
Advanced Analysis: Skeleton notes

1. Fourier Theory
The Fourier series of a function f(θ) on [−π, π] is

∞∑

−∞

ane
inθ,

where

an = an(f) =
1

2π

∫ π

−π
f(θ)e−inθdθ.

The Fourier transform of a function f(x) on R is the function

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x)e−ixξdx,

and the Fourier inversion formula is

f(x) =

∫ ∞

−∞
f(ξ)eixξdξ.

One circle of basic questions is to ask under what conditions, and in what sense
the Fourier series represents the original function/the Fourier transform is defined
and the inversion formula is true.

Proposition 1. (a) If |f | is integrable on [0, 2π] the Fourier co-efficients an tend
to zero as n→ ±∞. (b) If |f | is integrable on R the FT f̂ is defined as a continuous
function of ξ and f̂(ξ)→ 0 as |ξ| → ∞.

This leads easily to a simple criterion for pointwise convergence

Proposition 2. If |f | and | f(x)−f(0)
x

| are integrable on [−π, π] (respectively R)
then the Fourier series at 0 converges (to f(0)) (respectively the Fourier Inversion
Formula holds at x = 0).

For example the hypotheses are satisfied for Holder continuous, integrable func-
tions.
It is not enough merely to assume the function is continuous: we have the famous

Proposition 3. There is a continuous function whose Fourier series diverges at
0.

(With a similar statement for Fourier integrals.)
One can prove this either by constructing an example explicitly, or by appeal

to the Banach-Steinhaus Theorem. Either way the crucial ingredient involes the

Dirichlet Kernel. The partial sum SN =
∑N
−N ane

inθ of the Fourier Series of a
function f is represented by a convolution

SN (φ) =

∫ π

−π
DN (φ− θ)f(θ)dθ,
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where

DN (x) =
1

2π

sin(N + 1/2)x

sinx/2

and the point is that ∫ π

−π
|DN | → ∞

as N →∞.
A substitute is

Proposition 4. The Fourier series of a continuous function converges to the func-
tion at each point in the sense of Cesaro means.

The key here is that the Cesaro sum s1+s2+...sN
N

is given by convolution with a
function FN and the sequence FN is an “approximate identity”.

Here are some other frameworks in which one can do Fourier theory.

(1) Complex variables For Fourier series, put z = eiθ. We are conidering pe-
riodic functions as functions on the boundary of the unit disc in C. Suppose
such a function extends to a holomorphic function on an annulus. Then the
Fourier representation coincides with the Laurent series of complex function
theory.
For suitable functions f on R we may allow the variable ξ in the Fourier

transform to be complex. Thus the Laplce transform may be regarded as a
special case of the Fourier transform (for functions supported on a half-line).

(2) L2 theory For Fourier series this amounts to the ordinary discussion of
einθ as a complete orthonormal system in the Hilbert space L2(−π, π). The
Fourier series of an L2 function converges in L2. For Fourier transforms we
prove, for well-behaved functions f , the Parseval formula

∫ ∞

−∞
|f̂(ξ)|2dξ = 2π

∫ ∞

−∞
|f(x)|2dx.

Using this, and a density argument, we extend the FT to an isomorphism
from L2(R) to itself.

(3) Distributions Also called “generalised functions”. The Schwartz space S
consists of C∞ functions on R all of whose derivatives decay faster than
any |x|−k at infinity. A distibution is a linear map L : S → C such that
there is a sequence fi in S with

L(F ) = lim

∫ ∞

−∞
fi(x)F (x)dx.

For example the delta function

δ0(F ) = F (0),

is obtained via a sequence forming an “approximate identity”. We can define
differentiation of distributions via integration by parts: in PDE theory this
is the idea of a “weak solution”. The Fourier transform of a distribution is
defined by

L̂(f̂) = L(f(−x)).
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For example consider the function gα(x) = xα if x > 0, gα(x) = 0 if x < 0.
Suppose α is real and not an integer. The function defines a distribution
whose Fourier transform can be interpreted as the function

ĝα(ξ) =
Γ(α+ 1)

2π
e−π/2i(α+1)sgn(ξ)|ξ|−(α+1).

