Additional Exercises for 'Topics in Geometry'.

Connections and Curvature.

Exercise 1. Let V be a vector space over \mathbf{R} of dimension n. We consider multilinear maps

$$
R: \mathrm{V} \times \mathrm{V} \times \mathrm{V} \times \mathrm{V} \rightarrow \mathbf{R}
$$

which are 'algebraic curvature tensors' in the sense that

$$
\begin{aligned}
& R(x, y, z, w)=-R(y, x, z, w)=-R(x, y, w, z) \\
& R(x, y, z, w)+R(x, z, w, y)+R(x, w, y, z)=0 .
\end{aligned}
$$

for all $x, y, z, w \in \mathrm{~V}$.
(i) Any such R satisfies $R(x, y, z, w)=R(z, w, x, z)$, and if $R(x, y, x, y)=0$ for all $x, y \in \mathrm{~V}$, then $R=0$.
(ii) The dimension of the space of algebraic curvature tensors is $n^{2}\left(n^{2}-1\right) / 12$.
(iii) Assume now that V carries an inner product (\cdot, \cdot). The multilinear map Q given by $Q(x, y, z, w)=(x, z)(y, w)-(y, z)(w, x)$ is an algebraic curvature tensor. Suppose that R is an algebraic curvature tensor, and define $K(P)=R\left(p_{1}, p_{2}, p_{1}, p_{2}\right)$ for any plane $P \subset \mathrm{~V}$ with orthonormal basis (p_{1}, p_{2}). If there exists a constant K with $K=K(P)$ for all P, then $R=K Q$. [Show that for any basis (x, y) of P we have $K(P)=R(x, y, x, y) / Q(x, y, x, y)$ and use (i).]
(iv) Use (iii) to deduce an expression for the Riemann curvature tensor of S^{n}.

Exercise 2. Let γ be a loop in S^{2} with $p=\gamma(0)=\gamma(1)$. The parallel transport map P_{γ} is in $\mathrm{SO}\left(\mathrm{TS}_{p}^{2}\right)$, and hence corresponds to an angle $\theta \in \mathbf{R} / 2 \pi \mathbf{Z}$ ('holonomy angle').
(i) Compute the holonomy angle in the case where γ is circle of latitude.
(ii) More generally, derive an expression for the holonomy angle for any simple closed loop γ. [Use the Gauss-Bonnet formula.]

Chern Classes.

Exercise 3. Suppose that the tangent bundle of real projective n-space is trivial. Show that $n+1$ is a power of 2 . [Compute the total Stiefel-Whitney class of the tangent bundle].

Exercise 4. Let M be a compact oriented smooth manifold of dimension m.
(i) Let a_{1}, \ldots, a_{r} be a basis of $\mathrm{H}^{*}(\mathbf{M}, \mathbf{Q})$, and b_{1}, \ldots, b_{r} be the dual ${ }^{(1)}$ basis. Then the Poincare dual of the diagonal $\Delta \subset \mathrm{M} \times \mathrm{M}$ can be expressed as

$$
\delta=\sum_{k=1}^{r}(-1)^{\left|a_{k}\right|} a_{k} \times b_{k}
$$

where \times is the cross product in cohomology. [Show that both sides have the same intersection form with $b_{i} \times a_{j}$ for all i, j with $\left|b_{i}\right|+\left|a_{j}\right|=m$.]
(ii) Use (i) to deduce the equality

$$
\int_{\mathrm{M}} e\left(\mathrm{~T}_{\mathrm{M}}\right)=\sum_{i=0}^{m}(-1)^{i} \operatorname{dim}_{\mathbf{Q}} \mathrm{H}^{i}(\mathrm{M}, \mathbf{Q})
$$

How is this related to the Gauss-Bonnet theorem and the Poincare-Hopf theorem? [Let $\Delta: \mathrm{M} \rightarrow \mathrm{M} \times \mathrm{M}$ be the diagonal map. Then $\mathrm{T}_{\mathrm{M}} \simeq \Delta^{*} \mathrm{~N}_{\Delta / \mathrm{M} \times \mathrm{M}}$ implies $e\left(\mathrm{~T}_{\mathrm{M}}\right)=\Delta^{*} \delta_{\text {.] }}$

Exercise 5. (i) The tangent bundle of a Lie group G is trivial, in particular orientable. Use exercise 5 to conclude that $\chi(\mathrm{G})=0$ if G is compact.
(ii) Let G be a compact connected Lie group with Lie algebra \mathfrak{g}. If G is not commutative, then $\mathrm{H}^{3}(\mathrm{G} ; \mathbf{R}) \neq 0$. [Let $\langle-,-\rangle$ be a bi-invariant Riemannian metric on G. The multilinear map $\mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbf{R}$ given by $(x, y, z) \mapsto\langle[x, y], z\rangle$ induces a bi-invariant 3 -form θ on G . Prove that θ is closed but not exact (if it were, we would have $\theta=0$).]
(iii) For which n does S^{n} admit a Lie group structure? [A commutative compact connected Lie group must be a torus (the exponential map is a surjective morphism of Lie groups).]
(iv) Show that the tangent bundle of S^{7} is trivial. [Use the octions to define a trivialisation.]

