2π
, where A = γ · ∇·,

where, for some constant M > 0, AM denotes the set of admissible nonreversible drifts,
typically,

AM =
{
γ ∈ C∞

b (Rd ;Rd) : ∇ · (γ π) = 0 and ||γ ||L∞ < M
}

.

This is equivalent to finding γ ∈ AM which solves this max-min problem

max
γ∈AM

min σ
(−S +A∗(−S)−1A) , (37)

where σ [M] denotes the spectrum of the operator M on L2
0(π). It is important to make the

distinction between this problem and that considered in [37] for finding the optimal spectral
gap, namely finding γ ∈ AM such that

max
γ∈AM

min Re (σ (−S −A)) . (38)

From (37) and (38) it is evident that the decrease in asymptotic variance, and the increase in
spectral gap arising from a nonreversible perturbation are due to very different mechanisms.
For the latter problemwe see that the increase of spectral gap arises from the nonnormality of
S+A. In addition, since the operatorA∗(−S)−1A is nonnegative inH1, a nonreversible per-
turbation cannot increase the variance. This is in contrast with the problem of maximising the
speed of convergence to equilibrium, as was considered in [37], where increasing the strength
of the nonreversible perturbation could result in a decrease of the speed of convergence.

We note however that a nonreversible perturbation γ which solves the min–max problem
(37) need not be a good candidate for reducing the variance of πT ( f ) for a given fixed
observable f ∈ L2

0(π). Indeed, unless N = {0} for all g ∈ H1, there will always be an
observable for which the nonreversible perturbation does not reduce the variance, since if
g ∈ N is nonzero, f = (−S)g is nonzero and such that σ 2

f (α) = σ 2
f (0) for any α. Thus,
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from a practical point of view, it makes more sense to consider the problem choosing γ to
minimise the asymptotic variance of πT ( f ) for a particular observable. To this end, for a
fixed f ∈ L2

0(π), we can identify two distinct cases: (−S)−1 f ∈ N⊥, in which case

lim|α|→∞ σ 2
f (α) = 0,

and (−S)−1 f /∈ N⊥ in which case,

lim|α|→∞ σ 2
f (α) = 2

∣∣∣
∣∣∣ f̂N
∣∣∣
∣∣∣2
1

> 0.

More generally, consider f ∈ L2(π) so that f−π( f ) ∈ L2
0(π). Assumingwe can increase

α arbitrarily, and neglecting any computational issues arising from the resulting discretisation
error (which will be discussed in Sect. 6), the problem of minimising the asymptotic variance
of f reduces to finding γ such that

(−S)−1( f − π( f )) ⊥ N , (39)

holds in H1. Checking this condition requires the solution of an elliptic boundary value
problem, thus this condition is not of practical use. Nonetheless, we can derive some intuition
from (39). Clearly, if we can choose γ so thatN = {0} inH1, the nonreversible perturbation
will be optimal for all observables f ∈ L2(π). In general, it might not be possible to find γ

that satisfies this condition. For the nonreversible drift considered in [37], namely γ = J∇V ,
with J
 = −J ,N will always be nontrivial; indeed, in this case H ◦V ∈ N for all functions
H such that H ◦ V ∈ H1. In this case, it is always possible to choose an observable f such
that γ will not be optimal for f , in the sense that σ 2

f (α) is nonzero in the limit α → ∞.
We also remark that these asymptotic results, in particular the distinction between these two
cases is reminiscent of similar results that have been obtained in the context of turbulent
diffusion [44,57].

An analogous classification of the asymptotic behaviour of the spectral gap of the operator
(9) in the limit of largeα is considered in [18] on a compactmanifold. Indeed, in [18, Theorem
1] it is determined that the spectral gap is finite in the limit of α →±∞ if and only ifA has
a nonconstant eigenfunction in H1. However, one should note that, the asymptotic variance
σ 2

f (α) may converge to 0 as α → ±∞ even when the spectral gap is finite, see also [61,
Example 2.9] for a counterexample.

3.4 A Two Dimensional Example

In this section we present a simple example onR2. Consider the problem of calculating π( f )

with respect to the Gaussian distribution π(x) = 1
Z e−|x |2/2. The reversible overdamped

Langevin equation corresponding to π is given by the OU process:

d Xt = −Xt dt +√2 dWt . (40)

We introduce an antisymmetric perturbation αγ (Xt ) where γ (x) is the flow given by

γ (x) =
(

x2
−x1

)
.

The infinitesimal generator for the perturbed nonreversible dynamics is

L = S + αA,
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where

S f (x) = −x · ∇ f (x)+� f (x) and A f (x) = γ (x) · ∇ f (x).

In polar coordinates, this is given by

L f (r, θ) =
(
−r + 1

r

)
∂r f (r, θ)+ ∂r,r f (r, θ)+ α∂θ f (r, θ)

+ 1

r2
fθ,θ (r, θ), (r, θ) ∈ R>0 × (0, 2π).

As |α| → +∞, we expect the deterministic flow to move increasingly along the level curves
of the distribution π(x). Given an observable f , any variance in πT ( f ) arising from the
variation of f along the level curves should vanish as |α| → ∞, leaving only the variance
contributed by the variation of f between level curves.Wemake this precise with a particular
example. Consider the observable f (x1, x2) = 2x21 , expressible in polar coordinates as

f (r, θ) = 2r2 cos2(θ) = r2 (1+ cos(2θ)) .

