
KHOVANOV HOMOLOGY FROM ALE SPACES

IVAN SMITH AND RICHARD THOMAS

Abstract. We describe a short construction of Khovanov homology of
links via derived categories of coherent sheaves on deformations of the
Hilbert schemes of points on ALE surfaces.

1. Introduction 1
2. ALE spaces and maps between them 1
3. Derived categories 3
4. Deformation 6
5. Khovanov homology 13
References 15

1. Introduction

Cautis and Kamnitzer gave a celebrated construction [CK] of Khovanov
homology which can be thought of as mirror to the symplectic Khovanov
homology of [SS]. Their model of the mirror is motivated by the geometric
Langlands programme, and has the advantage of generalising to more general
Lie algebras.

Here we use a mirror motivated by Manolescu’s description [Ma] of the
space used in [SS]. This has the advantage that the proofs of the necessary
braid relations are simpler, since they arise from standard two dimensional
derived equivalences [ST].

Here we describe the results rather briefly, leaving all geometric and
mirror-symmetric motivations to [Th]. After 4 years of this paper sitting
on our desks we have decided to use [Hi] to simplify the deformation the-
ory and make it available for someone with more energy to contemplate.
In particular the deformation theory of Section 4 is rather sketchy and ad
hoc, using tricks to deduce the noncompact results we need from the better
understood compact setting. And we gave up before really forcing this all
through anyway. A more direct approach would be much preferable.
Acknowledgements. We gratefully thanks Daniel Huybrechts, Max Lieblich,
Ed Segal, Paul Seidel and Paolo Stellari for their help.

2. ALE spaces and maps between them

Let Ak−1 denote the standard surface singularity

Ak−1 := C2/(Z/kZ),

where the generator 1 of Z/kZ acts as diag(e2πi/k, e−2πi/k) ∈ SL(2,C).
Equivalently Ak−1 is the hypersurface {xk = yz} ⊂ C3.
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2 I. SMITH AND R. P. THOMAS

Let Sk−1 be the minimal resolution of Ak−1. It has an Ak−1-chain of
−2-curves Ci

∼= P1, i = 1, . . . , k − 1, and is holomorphic symplectic.

Maps between spaces. Crucial to our construction will be the observation
that there is a natural inclusion Sk−1 ⊂ Sk taking the Ak−1-chain of curves
Ci in the former to the first k − 1 curves of the Ak-chain C1, . . . , Ck−1, Ck

in the latter. We see this as follows; cf. Figure 1.
Let Ak−1 denote the blow up of C2 in the ideal (xk, y). It can be con-

structed via blow ups and a blow down in smooth centres as follows.

(1) Blow up the (reduced) origin in C2, giving an exceptional divisor
E1
∼= P1.

(2) Blow up the point∞ ∈ E1 (its intersection with the proper transform
of the x-axis). We get a new exceptional divisor E2, and the proper
transform of E1 which is a −2-curve C1.

(r) At the rth stage, blow up ∞ ∈ Er−1 to produce a new exceptional
divisor Er, and the proper transform of Er−1 is a −2-curve Cr.

After the kth step we get a surface Sk−1 with an Ak−1-chain of −2-curves
Ci and a −1-curve Ek. Then blow down the Ci, i = 1, . . . , k−1 to get Ak−1.

C1

C2

C3

E4

C1

C2

E3

Figure 1. Newton polygon diagram of the blow up map
S2 ← S3. On removing the divisors corresponding to the
dashed lines (the proper transforms of the x-axis) we get an
inclusion S2 ⊂ S3 in the opposite direction.

Now Ak−1 = Bl(xk,y)C
2 = {μxk = λy} ⊂ C2

x,y × P
1
[λ:μ]. Therefore if we

remove the proper transform {y = 0} = {μ = 0} of the x-axis we can set
[λ : μ] = [z : 1] to get the affine variety

{xk = yz} ⊂ C2
x,y × Cz,

which is precisely Ak−1. Thus Ak−1 and Sk−1 are partial compactifications
of Ak−1 and Sk−1 respectively (since Sk−1 is the minimal resolution of Ak−1).

We obtained Sk from Sk−1 by blowing up the latter in the point ∞ ∈ Ek.
But∞ = {y = 0}∩Ek lies in the divisor {y = 0} that we remove from Sk−1

to get Sk−1, so the inclusion Sk−1 ⊂ Sk−1 lifts to the blow up: Sk−1 ⊂ Sk.
Its image is clearly contained in the open subset Sk, and maps the curves
Ci ⊂ Sk−1 to the corresponding curves Ci ⊂ Sk, as claimed.
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3. Derived categories

Throughout this paper D(Y ) will denote the bounded derived category of
coherent sheaves with compact support on a smooth quasiprojective variety1

Y . By [BKR, Hai] the category

Dn := D(Hilbn S2n−1)

has a canonical identification with the Σn-equivariant derived category of the
n-fold product Sn

2n−1, where the symmetric group Σn permutes the factors:

(3.1) Rπ1∗ π∗
2 : D(Hilbn S2n−1)

∼
−→ D(Sn

2n−1)
Σn .

Here the πi are the projections from the underlying reduced variety Zred of
the fibre product Z of Hilbn S2n−1 and Sn

2n−1 over Sn
2n−1/Σn:

(3.2) Zred
π1 //

π2

��

Sn
2n−1

q

��
Hilbn S2n−1

π // Sn
2n−1/Σn.

