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1. Introduction

1.1.
This article surveys some developments in pure mathematics which have, to vary-

ing degrees, grown out of the ideas of gauge theory in Mathematical Physics. The
realisation that the gauge fields of particle physics and the connections of differen-
tial geometry are one and the same has had wide-ranging consequences, at different
levels. Most directly, it has lead mathematicians to work on new kinds of questions,
often shedding light later on well-established problems. Less directly, various funda-
mental ideas and techniques, notably the need to work with the infinite-dimensional
gauge symmetry group, have found a place in the general world-view of many math-
ematicians, influencing developments in other fields. Still less direct, the work in
this area—between geometry and mathematical physics—has been a prime exam-
ple of the interaction between these fields which has been so fruitful over the past
thirty years.

The body of this paper is divided into three sections: roughly corresponding to
Analysis, Geometry and Topology. However the different topics come together in
many different ways: indeed the existence of these links between the topics is one
the most attractive features of the area.

1.2 Gauge transformations.

We do not have space in this article to review the usual foundational mate-
rial on connections, curvature and related differential geometric constructions: for
these we refer to standard texts. We will however briefly recall the notions of
gauge transformations and gauge fixing. The simplest case is that of abelian gauge
theory—connections on a U(1)-bundle, say over R3. In that case the connection
form, representing the connection in a local trivialisation, is a pure imaginary 1-
form A, which can also be identified with a vector field A. The curvature of the
connection is the 2-form dA. Changing the local trivialisation by a U(1)-valued
function g = eiχ changes the connection form to

Ã = A− dgg−1 = A− idχ.

The forms A, Ã are two representations of the same geometric object: just as the
same metric can be represented by different expressions in different co-ordinate
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systems. One may want to fix this choice of representation, usually by choosing
A to satisfy the Coulomb gauge condition d∗A = 0 (equivalently div A = 0),
supplemented by appropriate boundary conditions. Here we are using the standard
Euclidean metric onR3. (Throughout this article we will work with positive definite
metrics, regardless of the fact that—at least at the classical level—the Lorentzian
signature may have more obvious bearing on physics.) Arranging this choice of
gauge involves solving a linear PDE for χ.
The case of a general structure group G is not much different. The connection

form A now takes values in the Lie algebra of G and the curvature is given by the
expression

F = dA+
1

2
[A,A].

The change of bundle trivialisation is given by a G-valued function and the resulting
change in the connection form is

Ã = gAg−1 − dgg−1.

(Our notation here assumes that G is a matrix group, but this is not important.)
Again we can seek to impose the Coulomb gauge condition d∗A = 0, but now we
cannot linearise this equation as before.
We can carry the same ideas over to a global problem, working on a G-bundle P

over a general Riemannian manifold M . The space of connections on P is an affine
space A: any two connections differ by a bundle-valued 1-form. Now the gauge
group G of automorphisms of P acts on A and, again, two connections in the same
orbit of this action represent essentially the same geometric object. Thus in a sense
we would really like to work on the quotient space A/G. Working locally in the
space of connections, near to some A0, this is quite straightforward. We represent
nearby connections as A0+a where a satisfies the analogue of the coulomb condition

d∗Aa = 0.

Under suitable hypotheses, this condition picks out a unique representative of each
nearby orbit. However this gauge fixing condition need not single out a unique
representative if we are far away from A0: indeed the space A/G typically has,
unlike A, a complicated topology which means that it is impossible to find any
such global gauge fixing condition. As we have said, this is one of the distinc-
tive features of gauge theory. The gauge group G is an infinite-dimensional group,
but one of a comparatively straightforward kind—much less complicated than the
diffeomorphism groups relevant in Riemannian geometry for example. One could
argue that one of the most important influences of gauge theory has been to ac-
custom mathematicians to working with infinite-dimensional symmetry groups in
a comparatively simple setting.

2. Analysis and variational methods

2.1 The Yang-Mills functional. A primary object brought to mathematicians
attention by physics is the Yang-Mills functional

YM(A) =

∫

M

|FA|
2dμ.
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Clearly YM(A) is non-negative and vanishes if and only if the connection is flat: it is
broadly analogous to functionals such as the area functional in minimal submanifold
theory, or the energy functional for maps. As such one can fit into a general
framework associated to such functionals. The Euler-Lagrange equations are the
Yang-Mills equations

d∗AFA = 0.

For any solution (a Yang-Mills connection) there is a “Jacobi operator ” HA such
that the second variation is given by

YM(A+ ta) = YM(A) + t2〈HAa, a〉+O(t
3).

The omnipresent phenomenon of gauge invariance means that Yang-Mills con-
nections are never isolated, since we can always generate an infinite-dimensional
family by gauge transformations. Thus, as explained in (1.2), one imposes the
gauge fixing condition d∗Aa = 0. Then the operator HA can be written as

HAa = ΔAa+ [FA, a],

where ΔA is the bundle-valued “Hodge Laplacian” dAd
∗
A+d

∗
AdA and the expression

[FA, a] combines the bracket in the Lie algebra with the action of Λ
2 on Λ1. This

is a self-adjoint elliptic operator and, if M is compact, the span of the negative
eigenspaces is finite dimensional, the dimension being defined to be the index of the
Yang-Mills connection A.
In this general setting, a natural aspiration is to construct a “Morse Theory”

for the functional. Such a theory should relate the topology of the ambient space
to the critical points and their indices. In the simplest case, one could hope to
show that for any bundle P there is a Yang-Mills connection with index 0, giving a
minimum of the functional. More generally, the relevant ambient space here is the
quotient A/G and one might hope that the rich topology of this is reflected in the
solutions to the Yang-Mills equations.

