
This notes are a supplement to the notes on the previous (2008) version of
the course. Exercises for the 2010 version will be found at the end.

1 The Poisson equation Δf = ρ on a compact
manifold

This followed the earlier notes closely.

2 Applications to Riemann surfaces

This followed Chapter 8 and 10 of the notes “Riemann Surfaces” on this website.

3 General Theory of Linear Elliptic operators

Followed the earlier notes with the addition of the following discussion.
Let D : Γ(E) → Γ(E) be a first order self-adjoint elliptic operator over a

manifold M . Then over M ×R (or M × S1) we have an operator δ = ∂
∂t
+D

which is again elliptic, with adjoint − ∂
∂t
+ D. Now suppose that δ : Γ(E) →

Γ(F ) is an elliptic operator over a manifold N . We get a self-adjoint operator
δ + δ∗ : Γ(E ⊕ F ) → Γ(E ⊕ F ). Performing the construction above we get a
new operator over N ×R or N ×S1 where we now take s as co-ordinate on the
extra factor. Compose with the algebraic operator which acts as i on E and −i
on F . This gives a self-adjoint operator

(
i 0
0 −i

)(
∂s δ
δ∗ ∂s

)

=

(
i∂s iδ
−iδ∗ −i∂s

)

.

Thus starting with a self-adjoint operator in one dimension n we get another
in dimension n + 2 and we can repeat the process. Begin in dimension 1 with
D = i∂θ. In dimension 2 we get the Cauchy-Riemann operator ∂ = ∂t+ i∂θ. In
dimension 3 we get the Dirac operator

(
i∂s −∂θ + i∂t

∂θ + i∂t −i∂s

)

.

And in general this process generates the Dirac operator on Rn for all n. What
is not obvious is that this operator commutes with an action of the (double cover
of) the orthogonal group, and we get corresponding operators on Riemannian
manifolds with “spin structures”.
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4 The heat equation and Weyl’s formula

Let M be a compact Riemannian n-manifold. From the spectral decomposition
of the Laplacian we know that we have for t ≥ 0 an operator Kt : L2 → L2,
defined by Kt(φλ) = e

−λtφλ. We can take the Sobolev norms to be

‖
∑

aλφλ‖
2
L2
k
=
∑

λk|aλ|
2.

Then it is clear from our elliptic inequalities and Sobolev embedding that Kt is
bounded on any L2k, with bound independent of t, and for t > 0 is given by a
smooth kernel

kt(x, y) =
∑

e−λtφλ(x)φλ(y).

RemarkWe can also see that Kt is a contraction on C
0 using the maximum

principle. But we do not use this.

We want to get an asymptotic description of kt for small t. We know that
on Rn the fundamental solution of the heat equation is (4πt)−n/2e−x

2/4t. Fix
a point y0 on M and work in geodesic coordinates around this point. Let r be
the Riemannian distance to this point. Our first guess (dropping the factor) is

Φ = t−n/2e−r
2/4t.

Computing we find that

(∂t +Δ)Φ = −Φ
1

4t
(2n+Δr2) =

WΦ

t
,

say. Note that W =W (x) is smooth and vanishes at the origin (i.e at y0).
The next step is to improve things by considering a multiple Ψ = βΦ where

β = β(x) is smooth, to be chosen suitably. We find that

(∂t +Δ)Ψ =

(

β
W

t
+Δβ −

1

2t
r∂rβ

)

Φ.

Where in geodesic coordinates xi we have

r∂r =
∑

xi
∂

∂xi
.

The key observation is that for any smooth function G(x) which vanishes
at the origin we can solve the equation r∂rf = G. In fact for our purposes we
could just use polynomials. The we can use the fact that the monomials are
eigenvectors for the operator:

r∂r(x
n1
1 x

n2
2 ) = (n1 + n2)x

n1
1 x

n2
2 .