Any E ∈ D(Sn
2n−1) defines an element (with its obvious Σn-linearisation) by

(3.3) Σn.E :=
⊕

σ∈Σn

σ∗E ∈ D(Sn
2n−1)

Σn .

Thus from the spherical objects Li := OCi(−1) ∈ D(S2n−1) we define

(3.4) L = Ln := Σn.(L1 � L3 � . . .� L2n−1) ∈ D(Sn
2n−1)

Σn .

Since none of the L2i−1 intersect, the support of L is disjoint from the big
diagonal in Sn

2n−1, so its image in D(Hilbn S2n−1) is easily calculated from
(3.2). Namely, via the map q (3.2), C1 × C3 × . . . × C2n−1 embeds into
Sn

2n−1/Σn with image contained in the locus where π is an isomorphism.
Therefore we can think of it as embedded in Hilbn S2n−1, whereupon

(3.5) L = OC1×C3×...×C2n−1(−1,−1, . . . ,−1) ∈ D(Hilbn S2n−1).

Later we will need the computation of Homs between objects such as (3.4):

Ext∗D(Sn
2n−1)Σn

(
Σn.(E1 � . . .� En), Σn.(F1 � . . .� Fn)

)

(3.6) =
⊕

σ∈Σn

n⊗

i=1

Ext∗D(S2n−1)(Ei, Fσ(i)).

1Therefore when in Section 4 we work with smooth families Yk → SpecC[t]/(tk+1) over
Artinian rings, D(Yk) will denote the bounded derived category of perfect complexes with
compactly supported cohomology.
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Braid group action. A canonical homomorphism Φ: Aut(D(S2n−1) ↪→
Aut(D(Sn

2n−1)
Σn) is constructed in [Pl]. We only need to know its rather

natural action on objects of the form (3.4):

(3.7) Φ(T )
(
Σn.(E1 � . . .� En)

)
= Σn.

(
T (E1)� . . .� T (En)

)
.

The spherical twists TLi [ST] in the Li generate a (faithful) braid group
action B2n ↪→ Aut(D(S2n−1)) [KS, ST]. Therefore setting

(3.8) Ti := Φ(Ti)[1] ∈ Aut
(
D(Sn

2n−1)
Σn
)

gives generators of a braid group B2n ↪→ Aut(Dn). (Since the braid relations
are homogeneous the extra shift [1] makes no difference.) Thus any β ∈ B2n

gives an autoequivalence Tβ ∈ Aut(Dn). We define the braid invariant

(3.9) H∗(β) := Ext∗Dn
(Tβ L , L [n]).

In Section 5 we will put a bigrading on H∗ via a natural C∗-action on S2n−1.

Link invariants. We would like H∗(β) of (3.9) to be an invariant of the
isotopy class of the link given the plait closure of β. (In fact it is not; we
will have to deform Hilbn S2n−1 in the next Section to achieve this.) By a
result of Birman [Bir], modified slightly in [Big], and the fact that the Tβ s
are functors (so that Ext∗Dn

(TαTβ L , L [n]) = Ext∗Dn
(Tβ L , Tα−1L [n]), for

instance), it would be sufficient to prove the following; see Figure 2.

(1) T1L ∼= L ,
(2) T2i−1T2i L ∼= T−1

2i−1T
−1
2i L ,

(3) T2iT2i−1T2i+1T2i L ∼= L , and
(4) Ext∗Dn

(Tβ Ln, Ln[n]) ∼= Ext∗Dn+1
(Tβ Ln+1, T

±1
2n Ln+1[n + 1]).

In the last relation (stabilisation as we increase the number of strands in
our braid, or Markov II as it is called in [SS]), β is an element of B2n which
on the right hand side of the equation is considered as an element of B2n+2

via the standard inclusion B2n ↪→ B2n+2.

β ' ' ' ββ 'β β

(2)(3)(1)

β

(4)

Figure 2. Equivalent plait closures of a braid β ∈ B4

Theorem 3.10. The relations (1), (3) and (4) hold in the categories Dn,
but (2) does not.
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Proof.2 On the surface S2n−1 an elementary calculation gives T1L1
∼= L1[−1]

and T1L2i+1
∼= L2i+1 for i ≥ 1 (because R Hom(L1, L2i+1) = 0). Therefore

by (3.7), T1L ∼= L [−1][1] = L , proving relation (1).
For (2) we calculate on S2n−1 that both T2i−1T2i and T−1

2i−1T
−1
2i leave L2j+1

alone for j 6= i, i− 1. Both also take L2i−1 to L2i, but

T2i−1T2iL2i+1
∼= OC2i−1∪C2i∪C2i+1(−1, 0, 0),(3.11)

T−1
2i−1T

−1
2i L2i+1

∼= OC2i−1∪C2i∪C2i+1(0, 0,−1).(3.12)

Since these are not isomorphic it follows from (3.7) that T2i−1T2i L 6∼=
T−1

2i−1T
−1
2i L , i.e. (2) does not hold.

Another calculation on S2n−1 shows that T2iT2i−1T2i+1T2i also leaves
L2j+1 alone for j 6= i, i− 1, but swaps L2i±1:

T2iT2i−1T2i+1T2iL2i±1 = L2i∓1.

Relation (3) then follows again from (3.7).
Finally to prove (4) we consider S2n−1 as an open subvariety of S2n+1

using the inclusion map of Section 2. Since this takes the A2n−1-chain of
curves Ci to the first 2n − 1 curves Ci of the A2n+1-chain on S2n+1, it
intertwines the action of B2n on D(S2n−1) and that of B2n ⊂ B2n+2 on
D(S2n+1).