2.2 Uhlenbeck’s Theorem.
The essential foundation needed to underpin such a “Direct Method” in the cal-

culus of the Calculus of Variations is an appropriate compactness theorem. Here
the dimension of the base manifold M enters in a crucial way. Very roughly, when
a connection is represented locally in a Coulomb gauge the Yang-Mills action com-
bines the L2 norm of the derivative of the connection form A with the L2-norm of
the quadratic term [A,A]. The latter can be estimated by the L4-norm of A. If
dim M ≤ 4 then the Sobolev inequalities allow the L4 norm of A to be controlled
by the L2 norm of its derivative, but this is definitely not true in higher dimensions.
Thus dim M = 4 is the “critical dimension” for this variational problem. This is
related to the fact that the Yang-Mills equations (and Yang-Mills functional) are
conformally invariant in 4-dimensions. For any non-trivial Yang-Mills connection
over the 4-sphere one generates a 1-parameter family of Yang-Mills connections, on
which the functional takes the same value, by applying conformal transformations
corresponding to dilations of R4. In such a family of connections the integrand
|FA|2—the “curvature density”—converges to a delta-function at the origin. More
generally, one can encounter sequences of connections over 4-manifolds for which
YM is bounded but which do not converge, the Yang-Mills density converging to
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delta functions. There is a detailed analogy with the theory of the harmonic maps
energy functional, where the relevant critical dimension (for the domain of the map)
is 2.
The result of K. Uhlenbeck [65], which makes these ideas precise, considers con-

nections over a ball Bn ⊂ Rn. If the exponent p ≥ 2n then there are positive
constants ε(p, n), C(p, n) > 0 such that any connection with ‖F‖Lp(Bn) ≤ ε can be
represented in Coulomb gauge over the ball, by a connection form which satisfies
d∗A = 0, together with certain boundary conditions, and

‖A‖Lp1 ≤ C‖F‖Lp .

In this Coulomb gauge the Yang-Mills equations are elliptic and it follows readily
that, in this setting, if the connection A is Yang-Mills one can obtain estimates on
all derivatives of A.

2.3 Instantons in four dimensions.
This result of Uhlenbeck gives the analytical basis for the direct method of

the calculus of variations for the Yang-Mills functional over base manifolds M of
dimension ≤ 3. For example, any bundle over such a manifold must admit a Yang-
Mills conection, minimising the functional. Such a statement is definitely false
in dimensions ≥ 5. For example, an early result of Bourguignon, Lawson and
Simons [12] asserts that there is no minimising connection on any bundle over Sn

for n ≥ 5. The proof exploits the action of the conformal transformations of the
sphere. In the critical dimension 4, the situation is much more complicated. In
four dimensions there are the renowned “instanton” solutions of the Yang-Mills
equation. Recall that if M is an oriented 4-manifold the Hodge ∗-operation is an
involution of Λ2T ∗M which decomposes the two forms into self-dual and anti-self
dual parts, Λ2T ∗M = Λ+⊕Λ−. The curvature of a connection can then be written
as

FA = F
+
A + F

−
A ,

and a connection is a self-dual (respectively anti-self-dual)instanton if F−A (respec-

tively F+A ) is 0. The Yang-Mills functional is

YM(A) = ‖F+A ‖
2 + ‖F−A ‖

2,

while the difference ‖F+A ‖
2−‖F−A ‖

2 is a topological invariant κ(P ) of the bundle P ,
obtained by evaluating a 4-dimensional characteristic class on [M ]. Depending on
the sign of κ(P ), the self-dual or anti-self-dual connections (if any exist) minimise
the Yang-Mills functional among all connections on P . These instanton solutions of
the Yang-Mills equations are analogous to the holomorphic maps from a Riemann
surface to a Kahler manifold, which minimise the harmonic maps energy functional
in their homotopy class.

2.4 Moduli spaces.
The instanton solutions typically occur in moduli spaces. To fix ideas let us

consider bundles with structure group SU(2) in which case κ(P ) = −8π2c2(P ).
For each k > 0 we have a moduli spaceMk of anti-self-dual instantons on a bundle
Pk →M4, with c2(Pk) = k. It is a manifold of dimension 8k− 3. The general goal
of the calculus of variations in this setting is to relate three things:

(1) The topology of the space A/G of equivalence classes of connections on Pk;
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(2) The topology of the moduli spaceMk of instantons;
(3) The existence and indices of other, non-minimal, solutions to the Yang-Mills
equations on Pk.

In this direction, a very influential conjecture was made by Atiyah and Jones
[9]. They considered the case when M = S4 and, to avoid certain technicalities,
work with spaces of “framed” connections, dividing by the restricted group G0 of
gauge transformations equal to the identity at infinity. Then for any k the quotient
A/CalG0 is homotopy equivalent to the third loop space Ω3S3 of based maps from
the 3-sphere to itself. The corresponding “framed” moduli space M̃k is a manifold
of dimension 8k (a bundle overMk with fibre SO(3)). Atiyah and Jones conjectured

that the inclusion M̃k → A/G0 induces an isomorphism of homotopy groups πl in a
range of dimensions l ≤ l(k) where l(k) increases with k. This would be consistent
with what one might hope to prove by the calculus of variations if there were no
other Yang-Mills solutions, or if the indices of such solutions increased with k.

The first result along these lines was due to Bourguignon and Lawson [12], who
showed that the instanton solutions are the only local minima of the Yang-Mills
functional over the 4-sphere. Subsequently, Taubes [58] showed that the index of
an non-instanton Yang-Mills connection Pk is at least k + 1. Taubes’ proof used
ideas related to the action of the quaternions and the hyperkahler structure on the
M̃k, see (3.6). Contrary to some expectations, it was shown by Sibner, Sibner
and Uhlenbeck [56] that non-minimal solutions do exist; some later constructions
were very explicit [55]. Taubes’ index bound gave ground for hope that an ana-
lytical proof of the Atiyah-Jones conjecture might be possible, but this is not at
all straightforward. The problem is that in the critical dimension 4 a mini-max
sequence for the Yang-Mills functional in a given homotopy class may diverge, with
curvature densities converging to sums of delta functions as outlined above. This is
related to the fact that the M̃k are not compact. In a series of papers culminating
in [60], Taubes succeeded in proving a partial version of the Atiyah-Jones conjec-
ture, together with similar results for general base manifolds M4. Taubes showed
that if the homotopy groups of the moduli spaces stabilise as k → ∞ then the
limit must be that predicted by Atiyah and Jones. Related analytical techniques
were developed for other variational problems at the critical dimension involving
“critical points at infinity”. The full Atiyah-Jones conjecture was established by
Boyer,Hurtubise, Mann and Milgram [13] but using geometrical techniques: the
“explicit” description of the moduli spaces obtained from the ADHM construction
(see (3.2) below). A different geometrical proof was given by Kirwan [41], together
with generalisations to other gauge groups.