The Poisson Summation formula
This asserts that, for suitable functions F on R,

∞∑

k=−∞

F (2πk) =
∞∑

n=−∞

F̂ (n).

It can be viewed as the equation of distributions

(∑
δ2πk

)
=
∑̂

δn.

Applied to the Gaussian functions e−ax
2

one deduces that the Theta function

θ(τ) =
∞∑

k=−∞

eπiτk
2

,

where τ lies in the upper half-plane, satisfies

θ(τ) =
1

√
−iτ

θ(−1/τ).

It follows that θ8 is a “modular form of weight 2” for the group of Mobius maps
generated by τ 7→ τ + 2, τ 7→ −1/τ .

2. Lp.

For any measure space X and p ≥ 1 the Lp norm on functions on X is defined
by

‖f‖Lp =

(∫

X

|f |p
)1/p

.

Holder’s inequlaity states that

∫

X

fg ≤ ‖f‖Lp‖g‖Lp′ ,

where p′ is the conjugate exponent 1
p
+ 1

p′
= 1. For p > 1 this sets up a duality

(Lp)∗ = Lp
′
. It is often useful to consider the supremum norm

‖f‖L∞ = sup |f |,

as a limiting case of the Lp norms, but one must be careful in going to p =∞–some
natural statements one might hope to be true are actually false. Likewise for the
other extreme case p = 1 as we shall see.
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Why should one bother with the Lp norms, as opposed to sticking with L2 say?

(1) One obvious answer is that the family of Lp norms gives a more accurate
picture of the whole function. The distibution function of f is defined to be

μf (α) = |{x : |f(x)| ≥ α}|.

(We use the notation |A| to denote the measure of a set A.) Then

‖f‖pLp = p
∫ ∞

0

μf (α)α
p−1dα.

Knowing all the Lp norms of f is roughly equivalent to knowing the distri-
bution function.

(2) In nonlinear problems (e.g. PDE) one is forced to consider Lp.
(3) Related to the above: the Sobolev inequalities involve particular Lp norms,
depending on dimension.

Proposition 5.
Let f be a smooth function of compact support on Rn.
(a) If f is supported in the ball of radius R and p > n

|f(0)| ≤ Cn,pR
1−n/p‖∇f‖Lp ,

(b) If p < n and q is defined by

1−
n

p
= −

n

q

then
‖f‖Lq ≤ Cn,p‖∇f‖Lp .

Here the constants Cn,p depend only on n and p.

The numerical relations between p, q, n are dictated by the scaling behaviour of
the norms.
These Sobolev inequalities extend in a routine way to larger classes of functions

by a density argument, and can be viewed equivalently as embedding theorems for
various function spaces. The inequalities are intimately related with isoperimetric
inequalities.
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Young’s inequality asserts that for a function f on R with Fourier transform

f̂ one has

Proposition 6.

‖f̂‖Lp′ ≤
1

(2π)1/p
‖f‖Lp ,

where 1 < p ≤ 2 and p, p′ are conjugate exponents.

This can be proved as an application of the Riesz-Thorin Interpolation Theorem,
using the fact that the result is true when p = 1, p′ = ∞(obvious) and when
p = p′ = 2(Parseval). The idea is to extend the real variable p−1 ∈ (1/2, 1) to a
strip in the complex plane.

3. The Hilbert transform.
The Hilbert transform on the circle can be defined via Fourier series.

H(
∑

ane
inθ) = −i

∑
sgn(n)ane

inθ.

Clearly H defines a bounded map on L2: indeed on the subspace of functions
of integral zero H is an isometry and H2 = −1. Note also that H takes real-
valued functions to real-valued functions. If u is a real valued function on the circle
then v = H(u) is the unique function of integral 0 such that u + iv extends to a
holomorphic function over the disc.

Proposition 7. For each p > 1, the Hilbert transform defines a bounded map
H : Lp → Lp.

In concrete terms this says that there are constants cp such that

‖H(f)‖Lp ≤ cp‖f‖Lp ,

and as usual it suffices to prove this for some dense set of functions f .