Exercise 6. Assume there exists a polynomial $\mathrm{Td}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right)=\alpha \mathrm{T}_{1}^{3}+\beta \mathrm{T}_{1} \mathrm{~T}_{2}+$ $\gamma \mathrm{T}_{3}$ such that for every smooth projective 3-fold X we have

$$
\chi\left(\mathbb{O}_{\mathrm{X}}\right)=\int_{\mathrm{X}} \operatorname{Td}\left(c_{1}, c_{2}, c_{3}\right)
$$

Show that $\alpha=\gamma=0$ and $\beta=1 / 24$. [Consider $\mathrm{X}=\mathbf{P}^{3}, \mathbf{P}^{2} \times \mathbf{P}^{1}, \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}$ to get a system of three equations in α, β, γ.]

Exercise 7. (i) Let $\mathrm{C} \subset \mathrm{S}$ be a smooth curve in a smooth projective surface S . Prove the formula

$$
\int_{\mathrm{C}} c_{1}\left(\mathrm{~N}_{\mathrm{C} / \mathrm{S}}\right)=\int_{\mathrm{S}} \mathrm{D}[\mathrm{C}] c_{1}(\mathrm{~S})-\chi(\mathrm{C})
$$

$\overline{{ }^{(1)} \text { With respect to the intersection form. }}$
where $\mathrm{D}[\mathrm{C}]$ is the Poincaré dual of $[\mathrm{C}]$.
(ii) Use (i) to deduce the degree-genus formula for $\mathrm{C} \subset \mathrm{S}=\mathbf{P}^{2}$.

Exercise 8. (i) Show that there exists an exact sequence (Euler sequence)

$$
0 \rightarrow \mathscr{O} \rightarrow \mathscr{O}(1)^{\oplus(n+1)} \rightarrow \mathrm{T}_{\mathbf{P}^{n}} \rightarrow 0
$$

How is it related to the tautological exact sequence? Compute $c\left(\mathrm{~T}_{\mathbf{p}^{n}}\right)$.
(ii) Compute the Euler characteristic

$$
\chi(\mathrm{X})=\int_{\mathrm{X}} c_{n-1}\left(\mathrm{~T}_{\mathrm{X}}\right)
$$

of a smooth hypersurface $\mathrm{X} \subset \mathbf{P}^{n}$ of degree d. [Consider the short exact sequence $0 \rightarrow \mathrm{~T}_{\mathrm{X}} \rightarrow \mathrm{T}_{\mathbf{P}^{n}} \mid \mathrm{X} \rightarrow \mathrm{N}_{\mathrm{X} / \mathbf{P}^{n}} \rightarrow 0$.]

Exercise 9. (i) Let \mathscr{E} be a vector bundle of rank e, and \mathscr{L} a line bundle. Prove

$$
c_{t}(\mathscr{E} \otimes \mathscr{L})=\sum_{j=0}^{e} c_{j}(\mathscr{E}) c_{t}(\mathscr{L})^{e-j} t^{j}
$$

(ii) Let $\mathbf{P}^{n}=\mathbf{P}(\mathrm{V})$ with tautological subbundle \mathscr{S} and quotient bundle $\mathscr{2}$, and q (resp. p) denote the first (resp. second) projection of $\mathbf{P}^{n} \times \mathbf{P}^{n}$. Construct a morphism of bundles $q^{*} \mathscr{S} \rightarrow p^{*} \mathscr{Q}$ whose zero locus is exactly the diagonal $\Delta \subset \mathbf{P}^{n} \times \mathbf{P}^{n}$. [Use the tautological exact sequence; at a point $(x, y) \in \mathbf{P}^{n} \times \mathbf{P}^{n}$ corresponding to $\mathrm{L}_{x}, \mathrm{~L}_{y} \subset \mathrm{~V}$ the map on fibres should be $\mathrm{L}_{x} \rightarrow \mathrm{~V} / \mathrm{L}_{y}$.]
(iii) Use (i) and (ii) to compute the class

$$
\delta \in \mathbf{H}^{n}\left(\mathbf{P}^{n} \times \mathbf{P}^{n} ; \mathbf{Z}\right)=\mathbf{Z}[\alpha, \beta] /\left(\alpha^{n+1}, \beta^{n+1}\right)
$$