There was a parallel story for the solutions of the Bogomolony equation over
R3, which we will not recount in detail. Here the base dimension is below the
critical case but the analytical difficulty arises from the non-compactness of R3.
Taubes succeeded in overcoming this difficulty and obtained relations between the
topology of the moduli space, the appropriate configuration space and the higher
critical points. Again, these higher critical points exist but their index grows with
the numerical parameter corresponding to k. At about the same time, Donaldson
showed that the moduli spaces could be identified with spaces of rational maps [19]
(subsequently extended to other gauge groups). The analogue of the Atiyah-Jones
conjecture is a result on the topology of spaces of rational maps proved earlier by
Segal, which had been one of the motivations for Atiyah and Jones.
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2.5 Higher dimensions.
While the scope for variational methods in Yang-Mills theory in higher dimen-

sions is very limited, there are useful analytical results about solutions of the Yang-
Mills equations. An important monotonicity result was obtained by Price [53]. For
simplicity, consider a Yang-Mills connection over the unit ball Bn ⊂ Rn. Then
Price showed that the normalised energy

E(A,B(r)) =
1

rn−4

∫

|x|≤r
|F |2dμ

decreases with r. Nakajima and Uhlenbeck [49] used this monotonicity to show
that for each n there is an ε such that if A is a Yang-Mills connection over a ball
with E(A,B(r)) ≤ ε then all derivatives of A, in a suitable gauge, can be controlled
by E(A,B(r)). Tian [64] showed that if Ai is a sequence of Yang-Mills connections
over a compact manifold M with bounded Yang-Mills functional, then there is a
subsequence which converges away from a set Z of Haussdorf codimension at least
4 (extending the case of points in a 4-manifold). Moreover, the singular set Z is a
minimal subvariety, in a suitably generalised sense.
In higher dimensions, important examples of Yang-Mills connections arise within

the framework of “calibrated geometry”. Here we consider a Riemannian n-manifold
M with a covariant constant calibrating form Ω ∈ Ωn−4M . There is then an analogue
of the instanton equation

FA = ± ∗ (Ω ∧ FA),

whose solutions minimise the Yang-Mills functional. This includes the Hermit-
ian Yang-Mills equation over a Kahler manifold (see (3.4) below) and also certain
equations over manifolds with special holonomy groups [27]. For these “higher di-
mensional instantons”, Tian shows that the singular sets Z that arise are calibrated
varieties.

2.6 Gluing techniques.

Another set of ideas from PDE and analysis which has had great impact in
gauge theory involves the construction of solutions to appropriate equations by the
following general scheme.

(1) Constructing an “approximate solution”, formed from some standard mod-
els using cut-off functions;

(2) showing that the approximate solution can be deformed to a true solution
by means of an implicit function theorem.

The heart of the second step is usually made up of estimates for the relevant lin-
ear differential operator. Of course the success of this strategy depends on the
particular features of the problem. This approach, due largely to Taubes, has
been particularly effective in finding solutions to the first-order instanton equations
and their relatives. (The applicability of the approach is connected to the fact
that such solutions typically occur in moduli spaces and one can often “see” local
co-ordinates in the moduli space by varying the parameters in the approximate
solution.) Taubes applied this approach to the Bogomolny monpole equation over
R3 [37] and to construct instantons over general 4-manifolds [57]. In the latter
case the approximate solutions are obtained by transplanting standard solutions
over R4—with curvature density concentated in a small ball—to small balls on the
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4-manifold, glued to the trivial flat connection over the remainder of the manifold.
These kind of techniques have now become a fairly standard part of the armoury
of many differential geometers, working both within gauge theory and other fields.
An example of a problem where similar ideas have been used is Joyce’s construction
of constant of manifolds with exceptional holonomy groups [39]. (Of course, it is
likely that similar techniques have been developed over the years in many other
areas, but Taubes’ work in gauge theory has done a great deal to bring them into
prominence.)

3. Geometry: integrability and moduli spaces

3.1 The Ward correspondence.

Suppose that S is a complex surface and ω is the 2-form corresponding to a
Hermitian metric on S. Then S is an oriented Riemannian 4-manifold and ω is
a self-dual form. The orthogonal complement of ω in Λ+ can be identified with
the real parts of forms of type (0, 2). Hence if A is an anti-self-dual instanton
connection on a principle U(r)-bundle over S the (0, 2) part of the curvature of
A vanishes. This is the integrability condition for the ∂-operator defined by the
connection, acting on sections of the associated vector bundle E → S. Thus, in the
presence of the connection, the bundle E is naturally a holomorphic bundle over S.

The Ward correspondence [67] builds on this idea to give a complete translation
of the instanton equations over certain Riemannian 4-manifolds into holomorphic
geometry. In the simplest case, let A be an instanton on a bundle over R4. Then
for any choice of a linear complex structure on R4, compatible with the metric,
A defines a holomorphic structure. The choices of such a complex structure are
parametrised by a 2-sphere; in fact the unit sphere in Λ+(R4). So for any λ ∈ S2

we have a complex surface Sλ and a holomorphic bundle over Sλ. This data can
be viewed in the following way. We consider the projection π : R4 × S2 → R4

and the pull-back π∗(E) to R4 × S2. This pull-back bundle has a connection
which defines a holomorphic structure along each fibre Sλ ⊂ R4 × S2 of the other
projection. The product R4 × S2 is the twistor space of R4 and it is in a natural
way a 3-dimensional complex manifold. It can be identified with the complement
of a line L∞ in CP

3 where the projection R4 × S2 → S2 becomes the fibration
of CP3 \ L∞ by the complex planes through L∞. One can see then that π∗(E) is
naturally a holomorphic bundle over CP3 \ L∞. The construction extends to the
conformal compactification S4 of R4. If S4 is viewed as the quaternionic projective
line HP1 and we identify H2 with C4 in the standard way we get a natural map
π : CP3 → HP1. Then CP3 is the twistor space of S4 and an anti-self-dual
instanton on a bundle E over S4 induces a holomorphic structure on the bundle
π∗(E) over CP3.

In general, the twistor space Z of an oriented Riemannian 4-manifold M is
defined to be the unit sphere bundle in Λ+M . This has a natural almost-complex
structure which is integrable if and only if the self-dual part of the Weyl curvature of
M vanishes [7]. The antipodal map on the two sphere induces an antiholomorphic
involution of Z. In such a case, an ASD instanton over M lifts to a holomorphic
bundle over Z. Conversely, a holomorphic bundle over Z which is holomorphically
trivial over the fibres of the fibration Z → M (projective lines in Z), and which
satisfies a certain reality condition with respect to the antipodal map, arises from
a unitary instanton over M . This is the Ward correspondence, part of Penrose’s
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twistor theory.