Corollary. For p > 1 the Fourier series of an Lp function converges in Lp

The first proof of Proposition 7 (Riesz) uses complex function theory. For sim-
plicity consider the case when the exponent p is an even integer 2k. (Actually the
general case can be deduced from this using interpolation and duality.) It suffices
to consider the case when f = u is real and of integral 0. Then u+iH(u) = u+iv is
the restriction of a holomorphic function f(z) on the disc, vanishing at the origin.
Cauchy’s Theorem gives ∫ π

−π
(u+ iv)2kdθ = 0,

and the proof follows easily when one expands using the binomial theorem.
The Hilbert transform on the line is defined in a similar fashion:

ˆH(f)(ξ) = −isgn(ξ)f̂(ξ).

There is a version of Proposition 7 in this case too.
The two Hilbert transforms can be represented by singular integral operators.

On the circle

H(f)(θ) =

∫
cot(

θ − φ
2
)f(φ)dφ :
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and on the line

H(f)(x) =
1

π

∫ ∞

−∞

f(y)

y − x
dy.

These integrals are interpreted via their “principal values”. (Which are defined at
each point if f is smooth.)
There is a contour-integral point of view on these formulae. In the case of the

line, suppose that f is a function (with suitable decay) on R which extends to
a holomorphic function on a thin strip {|=z| < ε} in C. Let C+, C− be contours
parrallel to the real axis and slightly below and above respectively. Then the Cauchy
integrals

F+(w) =
1

2π

∫

C+

f(z)

z − w
dz F−(w) = −

1

2π

∫

C−

f(z)

z − w
dz,

yield holomorphic functions F+, F− on the (slightly extended) upper and lower
half-planes respectively. Cauchy’s formula gives

f(z) = F+(z) + F−(z),

on the strip about R. The Hilbert transform is given by Hf = i(F+ − F−) i.e.
the principal value is the average of the values obtained by deforming the path of
integration either side of the pole. There is a similar discussion in the case of circle,
with holomorphic functions on the regions |z| < 1 + ε, |z| > 1− ε.

4. Higher dimensions.
Singular integral operators occur naturally in analysis on Rn. For example

consider the Laplace operator Δ = −
∑3
i=1∇

2
i on R

3. In potential theory one
shows that if ρ has, say, compact support then the solution to the equation Δφ = ρ
with φ→ 0 at infinity is given by the Green’s function

φ(x) = G(ρ) =

∫

R3
g(x− y)ρ(y)dy,

where

g(x) =
1

4π|x|
.

The operator G is a straightforward integral operator–the kernel function g has
a singularity but is integrable near zero. Now let i 6= j and consider the partial
derivative ∇i∇jφ. Manipulating formally this is given by the integral

∫

R3
qij(x− y)ρ(y)dy,

where

qij(x) =
xixj

2π|x|5
,

and this is correct if the integral is interpreted as a principal value. This defines
an operator Qij = ∇i∇jΔ−1. (Beware that the story needs to be modified a bit
when i = j. The operator ∇i∇iΔ−1 is given by −1/3 times the identity map plus
a singular integral operator.)
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There are (at least) three ways of approaching the relation between ρ = Δφ
and ∇i∇jφ. One is to work directly with the differential operators. For example,
integrating by parts one proves the identity

∫

R3
|Δφ|2 =

∑

i,j

∫

R3
|∇i∇jφ|

2,

(assuming sufficient decay at infinity). This shows that the Qij are bounded on L
2.

The second is to use the Fourier transform. We have

Q̂ij(ρ)(ξ) = mij(ξ)ρ̂(ξ),

where mij(ξ) is the homogeneous function

mij(ξ) = c
ξiξj

|ξ|2
.