Since W vanishes at the origin we can solve r∂rf = 2W and then set β = ef .
Then (∂t +Δ)Ψ = Q0Ψ where Q0 = Q0(x) is smooth (in fact Q0 = Δβ).
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Now we seek an asymptotic expansion

Ψ(1 + a1(x)t+ a2(x)t+ . . .)

where the ap are smooth. Suppose inductively that we have defined ai for
i ≤ p− 1 in such a way that Sp−1 = ψ(1 + a1t . . .+ tp−1ap−1) has

(∂t +Δ)Sp−1 = Qp−1(x)t
p−1Ψ,

for smooth Qp−1. When p = 1 this is what we have achieved above. Now for
a = a(x)

(∂t +Δ)(t
paΨ) = atp(∂t +Δ)Ψ+ pt

p−1aΨ+ tpΨΔa+ 2∇a.∇ββ−1Ψ+
Ψ

t
r∂ra.

This is

(∂t +Δ)(t
paΨ) = Ψtp

(

H +
1

t
(r∂ra+ pa)

)

,

where H = aQ0+Δa− 2∇a.∇ββ−1. Thus H depends on a but for any smooth
a we get a smooth H. Now for p > 0 we can solve the equation (r∂rf +pf) = G
for any G. So define ap to be the solution of

(r∂ra+ pa) = −Qp−1,

and then we continue the induction with Qp the function H, defined by this ap.

Fix p > n/2 and let k̃t(x) = (4π)
−n/2Ψ(1 + a1t + . . . apt

p). The difference

ηt(x) = k̃t(x) − kt(x, y0) has (∂t + Δ)η = ρt where |ρt| ≤ C. One sees easily
that ηt → 0 as t→ 0 in the sense of distributions. Thus ηt =

∑
ηλ(t)φλ where

ηλ(t)→ 0 as t→ 0. Then

(
d

dt
+ λ)ηλ = ρλ

and

ηλ(t) =

∫ t

0

ρλ(s)e
λ(s−t)ds.

That is

ηt =

∫ t

0

Kt−s(ρs)ds.

(This is Duhamel’s formula.) Now one can either use the fact that Kt is a
contraction on C0 or argue as follows. It is easy to compute that the L2k norm

of e−x
2/t is O(tn/4−k/2). Choose k the smallest integer such that k − n/2 > 0.

Thus k − n/2 is at most 1 and the norm above is at most O(t−1/2). Using the
fact that Kt is uniformjly bounded in operator norm on L

2
k we have

‖ηt‖L2k ≤ C
∫ t

0

s−1/2ds ≤ Ct1/2.
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Now the Sobolev embedding L2k → C0 implies that |ηt| ≤ Ct1/2. In other words

Kt(x, y0) = (4πt)
−n/2Ψ(1 + . . .+ apt

p) +O(t1/2).

Clearly the same argument applies with error O(tq), for any q, if we take
enough terms in the expansion, and everything is uniform in the point y0.

The contribution of the 0 eigenvalue of the Laplacian to kt(x, y) is the con-
stant c = Vol(M)−1. We have

∫ ∞

0

kt(x, y)− cdt =
∑

λ>0

λ−1φλ(x)φλ(y)

and this is the Green’s kernel G(x, y). That is, the solution of Δf = ρ, when ρ
has integral 0 and the solution is normalised to have integral zero, is

f(x) =

∫

M

G(x, y)ρ(y)dy.

Now set

G̃(x, y) =

∫ 1

0

kt(x, y)dt.

Then G differs from G̃ by the addition of a smooth function on M ×M . We
can approximate G̃ using our asymptotic expansion of kt:

∫ 1

0

e−r
2/4ttp−n/2dt =

(
r2

4

)p−n/2+1 ∫ ∞

r2/4

e−uun/2−p−2du.

If p < n/2− 1 we can replace the lower limit by 0 since we only the change the
result by a smooth function. Then we get a term in r2p−n+2. If p > n/2− 1 the
contribution is smooth so we can discard it. If p = n/2 − 1 (and so n must be
even) we get a log r term. The upshot is an asymptotic expansion of G(x, y0),
for n odd;

b0r
2−n + b1r

4−n + . . . bmr
−1 +O(1),

and for n even (and say > 2);

b0r
2−n + . . . bmr

−2 + β log r +O(1).

Where bi are smooth functions which can be obtained from the asymptotic
expansion of the heat kernel. We cannot go on to obtain the O(1) terms by such
local considerations.
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4.1 The Weyl formula.