3.2 The ADHM construction.

The problem of describing all solutions to the Yang-Mills instanton equation
over S4 is thus reduced to a problem in algebraic geometry, of classifying certain
holomorphic vector bundles. This was solved by Atiyah, Drinfeld, Hitchin and
Manin [5]. The resulting ADHM construction reduces the problem to certain matrix
equations. The equations can be reduced to the following form. For a bundle Chern
class k and rank r we require a pair of k × k matrices α1, α2 a k × r matrix a and
an r × k matrix b. Then the equations are

[α1, α2] = ab

[α∗1, α1] + [α
∗
2, α2] = aa

∗ − b∗b.

We also require certain open, nondegeneracy conditions. Given such matrix data,
a holomorphic bundle over CP3 is constructed via a “monad”: a pair of bundle
maps over CP3

Ck ⊗O(−1)
D1−−→ Ck ⊕Ck ⊕Cr

D2−−→ Ck ⊗O(1),

withD2D1 = 0. That is, the rank r holomorphic bundle we construct isKerD2/ImD1.
The bundle maps D1, D2 are obtained from the matrix data in a straightforward
way, in suitable co-ordinates. It is this matrix description which was used by Boyer
et al to prove the Atiyah-Jones conjecture on the topology of the moduli spaces of
instantons. The only other case when the twistor space of a compact 4-manifold is
an algebraic variety is the complex projective plane, with the non-standard orien-
tation. An analogue of the ADHM description in this case was given by Buchdahl
[16].

3.3 Integrable systems.
The Ward correspondence can be viewed in the general framework of integrable

systems. Working with the standard complex structure on R4, the integrability
consdition for the ∂-operator takes the shape

[∇1 + i∇2,∇3 + i∇4] = 0

where ∇i are the components of the covariant derivative in the co-ordinate direc-
tions. So the instanton equation can be viewed as a family of such commutator
equations parametrised by λ ∈ S2. One obtains many reductions of the instanton
equation by imposing suitable symmetries. Solutions invariant under translation
in one variable correspond to the Bogomolny monopole equation [37]. Solutions
invariant under three translations correspond to solutions of Nahm’s equations

dTi

dt
= εijk[Tj , Tk],

for matrix valued functions T1, T2, T3 of one variable t. Nahm [48] and Hitchin [32]
developed an analogue of the ADHM construction relating these two equations.
This is now seen as a part of a general “Fourier-Mukai-Nahm transform” [26].
The instanton equations for connections invariant under two translations, Hitchin’s
equations [33], are locally equivalent to the harmonic map equation for a surface
into the symmetric space dual to the structure group. Changing the signature of
the metric on R4 to (2, 2) one gets the harmonic mapping equations into Lie groups
[35]. More complicated reductions yield almost all the known examples of integrable
PDE as special forms of the instanton equations [45].
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3.4 Moment maps: the Kobayashi-Hitchin conjecture.

Let Σ be a compact Riemann surface. The Jacobian of Σ is the complex torus
H1(Σ,O)/H1(Σ,Z): it parametrises holomorphic line bundles of degree 0 over Σ.
The Hodge theory (which was of course developed long before Hodge in this case)
shows that the Jacobian can also be identified with the torus H1(Σ,R)/H1(Σ,Z)
which parametrises flat U(1)-connections. That is, any holomorphic line bundle of
degree 0 admits a unique compatible flat unitary connection.
The generalisation of these ideas to bundles of higher rank began with Weil. He

observed that any holomorphic vector bundle of degree 0 admits a flat conection,
not necessarily unitary. In 1964, Narasimhan and Seshadri [50] showed that (in the
case of degree 0) the existence of a flat, irreducible, unitary connection was equiva-
lent to an algebro-geometric condition of stability which had been introduced shortly
before by Mumford, for quite different purposes. Mumford introduced the stability
condition in order to construct separated moduli spaces of holomorphic bundles—
generalising the Jacobian—as part of his general Geometric Invariant Theory. For
bundles of non-zero degree the discussion is slightly modified by the use of projec-
tively flat unitary connections. The result of Narasimhan and Seshadri asserts that
there are two different descriptions of the same moduli spaceMd,r(Sigma): either
as parametrising certain irreducible projectively flat unitary connections (represen-
tations of π1(Σ)), or parametrising stable holomorphic bundles of degree d and rank
r. While Narasimhan and Seshadri probably did not view the ideas in these terms,
another formulation of their result is that a certain nonlinear PDE for a Hermitian
metric on a holomorphic bundle—analogous to the Laplace equation in the abelian
case—has a solution when the bundle is stable.
In the early 1980’s, Atiyah and Bott cast these results in the framework of

gauge theory [4]. (The Yang-Mills equations in 2-dimensions essentially reduce to
the condition that the connection be flat, so they are rather trivial locally but
have interesting global structure.) They made the important observation that the
curvature of a connection furnishes a map

F : A → Lie(G)∗,

which is an equivariant moment map for the action of the gauge group on A. Here
the symplectic form on the affine space A and the map from the adjoint bundle-
valued 2-forms to the dual of the Lie algebra of G are both given by integration of
products of forms. From this point of view, the Narasimhan-Seshadri result is an
infinite-dimensional example of a general principle relating symplectic and complex
quotients. At about the same time, Hitchin and Kobayashi independently proposed
an extension of these ideas to higher dimensions. Let E be a holomorphic bundle
over a complex manifold V . Any compatible unitary connection on E has curvature
F of type (1, 1). Let ω be the (1, 1)-form corresponding to a fixed Hermitian metric
on V . The Hermitian Yang-Mills equation is the equation

F.ω = μ1E ,

where μ is a constant (determined by the topological invariant c1(E)). The Kobayashi-
Hitchin conjecture is that, when ω is Kahler, this equation has a irreducible solution
if and only if E is a stable bundle in the sense of Mumford. Just as in the Rie-
mann surface case, this equation can be viewed as a nonlinear second order PDE
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of Laplace type for a metric on E. The moment map picture of Atiyah and Bott
also extends to this higher dimensional version. In the case when V has complex
dimension 2 (and μ is zero) the Hermitian Yang-Mills connections are exactly the
anti-self-dual instantons, so the conjecture asserts that the moduli spaces of instan-
tons can be identified with certain moduli spaces of stable holomorphic bundles.
The Kobayashi-Hitchin conjecture was proved in the most general form by Uh-

lenbeck and Yau [66], and in the case of algebraic manifolds in [21]. The proofs
in [20],[21] developed some extra structure surrounding these equations, conected
with the moment map point of view. The equations can be obtained as the Euler-
Lagrange equations for a non-local functional, related to the renormalised deter-
minants of Quillen and Bismut. The results have been extended to nonkahler
manifolds and certain noncompact manifolds. There are also many extensions to
equations for systems of data comprising a bundle with additional structure such as
a holomorphic section or Higgs’ field [15], or a parabolic structure along a divisor.
Hitchin’s equations [33] are a particularly rich example.