Noting that π( f ) = 2, it is straightforward to check that the Poisson equation −Lφ =
f − π( f ), has mean zero solution given by

φ(r, θ) =
(

r2

2
− 1

)
+ r2

2

(cos(2θ)− α sin(2θ))

1+ α2

The asymptotic variance can be evaluated directly as follows

σ 2
f = 2 〈φ, (−L)φ〉π
= 2

Z

∫ 2π

0

∫ ∞

0

((
r2

2
− 1

)
+ r2

2

(cos(2θ)− α sin(2θ))

1+ α2

) (
r2(1+ cos(2θ))− 2

)
re−r2/2 dr dθ

= 4

(
1+ 1

1+ α2

)
.

Therefore, as |α| → ∞, the asymptotic variance converges to 4. We note that, in this case,

f̂ = (−S)−1 ( f − π( f )) =
(

r2

2
− 1

)
+ r2

2
(cos(2θ)) ,

where
(
r2/2− 1

)
is perpendicular to r2/2 cos(2θ) in H1. Since the nullspace of A consists

of all H1 functions which depend only on r , we have f̂N = r2/2 − 1. It follows that

2
∣∣∣
∣∣∣ f̂N
∣∣∣
∣∣∣2
1
= 4, so that

lim|α|→∞ σ 2
f (α) = 2

∣∣∣
∣∣∣ f̂N
∣∣∣
∣∣∣2
1
,

which agrees with the conclusions of Theorem 4. As |α| → ∞, the motion in the θ direction

is averaged out. Indeed, in this limit, 2
∣∣∣
∣∣∣ f̂N
∣∣∣
∣∣∣2
1
corresponds to the asymptotic variance of the

observable
∫ T
0 r2t dt , where rt is the following 1D reversible process,

drt =
(
−rt + 1

rt

)
dt +√2 dWt , r0 > 0.

For more general observables f (r, θ), we expect maximum variance reduction as |α| → ∞
when f varies strongly with respect to θ . In the other extreme, we expect zero improvement
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when f depends only on r . This intuition is formalised in the following section, in particular
in Proposition 1 and the subsequent bound (51).

Formore general potentials, using aflowfield of the formγ (x) = J∇ logπ(x), J
 = −J ,
the mechanism for reducing the asymptotic variance is analogous: the large antisymmetric
drift gives rise to fast deterministic mixing along the level curves of the potential, while
the reversible dynamics induce slow diffusive motion along the gradient of the potential.
When the nullspace of A is trivial inH1, the fast deterministic flow is ergodic, so that, for α

large, the antisymmetric component will cause a rapid exploration of the entire state space.
Consequently, the asymptotic variance converges to 0 as α → ∞. On the other hand, if A
has a nontrivial nullspace, the antisymmetric perturbation is no longer ergodic, and the state
space can be decomposed into components such that the rapid flow behaves ergodically in
each individual component. In the limit of large α, Xt becomes a fast-slow system, with rapid
exploration within the ergodic components coupled to a slow diffusion between components.
Very recently, Rey-Bellet and Spiliopoulos [62] have applied Freidlin–Wenzell theory to
rigorously analyse this case in the large α limit for a large class of potentials.

4 Nonreversible Perturbations of Gaussian Diffusions

For the case when the target distribution is Gaussian, the SDE (6) for Xγ
t is linear. In this

case, we can obtain an explicit analytical expression for the asymptotic variance for a large
class of observables f . Indeed, consider the nonsymmetric Ornstein-Uhlenbeck process in
R

d :
d Xγ

t = −(I + α J )Xγ
t dt +√2 dWt , (41)

where J is an antisymmetric matrix, α > 0, and Wt is a standard d-dimensional Brownian
motion. The stationary distribution π(x) is N (0, I ), independent of α and J . Although this
system does not fall under the framework of Theorem 4 we are still able to obtain analogous
conditions for a reduction in the asymptotic variance. The objective of this section is to mirror
the results for speeding up convergence to equilibrium of Xt that were derived in [37] to the
case of minimizing the asymptotic variance. In particular, following arguments similar to
[58, Sect. 4.2], an explicit formula for the asymptotic variance will be derived, from which
an optimal J can be chosen, in a manner similar to [37]. We note that for the process (41), the
optimal nonreversible perturbation obtained in [37] does not provide any increase to the rate
of convergence to equilibrium, since all eigenvalues of the covariance matrix of the Gaussian
stationary distribution are the same. Nonetheless, in this section we show that for certain
observables, the asymptotic variance of πT ( f ) can be dramatically decreased.

4.1 Explicit Formula for the Asymptotic Variance

We shall assume that the observable f is a quadratic functional of the form

f (x) = x · Mx + l · x + k, (42)

where M ∈ R
d×d is a symmetric positive definite matrix, l ∈ R

d and k is a constant, chosen
so that f (x) is centered with respect to π(x): k = −Tr M . Consider the Poisson Eq. (10):

− Lφ(x) = x · Mx + l · x − Tr M, π(φ) = 0, (43)
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where L is the infinitesimal generator of (41) given by L = −(I + α J )x · ∇ +�. For such
observables we can solve the Poisson Eq. (43) analytically and obtain a closed-form formula
for the asymptotic variance for the observable f .

Proposition 1 Let A = (I + α J )
 = (I − α J ). The unique mean zero solution of the
Poisson Eq. (43) is given by

φ(x) = x · Cx + D · x − Tr(C),

where

C = 1

2

∫ ∞

0
e−As Me−A
s ds, (44)

and

D = A−1l.