Using (3.7) and (3.6) we compute the right hand side of (4) (in the T2n

case; T−1
2n is very similar) as the direct sum over σ̃ ∈ Σn+1 of the terms

(
n⊗

i=1

Ext∗S2n+1

(
TβL2i−1, T2nL2σ̃(i)−1

)
)

⊗ Ext∗+n+1
S2n+1

(L2n+1, T2nL2σ̃(n+1)−1).

The last term vanishes unless σ̃(n + 1) = n + 1 or n. The first case occurs
if and only if σ̃ is the image of σ ∈ Σn ↪→ Σn+1, in which case we get

(3.13)
⊕

σ∈Σn

(
n⊗

i=1

Ext∗S2n+1

(
TβL2i−1, T2nL2σ(i)−1

)
)

[n + 1]

using the easy calculation on the surface S2n+1 that

(3.14) Ext∗S2n+1
(L2n+1, T2nL2n+1) = C[0].

Similarly σ̃(n + 1) = n if and only if σ̃ = (n n+1) ◦ σ for some σ ∈ Σn ↪→
Σn+1. In this case we get

(3.15)
⊕

σ∈Σn

(
n⊗

i=1

Ext∗S2n+1

(
TβL2i−1, T2nL2σ̃(i)−1

)
)

[n]

from the easy calculation

(3.16) Ext∗S2n+1
(L2n+1, T2nL2n−1) = C[−1].

2For geometry (and pictures!) explaining this proof, see [Th, Section 2.8].
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Since T2n leaves L2j−1 alone unless j = n, the terms in (3.13) and (3.15)
simplify except when σ(i) = n (corresponding in (3.15) to σ̃(i) = n + 1).
The sum of (3.13) and (3.15) therefore becomes the sum over σ ∈ Σn of

(3.17)
n⊗

i=1
i 6=σ−1(n)

Ext∗
(
TβL2i−1, L2σ(i)−1

)

⊗ Ext∗
(
TβL2σ−1(n)−1, T2nL2n−1 ⊕ T2nL2n+1[−1])[n + 1].

From R Hom(L2n, L2n−1) = C[−1] we get the extension exact triangle

(3.18) L2n−1 → T2nL2n−1 → L2n

and so

Ext∗(E,L2n)[−1]→ Ext∗(E,L2n−1)→ Ext∗(E, T2nL2n−1)→ Ext∗(E,L2n)

for any E ∈ D(S2n+1). Since Ext∗(Lj , L2n) = 0 for j < 2n − 1, the final
arrow is zero for E = Lj , j < 2n− 1. It is also zero for E = L2n−1 because
the generator of R Hom(L2n−1, T2nL2n−1) = C is the first arrow of (3.18)
which is in the image of the identity in Ext∗(L2n−1, L2n−1). Therefore for
all E in the subcategory generated by Lj , j ≤ 2n− 1, we have a splitting

Ext∗(E,L2n−1) ∼= Ext∗(E,L2n)[−1] ⊕ Ext∗(E, T2nL2n−1)
∼= Ext∗(E, T2nL2n+1)[−1] ⊕ Ext∗(E, T2nL2n−1).(3.19)

The second isomorphism follows from R Hom(E,L2n+1) = 0. Applying this
to E = TβL2σ−1(n)−1 and substituting into (3.17) shows the right hand side
of relation (4) is

(3.20)
⊕

σ∈Σn

n⊗

i=1

Ext∗S2n+1

(
TβL2i−1, L2σ(i)−1

)
[n + 1].

Since this can equally be computed in D(S2n−1) by the inclusion map, we see
from (3.6) that it equals Ext∗D(Sn

2n−1)Σn (Tβ Ln, Ln[n]), thus proving (4). �

4. Deformation

Throughout this Section, n is fixed. Let E denote the exceptional divisor
of the crepant resolution Hn := Hilbn(S2n−1) → Symn(S2n−1) with class3

[E] ∈ H1(ΩHn). Via the isomorphism ΩHn
∼= THn induced by the holomor-

phic symplectic form we get a canonical class κ0 ∈ H1(THn), the space of
first order deformations of Hn.

This deformation can be globalised using twistor families, or by direct
construction via the hyperkähler quotient construction. We find it conve-
nient to use the holomorphic Poisson deformation theory of Hitchin [Hi],

3This is easily defined despite the noncompactness of Hn; for instance the exact se-
quence 0 → ΩHn → ΩHn(log D) → OD → 0 has extension class in Ext1(OD, ΩHn); its
image in Ext1(OHn , ΩHn) = H1(ΩHn) is [E].
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using the Poisson structure on S2n−1. Now all of our calculations, and the
invariant (3.9), depend only on a formal neighbourhood (or germ of S2n−1)

So
2n−1 ⊂ S2n−1

of the A2n−1-chain of curves Ci ⊂ S2n−1, and the part of the Hilbert scheme
Ho

n ⊂ Hn parameterising points supported on So
2n−1. So we fix any projec-

tive Poisson compactification

So
2n−1 ⊂ S.

So S could be a compactification of all of S2n−1 to which the holomor-
phic Poisson structure of S2n−1 extends, like the minimal resolution of
P2/(Z/2nZ), where Z/2nZ ⊂ PSL(3,C) acts with weights (1,−1, 0). But
for n ≤ 10, S could also be a K3 surface; this will be important below.