3.5 Topology of moduli spaces.

The moduli spacesMr,d(Σ) of stable holomorphic bundles/projectively flat uni-
tary connections over Riemann surfaces Σ have been studied intensively from many
points of view. They have natural kahler structures: the complex structure being
visible in the holomorphic bundles guise and the symplectic form as the “Marsden-
Weinstein quotient” in the unitary connections guise. In the case when r and d are
coprime they are compact manifolds with complicated topologies. There is an im-
portant basic construction for producing cohomology classes over these (and other)
moduli spaces. One takes a universal bundle U over the productM×Σ with Chern
classes

ci(U) ∈ H
2i(M× Σ).

Then for any class α ∈ Hp(Σ) we get a cohomology class ci(U)/α ∈ H2i−p(M).
Thus if RΣ is the graded ring freely generated by such classes we have a homomor-
phism ν : RΣ → H∗(M). The questions about the topology of the moduli spaces
which have been studied include:

(1) Find the Betti numbers of the moduli spaceM;
(2) Identify the kernel of ν;
(3) Give an explicit system of generators and relations for the ring H∗(M);
(4) Identify the Pontrayagin and Chern classes ofM within H∗(M);
(5) Evaluate the pairings ∫

M
ν(W )

for elements W of the appropriate degree in R.

All of these questions have now been solved quite satisfactorily. In early work,
Newstead [51] found the Betti numbers in the rank 2 case. The main aim of Atiyah
and Bott was to apply the ideas of Morse Theory to the Yang-Mills functional over
a Riemann surface and they were able to reproduce Newstead’s results in this way
and extend them to higher rank. They also showed that the map ν is a surjection, so
the universal bundle construction gives a system of generators for the cohomology.
Newstead made conjectures on the vanishing of the Pontrayagin and Chern classes
above a certain range which were established by Kirwan and extended to higher
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rank by Earl and Kirwan [28]. Knowing that RΣ maps on to H
∗(M), a full set of

relations can (by Poincare duality) be deduced in principle from a knowledge of the
integral pairings in (5), but this is not very explicit. A solution to (5) in the case of
rank 2 was found by Thaddeus [62]. He used results from the Verlinde theory (see
(4.5) below) and the Riemann-Roch formula. Another point of view was developed
by Witten [71], who showed that the volume of the moduli space was related to the
theory of torsion in algebraic topology and satisfied simple gluing axioms. These
different points of view are compared in [23]. Using a non-rigorous localisation
principle in infinite dimensions, Witten wrote down a general formula [72] for the
pairings (5) in any rank, and this was established rigorously by Jeffrey and Kirwan,
using a finite-dimensional version of the same localisation method. A very simple
and explicit set of generators and relations for the cohomology (in the rank 2 case)
was given by King and Newstead [40]. Finally, the quantum cohomology of the
moduli space, in the rank 2 case, was identified explicitly by Munoz [47].

3.6 Hyperkahler quotients.
Much of this story about the structure of moduli spaces extends to higher di-

mensions and to the moduli spaces of connections and Higgs fields . A particularly
notable extension of the ideas involves hyperkahler structures. Let M be a hyper-
kahler 4-manifold, so there are three covariant-constant self-dual forms ω1, ω2, ω3
on M . These correspond to three complex structures I1, I2, I3 obeying the algebra
of the quaternions. If we single out one structure, say I1, the instantons on M can
be viewed as holomorphic bundles with respect to I1 satisfying the moment map
condition (Hermitian-Yang-Mills equation) defined by the form ω1. Taking a differ-
ent complex structure interchanges the role of the moment map and integrability
conditions. This can be put in a general framework of hyperkahler quotients due
to Hitchin et al. [36]. Suppose initially that M is compact (so either a K3 surface
or a torus). Then the ωi components of the curvature define three maps

Fi : A → Lie(G)
∗,

The structures on M make A into a flat hyperkahler manifold and the three maps
Fi are the moment maps for the gauge group action with respect to the three
symplectic forms on A. In this situation it is a general fact that the hyperkahler
quotient—the quotient by G of the common zero set of the three moment maps—
has a natural hyperkahler structure. This hyperkahler quotient is just the moduli
space of instantons over M . In the case when M is the noncompact manifold R4

the same ideas apply except that one has to work with the based gauge group
G0. The conclusion is that the framed moduli spaces M̃ of instantons over R4

are naturally hyperkahler manifolds. One can also see this hyperkahler structure
through the ADHM matrix description. A variant of these matrix equations was
used by Kronheimer to construct “gravitational instantons”. The same ideas also
apply to the moduli spaces of monopoles, where the hyperkahler metric, in the
simplest case, was studied by Atiyah and Hitchin [6].

4. Low-dimensional topology

4.1 Instantons and four-manifolds.

Gauge theory has had unexpected applications in low-dimensional topology, par-
ticularly the topology of smooth 4-manifolds. The first work in this direction, in
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the early 1980’s, involved the Yang-Mills instantons. The main issue in 4-manifold
theory at that time was the correspondence between the diffeomeorphism classi-
fication of simply connected 4-manifolds and the classification up to homotopy.
The latter is determined by the intersection form, a unimodular quadratic form on
the second integral homology group (i.e. a symmetric matrix with integral entries
and determinant ±1, determined up to integral change of basis). The only known
restriction was that Rohlin’s Theorem, which asserts that if the form is even the
signature must be divisible by 16. The achievement of the first phase of the theory
was to show that

(1) There are unimodular forms which satisfy the hypotheses of Rohlin’s The-
orem but which do not appear as the intersection forms of smooth 4-
manifolds. In fact no non-standard definite form, such as a sum of copies
of the E8 matrix, can arise in this way.

(2) There are simply connected smooth 4-manifolds which have isomorphic in-
tersection forms, and hence are homotopy equivalent, but which are not
diffeomorphic.

These results stand in contrast to the homeomorphism classification which was
obtained by Freedman shortly before and which is almost the same as the homotopy
classification.