Moreover, the asymptotic variance is given by

σ 2
f (α) = ||M ||2F −

∫ ∞

0
e−2s
∣∣∣
∣∣∣[M, e−α Js ]

∣∣∣
∣∣∣2
F

ds + 2 l · (I + α2 J
 J )−1l,

where ||A||F = √Tr[AA
] denotes the Frobenius norm of A, and [A, B] = AB − B A is
the commutator of A and B. In particular,

σ 2
f (α) ≤ σ 2

f (0), ∀α ∈ R. (45)

Proof Clearly φ(x) must also be a quadratic function of x , so we make the ansatz

φ(x) = x · Cx + D · x − Tr C.

Plugging this into (43) we obtain

x · A
(
(C + C
)x + D

)
− Tr(C + C
) = x · Mx + l · x − Tr M.

Comparing equal powers of x we have

x · A(C + C
)x = x · Mx, (46a)

AD · x = l · x (46b)

Tr C = 1

2
Tr M (46c)

for all x ∈ R
d . Since x is arbitrary, it follows that

D = A−1l.

Equation (46a) is a Lyapunov equation, which is well-posed as M is positive definite and
spec(A) ⊂ {λ ∈ C : Reλ > 0}. Indeed, for C given by

C = 1

2

∫ ∞

0
e−As Me−A
s ds,
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both (46a) and (46c) are satisfied. The asymptotic variance σ 2
f (α) is then given by (see (27)),

1

2
σ 2

f (α) = 〈φ(x), f (x)〉π =〈x · Cx + D · x − Tr C, x · Mx + l · x − Tr M〉π
=〈x · Cx, x · Mx〉π + 〈D · x, l · x〉π
− 〈Tr C, x · Mx〉π − 〈x · Cx, Tr M〉π + Tr C Tr M. (47)

Using the fact that C and M are symmetric,

〈x · Cx, x · Mx〉π =
∑

i, j,k,l

Ci j MklEπ

[
xi x j xk xl

] = Tr C Tr M + 2 Tr(C M
).

Therefore,

1

2
σ 2

f (α) = 2 Tr(C M
)+ 〈D · x, l · x〉π
= 2 Tr(C M
)+ D · l
=
∫ ∞

0
Tr
[
e−As Me−A
s M
] ds + l · A−1l. (48)

Since A = I − α J , where J is antisymmetric, we have that, for all l ∈ R
d :

l · A−1l = 1

2
l · [(I − α J )−1 + (I + α J )−1

]
l

= 1

2
l · [(I − α J )−1(I + α J )−1(I + α J )+ (I + α J )−1(I − α J )−1(I − α J )

]
l

= l · (I + α2 J
 J )−1l.

Therefore, we obtain the following expression for σ 2
f (α):

σ 2
f (α) = 2

∫ ∞

0
e−2s Tr

[
eα Js Me−α Js M
] ds + 2l · (I + α2 J
 J )−1l. (49)

Writing the first term as follows:∫ ∞

0
e−2s Tr

[
eα Js Me−α Js M
] ds = 1

2
‖M‖2F −

1

2

∫ ∞

0
e−2s
∥∥∥
[

M, e−α Js
]∥∥∥2

F
ds.

From this, and the facts that J
 J ≥ 0 and [M, I ] = 0, the inequality (45) follows. ��
Since J is skew-symmetric, the matrix exponential eα Js is a rotation matrix. Thus, the

matrix eα Js Me−α Js has the same eigenvalues as M and M
. From [4, III. 6.14] we have

λ↓(M) · λ↑(M) = λ↓(eα Js M e−α Js) · λ↑(M
) ≤ Tr
[
eα Js Me−α Js M
] ,

where λ↑(M) and λ↓(M) denote the vectors of eigenvalues of M , sorted in ascending and
descending order, respectively. In particular,∫ ∞

0
e−2s Tr

[
eα Js Me−α Js M
] ds ≥ 1

2
λ↓(M) · λ↑(M). (50)

On the other hand, let N = N [J ] = N [J
 J ], and diagonalising J
 J we obtain

J
 J = U
DU, where D =
[
0 0
0 α�

]
, for � = diag (λ1, . . . , λd−N ) .

123



Variance Reduction Using Nonreversible Langevin Samplers

where U is a d × d orthogonal matrix with the first N columns spanning N . Then

l · (I + α2 J
 J )−1l = Ul ·
[
I 0
0 (I+ α�)−1

]
Ul

α→±∞−−−−→ Ul ·
[
I 0
0 0

]
Ul = |lN |2 ,

where lN is the projection of l onto N . Thus, for quadratic observables, from (49), the
asymptotic variance has the following lower bound in the limit of large α:

lim
α→∞ σ 2

f (α) ≥ σ 2
f := λ↓(M) · λ↑(M)+ 2 |lN |2 , (51)

In particular, for diffusions with linear drift, the asymptotic variance cannot be decreased
arbitrarily. The worst case scenario is when f (x) = m

(|x |2 − d
)
, for some m > 0, for

which the asymptotic variance will not be decreased, for any antisymmetric matrix J and
α ∈ R, analogous to the situation which occurs in [37] for maximising the spectral gap, when
all the eigenvalues of the covariance matrix are equal.