Thus the operator Qij goes over under Fourier transform to a multiplier operator
with homogeneous, hence bounded, multiplier mij . The fact that the multiplier is
bounded shows again, by Parseval, that Qij is bounded on L

2. The third way is to
use the singular integral description, with kernel qij , as above.
In general a classical (translation-invariant) singular differential operator on Rn

is defined by a kernel function k(x) which is homogeneous of order −n so

k(x) =
1

|x|n
Ω(

x

|x|
),

where Ω is a function on the unit sphere Sn−1 of integral 0. This means that, for
smooth f of compact support say, one can define the integrals

(Tf)(x) =

∫

Rn
k(x− y)f(y)dy

as principle values. The operator T goes over under Fourier transform to a multi-
plier operator

T̂ f(ξ) =M(ξ)f̂(ξ),

where M is homogeneous of degree 0, and again with integral 0 on the unit sphere.
Hence the operator T extends to L2. This can all be expressed by saying that the
Fourier transform of k, viewed as a distribution, is M .
The Hilbert transform (on R) and the Qij are examples of this general set-

up. Other important examples arise from Boundary Value problems. The Riesz
transforms Ri on R

n are defined by kernel function ri(x) =
xi

|x|n+1 and multipliers

mi(ξ) = c
ξi
|ξ| . They have the property that if Ψ is a harmonic function on the half-

space Rn × R+ with suitable decay at infinity then the tangential derivatives of
Ψ on the boundary are obtained from the normal derivative by applying the Riesz
transforms. In dimension n = 1 we get the Hilbert transform.
The central result in this course is
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Proposition 8. Any classical singular integral operator of the above kind defines
a bounded operator T : Lp → Lp for each p > 1.

It is possible to prove this for most (perhaps all) such operators that occur in
nature by a trick to reduce to the case of the Hilbert transform on R–separating into
radial and angular variables. This applies initially to the case when the kernel k is an
odd function; for example the operators Ri. But then we can write Qij = Ri ◦Rj to
deduce the result for the Qij . However the n-dimensional proof in the next section
has the virtue that it extends to more general situations.

5. The Calderon-Zygmund Theory.
The strategy of this prrof of Proposition 8 is to interpolate, using the transparent

behaviour on L2. The first obstacle is that the result is not even true for the other
extremes p = 1,∞. For example the real and imaginary parts of the function which
maps the disc conformally to an infinite strip are related by the Hilbert transform
on the circle, but one is bounded and the other not. It is even more obvious that
a singular integral operator T of the kind considered on Rn cannot map L1 to L1:
for any function f , say of compact support, with

∫

Rn
f 6= 0

|Tf | decays like |x|−n at infinity and so is not integrable. The way around this is
to substitute “weak-type” bounds when p = 1. A map T is said to be of weak type
(1, 1) if

|{x : |Tf(x)| > α}| ≤
C

α
‖f‖L1 .

Proposition 9. (Marcinkiewicz) If T is of weak type (1,1) and bounded as a map
from L2 to L2 then T defines a bounded map from Lp to Lp for 1 < p ≤ 2

The proof gives explicit bounds on the Lp operator norms.
Now consider an operator T defined by a kernel k(x, y)

(Tf)(x) =

∫

Rn
k(x, y)f(y)dy.

We may even suppose k is smooth and of compact support initially if we like.

Theorem 10. Suppose the operator T above with kernel k satisfies

(1) ‖Tf‖L2 ≤ c1‖f‖L2
(2) |∇xk(x, y)|+ |∇yk(x, y)| ≤ c2

|x−y|n+1 ;

then

|{x : |Tf(x)| < α}| ≤
C

α
‖f‖L1 ,

where the constant C depends only on c1, c2.

Corollary. Such an operator defines a bounded map on Lp for all p > 1. Moreover
the Lp operator norm can bounded above by an explicit expression involving only
c1, c2.

To obtain the the corollary one uses the interpolation theorem to handle the
range 1 < p ≤ 2 and a duality argument to handle the range 2 ≤ p <∞.
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From this Corollary one easily deduces Proposition 9, for example by approx-
imating the singular kernel by smooth ones. (In fact the possible presence of a
singularity on the diagonal is irrelevant in the proof of Theorem 10.)
A vital ingredient in the proof is a simple

Lemma. Let � be a cube in Rn of side-length r, and let �∗ be the cube with
the same centre and side length 2r. Then if β is a function supported in � with∫
� β = 0 we have

‖Tβ‖L1(Rn\�∗) ≤ c‖β|L1 ,

where the constant C depends only on c2 (and not on the scale r).