The Poisson structure on S induces one on its Hilbert schemes of points.
Thus we get a compactification

(4.1) Ho
n ⊂ H := Hilbn(S)

where the holomorphic symplectic structure θ on the left is induced by the
Poisson structure σ ∈ H0(Λ2TH) on the right: (σ|Ho

n
)−1 = θ.

The exceptional divisor E of Hilbn(S)→ Symn(S) compactifies Eo ⊂ Ho
n.

Now [Hi] gives, for all small t ∈ C, a family (Jt, σt) of complex structures
and compatible holomorphic Poisson structures on H (and so a family Ht

with central fibre H) whose Kodaira-Spencer class at any time t is

(4.2) κt := [E]1,1
t yσt ∈ H1(THt).

Here [E]1,1
t denotes the projection of [E] ∈ H2(H) to H1,1(Ht) ⊂ H2(Ht) =

H2(H). Either H2,0(H) = 0, in which case this is just [E], or H is holo-
morphic symplectic in which case H2,0(Ht) is generated by the symplectic
form θt := σ−1

t . In this latter case the (1,1) projection removes multiples of
Re θt, Im θt, so in either case we find that

(4.3) [E]1,1
t ∈ 〈Re θ, Im θ, [E] 〉 ⊂ H2(Ht) = H2(H).

Hitchin shows that the degeneracy locus of the tensors σt are all the same,
so can be removed to give a quasi-projective holomorphic symplectic family
Ho

t containing Ho
n in its central fibre. Finally, by [Hi, Proposition 7], in this

family the cohomology class of this symplectic form θt is [θt] = [θ]− 2t[E] ∈
H2(Ho

t ) if H2,0(H) = 0, while more generally

(4.4) [θt] ∈ 〈Re θ, Im θ, [E] 〉.

Lemma 4.5. The sheaf Ln deforms uniquely to a sheaf Lt on Ho
t .

Proof. Let Ho
k denote the pullback of the family Ho

t to the base Bk :=
SpecC[t]/tk+1, and let its fibrewise holomorphic 2-form be denoted θ. Sup-
pose inductively that the support C1 × . . . × C2n−1 of Ln (3.5) deforms to
a Bk-family Ck = (P1)n ×Bk ↪→ Ho

k. This is trivially true for k = 0.
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Let κk ∈ H1(THo
k/Bk

) denote the Kodaira-Spencer class of Ho
k+1. Its

projection to H1(NCk/Ho
k
) is the obstruction to deforming Ck ⊂ Ho

k to some
Ck+1 ⊂ Ho

k+1. But (P1)n has no holomorphic 2-forms, so Ck is fibrewise
Lagrangian. Thus NCk/Ho

k

∼= ΩCk/Ho
k

and this obstruction is the same as the
restriction of κk y θ ∈ H1(ΩHo

k/Bk
) to H1(ΩCk/Ho

k
).

But by construction (4.2), this is the cohomology class [E]1,1 restricted to
Ck/Ho

k. Since C0 is disjoint from E and Lagrangian with respect to θ, this van-
ishes by (4.3) and we can produce Ck+1 ⊂ Ho

k+1. The rigidity H1(T(P1)n) = 0
ensures that Ck+1

∼= (P1)n × Bk+1. Since we can deform to all orders (and
the Hilbert scheme of the family Ht is projective) an actual deformation
Ct ↪→ Ho

t exists for small t.
Finally, pushing forward OP1(−1)�n via Ct ↪→ Ho

t defines the deformation
Lt. Uniqueness follows from the vanishing of Ext1

Hn
(Ln, Ln). �

Deforming the autoequivalences, I: compact case. Showing that the
generators Ti deform is more involved. We first restrict to the special case
that S is a K3 surface, where compactness simplifies things. In particular
Ho

t = Ht in this case since the Hilbert scheme and its deformations are
holomorphic symplectic. We use the notation above, so that pk : Hk → Bk

is the basechange of Ht to the base Bk := SpecC[t]/tk+1, and θ is its fibrewise
holomorphic 2-form.

Starting at k = 0, suppose inductively that we have uniquely extended
the autoequivalence Ti to Hk. Let κk ∈ H1(THk/Bk

) denote the Kodaira-
Spencer class of Hk+1. Its contraction with θ is a fibrewise (1, 1)-form whose
image in R2pk∗C ∼= H2(H) ⊗ C[t]/tk+1 lies in the span of Re θ, Im θ, [E] by
(4.3).

Now the action4 of TLi on D(S) induces a very simple action on H∗(S):
it simply reflects in the class [Ci] ∈ H2(S) ⊂ H∗(S). (In particular, it
preserves the grading, unusually5.) The induced action of Ti[−1] on H∗(H) =
H∗(Hilbn S) also preserves the grading, and, on H2,

H2(H) = H2(S)⊕ [E]/2,

its action is also reflection in [Ci] on the first summand and the identity
on the second. It follows that Ti fixes [E], Re θ, Im θ in H2(H) (the latter
because Ci is Lagrangian), and thus also κk y θ.

4Any Fourier-Mukai transform D(X) → D(Y ) induces a map H∗(X) → H∗(Y ) by
using the Mukai vector of the Fourier-Mukai kernel as a convolution.

5This is a reflection of the fact that the autoequivalence TLi can be seen as the limit
of a family of symplectomorphisms; see for instance [Th]. The same is true for Ti acting
on D(H).