4.2 Finding the Optimal Perturbation

We first focus on the case when the observable is linear, i.e. f (x) = l · x , similar to that
considered in [58, Sect. 4.2], so that σ 2

f = 2l · (I + α2 J
 J )−1l. Suppose that we fix α ∈ R,
and wish to choose J which minimizes the asymptotic variance subject to ||J ||F = 1. In this
case, we have the equality

lim
α→±∞ σ 2

f = 2 |lN |2 ,

which is optimal if l is orthogonal to N . Thus, the best we can do is to choose J such that
l is an eigenvector of J
 J with maximal eigenvalue. This can be done by choosing a unit
vector ω ∈ R

d orthogonal to l and setting

J =
(

l̃ ⊗ ω − ω ⊗ l̃
)

√
2

,

where l̃ = l/|l| Then,

J ∗ J = 1

2

(
−l̃ ⊗ ω + ω ⊗ l̃

) (
l̃ ⊗ ω − ω ⊗ l̃

)
= l̃ ⊗ l̃ + ω ⊗ ω

2
,

is a projector onto {l, ω} and ||J ||F = 1, where ||·||F is the Frobenius norm with respect to
the Euclidean basis. In this case

σ 2
f (α) = 2l · (I + α2 J
 J )−1l = 4 |l|2

2+ α2 .

We note in addition that, when minimising the asymptotic variance, there are many antisym-
metric matrices J which give the minimal asymptotic variance. As an example, let d = 3,
consider the observables f (x) = l(i) · x for l(1) = (0, 1, 1)
/

√
2 and l(2) = (1, 0, 1)
/

√
2

and l(3) = (1,−1, 1)
/
√
3, respectively. We choose J to be

J = 1√
6

⎛
⎝ 0 1 1
−1 0 1
−1 −1 0

⎞
⎠ . (52)
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(a) (b)

Fig. 2 The asymptotic variance for a linear diffusion Xt given in (41) for linear observables f (x) = l(i) · x ,
i = 1, 2, 3 (left), and for a quadratic observable f (x) = x · M1x (right) (Color figure online)

In this case

σ 2
f (α) = 2

6+ 3α2 l ·
⎛
⎝6+ α2 −α2 α2

−α2 6+ α2 −α2

α2 −α2 6+ α2

⎞
⎠ l.

The decay of σ 2
f (α) as α →∞ is strongly dependent on the nullspace of J , given by

N = span[ζ ], where ζ = (1,−1, 1).
In Fig. 2a we plot the asymptotic variance for these observables. For f (x) = l(1) · x , see
that as α → ∞ the asymptotic variance converges to 0. This is due to the fact that l(1) is
perpendicular to the nullspace of J . Thus, for this observable the matrix J given by (52) is
an optimal perturbation. For f (x) = l(2) · x , since l(2) is not orthogonal to ζ , as α →∞,

σ 2
f (α) → 2

∣∣∣l(2)N
∣∣∣2 = 4

3
.

Finally, for f (x) = l(3) · x we observe that the asymptotic variance remains constant at 2,
since l(3) ∈ N , the nonreversible perturbation has no effect on this observable.

We now focus on the case when l = 0 so that f (x) = x · Mx − Tr(M). In this case, it is
not clear how to construct an optimal J , however the bound (51) suggests a good candidate
for J . Suppose that M has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd with corresponding eigenvectors
e1, . . . , ed . Suppose that d is even. Let

{i1, j1}, . . . , {id/2, jd/2},
be a partition of 1, . . . d into disjoint pairs. Define the antisymmetric matrix J by

J =
d/2∑
k=1

eik ⊗ e jk − e jk ⊗ eik , k = 1, . . . ,
d

2
. (53)

In this case eα Js can be decomposed into a product of rotations between the pairs of eigen-
vectors:

eα Js =
d/2∏
k=1

Reik ,e jk
(αs),
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where Rv,w(θ) is an anticlockwise rotation of angle θ in the {v,w} plane. Then
∫ ∞

0
e−2s Tr

[
eα Js Me−α Js M
] ds = 1

4(1+ α2)

d/2∑
k=1

(λik − λ jk )
2 + 1

4

d/2∑
k=1

(λik + λ jk )
2.

For this choice of J , the asymptotic variance is given by

lim
α→±∞ σ 2

f (α) = 1

2

d/2∑
k=1

(λik + λ jk )
2.

Arguing by contradiction, this is minimized by choosing ik = k, and jk = (d − k + 1) for
k = 1, . . . , d/2, in which case

lim
α→±∞ σ 2

f (α) =1

2

[
(λ1 + λd)2 + (λ2 + λd−1)2 + . . .+ (λd/2 + λd/2+1)2

]

=1

2
λ↓(M) · λ↑(M)+ 1

2

d∑
k=1

λ2k .

Clearly,

λ↓(M) · λ↑(M) ≤ 1

2
λ↓(M) · λ↑(M)+ 1

2

d∑
k=1

λ2k ≤ Tr(M2),

however these bounds are only tight when M = m I , for m > 0.
As an example, on Fig. 2b we plot the asymptotic variance for a quadratic observable

x · M1x for a linear diffusion (41), where d = 4. The matrix M1 is given by

M1 =

⎛
⎜⎜⎝
3/2 −1/2 0 0
−1/2 3/2 0 0
0 0 7/2 −1/2
0 0 −1/2 7/2

⎞
⎟⎟⎠ ,

with eigenvaluesλi = i , for i = 1, . . . 4.Whenα = 0, the asymptotic variance isσ 2
f (0) = 30.