Let N(ρ) be the number of eigenvalues less that or equal to ρ. Weyl’s formula
is

N(ρ) ∼
1

(4π)n/2Γ(n/2 + 1)
Vol(M)ρn/2,

as ρ → ∞. For example in the case of a torus this amounts to the asymptotic
relation between the volume of an ellipsoid and the number of lattice points it
contains, using the fact that the volume of the unit ball in Rn is πn/2/Γ(n/2+1).

The argument is to consider the integral I(t) =
∫
M
kt(x, x)dx. This is the

“trace” of the operator Kt,

I(t) =
∑

λ

e−λt.

By our asymptotic formula we know that

I(t) ∼ (4πt)−n/2Vol(M),

as t → 0. To simplify notation suppose that Vol(M) = (4π)n/2 and write
n/2 = m. What we need to show is that if we have a countable, locally finite,
set of positive numbers λ and if

∑
e−λt ∼ t−m then N(ρ) ∼ (1/Γ(m + 1))ρm.

This is done using Tauberian theory.
Let dν be the counting measure defined by the set {λ}–a sum of δ-functions

at these points. Set v = t−1 so we can write

tmI(t) =

∫ ∞

u=0

(u/v)me−(u/v) u−mdν(u).

which is ∫ ∞

u=0

f(u/v) u−mdν(u), (1)

where f(u) = ume−u. On the other hand writing v = ρ

v−mN(v) =

∫ ∞

u=0

g(u/v) u−mdν(u), (2)

where g(u) = um if 0 ≤ u ≤ 1 and g(u) = 0 if u > 1. Now write u = ey. Let
dμ be the measure on R given by point masses e−my at the points y = log λ.
Then (1) becomes

A(z) =

∫ ∞

−∞
F (y − z)dμ(y),

where F (y) = emy exp(−ey), while (2) becomes

B(z) =

∫ ∞

−∞
G(y − z)dμ(y),
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with G(y) = emy if y < 0 and 0 otherwise. Here z = log v. What we need to
show is that if A(z) tends to 1 as z →∞ then B(z) tends to 1/Γ(m+ 1).

Consider the Fourier transform F̂ (ξ). This can be written as

F̂ (ξ) =

∫ ∞

0

um−1+iξe−udu,

which is Γ(m + iξ). In particular the integral of F is Γ(m). The crucial fact
however is that the Fourier Transform does not vanish for any ξ ∈ R. Indeed
the Γ function has no zeros in C since Γ(z)Γ(1−z) = π/ sinπz. Now the integral
of G is 1/m so the ratio of the inetgrals of F and G is mΓ(m) = Γ(m+1) which
is the factor we want. After rescaling, we can cast our question in the following
form. We have a function F of (Lebesgue) integral 1 and with nowhere-vanishing
Fourier transform. We have a measure μ such that A(z) above is defined for all
z, is bounded by a fixed constant for all z and tends to limit 1 as z → ∞. For
another function G we want to be able to deduce that B(z) tends to a limit L
where L =

∫∞
−∞G(y)dy. This is the content of Wiener’s Tauberian Theorem,

under suitable hypotheses on the functions F,G. The line of proof is

• The result is trivially true if G is a translate of F .

• The result is true if G is a finite linear combination of translates G(y) =
∑N
i=1miF (y − zi).

• Now consider functions G with Ĝ of compact support. Then Ĝ/F̂ is a
smooth function of compact support and so has an inverse Fourier Trans-
form M(y). By construction G = M ∗ F and this says that G is a “con-
tinuous linear combination” of translates of F ,

G(y) =

∫
M(z)F (y − z)dz.

Approximating the integral by a sum we deduce what we want.

• Finally approximate our given G (under suitable hypotheses) by functions
with Fourier transforms of compact support.

Given the idea, and some standard background in Fourier analysis, the details
are fairly straightforward.