KHOVANOV HOMOLOGY FROM ALE SPACES 9

We now use the modified HKR isomorphisms6 relative to Bk:

HH∗(Hk/Bk) ∼=
⊕

i+j=∗

Ripk∗Λ
j(THk/Bk

),

HH∗(Hk/Bk) ∼=
⊕

j−i=∗

Ripk∗(Ω
j
Hk/Bk

).

Via these isomorphisms we think of κk as lying in HH2(Hk/Bk), θ as lying
in HH2(Hk/Bk) and κk y θ as lying in HH0(Hk/Bk), with Ti fixing the latter
two. It therefore also fixes κk ∈ HH2(Hk/Bk) since

y θ : HH2 −→ HH0

is an injection. (Under HKR it corresponds to the inclusion y θ : H0(Λ2T )⊕
H1(T ) ⊕ H2(O) → H0(O) ⊕ H1(Ω) ⊕ H2(Ω2) followed by the inclusion of
the latter into

⊕
p Hp(Ωp).)

Thus, by7 [HMS], the Fourier-Mukai kernel of Ti deforms from Hk×Bk
Hk

to Hk+1 ×Bk+1
Hk+1. The deformation is also unique, since HH1(H) ∼=

H0(TH)⊕H1(OH) = 0.
Thus the Fourier-Mukai kernel of Ti deforms uniquely to all orders, giving

an autoequivalence of the derived category of perfect sheaves on Hk for any
k. We next use this information to prove the same in the noncompact case.

Deforming the autoequivalences, II: noncompact case. Having worked
out the compact case, we now work more generally with a noncompact holo-
morphic symplectic family Ho

t of Section 4 (given by removing the degener-
acy locus from the holomorphic Poisson family Ht that deforms the Hilbert
scheme of points on a Poisson surface compactification of S2n−1).

The HKR isomorphism HH2(Ho
t ) ∼= H0(Λ2THo

t
) ⊕ H1(THo

t
) ⊕ H2(OHo)

still holds in this noncompact setting, and the equivalence Ti acts on HH2

as in [Ca]. The third summand vanishes, and we write Tiκt = (a, b) with
respect to the first two. We wish to know, just as in the compact case, that
Ti preserves our deformation class κt = [Eo

t ]
1,1 yσt ∈ H1(THo

t
) ⊂ HH2(Ho

t )
of (4.2), i.e. that a = 0 and b = κt.

Working infinitesimally as before, we basechange Ho
t back to Ho

k → Bk =
SpecC[t]/(tk+1), and assume inductively that Ti has been extended to D(Ho

k).
Restrict to the open locus U in Ho of points such that the corresponding
subscheme of S does not intersect any of the curves Ci. This has the prop-
erty that the Fourier-Mukai kernel of Ti restricted to H × U lies in U × U

6These are the standard HKR isomorphisms composed with Td−1/2 y ( ∙ ) acting on⊕
Hi(ΛjT ) and Td1/2 ∧( ∙ ) acting on

⊕
Hi(Ωj). They intertwine the action of HH∗

on HH∗ [Ca] with the interior multiplication of H∗(Λ∗T ) on H∗(Ω∗) [CV1, CV2]. And
given an autoequivalence, they intertwine the induced map on HH∗ [Ca] with the map on
cohomology of footnote 4, by [MS, Theorem 1.2]. The relative versions we use here are
described carefully in [HMS].

7In [HMS] the unmodified HKR isomorphisms are used, but this makes no difference

since Td−1/2 y ( ∙ ) acts trivially on H1(T ) when c1 = 0.
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(both being OΔU
[1]). Thus the kernel of the extension of Ti to D(Ho

k) also
has support disjoint from (Ho

k\U) × U . Therefore Ti(κt)|U = (Ti|U )(κt|U ).
Further shrinking U to be an affine open, κk becomes isomorphic to 0. We
conclude that a|U = 0, and so a = 0.

To show that b = κk in R1pk∗THo
k/Bk

we use the isomorphism provided
by the holomorphic symplectic form to equivalently compare b y θ and κk y θ
in R1pk∗ΩHo

k/Bk
. Knowing the cohomology of Ho and its deformations8, it

is sufficient to know that b y θ and κk y θ have the same integrals over the
cycles

Cj × {p1} × . . .× {pn−1} and P1
p1
× {p2} × . . .× {pn−1}

in the Hilbert scheme. Here the pi ∈ S2n−1 ⊂ S are distinct points disjoint
from all Ci, and P1

p1
is the cycle of all length-2 subschemes of S2n−1 supported

at p1.
Since κk is supported on E, the integral of κk y θ over the first cycle is

zero. When |i−j| > 1, so that Ci and Cj are disjoint, Ti is the identity away
from Ci and so b y θ is also zero over the first cycle. When |i − j| ≤ 1 we
pass back to the K3 case to see that the two integrals agree, and the same
applies to the integrals over the second cycle. **Fixme: how do we know
our Ti deforms the same way as on the K3 ? Uniqueness of deformations
problems ?**

Alternative approach. Deforming the autoequivalences to first
order. Another approach is to use the description of Dn as D(Sn

2n−1)
Σn .