The lower bound (45) is given by σ 2
f = 2 (λ1λ4 + λ2λ3) = 20.We choose the antisymmetric

matrix J : R4×4 as in (53), that is

J = 1

2

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

The resulting asymptotic variance σ 2
f (α) is plotted as a function of α in Fig. 2a which

converges to 1
2

(
(λ1 + λ4)

2 + (λ2 + λ3)
2
) = 25 as α →∞.

5 Numerical Experiments

In this section we present three numerical examples illustrating the effects of the antisym-
metric perturbation on the asymptotic variance σ 2

f . We will consider target measures defined
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by Gibbs distributions of the form:

π(x) = 1

Z
e−βV (x), (54)

where V (x) is a given smooth, confining potentialwith finite unknownnormalisation constant
Z . We will also assume that the divergence-free vector field γ (x) is given by

γ (x) = −α J∇V (x), J = −J
, (55)

so that the drift of (6) will be given by

b(x) = −(β I + α J )∇V (x).

The symmetric and antisymmetric parts of the generator in L2(Td ;π(x)dx) are, respectively,

S = −β∇V · ∇ +�, A = J∇V · ∇.

Provided that V ∈ H1(π) the nullspace of the antisymmetric part of the generator is always
nonempty. Indeed, the antisymmetry of A implies that AV = 0. Thus, for any observable f
such that π( f ) = 0 and

0 �= 〈 f, V 〉π ,

since 〈 f̂ , V 〉1 = 〈(−S)−1 f, (−S)V 〉π = 〈 f, V 〉π the conclusion of Theorem 4 implies the
asymptotic variance σ 2

f (α) will converge to a nonzero constant as α →∞.

5.1 Periodic Distribution

In the first example we consider a two-dimensional target density given by (54) where the
periodic potential V (x) is given by

V (x) = sin(2πx1) cos(2πx2), x = (x1, x2) ∈ T
2, (56)

and β−1 = 0.1. Our objective is to calculate the expectation π( f ) of the observable

f (x) = 1+ 4 sin(4πx1)
2 + 4 cos(4πx2)

2. (57)

In Fig. 3a we plot the asymptotic variance over α ∈ [0, 12]. The stepsize�t for the Euler–
Maruyama discretisation of (6) is chosen to be 10−3. For each α, M = 103 independent
realisations of the Markov process are run, starting from X0 = (0, 0), each for T = 105

time units to ensure that the process is close to stationarity. We observe that increasing α

from 0 to 10 decreases the asymptotic variance by approximately two orders of magnitude.
In Fig. 3b we plot the value of the estimator along with the confidence intervals estimated
over 103 independent realisations. For this particular example, it appears that increasing the
magnitude of the nonreversible perturbation does not appear to give rise to any noticeable
increase in bias, while it significantly decreases the asymptotic variance, giving rise to a
dramatic increase in performance of the estimator πT ( f ).

5.2 Warped Gaussian Distribution

As a second numerical example we consider computing an observable with respect to a
two-dimensional warped Gaussian distribution [23], defined by (54) with

V (x) = x21
100

+ (x2 + bx21 − 100b)2. (58)
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(a) (b)

Fig. 3 The asymptotic variance and value of the estimator πT ( f ), where T = 105, for the target Gibbs distri-
bution with potential defined by (56) and observable as in (57). The plot was generated from 103 independent
realisations of an Euler–Maruyama discretisation of the nonreversible diffusion (6), with stepsize 10−3 over
T = 105 time-units. The shaded region in b indicates the 95% confidence interval of the estimator for the
given α (Color figure online)

Fig. 4 Contour plot of the warped Gaussian distribution with potential (58)

The parameter b > 0 is chosen to be b = 0.05. The potental V (x) is plotted in Fig. 4. Our
objective is to compute π( f ) where the observable f is given by:

f (x) = x21 + x22 .

The nonreversible perturbation is chosen to be:

γ (x) = −J∇V (x), where J =
(

0 1
−1 0

)
. (59)

In Fig. 5a we plot the asymptotic variance of the estimator πT ( f ), approximated from
103 independent realisations of the process, each run for 108 timesteps of size 10−3 so that
the total time is T = 105. Each realisation was started at (0, 0). As expected, we observe a
significant decrease in asymptotic variance as themagnitude of the nonreversible perturbation
is increased. Increasing α from 0 to 10 gives rise to a decrease in variance by a factor of
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(a) (b)

Fig. 5 Plot of the asymptotic variance σ 2
f (α) and the estimator πT ( f ) for the warped Gaussian distribution

π defined by (58) and the observable f (x) = |x |2 for different values of α. The solid line was generated
from 103 independent realisations of an Euler–Maruyama discretisation of the nonreversible diffusion (6),
with stepsize 10−3 over T = 105 time-units. The shaded region in b indicates the confidence interval of the
estimator for the given α. The dashed line denotes the variance and mean when the chain is augmented with
a accept/reject step, see Sect. 5.3 (Color figure online)

80. In Fig. 5b we plot the value of the estimator πT averaged over the 103 realiations, with
corresponding confidence intervals. As α is increased, the bias arising from the discretisation
error also increases. Tomitigate this bias one could decrease the stepsize, thus requiringmore
steps to generate πT ( f ) or otherwise introduce a Metropolis–Hastings accept–reject step,
which will be discussed in Sect. 5.3. The tradeoff between bias and variance is considered in
more detail in Sect. 6.