The proof of Theorem 10 uses the famous Calderon-Zygmund cube decomposi-
tion of a function. Suppose initially that f is continuous and has compact support.
Given α we find a large cube containing the support of f such that the average
value of |f | on the cube is less than α. Then we subdivide this cube into 2n smaller
ones. The rule is that we stop subdividing any cube once the average value of |f |
exceeds α. In this way we get a collection of disjoint cubes Qi such that the average
value of f on each Qi lies between α and 2

nα and |f | ≤ α outside
⋃
Qi. Now write

f = g + b where b =
∑
bi, each bi is supported in Qi and on Qi,

bi = f −
1

|Qi|

∫

Qi

f.

The proof now follows by applying the Lemma to each bi, the L
2 hypothesis to g,

and piecing together what we know.

6. Wavelet analysis:preliminaries.
We know that a Fourier series

∑
ane

inθ defines an L2 function if and only if∑
|an|2 <∞ and a smooth function if and only if |an| is rapidly decreasing (faster

than any inverse power). It is however difficult to extract detailed information
about the behaviour of the function—both the degree of smoothness (differen-
tiablity, Holder continuity....) and the growth (Lp-norms)—from the Fourier co-
efficients. This is illustated by the following fact: if

∑
|an|2 < ∞ then for almost

all choices of signs
∑
±aneinθ defines an Lp function. To state this precisely we

introduce the Rademacher fuctions Rn(t), t ∈ [0, 1], n ≥ 0 defined by

Rn(t) = ρ(2
nt)

where ρ(x) = (−1)[x]. Then Rn are independent random variables on [0, 1], each
taking values ±1 with equal probablity 1/2. Choose an identification of Z with N,
and hence define functions rn for n ∈ Z. Then we have

Proposition 11. If
∑
|an|2 <∞ and

F (t, θ) =
∑

rn(t)ane
inθ

then for any p > 1 the integral

∫ ∫
|F (t, θ)|pdtdθ



10

is finite. Hence (by Fubini’s Theorem) F (t, ) is in Lp for almost all t ∈ [0, 1].

The proof is a straightforward application of Kinchine’s inequality, which states
that all Lp norms are equivalent on the subspace of L2[0, 1] spanned by the Rn.
Another way of viewing this result is in terms of multiplier transformations. If

λn is any sequence of complex numbers with |λn| = 1 (say), the map which takes∑
ane

inθ to
∑
λnane

inθ is bounded (in fact an isometry) on L2, but cannot be
bounded on Lp for all multipliers (λn). Precisely which sequences (λn) do define
bounded maps on Lp is a delicate matter. Similarly for Fourier transforms. Now
consider more generally a measure space X (e.g. the line or the circle) and an
orthonormal basis ψn of L

2(X)—where the ψn lie in L
1∩L∞ say. We may consider

the class of linear maps given by multipliers in this basis

Tλ(
∑

anψn) =
∑

λnanψn.

Proposition 12. For p > 1 the following are equivalent:
(1) all Tλ are bounded on L

p:

‖Tλf‖Lp ≤ C‖f‖Lp .

(2) the Lp norm is equivalent to the norm

‖f‖ψ = ‖
(∑

|an(f)|
2|ψn|

2
)1/2

‖Lp(X).

Here an(f) = 〈f, ψn〉.

The proof uses the same trick as in Proposition 11. The background to this is
the Littlewood-Paley theory: if we decompose the Fourier series of a function into
“dyadic blocks”

f =
∑
Δj(f),

then any multiplier which is constant on the Δj is bounded on L
p, or in turn the

Lp norm is equivalent to an norm

‖
(∑

|Δj(f)|
2
)1/2

‖Lp .

Another (equivalent) way of expressing the condition of Proposition 12 is that
the ψn form an “unconditional basis” for L

p. In particular for f ∈ Lp the sum∑
an(f)ψn converges to f in L

p norm, and this is true whatever choice of ordering
is used for the basis elements.

Definition 13. An orthonormal wavelet basis for L2(R) is an orthonormal basis
of the form

ψj,k(x) = 2
−j/2ψ(2−jx− k) j, k ∈ Z,

for some ψ ∈ L2(R).