As in [Ca, Prop 8.2] the equivalence (3.1), set up by the Fourier-Mukai kernel
OZred

, induces an equivalence D(Hn×Hn) ∼= D(Sn
2n−1×Sn

2n−1)
Σn×Σn set up

by the kernel O∨
Zred

[2n]�OZred
. This takes OΔ (the identity Fourier-Mukai

functor) to Σ∇
n .OΔ (the identity Fourier-Mukai functor for D(Sn

2n−1)
Σn),

where
Σ∇

n := (Σn × Σn)/ΣΔ
n

is the quotient by the diagonal copy of Σn (which acts in the obvious way
on OΔ so that Σ∇

n .OΔ indeed carries an action of Σn ×Σn). This identifies
the deformations HH2 of Dn:

Ext2Hn×Hn
(OΔ,OΔ) ∼= Ext2Sn

2n−1×Sn
2n−1

(Σ∇
n .OΔ, Σ∇

n .OΔ)Σn×Σn .

By a tedious calculation this latter group is a direct sum over the conjugacy
classes [g] of Σn of

Ext2Sn
2n−1×Sn

2n−1
(OΔ, g∗OΔ)Z(g),

where g ∈ Σ∇
n is a representative of the conjugacy class, and its centraliser

Z(g) acts diagonally on both OΔ and g∗OΔ and so on Ext2 by conjugation.

8The key point being that H1,1 is generated by the cohomology classes of the curves Ci

and the exceptional divisor E, and that these have a perfect pairing with the H2 classes
[Ci] and a vertical P1 fibre in E so that H1,1 injects into H2.
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The codimension inside Δ of the intersection of Δ and g.Δ is twice the sum
of (length(cycle)−1) over the cycle decomposition of g. In particular it is > 2
except for two conjugacy classes: those of the identity and transpositions
such as (1 2). Therefore only these contribute to Ext2, giving

Ext2Sn
2n−1×Sn

2n−1
(OΔ,OΔ)Σn ⊕ Ext2Sn

2n−1×Sn
2n−1

(OΔ, (1 2)∗OΔ)Z((1 2)).

The first summand is easily computed to be Ext2
S2n−1×S2n−1

(OΔ,OΔ). **Fixme:
need to use the compactification S here. Or just not state this, it’s only
important that it contains Ext2

S2n−1×S2n−1
(OΔ,OΔ)** By a simple Koszul

resolution argument the second summand is H0(Λ2N), where N is the rank-
2, trivial determinant normal bundle to Δ ∩ (1 2)Δ inside (1 2)Δ. Thus it is
H0(OΔ∩(1 2)Δ) ∼= C with trivial Z((1 2))-action. Therefore

(4.6) HH2(Dn) = HH2(D(S2n−1)) ⊕ C.

Via the HKR isomorphism, HH2(Dn) can also be described as H2(OHn)⊕
H1(THn) ⊕ H0(Λ2THn). The first summand is zero; the third is spanned
by the Poisson structure σ **Again need to use compactification here9 or
not state this. Key is just to show that this copy of C is contained in Ext2

and matches with the one in (4.6)**. Applying the symplectic form to the
second gives10 H1(THn) ∼= H1(ΩHn) ∼= H2(Hn) ∼= H2(S2n−1)⊕〈E〉. All told
we get

(4.7) HH2(Dn) = H2(S2n−1)⊕ 〈σ〉 ⊕ C〈E〉.

Similarly writing HH2(D(S2n−1)) as H2(S2n−1)⊕ 〈σ〉 in (4.6), it is natural
that the splittings (4.6) and (4.7) should correspond. In fact all we shall need
is that the final summands are the same (up to scale). This is easily seen
by noting that they span the subspace of elements of HH2 whose action on
objects supported away from the big diagonal in Sn

2n−1 – or the exceptional
locus E in Hilbn S2n−1 – is trivial11.

Let Pβ ∈ D(S2n−1×S2n−1) denote the Fourier-Mukai kernel of Tβ , so that
the kernel for Tβ is Σ∇

n .P�n
β [1] ∈ D(Sn

2n−1 × Sn
2n−1)

Σn×Σn [Pl]. The induced
action on Fourier-Mukai functors on Dn is given by the kernel

(4.8)
(
Σ∇

n .P�n
β

)∨
[2n]�

(
Σ∇

n .P�n
β

)
∈ D

(
(Sn

2n−1)
×4
)Σ×4

n .

9If we decide to use the Poisson compactification S, we should find an extra Λ2H0(TS) in
Ext2S2n−1×S2n−1

(OΔ,OΔ), and an extra H0(Λ2TS) in H0(Λ2TH) ⊂ HH2(Dn); presumably

these can be identified.
10By direct calculation of both sides the second isomorphism here is easily checked to

hold, despite the noncompactness of Hn.
11Here we use the Fourier-Mukai functor to make any element of HH2 = Ext2(OΔ,OΔ)

induce a morphism F → F [2] for each element F of our category. In this way the Poisson
form in H0(Λ2T ) gives a nontrivial morphism Op → Op[2] for any point away from
the big diagonal (or on it). And given a nonzero element of H2(S2n−1) we can find
one of the −2-curves Ci on which it is nonzero. Pick distinct points pj ∈ S\Ci. Then
C := Ci ×{p1}× . . .×{pn−1} ↪→ Hn is disjoint from E and the corresponding element of
HH2(Dn) gives a nonzero morphism OC → OC [2].
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See [Ca, Prop 8.2]; this takes the identity kernel Σ∇
n .OΔ to itself, and so

induces a map on HH2 = Ext2Sn
2n−1×Sn

2n−1
(Σ∇

n .OΔ, Σ∇
n .OΔ)Σn×Σn . We must

show that this map preserves κ0 ∈ HH2 to deduce that Tβ deforms to an
autoequivalence of the first order deformation of Dn along e by [To, HMS].