5.3 Introducing a Metropolis–Hastings Accept–Reject Step

When sampling from a distribution π it is natural to introduce a Metropolis–Hastings
(MH) accept–reject step, rather than use the Markov chain obtained directly from an Euler–
Maruyama discretization of the SDE (6). Given a current state X (n), a next state is proposed
according to the Euler–Maruyama discretisation of (6):

X̃ ∼ N
(

X (n) +�t∇ logπ(X (n)),�t
)

, (60)

The proposed state is then accepted
(
i.e.X (n+1) := X̃

)
with probability

r(X (n), X̃) = 1 ∧ π(X̃)p(X (n), X̃)

π(X (n))p(X̃ , X (n))
,

where p(·, x) is the proposal density corresponding to (60). By introducing this accept–reject
mechanism, the resulting chain X (n) is guaranteed to have a stationary distribution which
is exactly π , independently of �t . Thus, introducing a Metropolis–Hastings accept–reject
step allows for far larger stepsizes to be used, while still preserving the correct invariant
distribution of the chain, eliminating any bias arising from the discretisation of the SDE,
making it beneficial both in terms of computational performance and stability.

A natural question is whether anMH chain using a proposal distribution based on the SDE
(6) with antisymmetric drift will inherit the superior mixing properties of the nonreversible
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diffusion process. As the MH algorithm works by enforcing the detailed balance of the chain
X (n) with respect to the distribution π , we expect that any benefits of the antisymmetric
drift term will be negated when introducing this accept–reject step. To test this, we repeat
the numerical experiment of Sect. 5.2 using the MH algorithm using the Euler discretisation
of (6) as a proposal scheme, for various values of α. The effect of introducing this accept–
reject step to the nonreversible diffusion is evident from Fig. 5. While the accept–reject
step removes any bias due to discretisation error, as is evident from Fig. 5b, the asymptotic
variance actually increases as α increases. This is due to the fact that for large α, proposals
are more likely to be rejected as they are far away from the current state.

5.4 Dimer in a Solvent

We now test the effect of adding a nonreversible perturbation to a test model from molecular
dynamics, as described in [38, Sect. 1.3.2.4]. We consider a system composed of N particles
P1, . . . , PN in a two-dimensional periodic box of side length L . Particles P1 and P2 are
assumed to form a dimer pair, in a solvent comprising the particles P3, . . . , PN . The solvent
particles interact through a truncated Lennard-Jones potential:

VWC A(r) =
{
4ε
[(

σ
r

)12 − ( σr
)6]+ ε, if r ≤ r0,

0 if r > r0,

where r is the distance between two particles, ε and σ are two positive parameters, and

r0 = 2
1
6 σ . The interaction potential between the dimer pair is given by a double-well potential

VS(r) = h

[
1− (r − r0 − w)2

w2

]2
, (61)

where h and w are two positive parameters. The total energy of the system is given by

V (q) = VS(|q1 − q2|)+
∑

3≤i< j≤N

VWC A(|qi − q j |)+
∑

i=1,2

∑
3≤ j≤N

VWC A(|qi − q j |), (62)

with q = (q1, . . . , qN ) ∈ (LT)d N , where qi denotes the position of particle Pi . The potential
VS has two energyminima at r = r0 (corresponding to the compact state), and at r = r0+2w
(corresponding to the stretched state). The energy barrier separating the two states is h. Define
ξ(q) to be

ξ(q) = |q1 − q2| − r0
2w

.

This reaction coordinate describes the transition from the compact state, ξ(q) = 0 to the
stretched state ξ(q) = 1. The standard overdamped reversible dynamics to sample from the
stationary distribution π(q) ∝ exp(−βV (q)) is given by

dqt = −∇V (qt ) dt +
√
2β−1 dWt ,

where β is the inverse temperature. Our objective is to compute the average reaction coordi-
nate Eπξ(q). We introduce an antisymmetric drift term as follows

dqt = −(I + α J )∇V (qt ) dt +
√
2β−1 dWt , (63)
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where J ∈ R
2N×2N is an antisymmetric matrix. We consider two types of nonreversible

perturbations, determined by antisymmetric matrices, J1 and J2. The first matrix J1 is the
block-circulant matrix defined by:

J1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

O2 I2 · · · O2 −I2
−I2 O2 I2 O2
... −I2 O2

. . .
...

O2
. . .

. . . I2
I2 O2 . . . −I2 O2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where I2 and O2 denote the 2× 2 identity and zero matrix, respectively. The second matrix
is given by

J2 =

⎛
⎜⎜⎜⎝

R O4 . . . O4

O4 O4 . . . O4
...

...
. . .

...

O4 O4 . . . O4

⎞
⎟⎟⎟⎠ ,

where R is the following rotation matrix on R
4×4:

R =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

and O4 is the 4 × 4 zero matrix. The effect, in this case, is to apply the antisymmetric
transformation only on the first two coordinates, which correspond to the positions of the
particles composing the dimer.