It is not at all obvious that such bases exist, but leaving that aside for the
moment we have:
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Proposition 14. If ψj,k is an orthonormal wavelet basis, where ψ is piecewise
differentiable and |ψ|, |∇ψ| decay exponentially, then the basis ψj,k satisfies the
conditions of Proposition 12.

(Here we have to make the obvious change of notation to accomodate the different
indexing of the basis elements.)
The proof uses the Calderon-Zygmund theory to show that the multipliers with

kernel
K(x, y) =

∑
λj,kψj,k(x)ψj,k(y),

are bounded on Lp.

7. Construction of orthonormal wavelets.

If f is a function on R we define τ(f)(x) = f(x−1) and E(f)(x) = 1/
√
2f(x/2),

so τ, E are isometries of L2(R). We write `2 for the space of square summable
sequences (an) indexed by the integers, and `

2
0 for the subset of sequences which

are zero for all but finitely many indices.

Definition 15. A multiresolution analysis of L2(R) is a chain of closed subspaces

. . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . ,

such that

(1)
⋂
j Vj = 0;

(2)
⋃
j Vj = L

2(R);

(3) Vn = E
n(V0);

(4) τ maps V0 onto itself.

We also assume that there is a ρ ∈ V0 such that the map Aρ : `20(Z)→ V0 defined
by

Aρ((ai)) =
∑

aiτ
i(ρ),

extends to a topological isomorphism from `2 to V0 (i.e. is bounded and has a
two-sided, bounded, inverse).

Theorem 16. Given a multiresolution analysis as above there is an associated
orthonormal wavelet basis ψj,k such that V0 is the closure of the span of the ψj,k
with j > 0.

Example 1. Let V0 consist of L
2 step functions, constant on all integer intervals

[n, n+1). Here we can take ρ to be the characteristic function of the interval [0, 1).
It is clear that Aρ is an isomorphism, in fact an isometry. In this case the wavelet
function ψ is supported in [0, 1]; equal to 1 on the interval [0, 1/2) and to −1 on
[1/2, 1). The system ψj,k is the Haar basis of L

2(R).

Example 2. Let V0 consist of L
2 piecewise linear functions, smooth in each

interval (n, n + 1). We can take ρ to be the function supported in [0, 2] with
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ρ(1) = 1: we shall see later that Aρ is an isomorphism. In this case the function ψ
is piecewise linear and with exponential decay, so satisfies the conditions of Theorem
14.

Remark. Let χj,k be 2
−j times the characteristic function of the interval [2−jk, 2−j(k+

1)]. These are the squares of the norm of the Haar basis elements from the first
example above. Using the techniques of the previous section one can show that for
any wavelet system ψj,k satisfying the conditions of Proposition 14 the L

p norm is
equivalent to the norm

|‖f‖| = ‖




∑

j,k

〈f, ψj,k〉|
2χj,k





1/2

‖Lp .

This gives an “almost explicit” description of the Lp norm of a function in terms
of its wavelet co-efficients 〈f, ψj,k〉.

One can extend these examples to consider, for general r, the space of Cr−1

functions given by polynomial of degree at most r on each interval [n, n + 1).
Then one gets Cr−1 wavelets with exponential decay. There are also many other
examples, which you will find in the literature.

Theorem 16: Abstract Proof
We assume Vj , ρ is a multiresolution analysis as above. We begin with

Lemma 17. There exists Φ ∈ V0 such that the map AΦ : `2 → V0 is an isometry.

Proof. Let A = Aρ. The fact that this is a topological isomorphism means that
A∗A is a positive self-adjoint operator on `2, bounded above and below: C−1 ≤
A∗A ≤ C. Hence, by the spectral theorem, we can define (A∗A)−1/2 and so B =
A(A∗A)−1/2 : `2 → V0, which is an isometry. The shift map on `

2 commutes with
A∗A and hence with (A∗A)−1/2: this means that B interwtines the shift map on
`2 with the translations on V0, so B = AΦ for some (unique) Φ. (We shall see later
how to do this explicitly, so you don’t need to know the spectral theorem.)

Now let W1 be the orthogonal complement of V1 in V0, so V0 = V1 ⊕W1. The
translation τ acts on V0 and τ

2 maps V1 isomorphcally to itself, so τ
2 also maps

W1 isomorphically to itself.