Poincaré dual to the diagonal.
Exercise 10 (Yau). (i) Consider the intersection $\mathrm{Z} \subset \mathbf{P}^{3} \times \mathbf{P}^{3}$ of the hypersurfaces

$$
\begin{aligned}
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3} & =0, \\
y_{0}^{3}+y_{1}^{3}+y_{2}^{3}+y_{3}^{3} & =0, \\
x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} & =0 .
\end{aligned}
$$

Compute $\chi(Z)=-18$. [View Z as the zero scheme of a section of the vector bundle $\mathscr{E}=\mathscr{O}(3,0) \oplus \mathscr{O}(0,3) \oplus \mathscr{O}(1,1)$. Note that

$$
\left(\frac{c\left(\mathrm{~T}_{\left.\mathbf{P}^{3} \times \mathbf{P}^{3}\right)}\right.}{c(\mathscr{E})}\right)_{3} c_{3}(\mathscr{E})=-18 \alpha^{3} \beta^{3}
$$

in $\mathrm{H}^{n}\left(\mathbf{P}^{n} \times \mathbf{P}^{n} ; \mathbf{Z}\right)=\mathbf{Z}[\alpha, \beta] /\left(\alpha^{n+1}, \beta^{n+1}\right)$.]
(ii) Let ζ be a primitive third root of unity, and consider the automorphism $\sigma=$
$\sigma_{1} \times \sigma_{2}$ of $\mathbf{P}^{3} \times \mathbf{P}^{3}$ given by

$$
\begin{aligned}
& \sigma_{1}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}\right]\right)=\left[x_{1}, x_{2}, x_{0}, \zeta x_{3}\right], \\
& \sigma_{2}\left(\left[y_{0}: y_{1}: y_{2}: y_{3}\right]\right)=\left[y_{1}, y_{2}, y_{0}, \zeta^{2} y_{3}\right] .
\end{aligned}
$$

Show that the cyclic group Σ generated by σ acts freely on Z , and conclude that $\mathrm{X}=\mathrm{Z} / \Sigma$ has $\chi(\mathrm{X})=-6$. [If a finite group G acts on a compact manifold M , then $\left.\chi\left(\mathrm{M}^{\mathrm{G}}\right)=\frac{1}{\# \mathrm{G}} \sum_{g \in \mathrm{G}} \chi\left(\mathrm{M}^{g}\right).\right]$

Complex Manifolds.

Exercise 11. (i) Let X be a smooth projective variety of dimension d. Show that $\mathrm{H}_{2 k}(\mathrm{X} ; \mathbf{C}) \neq 0$ for $k \leqslant d$. [Embed X into some projective space and consider the intersection of X with linear subspace.]
(ii) Which spheres S^{n} can be the underlying topological space of a smooth projective variety?

Exercise 12. (i) Show that if S^{n} admits an almost complex structure, then S^{n+1} is parallelisable. [Let e_{1}, \ldots, e_{n+2} be the standard basis of \mathbf{R}^{n+2}, view S^{n} as the unit sphere in $\mathbf{R}^{n+1}=\left\langle e_{1}, \ldots, e_{n+1}\right\rangle$. Use the almost complex structure J on S^{n} to define for every $p \in \mathrm{~S}^{n+1}$ a linear map $\sigma_{p}: \mathbf{R}^{n+1} \rightarrow \mathrm{TS}_{p}^{n+1}$ such that the vector bundle map $\sigma: \mathrm{S}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathrm{TS}^{n+1},(p, v) \mapsto\left(p, \sigma_{p}(v)\right)$ is an isomorphism. Note that any $p \in \mathbf{R}^{n+2}$ can uniquely be written as $p=\alpha e_{n+2}+\beta s$ with $s \in \mathbf{S}^{n}$, $\alpha \in \mathbf{R}, \beta \geqslant 0$.]
(ii) View S^{6} as the purely imaginary octonions of norm one, and use octonionic multiplication to define an almost complex structure on S^{6}. Compute the Nijenhuis tensor to show that it is not integrable.