Using an Euler–Maruyama discretisation of (63), samples are generated for N = 16
particles, with parameter values β = 1.0, σ = 1.0, ε = 1.0, h = 1.0, w = 0, and
α ∈ {0, 2, 4, 6, 8, 10}. For each value of α, a single realisation, starting from 0 is simulated
for 1010 timesteps of size �t = 10−5, so that the total running time is T = 105. The
asymptotic variance is approximated from a single realisation of the process using a batch–
means estimator (see [1, IV .5]). In Fig. 6 we plot the value of the generated estimator,
along with the asymptotic variance for different values of α and for J1 and J2. The first
perturbation provides marginally lower asymptotic variance for this particular observable,
giving rise to a 66% decrease, as opposed to a 50% decrease for J2, increasing α from 0 to
10. This decrease in asymptotic variance, comes at the cost of increased computation time
due to having to reduce the stepsize to compensate for the discretisation error and numerical
instability caused by the large drift. While this may appear as a negative result, since the
antisymmetric drift terms were chosen arbitrarily, no claim is made about optimality. An
important issue is whether the increase in computational cost outweighs the benefits. This
issue will be studied more carefully in Sect. 6.

6 The Computational Cost of Nonreversible Langevin Samplers

As observed Sect. 5, while increasing α is guaranteed to decrease the asymptotic variance
σ 2

f (α) for the estimator πT ( f ), this will also give rise to an increase in the discretisation
error arising from the particular discretisation being used. Moreover, as α increases, the SDE
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Fig. 6 Value of the estimator πT (ξ) for T = 105 with corresponding 95% confidence intervals, for the
dimer model, generated from a single realisation of (63). The right plot shows the asymptotic variance of the
estimator over varying α, with antisymmetric drifts defined by J1∇V (x) and J2∇V (x), respectively (Color
figure online)

(6) becomes more and more stiff, to the extent that the discretisation becomes numerically
unstable unless the stepsize is chosen to be accordingly small. As a result, any discretisation
{X (n)}N

n=1 will require smaller timesteps to guarantee that the stationary distribution of X (n) is
sufficiently close to π(x). This tradeoff between computational cost and asymptotic variance
of the estimator must be taken into consideration when comparing reversible to nonreversible
diffusions.

A rigorous error analysis of the long time average estimator was carried out in [47]. In
this paper careful estimates of the mean square error

Err2N ,�t ( f ) := E

∣∣∣∣∣
1

N

N∑
n=1

f (X (n))− π( f )

∣∣∣∣∣
2

were derived for discretisations of a general overdamped Langevin diffusion on the unit torus
T

d , see also [70]. In particular, in [47, Theorem 5.2] it is shown that the mean squared error
can be bounded as follows

Err2N ,�t
[ f ] ≤ C

(
�t2 + 1

N�t

)
, (64)

whereC is a positive constant independent of�t and N , which depends on the coefficients of
theSDEand theobservable f . This estimatemakes explicit the tradeoff betweendiscretisation
error and sampling error. For a fixed computational budget N , the right hand side of (64)

is minimized when �t ∝ (N )− 1
3 . For an SDE of the form (6), we expect that the constant

C will increase with α. Identifying the correct scaling of the error with respect to α is an
interesting problem that we intend to study.

To obtain a clearer idea of the bias variance tradeoff we compute the mean-square error
for the Euler–Maruyama discretisation for two particular examples. In Fig. 7a, we consider
the warped Gaussian distribution defined by (58) and the observable f (x) = |x |2. A value
for π( f ) is obtained by integrating

∫
Rd f (x)π(dx) numerically, using a globally adaptive

quadrature scheme to obtain an approximation with error less than 10−12. In Fig. 7a we plot
the relative mean–squared-error defined by

(
ErrN ,�t [ f ]/π( f )

)2 for an Euler–Maruyama
discretisation of (6), for timestep �t in the interval [2−5, 1]. The total number of timesteps
is kept fixed at N = 106. For each value of α, the mean square error is approximated over an
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ensemble of 256 independent realisations. Missing points indicate finite time blowup of the
discretized diffusion. The dashed line denotes the MSE generated from the corresponding
MALA sampler, namely an Euler–Maruyama discretisation of the reversible diffusion with
an added Metropolis–Hastings accept–reject step. We note that both the Euler–Maruyama
discretisation and the MALA sampler require one evaluation of the gradient term ∇ logπ

per timestep, so that comparing an ergodic average obtained from 106 steps of each scheme
is fair.

A trade-off between discretisation error and variance is evident from Fig. 7a, and is
consistent with the error estimate (64). We observe that the nonreversible Langevin sampler
outperforms the reversible Langevin sampler by an order of magnitude, with the lowest MSE
attainedwhen α = 10. As α is increased beyond this point, the discretisation error is balanced
by the decrease in variance, and we observe no further gain in performance. Nonetheless,
despite the fact that the MALA scheme has no bias, the nonreversible sampler, with α = 5,
outperforms MALA (in terms of MSE) by a significant factor of 8.8.

We repeat this numerical experiment for the target distribution π given by a standard
Gaussian distribution in R

d and observable f (x) = x2 + x3. In this case π( f ) is exacty
0. We use the linear diffusion specified by (41) where the antisymmetric matrix J is given
in (52), which is optimal for this observable. We plot the (absolute) MSE for the estimator
πT ( f ) in Fig. 8a. While the smallest MSE is attained by the nonreversible Langevin sampler,
when α = 25, the increase in performance is only marginal. This is due to the fact that
increasingly smaller timesteps must be taken to ensure that the EM approximation does not
blow up. Indeed, the α = 25 sampler would not converge to a finite value for �t greater than
10−3, while the reversible sampler (α = 0) and the MALA scheme were accurate even for
timesteps of order 1.