Proposition 18. There is a ψ1 ∈W1 such that the translates τ2k(ψ1), for k ∈ Z,
form an orthonormal basis of W1.

Given this Proposition, the proof of Theorem 16 is immediate. We let Wj =
Ej−1(W1) so there is an orthogonal direct sum decomposition

(**) L2(R) =
∞⊕

j=−∞

Wj
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Applying E−1 we see that ψ = E−1(ψ1) has the property that the translates τ
k(ψ)

form an orthonormal basis for W0, and the wavelet property is a restatement of
this and (**) above.

Proof of Proposition 18
Consider the Hilbert space H = L2(S1)⊕ L2(S1). An element of H is a pair of

functions (g1, g2) on the circle. We define a complex antilinear map J : H → H by

J(g1, g2) = (−g2, g1).

(This will be familiar if you have encountered the quaternions.) Given an element
g = (g1, g2) of H we define a map

mg : C
0(S1)→ H

by mg(f) = fg = (fg1, fg1).

Lemma 19. Suppose g ∈ H has the property that ‖mg(f)‖L2 = ‖f‖L2 for all
f ∈ C0. Then |g1(θ)|2 + |g2(θ)|2 = 1 for almost all θ ∈ S1 and mg extends to an

isometry from L2(S1 to a closed subspace Ug of H. The orthogonal complement

U⊥g is the image UJ(g) of the similar map defined by J(g).

Notice that the hypothesis of Lemma 19 is equivalent to saying that the multiples
mg(e

inθ) form an orthnormal system. The proof of the Lemma is immediate if one

knows that an L1 function on the circle all of whose Fourier co-efficients are zero
is zero almost everywhere.

Now to complete the proof of Proposition 18, consider the isometry R from `2

to H which maps a sequence (aN ) to

R((an)) =
1
√
2π
(
∑

m

a2me
imθ,

∑

m

a2m+1e
imθ).

The composite RΦ = R ◦ A−1Φ is an isometry from V0 to H which intertwines the
translation τ2 on V0 and the multiplication map σ : H → H given by σ(g) = eiθg.
Let U ⊂ H be the closed subspace RΦ(V1). Now we know that the translates
τ2k(E(Φ)) form an orthonormal basis of V1. So if we set g = RΦ(E(φ)) the images

σk(g) form an orthonormal basis of U . Thus g satisfies the hypothesis of Lemma

19, and U = Ug. So we know that U
⊥ ⊂ H is UJ(g). Going backwards, the images

σk(J(g)) form an orthnormal basis for U⊥, hence the translates τ2k(R−1Φ (J(g))

form an orthonormal basis of W1: thus we can take ψ1 = R−1Φ (J(g)), and we have
completed the proof of Theorem 16.

Theorem 16:explicit construction

It is easier to work in the Fourier transformation representation. So we define
V̂j to be the FT of Vj . The map τ goes over to τ̂(f) = eiξf , and E to Ê, which
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is just E−1. The composite Âρ of Aρ with (2π)
−1/2 times the Fourier transfrom

maps a sequence (an) in `
2 to the function

Âρ((an))(ξ) = (2π)
−1/2

∑
ane

inξρ̂(ξ).

Let S : `2 → L2(S1) be the standard isometry

S((an)) = (2π)
−1/2

∑
ane

inθ.

Then the map αρ = Âρ ◦ S−1 sends a function f ∈ L2(S1) to

αρ(f)(ξ) = f(ξ)ρ̂(ξ).

Here we are regarding a function f on the circle S1 as a 2π-periodic function on R.
The adjoint α∗ρ maps a function h(ξ) on R to

∞∑

k=−∞

ρ̂(ξ + 2kπ).h(ξ + 2kπ).

Thus α∗ραρ is the map which mutiplies a function f on the circle by

∞∑

k=−∞

|ρ̂(ξ + 2kπ)|2.

This gives

Proposition 20. For ρ ∈ V0 the map Aρ : `
2
0 → V0 extends to a topological

isomorphism if and only if the translates τk(ρ) span a dense subspace of V0 and
there is a C > 0 such that

C−1 ≤
∞∑

k=−∞

|ρ̂(ξ + 2kπ)|2 ≤ C

for all ξ ∈ R.