Lemma 4.9. The Fourier-Mukai kernel (4.8) takes κ0 to itself.

Proof. Because of the kernel’s form as the Σn×Σn orbit of an object already
equivariant under the diagonal copy of Σn × Σn (4.8) it is easy to see how
it respects Σn orbits, in the following sense. Pick any ΣΔ

n -linearised object
X ∈ D(Sn

2n−1 × Sn
2n−1), and let X ′ ∈ D(Sn

2n−1 × Sn
2n−1) denote its image

under the Fourier-Mukai kernel P�n
β [2n]�P�n

β . Then the kernel (4.8) takes
Σ∇

n .X to Σ∇
n .X ′. Furthermore a morphism X → Y induces morphisms

Σ∇
n .X → Σ∇

n .Y and X ′ → Y ′, and the image of the former under (4.8) is
the morphism Σ∇

n .X ′ → Σ∇
n .Y ′ induced by the latter.

Apply this to X = OΔ and Y = (1 2)∗OΔ[2] and our morphism κ0 between
them. We find that (4.8) takes κ0 to a map Σ∇

n .OΔ → Σ∇
n .(1 2)∗OΔ[2] ∼=

(1 2)∗Σ∇
n .OΔ[2] which is Σ∇

n applied to a map OΔ → (1 2)∗OΔ[2]. We al-
ready noted (4.6) that there is only one such nonzero map up to scale, so
κ0 is taken to a multiple of itself.

It is sufficient to check that the multiple is 1 for each generator Ti. In fact,
T1 will suffice, since the multiples are the same for each generator. Hence
we are interested in a formal neighbourhood of a single −2-curve, which we
can compactify inside a smooth K3 surface S. Since S is holomorphic sym-
plectic, so is its Hilbert scheme. **Now use usual argument by comparing
to action on H2, which we know. Need to know it fixes σ** �

The functor Tβ induces a map on cohomology H∗(Hn) → H∗(Hn) by
pullback to the product, cup product with the Mukai vector of its Fourier-
Mukai kernel, and pushdown to the other factor.

Lemma 4.10. The action of Tβ [−1] on H∗(Hn,C) fixes Re σ, Im σ and [E].

Proof. To show that Tβ [−1] preserves [σ] it is sufficient to show that the
generators Ti[−1] of the braid group action preserve it.

Since the kernel Pi for TLi sits inside an exact sequence 0 → OΔ → Pi →
OCi(−1) � OCi(−1) → 0 we get an induced map from the identity kernel
Σ∇

n .OΔ to the kernel for Ti[−1]. It is sufficient to show that the cone on this
map takes [σ] to 0, since Σ∇

n .OΔ induces the identity map on cohomology.
Follows from the support being Lagrangian so when pull-up, wedge with

Mukai vector and pushdown, we get zero. Or, since σ on Hn and the Σn-
invariant holomorphic form on C2n both pull back to the same form on Zred

(3.2) it is sufficient to show that the latter form, which we also call σ, is
preserved by the cohomological action. Now on the product everything is
induced by the original action on the surface, which trivially preserves σ.

Since Tβ [−1] fixes both e ∈ HH2 (Lemma 4.9) and σ ∈ H2, we claim
that it also fixes [E] = e yσ. To prove this we use the HKR isomorphism
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twisted by Td1/2(Hn). Since c1(Hn) = 0 this does not change the image of
e in H1(THn). We therefore identify σ with a class in Hochschild homology
HH2, and this class is also fixed by the natural action of Tβ [−1] on HH∗

[Ca] since that action is compatible with its action on H∗ by [MS, Thm 1.2].
The twisted HKR isomorphism also intertwines contraction y between HH∗

and HH∗ and contraction y between H∗(Λ∗T ) and H∗(Ω∗), by [MNS]. And
finally, the actions of Tβ [−1] on HH∗ and HH∗ commute with contractions
y between them, by [Ca]. �

Proposition 4.11. The autoequivalence Tβ ∈ Aut(Dn) deforms uniquely to
an autoequivalence Tβ ∈ Aut(D(Ht)) on nearby fibres Ht.

Proof. By induction we assume that Tβ deforms to the nth order over the
base P1; the initial case n = 0 is trivial. (In other words we assume that
there is a perfect complex on the pullback of H×H → P1×P1 to the obvious
diagonal inclusion SpecC[t]/(tn+1) ↪→ P1 × P1 which restricts to the kernel
for Tβ over the closed point.)

Let κ ∈ H1(THn/Bn
) ⊂ HH2(Hn/Bn) denote the Kodaira-Spencer class

of the deformation to order n + 1. By the choice of our family H, the
contraction of κ with the holomorphic 2-form on H is contained in the span
of 〈Re σ, Im σ, [E]〉 ⊂ H2(Hn) (4.3). Here we use the natural trivialisation
of the cohomologies of the fibres of H over the base SpecC[t]/(tn+1). Since
the action on cohomology of the deformation of Tβ [−1] is constant, it follows
that it fixes this contraction, and the holomorphic symplectic form. So by
the same compatibility of the action with HH∗ and HH∗ as in the proof of
Lemma 4.10 we find that it preserves κ too. Therefore, by [HMS, Prop 6.4,
Cor 5.3], Tβ deforms to order n + 1.