From both examples it is clear that managing the numerical stability and discretisation
error of the skew-symmetric drift term is essential for any practical implementation of the
nonreversible sampling scheme. This suggests that using higher order and/or more stable
numerical integrators to compute long time averages would be beneficial to eliminate the
bias arising from discretisation, as well as permit the use of larger timesteps. Naturally, such
schemes would require multiple evaluations of∇ logπ at each step, thus it is possible that the
additional computational cost offsets any performance gain. In the remainder of this section,
we will perform the same numerical experiments using an integrator based on a Strang
splitting [35,67] of the stochastic reversible and deterministic nonreversible dynamics. The
reversible part will be simulated using a standard MALA scheme and the nonreversible flow
using an appropriate higher–order integrator. Indeed, denote by �r,t the evolution of the
reversible SDE (3) from time 0 to t , and let �n,t (x) denote the flow map corresponding to
the ODE:

ż(t) = γ (z(t)), z(0) = x .

We shall consider an integrator based on the following map from time t to t +�t :

��t = �r,�t/2 ◦�n,�t ◦�r,�t/2.

For this implementation, we approximate �r,�t (x) using a single step of a MALA scheme
with proposal based on (3) with stepsize �t . The nonreversible flow �n,�t is approximated
using a fourth-order Runge–Kutta method.

We leave the justification and analysis of this scheme as the goal of future work, and in
this paper simply use it to compute a long time average approximation to π( f ) and compare
the MSE with that of a corresponding reversible MALA scheme. To obtain a fair comparison
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(a) (b)

Fig. 7 Plot of the relative mean-square error as a function of the timestep size �t for the observable f (x) =
|x |2 of a warped Gaussian distribution defined by (58), with a fixed computational budget of 106 evaluations
of ∇ logπ for (a) and 6 · 106 for (b). The dotted line denotes the relative MSE for the MALA scheme (Color
figure online)

(a) (b)

Fig. 8 Plot of the mean-square error as a function of the timestep size�t for a linear observable of a Gaussian
distribution, so that Xγ

t is a linear diffusion process.Afixed computational budget of 106 evaluations of∇ logπ

is imposed in (a), and 6·106 in (b). The dotted line depicts the corresponding error for themetropolized sampler
(Color figure online)

between the results obtained byMALA and the splitting scheme, we note that while a careful
implementation of MALA requires only one evaluation of ∇ logπ per timestep, the splitting
scheme requires six evaluations of ∇ logπ per timestep (naively a single timestep would
require two evaluations for each reversible substep and four evaluations for the nonreversible
substep, however we can reuse two evaluations of∇ logπ between the steps). Thus, we shall
compare the MSE obtained from trajectories of 106 timesteps of the nonreversible sampler
with 6 · 106 timesteps of the corresponding MALA scheme, for stepsizes ranging from 10−5
to 1. The results for the warped Gaussian distribution in R

2 and standard Gaussian in R
3

are plotted in Figs. 7b and 8b, respectively. Note that we omit the α = 0 case since, in this
case, the splitting scheme reduces to standard the MALA scheme. We observe that with this
splitting scheme, the nonreversible sampler outperforms MALA by a factor of 13 for the
warped Gaussian model, and by a factor of 20 for the standard Gaussian model. The benefits
of the splitting scheme appear to be twofold: firstly the integrator is more stable, in both
models, the long time simulation of Xγ

t did not blow up, even for large values of α, and for
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�t = 0.1. Moreover, compared to the corresponding Euler–Maruyama discretisation, the
MSE is consistently an order of magnitude less.

While this splitting scheme is only a first step into properly investigating appropriate inte-
grators for nonreversible Langevin schemes, the above numerical experiments demonstrate
clearly that there is a significant benefit in doing so, which motivates future investigation.

7 Conclusions and Further Work

In this paper we have presented a detailed analytical and numerical study of the effect of
nonreversible perturbations to Langevin samplers. In particular, we have focused on the
effect on the asymptotic variance of adding a nonreversible drift to the overdamped Langevin
dynamics. Our theoretical analysis, presented for diffusions with periodic coefficients and
for diffusions with linear drift for which a complete analytical study can be performed,
and our numerical investigations on toy models clearly show that a judicious choice of the
nonreversible drift can lead to a substantial reduction in the asymptotic variance. On the
other hand, as observed from the dimer model example in Sect. 5.4, an arbitrary choice
of nonreversible drift will not always give rise to significant improvement. We have also
presented a careful study of the computational cost of the algorithm based on a nonreversible
Langevin sampler, in which the competing effects of reducing the asymptotic variance and
of increasing the stiffness due to the addition of a nonreversible drift are monitored. The
main conclusions that can be drawn from our numerical experiments is that a nonreversible
Langevin sampler with close-to-the-optimal choice of the nonreversible drift significantly
outperforms the (reversible) Metropolis–Hastings sampler.

There are many open problems that need to be studied further:

(1) The effect of using degenerate, hypoelliptic diffusions for sampling from a given distri-
bution.

(2) Combining the use of nonreversible Langevin samplers with standard variance reduction
techniques such as the zero variance reduction MCMC methodology [14].

(3) Optimizing Langevin samplers within the class of reversible diffusions.
(4) The development of nonreversible Metropolis–Hastings algorithms based on the above

techniques, possibly related to approach described in [9].
(5) The development and analysis of numerical schemes specifically designed to simulate

nonreversible Langevin diffusions.

All these topics are currently under investigation.
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