The original proof of item (1) above argued with the moduli spaceM of anti-self-
dual instantons SU(2) instantons on a bundle with c2 = 1 over a simply connected
Riemannian 4-manifold M with a negative definite intersection form [18]. In the
model case when M is the 4-sphere the moduli space M can be identified explic-
itly with the open 5-ball. Thus the 4-sphere arises as the natural boundary of the
moduli space. A sequence of points in the moduli space converging to a boundary
point corresponds to a sequence of connections with curvature densities converging
to a delta-function, as described in (2.2) above. One shows that in the general case
(under our hypotheses on the 4-manifold M) the moduli space M has a similar
behaviour, it contains a collar M × (0, δ) formed by instantons made using Taubes’
gluing construction, described in (2.6). The complement of this collar is compact.
In the interior of the moduli space there are a finite number of special points corre-
sponding to U(1)-reductions of the bundle P . This is the way in which the moduli
space “sees” the integral structure of the intersection form since such reductions
correspond to integral homology classes with self-intersection −1. Neighbourhoods
of these special points are modelled on quotients C3/U(1); i.e cones on copies of
CP2. The upshot is that (for generic Riemannian metrics on M) the moduli space
gives a cobordism from the manifold M to a set of copies of CP2 which can be
counted in terms of the intersection form, and the result follows easily from stan-
dard topology. More sophisticated versions of the argument extended the results
to rule out some indefinite intersection forms.

On the other side of the coin, the original proofs of item (2) used invariants
defined by instanton moduli spaces [22]. The general scheme exploits the same
construction outlined in (3.5) above. We suppose that M is a simply connected
4-manifold with b+(M) = 1 + 2p where p > 0 is an integer. (Here b+(M) is, as
usual, the number of positive eigenvalues of the intersection matrix). Ignoring some
technical restrictions, there is a map

ν : RM → H
∗(Mk),
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where RM is a graded ring freely generated by the homology (below the top dimen-
sion) of the 4-manifoldM andMk is the moduli space of ASD SU(2)-instantons on
a bundle with c2 = k > 0. For an element W in RM of the appropriate degree one
obtains a number by evaluating, or integrating, ν(W ) onMk. The main technical
difficulty here is that the moduli spaceMk is rarely compact, so one needs to make
sense of this “evaluation”. With all the appropriate technicalities in place, these
invariants could be shown to distinguish various homotopy equivalent, homeomor-
phic 4-manifolds. All these early developments are described in detail in the book
[26].

4.2 Basic classes.

Until the early 1990’s these instanton invariants could only be calculated in iso-
lated favourable cases. (Although the calculations which were made, through the
work of many mathematicians, lead to a large number of further results about 4-
manifold topology). Deeper understanding of their structure came with the work
of Kronheimer and Mrowka. This work was in large part motivated by a natural
question in geometric topology. Any homology class α ∈ H2(M ;Z) can be repre-
sented by a embedded, connected, smooth surface. One can define an integer g(α)
to be the minimal genus of such a representative. The problem is to find g(α), or at
least bounds on it. A well-known conjecture, ascribed to Thom, was that when M
is the complex projective plane the minimal genus is realised by a complex curve;
i.e.

g(±dH) =
1

2
(d− 1)(d− 2),

where H is the standard generator of H2(CP
2) and d ≥ 1.

The new geometrical idea introduced by Kronheimer and Mrowka was to study
instantons over a 4-manifold M with singularities along a surface Σ ⊂ M . For
such connections there is a real parameter: the limit of the trace of the holonomy
around small circles linking the surface. By varying this parameter they were able
to interpolate between moduli spaces of non-singular instantons on different bundles
over M and obtain relations between the different invariants. They also found that
if the genus of Σ is suitably small then some of the invariants are forced to vanish so,
conversely, getting information about g for 4-manifolds with non-trivial invariants.

For example, they showed that if M is a K3 surface then g(α) = 1
2 (α.α+ 2).

The structural results of Kronheimer and Mrowka [42] introduced the notion of a
4-manifold of “simple type”. Write the invariant defined above by the moduli space
Mk as Ik : RM → Q. Then Ik vanishes except on terms of degree 2d(k) where
d(k) = 4k− 3(1 + p). We can put all these together to define I =

∑
Ik : RM → Q.

The ring RM is a polynomial ring generated by classes α ∈ H2(M), which have
degree 2 in RM , and a class X of degree 4 in RM , corresponding to the generator
of H0(M). The 4-manifold is of simple type if

I(X2W ) = 4I(W ),

for allW ∈ RM . Under this condition, Kronheimer and Mrowka showed that all the
invariants are determined by a finite set of “basic ” classes K1, . . . ,Ks ∈ H2(M)
and rational numbers β1, . . . βs. To express the relation they form a generating
function

DM (α) = I(e
α) + I(

X

2
eα).
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This is a priori a formal power series in H2(M) but a posteriori the series converges
and can be regarded as a function on H2(M). Kronheimer and Mrowka’s result is
that

DM (α) = exp(
α.α

2
)

s∑

r=1

βre
Kr.α.

It is not known whether all simply connected 4-manifolds are of simple type, but
Kronheimer and Mrowka were able to show that this is the case for a multitude of
examples. They also introduced a weaker notion of “finite type”, and this condition
was shown to hold in general by Munoz and Froyshov. The overall result of this
work of Kronheimer and Mrowka was to make the calculation of the instanton
invariants for many familiar 4-manifolds a comparatively straightforward matter.

4.3 Three-manifolds: Casson’s invariant.

Gauge theory has also entered into 3-manifold topology. In 1985, Casson intro-
duced a new integer-valued invariant of oriented homology 3-spheres which “counts”
the set Z of equivalence classes of irreducible flat SU(2)-connections, or equiva-
lently irreducible representations π1(Y )→ SU(2) Casson’s approach [1] was to use
a Heegard splitting of a 3-manifold Y into two handle-bodies Y +, Y − with common
boundary a surface Σ. Then π1(Σ) maps onto π1(Y ) and a flat SU(2) connection
on Y is determined by its restriction to Σ. Let MΣ be the moduli space of irre-
ducible flat connections over Σ (as discussed in (3.4) above) and let L± ⊂ MΣ be
the subsets which extend over Y ±. Then L± are submanifolds of half the dimension
of MΣ and the set Z can be identified with the intersection L

+ ∩ L−. The Cas-
son invariant is one half the algebraic intersection number of L+ and L−. Casson
showed that this is independent of the Heegard splitting (and is also in fact an
integer, although this is not obvious). He showed that when Y is changed by Dehn
surgery along a knot the invariant changes by a term computed from the Alexander
polynomial of the knot. This makes the Casson invariant computable in examples.
(For a discussion of Casson’s formula see [24].) Taubes showed that the Casson
invariant could also be obtained in a more differential-geometric fashion, analogous
to the instanton invariants of 4-manifolds [59].