Exercise 13 (Borel-Serre). Show that if a sphere $\mathrm{S}^{2 n}$ admits an almost complex structure, then $n \leqslant 3$. [If $S^{2 n}$ has an almost complex structure, then the tangent bundle T of $\mathrm{S}^{2 n}$ is a complex vector bundle. Compute the Chern character of T to see that the top-dimensional part is $c_{n}(\mathrm{~T}) /(n-1)$!. Assume that $c_{n}(\mathrm{~T})$ is divisible by ($n-1$)! in integral cohomology (this is nontrivial), and use exercise 5 to conclude that 2 is divisible by $(n-1)$!.]

Hodge Theory.

Exercise 14. (i) Compute the Hodge numbers of \mathbf{P}^{2} and $\mathbf{P}^{1} \times \mathbf{P}^{1}$.
(ii) Compute the Chern and Hodge numbers of \mathbf{P}^{3} and a quadric threefold.

Exercise 15. Let X be a compact Kaehler manifold, and Z a complex submanifold of codimension c. Show that the Poincaré dual of $[\mathrm{Z}]$ lies in $\mathrm{H}^{c, c}(\mathrm{X})$.

Exercise 16 (H.-C. Wang). Let X be a compact Kaehler manifold. Then T_{X} is trivial if and only if X is a torus. [Show that the Albanese map is an etale covering.]

Exercise 17. Let X be a compact connected Kaehler manifold with vanishing Ricci curvature.
(i) If ω is a holomorphic p-form, then $\nabla \omega=0$. [Compute $\Delta_{d} \omega=\nabla^{*} \nabla \omega$. Notice that $\Delta_{d} \omega=0$, and integrate over X to conclude.]
(ii) Let $x \in \mathrm{X}$. Use (i) to deduce that the map $\mathrm{H}^{0}\left(\mathrm{X}, \Omega^{p}\right) \rightarrow\left(\wedge^{p}\left(T_{p}^{1,0} \mathrm{X}\right)^{\vee}\right)^{\mathrm{Hol}_{x}(\mathrm{X})}$ given by $\omega \mapsto \omega(x)$ is an isomorphism.
(iii) Assume that $\operatorname{Hol}_{x}(\mathrm{X})=\mathrm{SU}(\operatorname{dim} \mathrm{X})$. Show that $\mathrm{H}^{0}\left(\mathrm{X}, \Omega^{p}\right)=0$ for $0<p<$ $\operatorname{dim} \mathrm{X}$. [Use (i), and show that the representation $\wedge^{p} \sigma^{\vee}$ (σ the standard representation of $\operatorname{SU}(\operatorname{dim} \mathrm{X})$) is irreducible.]

Geometric Invariant Theory.

Exercise 18. We consider the action of \mathbf{C}^{*} on \mathbf{C}^{4} with weight $(1,1,-1,-1)$.
(i) Show that the algebra of invariants can be identified with

$$
\mathrm{A}_{0}=\mathbf{C}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W}] /(\mathrm{XW}-\mathrm{YZ}) .
$$

(ii) To form a GIT quotient, one also needs a linearisation. In our case this is nothing but a \mathbf{Z}-grading on $\mathrm{A}[\mathrm{Q}]$, where A is the polynomial ring $\mathbf{C}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}]$ with \mathbf{Z} grading corresponding to the action of \mathbf{C}^{*} (i.e., $\mathrm{X}, \mathrm{Y} \in \mathrm{A}_{1}, \mathrm{Z}, \mathrm{W} \in \mathrm{A}_{-1}$, and A_{0} is as in (i)); the GIT quotient is then $\operatorname{Proj}\left(\mathrm{A}[\mathrm{Q}]_{0}\right)$. Consider the three gradings on $\mathrm{A}[\mathrm{Q}]$ determined by $\mathrm{Q} \in \mathrm{A}[\mathrm{Q}]_{-1}, \mathrm{Q} \in \mathrm{A}[\mathrm{Q}]_{0}, \mathrm{Q} \in \mathrm{A}[\mathrm{Q}]_{1}$, and denote by $\mathrm{X}_{-}, \mathrm{X}_{0}, \mathrm{X}_{+}$the corresponding GIT quotients. Identify X_{0} with $\operatorname{Spec}\left(\mathrm{A}_{0}\right)$, and $\mathrm{X}_{-}\left(\right.$resp. $\left.\mathrm{X}_{+}\right)$with the blow up of X_{0} along along (X, Z) (resp. (Y, W)). The induced rational map $X^{-} \rightarrow X^{+}$is the Atiyah flop.

Equivariant Cohomology.