So Tβ deforms to all orders. Therefore by [Li, Prop 3.6.1] the kernel for Tβ

in fact deforms over Spec of the complete local ring at the origin in P1. So we
get a formal point in the stack of complexes with no negative self-Exts on the
fibres of H×1

P H → P1 (since Tβ is an equivalence the self-Exts equal those
of OΔ). Lieblich shows this is an Artin stack of local finite presentation, so
this formal point lies in a smooth scheme (over P1) in the stack. By taking
an étale slice we can get a Euclidean open neighbourhood of the origin in P1

over which the kernel deforms and defines an autoequivalence (by openness
of the invertibility condition).

Finally, uniqueness follows form the fact that the kernel Pβ for Tβ is
rigid: Ext1Hn×Hn

(Pβ , Pβ) ∼= Ext1Hn×Hn
(OΔ,OΔ) ∼= H0(THn) ⊕ H1(OHn) =

0. **Not true in noncompact case! Perhaps use C∗-actions, deformations
fixed by them, etc ? this might be the weakest point: ideally we’d have a
compactly-supported version of HKR to ensure uniqueness** �

5. Khovanov homology

Theorem 5.1. The relations (1), (2), (3) and (4) hold in the above defor-
mations of the categories Dn.
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Proof. Since the objects on both sides of (1) and (3) are isomorphic and
rigid on Hn, they deform uniquely with H and so remain isomorphic.

To deal with (4) we work on its right hand side, and move T2n across
the Ext group to rewrite it as Ext∗Dn+1

(T−1
2n Tβ Ln+1, Ln+1[n + 1]). This has

the advantage that the Ln+1 on the right hand side is disjoint from the
exceptional divisor E ⊂ Hn+1, so the Ext group can be calculated Σn+1-
equivariantly away from the large diagonal Δ ⊂ Sn+1

2n+1. By construction, the
deformation of Section 4 is zero on the complement of Δ, so we can compute
with the natural product structure on Sn+1

2n+1\Δ even after deformation. By
rigidity the sheaves Ln and Ln+1 do not change on this space either, though
of course the restriction of T−1

2n Tβ Ln+1 will change with the deformation.
So we now work through the proof of relation (4) in Theorem 3.10 (with

all T2ns moved across the Ext groups they appear in) as T−1
2n Tβ Ln+1 changes

but the space remains the same. Use the product structure to push down
the last factor from Sn+1

2n+1 to Sn
2n+1 (and from there to the image of Sn

2n−1

via the inclusion of Section 2) just as in (3.13–3.16). Before we deform, this
pushdown used the following computations:

Ext∗S2n+1
(T−1

2n L2n+1, T2nLj) = 0, j < 2n− 1,

Ext∗S2n+1
(T−1

2n L2n+1, L2n+1) = C[0], and

Ext∗S2n+1
(T−1

2n L2n+1, L2n+1) = C[−1].

On deformation, these can only get smaller by upper semicontinuity, but
they are already as small as their Euler characteristics will allow. Thus they
remain unchanged, as does the equality Ext∗(L2n, L2n−1) = C[−1] used to
prove (3.19). Thus we quickly simplify to an expression on the image of
Sn

2n−1 ↪→ Sn
2n+1 which deforms the expression (3.20) that we got before

deformation. Compatibility of the deformation of Hn+1 and that of Hn

means that expression is precisely what the left hand side of relation (4)
deforms to.

Finally we prove (2). From (3.11, 3.12) it is sufficient to show that the
spherical sheaves OC2i−1∪C2i∪C2i+1(−1, 0, 0) and OC2i−1∪C2i∪C2i+1(0, 0,−1)
become isomorphic on deforming by κ0. (Throughout this proof we will
omit to say “take � with L1 � L3 � . . .� L2i−3 � L2i � L2i+3 � . . .� L2n−1

then apply Σn (3.17)” when referring to these sheaves (3.11, 3.12) as ele-
ments of Dn.) Since they are both rigid these deformations are unique and
equal to the deformations of T2i−1T2i L and T−1

2i−1T
−1
2i L along κ0.

There is an obvious nonzero map

Φ: OC2i−1∪C2i∪C2i+1(−1, 0, 0) −→ OC2i−1∪C2i∪C2i+1(0, 0,−1)

factoring through OC2i−1(−1). It deforms with κ0 since

Ext1
(
OC2i−1∪C2i∪C2i+1(−1, 0, 0),OC2i−1∪C2i∪C2i+1(0, 0,−1)

)
= 0.

It has kernel OC2i∪C2i+1(−1, 0) and cokernel OC2i∪C2i+1(0,−1). Both compo-
nents C2i and C2i+1 (times by C1×C3×. . .×C2i−3×C2i×C2i+3×. . .×C2n−1)
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of their support do not deform under the first order deformation κ0 because
C2i ∙C2i 6= 0 6= C2i ∙C2i+1. Therefore the deformation of Φ has no kernel or
cokernel, and is an isomorphism. �

Bigrading. There are also C∗-actions on the spaces S2n−1 with respect to
which the inclusion maps S2n−1 ⊂ S2n+1 are equivariant **check**. Think-
ing of S2n−1 as the minimal resolution of {x2n = yz}, we give x weight −1,
and y and z weights −n; this action then lifts to S2n−1. This gives the
natural holomorphic symplectic form (which is dxdy/y in these coordinates)
weight −1.

The working above was all equivariant with respect to this C∗-action
(**including the canonical deformation of Hilbn of Section 4 – so this still
carries a C∗-action ?**). To make relations (1) and (3) hold equivariantly
we tensor the definition (3.8) by the weight ±1 character of C∗. The upshot
is an extra C∗-action (i.e. grading) on the link invariant....etc.
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