4.4 Three-manifolds: Floer Theory.

Independently, at about the same time, Floer introduced more sophisticated
invariants—the Floer homology groups—of homology 3-spheres, using gauge theory
[30]. This development ran parallel to his introduction of similar ideas in symplectic
geometry. Suppose for simplicity that the set Z of equivalence classes of irreducible
flat connections is finite. For pairs ρ−, ρ+ in Z, Floer considered the instantons
on the tube Y × R asymptotic to ρ± at ±∞. There is an infinite set of moduli
spaces of such instantons, labelled by a relative Chern class, but the dimensions of
these moduli spaces agree modulo 8. This gives a relative index δ(ρ−, ρ+) ∈ Z/8.
If δ(ρ−, ρ+) = 1 there is a moduli space of dimension 1 (possibly empty), but the
translations of the tube act on this moduli space and dividing by translations we
get a finite set. The number of points in this set, counted with suitable signs, gives
an integer n(ρ−, ρ+). Then Floer considers the free abelian groups

C∗ =
⊕

ρ∈Z

Z〈ρ〉,
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generated by the set Z and a map ∂ : C∗ → C∗ defined by

∂(〈ρ−〉) =
∑
n(ρ−, ρ+)〈ρ+〉.

Here the sum runs over the ρ+ with δ(ρ−, ρ+) = 1. Floer showed that ∂
2 = 0 and

the homology HF∗(Y ) = ker ∂/Im ∂ is independent of the metric on Y (and various
other choices made in implementing the construction in detail). The chain complex
C∗ and hence the Floer homology can be graded by Z/8, using the relative index,
so the upshot is to define 8 abelian groups HFi(Y ): invariants of the 3-manifold Y .
The casson invariant appears now as the Euler characteristic of the Floer homology.
There has been quite a lot of work on extending these ideas to other 3-manifolds
(not homology spheres) and gauge groups, but this line of research does not yet
seem to have reached a clear-cut conclusion.
Part of the motivation for Floer’s work came from Morse Theory, and particu-

larly the approach to this theory expounded by Witten [68]. The Chern-Simons
functional is a map

CS : A/G → R/Z,

from the space of SU(2)-connections over Y . Explicitly, in a trivialisation of the
bundle

CS(A) =

∫

Y

A ∧ dA+
3

2
A ∧A ∧A.

It appears as a boundary term in the Chern-Weil theory for the second Chern class,
in a similar way as holonomy appears as a boundary term in the Gauss-Bonnet The-
orem. The set Z can be identified with the critical points of CS and the instantons
on the tube as integral curves of the gradient vector field of CS. Floer’s definition
mimics the definition of homology in ordinary Morse theory, taking Witten’s point
of view. It can be regarded formally as the “middle dimensional” homology of the
infinite dimensional space A/G. See [2], [17] for discussions of these ideas.
The Floer Theory interacts with 4-manifold invariants, making up a structure

approximating to a 3 + 1-dimensional Topological Field Theory[3]. Roughly, the
numerical invariants of closed 4-manifolds generalise to invariants for a 4-manifold
M with boundary Y taking values in the Floer homology of Y . If two such manifolds
are glued along a common boundary the invariants of the result are obtained by a
pairing in the Floer groups. There are however, at the moment, some substantial
technical restrictions on this picture. This theory, and Floer’s original construction,
is developed in detail in the book [25]. At the time of writing, the Floer homology
groups are still hard to compute in examples. One important tool is a surgery exact
sequence found by Floer [14], related to Casson’s surgery formula.

4.5 Three-manifolds: Jones-Witten Theory.
There is another, quite different, way in which ideas from gauge theory have en-

tered 3-manifold topology. This is the Jones-Witten theory of knot and 3-manifold
invariants. This theory falls outside the main line of this article, but we will say a
little about it since it draws on many of the ideas we have discussed. The goal of
the theory is to construct a family of 2 + 1-dimensional Topological Field Theories
indexed by an integer k, asssigning complex vector space Hk(Σ) to a surface Σ
and an invariant in Hk(∂Y ) to a 3-manifold-with-boundary Y . If ∂Y is empty, the
vector space Hk(∂Y ) is taken to be C, so one seeks numerical invariants of closed
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3-manifolds. Witten’s idea [70] is that these invariants of closed 3-manifolds are
Feynmann integrals ∫

A/G
ei2πkCS(A)DA.

This functional integral is probably a schematic rather than a rigorous notion. The
data associated to surfaces can however be defined rigorously. If we fix a complex
structure I on Σ we cane define a vector space Hk(Σ, I) to be

Hk(Σ, I) = H
0(M(Σ);Lk),

whereM(Σ) is the moduli space of stable holomorphic bundles/flat unitary connec-
tions over Σ and L is a certain holomorphic line bundle overM(Σ). These are the
spaces of “conformal blocks” whose dimension is given by the Verlinde formulae.
Recall thatM(Σ), as a symplectic manifold, is canonically associated to the surface
Σ, without any choice of complex structure. The Hilbert spaces Hk(Σ, I) can be
regarded as the quantisation of this symplectic manifold, in the general framework
of Geometric Quantisation: the inverse of k plays the role of Planck’s constant.
What is not obvious is that this quantisation is independent of the complex struc-
ture chosen on the Riemann surface: i.e. that there is a natural identification of the
vector spaces (or at least the associated projective spaces) formed using different
complex structures. This was established rigorously by Hitchin [34] and Axelrod
et al [10], who constructed a projectively flat connection on the bundle of spaces
Hk(Σ, I) over the space of complex structures I on Σ. At a formal level, these
constructions are derived from the construction of the metaplectic representation
of a linear symplectic group, since the MΣ are symplectic quotients of an affine
symplectic space.

The Jones-Witten invariants have been rigorously established by indirect means,
but it seems that there is still work to be done in developing Witten’s point of view.
If Y + is a 3-manifold with boundary one would like to have a geometric definition
of a vector in Hk(∂Y

+). This should be the quantised version of the submanifold
L+ (which is Lagrangian inMΣ) entering into the Casson theory.