Exercise 19. Let $\mathrm{G}=\mathrm{Gr}(2, \mathrm{~V})$ be the Grassmannian of lines in $\mathbf{P}^{3}=\mathbf{P}(\mathrm{V})$, with tautological bundles \mathscr{S} and \mathscr{Q}. The torus $\mathrm{T}=\left(\mathbf{C}^{*}\right)^{4}$ acts on \mathbf{P}^{3} by

$$
\left(t_{0}, t_{1}, t_{2}, t_{3}\right)\left[x_{0}: x_{1}: x_{2}: x_{3}\right]=\left[t_{0}^{-1} x_{0}: t_{1}^{-1} x_{1}: t_{2}^{-1} x_{2}: t_{3}^{-1} x_{3}\right] .
$$

(i) Show that there is an induced action of T on G , and that the fixed locus G^{T} consists of the 6 lines L_{λ} (where $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ satisfies $0 \leq \lambda_{1}<\lambda_{2} \leq 3$) given by $x_{i}=0, i \neq \lambda_{1}, \lambda_{2}$. For each λ compute the T-equivariant Chern classes of the T-equivariant vector bundles $\mathscr{L}_{\mathrm{L}_{\lambda}}=\mathrm{L}_{\lambda}$ and $\mathrm{N}_{\mathrm{L}_{\lambda} / \mathrm{G}}=\mathrm{T}_{\mathrm{G}, \mathrm{L}_{\lambda}}=\operatorname{Hom}\left(\mathrm{L}_{\lambda}, \mathrm{V} / \mathrm{L}_{\lambda}\right)$ over $\operatorname{Spec}(\mathbf{C})$. (These are nothing but linear representations of T ; the T-equivariant Chern classes are elements of $\mathrm{H}_{\mathrm{T}}^{*}(* ; \mathbf{Q}) \simeq \operatorname{Sym}^{*}\left(\mathrm{~T}^{\vee} \otimes \mathbf{Q}\right)$, where T^{\vee} is the group of characters of T.)
(ii) Use (i) and the Atiyah-Bott integration formula to compute

$$
\chi(\mathrm{G})=\int_{\mathrm{G}} c_{4}\left(\mathrm{~T}_{\mathrm{G}}\right)
$$

(iii) Use (i) and the Atiyah-Bott integration formula to compute

$$
\int_{\mathrm{G}} c_{1}(\mathscr{S})^{4}=2
$$

and give a geometric interpretation of the result. [For the interpretation make use of the definition of Chern classes via degeneracy loci; it is convenient to consider $c_{1}(\mathscr{Q})=c_{1}(\mathscr{P})$, since $\mathrm{H}^{0}(\mathrm{G}, \mathscr{S})=0$ and $\mathrm{H}^{0}(\mathrm{G}, \mathscr{Q})=\mathrm{V}$.]
(iv) Use and the Atiyah-Bott integration formula to compute

$$
\int_{\mathrm{G}} c_{4}\left(\operatorname{Sym}^{3}\left(\mathscr{S}^{\vee}\right)\right)=27
$$

and give a geometric interpretation of the result.

Deformation Theory.

Exercise 20. Let \mathscr{A} be the category of Artin local \mathbf{C}-algebras with \mathbf{C}.
(i) Let X be an algebraic scheme, and $x \in \mathrm{X}$ a closed point. Consider the functor $F=h_{\mathrm{X}, x}: \mathscr{A} \rightarrow$ Set given by letting $F(\mathrm{~A})$ be the set of morphisms of schemes $f: \operatorname{Spec}(\mathrm{A}) \rightarrow \mathrm{X}$ whose underlying map of spaces takes $\operatorname{Spec}(\mathrm{A})$ to $\{x\}$. Show that F is functorially isomorphic to $\operatorname{Hom}\left(\hat{\mathscr{O}}_{\mathrm{X}, x},-\right)$.
(ii) Take $\mathrm{X}=\operatorname{Spec}(\mathbf{C}[\mathrm{U}, \mathrm{V}] /(\mathrm{UV})), x=(\mathrm{U}, \mathrm{V})$. Show that $t_{F}=F\left(\mathbf{C}[\mathrm{~T}] /\left(\mathrm{T}^{2}\right)\right)$
is a \mathbf{C}-vector space of dimension 2, with basis e, f given by $e(\mathrm{U})=\mathrm{T}, e(\mathrm{~V})=0$, $f(\mathrm{U})=0, f(\mathrm{~V})=\mathrm{T}$.
(iii) Show that an element $v=a e+b f \in t_{F}$ lifts to a morphism

$$
V: \mathbf{C}[[\mathrm{U}, \mathrm{~V}]] /(\mathrm{UV}) \rightarrow \mathbf{C}[\mathrm{T}] /\left(\mathrm{T}^{3}\right)
$$

if and only if $a=0$ or $b=0$.