When the above condition holds the operator (α∗ραρ)
−1/2 is multiplication by

(
∞∑

k=∞

|ρ̂(ξ + 2kπ)|2
)−1/2

.

It follows that the Fourier transform of Φ is

(*) Φ̂(ξ) =

(
∞∑

k=−∞

|ρ̂(ξ + 2kπ)|2
)−1/2

ρ̂(ξ).

Now the general element of V̂0 can be written as

m(ξ)Φ̂(ξ),

where m is a function in L2(S1), regarded as a 2π-periodic function on R. Let

R̂Φ be the composite of the inverse Fourier transform with the isometry RΦ above,
so R̂Φ is an isometry from V̂0 to the Hilbert space H. Let JΦ : V̂ → V̂ be the
antilinear map Jρ = R̂−1Φ JR̂Φ. Thus JΦ coresponds to the map J on H under the

isometry R̂Φ.
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Lemma 21. The map JΦ takes an element m(ξ)Φ̂(ξ) of V̂0 to m(ξ + π)Φ̂(ξ)e
iξ.

This is a matter of checking on the generators einξΦ̂(ξ).

We are now able to write down the FT of the wavelet. By hypothesis Ê(Φ̂) =

21/2Φ̂(2ξ) lies in V̂0, so

M(ξ) = 21/2
Φ̂(2ξ)

Φ̂(ξ)

is a 2π-periodic function. The FT of ψ1 is

Jρ(M)Φ̂ =M(ξ + π)e
iξΦ̂(ξ).

Thus

ψ̂(ξ) =

(
Φ̂(ξ + 2π)

Φ̂(ξ/2 + π)

)

eiξ/2 Φ̂(ξ/2),

where Φ̂ is given by (*).

It is also useful to have the formulae written out making less use of the Fourier
transform. We have

(***)
∞∑

k=−∞

|ρ̂(ξ + 2kπ)|2 =
∑

n

bne
inξ,

where the bn are the L
2-inner products

bn = 〈τ
nρ, ρ〉.

The function ψ1 is

ψ1 =
∑
(−1)nh1−nτ

n(Φ),

where hn = 〈E(Φ), τnΦ〉.

Example

We return to the second example above, starting with the multiresolution anal-
ysis by piecewise linear functions. First it is simple linear algebra to show that any
compactly supported function in V0 can be written as a finite linear combination of
the translates τk(ρ), so these translates span a dense subspace of V0. The Fourier
transform of ρ is

ρ̂(ξ) =
(1− cos ξ)

πξ2
eiξ.

The formula (***) above gives

∞∑

k=−∞

|ρ̂(ξ + 2kπ)|2 =
1

3
(2 + cos ξ),
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which lies between 1 and 1/3, so the criteria of Prop.20 are satisfied. The function
Φ has Fourier transform

Φ̂(ξ) =
1− cos ξ
πξ2

eiξ
√
3

√
2 + cos ξ

,

and the Fourier transform of the wavelet ψ is

ψ̂(ξ) =

√
3

π

(1− cos ξ/2)2

ξ2
eiξ/2

√
2− cos ξ/2

(2 + cos ξ)(2 + cos ξ/2)
.

Notes

(1) The FT of ψ vanishes at ξ = 0, so the integral of ψ is zero. In fact this
is true for any wavelet system. It may seem paradoxical that any function
f ∈ L1 ∩ L2 can be written as a superposition

f =
∑

j,k

aj,kψj,k,

of functions of integral zero. The point is that the expansion does not
converge in Ll, although it does converge in Lp for any 1 < p ≤ 2, as we
have seen.

(2) The FT ψ̂ extends to a holomorphic function on a strip |Im(ξ)| ≤ ε. It
follows that ψ does indeed have exponential decay—like e−ε|x|—as |x| → ∞.

(3) We can use a Taylor expansion of the square roots to write

ψ̂(ξ) = ξ−2(
∑

αne
inξ/2),

where the co-efficients αn are given by explicit convergent series. From this
it is standard Fourier theory to obtain the values of the function ψ explicitly,
in terms of the co-efficients αn.