4.6 Seiberg-Witten invariants.

The instanton invariants of a 4-manifold can be regarded as the integrals of cer-
tain natural differential forms over the moduli spaces of instantons. In [69], Witten
showed that these invariants could be obtained as functional integrals, involving a
variant of the Feynmann integral, over the space of connections and certain auxil-
iary fields (insofar as this latter integral is defined at all). A geometric explanation
of Witten’s construction was given by Atiyah and Jeffrey [8]. Developing this point
of view, Witten made a series of predictions about the instanton invariants, many
of which were subsequently verified by other means. This line of work culminated
in 1994 where, applying developments in supersymmetric Yang-Mills QFT, Seiberg
and Witten introduced a new system of invariants and a precise prediction as to
how these should be related to the earlier ones.

The Seiberg-Witten invariants [73] are associated to a Spinc structure on a 4-
manifold M . If M is simply connected this is specified by a class K ∈ H2(M ;Z)
lifting w2(M). One has spin bundles S

+, S− →M with c1(S±) = K. The Seiberg-
Witten equation is for a spinor field φ—a section of S+ and a connection A on
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the complex line bundle Λ2S+. This gives a connection on S+ and hence a Dirac
operator

DA : Γ(S
+)→ Γ(S−).

The Seiberg-Witten equations are

DAφ = 0 , F+A = σ(φ),

where σ : S+ → Λ+ is a certain natural quadratic map. The crucial differential-
geometric feature of these equations arises from the Weitzenbock formula

D∗ADAφ = ∇
∗
A∇Aφ+

R

4
φ+ ρ(F+)φ,

where R is the scalar curvature and ρ is a natural map from Λ+ to the endo-
mophisms of S+. Then ρ is adjoint to σ and

〈ρ(σ(φ))φ, φ〉 = |φ|4.

It follows easily from this that the moduli space of solutions to the Seiberg-Witten
equation is compact. The most important invariants arise when K is chosen so that

K.K = 2χ(M) + 3sign (M),

where χ(M) is the Euler characteristic and sign (M) is the signature. (This is just
the condition for K to correspond to an almost complex ctructure on M .) In this
case the moduli space of solutions is 0 dimensional (after generic perturbation) and
the Seiberg-Witten invariant SW (K) is the number of points in the moduli space,
counted with suitable signs.
Witten’s conjecture relating the invariants, in its simplest form, is that when M

has simple type the classes K for which SW (K) is non-zero are exactly the basic
classes Kr of Kronheimer and Mrowka and that

βr = 2
C(M)SW (Kr),

where C(M) = 2 + 1
4 (7χ(M) + 11sign (M)). This asserts that the two sets of

invariants contain exactly the same information about the 4-manifold.
The evidence for this conjecture, via calculations of examples, is very strong.

A somewhat weaker statement has been proved rigorously by Feehan and Leness
[29]. They use an approach suggested by Pidstragatch and Tyurin, studying mod-
uli spaces of solutions to a non-abelian version of the Seiberg-Witten equations.
These contain both the instanton and abelian Seiberg-Witten moduli spaces and
the strategy is to relate the topology of these two sets by standard localisation
arguments. (This approach is related to ideas introduced by Thaddeus [63] in the
case of bundles over Riemann surfaces.) The serious technical difficulty in this ap-
proach stems from the lack of compactness of the nonabelian moduli spaces. The
more general versions of Witten’s conjecture [46] (for example when b+(M) = 1)
contain very complicated formulae, involving modular forms, which presumeably
arise as contributions from the compactification of the moduli spaces.
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4.7 Applications.
Regardless of the connection with the instanton theory, one can go ahead directly

to apply the Seiberg-Witten invariants to 4-manifold topology, and this has been the
main direction of research over the past decade. The features of the Seiberg-Witten
theory which have lead to the most prominent developments are

(1) The reduction of the equations to 2-dimensions is very easy to understand.
This has lead to proofs of the Thom conjecture and wide-ranging generali-
sations [52].

(2) The Weitzenboch formula implies that if M has positive scalar curvature
solutions to the Seiberg-witten equations must have φ = 0. This has lead
to important interactions with 4-dimensional Riemannian geometry [44].

(3) In the case when M is a symplectic manifold there is a natural deformation
of the Seiberg-Witten equations, discovered by Taubes [61], who used it to
show that the Seiberg-Witten invariants of M are non-trivial. More gener-
ally, Taubes showed that for large values of the deformation parameter the
solutions of the deformed equation localise around surfaces in the 4-manifold
and used this to relate the Seiberg-Witten invariants to the Gromov the-
ory of pseudo-holomorphic curves. These results of Taubes have completely
transformed the subject of 4-dimensional symplectic geometry.

Bauer and Furuta [11] have combined the Seiberg-Witten theory with more so-
phisticated algebraic topology to obtain further results about 4-manifolds. They
consider the map from the space of conections and spinor fields defined by the for-
mulae on the left hand side of the equations. The general idea is to obtain invariants
from the homotopy class of this map, under a suitable notion of homotopy. A tech-
nical complication arises from the gauge group action, but this can be reduced to
the action of a single U(1). Ignoring this issue, Bauer and Furuta obtain invariants
in the stable homotopy groups limN→∞ πN+r(S

N ), which reduce to the ordinary
numerical invraints when r = 1. Using these invariants they obtain results about
connected sums of 4-manifolds, for which the ordinary invariants are trivial. Using
refined cobordism invariants ideas, Furuta made great progress towards resolving
the question of which intersection forms arise from smooth, simply-connected 4-
manifolds. A well known conjecture is that if such a manifold is spin then the
second Betti number satisfies

b2(M) ≥
11

8
|sign (M)|.

Furuta [31] proved that b2(M) ≥ 10
8 |sign (M)|+ 2.

An important and very recent achievement, bringing together many different
lines of work, is the proof of “Property P” in 3-manifold topology by Kronheimer
and Mrowka [43]. This asserts that one cannot obtain a homotopy sphere (coun-
terexample to the Poincaré conjecture) by +1-surgery along a non-trivial knot in
S3. The proof uses work of Gabai and Eliashberg to show that the manifold ob-
tained by 0-framed surgery is embedded in a symplectic 4-manifold; Taubes’ results
to show that the Seiberg-Witten invariants of this 4-manifold are non-trivial; Fee-
han and Leness’ partial proof of Witten’s conjecture to show that the same is true
for the instanton invariants; the gluing rule and Floer’s exact sequence to show that
the Floer homology of the +1-surgered manifold is non-trivial. It follows then from
the definition of Floer homology that the fundamental group of this manifold is not
trivial; in fact it must have an irreducible representation in SU(2).
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