Digression These ideas were applied by Wiener to the proof the Prime
number theorem (PNT). Let π(n) be the number of primes ≤ n. The PNT
states that π(n) ∼ n/ log as n→∞. Recall that Riemann’s zeta function is

ζ(s) =

∞∑

n=1

n−s.
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This is defined initially for <(s) > 1 and then extended by analytic continuation
with a pole at s = 1. Wiener operates with the function

Λ(n) = log p ifn = pk,

and Λ(n) = 0 otherwise. There is an identity, for 0 ≤ x < 1

∞∑

m=1

logmxm =

∞∑

m=1

Λ(m)
xm

1− xm
.

With some work, this leads to

lim
N→∞

1

N

∑
Λ(n)h(n/N) = 1, (1PNT )

where h is the function

h(x) =
d

dx

(
x

ex − 1

)

.

On the other hand, with some more work, it can be shown that the PNT follows
from the statement

lim
N→∞

1

N

N∑

n=1

Λ(n) = 1. (2PNT ).

So the problem is to show that (1PNT) implies (2PNT). But now we can write
the expression on the left hand side of (1PNT) as

lim
N→∞

∫ ∞

0

f(n/N)dμ,

where μ is the sum of point masses p−k log p at powers pk and f(x) = xh(x).
The expression on the left hand side of (2PNT) is

lim
N→∞

∫ ∞

0

g(n/N)dμ,

where g(x) = x for x ≤ 1 and otherwise zero. So we are exactly in the situation
considered before and the crucial thing we need is that the corresponding Fourier
transform has no zeros. That is

∫ ∞

0

d

dx

(
x

ex − 1

)

xitdx 6= 0,

for t real. The final ingredient in Wiener’s argument is an identity

∫ ∞

0

d

dx

(
x

ex − 1

)

xitdx = itζ(1 + it)Γ(1 + it).

So the information needed about the ζ-function is that it has no zeros on the
line <(s) = 1.
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5 Some techniques for nonlinear problems

The first part of this followed closely the older notes.

Weyl’s Problem

Now we discuss a much harder problem but where the overall strategy is the
same.

Theorem 1 Any metric on S2 with strictly positive curvature can be isometri-
cally embedded in R3, and the embedding is unique up to Euclidean motions.

We concentrate first on the existence. The strategy is

• Show that the set of metrics with positive curvature is connected.

• Show that the subset which can be embedded is open.

• Show that the subset is closed, by establishing a priori estimates.

The first item is easy. By the uniqueness of the complex structure on S2 it
suffices to consider metrics e2fg0 where g0 is the round metric. Then use the
path e2tfg0.
Openness is much more tricky and will be our main topic. We can set up teh

problem in an obvious way: we have a space of embeddings ι : S2 → R3 which
is an open subset of C∞(S2;R3) and any ι gives an induced metric gι = F(ι)
on S2. We can compute the linearisation of F . This is a map from vector fields
defines along S = ι(S2) to symmetric 2-tensors on S2. We write the vector
fields as the sum of tangential and normal components so we have a pair (v, φ)
where v is a vector field on S2 and φ is a function. Then

DF(v, φ) = Lvg + φB,

where g = gι, L is the Lie derivative and B is the second fundamental form of
the embedding. The good feature is that this is linear operator is surjective, that
is

Proposition 1 For any variation δg there is a pair (v, φ) with Lvg+φB = δg.
Moreover the solution is unique modulo the infinitesimal isometries of R3.

The bad feature is that this operator DF is not elliptic, since it involves no
derivatives of φ. We postpone the proof of the proposition for the moment.
There is a more sophisticated implicit function theorem (Nash-Moser) which

can handle problems of this kind, but we do not want to use that, so we seek
another way of setting the problem up. We use classical surface theory. Given
any metric g on S2 and a symmetric 2-tensor B we get an immersion in R3

provided that
B ∧B = K(g) DgB = 0.
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Here Dg : Γ(s
2) → Γ(T ∗) is a linear operator which can be written in local

co-ordinates as
Dg(Bij) = (det g)ε

jkBij;k.

So we can set up the problem in a different way, trying to show that if K(g) > 0
there is a solution B to these equations. The good feature is that this is an
elliptic equation. The bad feature is that the associated linearised operator is
not surjective, so we appear to have an obstruction to deforming a solution. We
want an argument which combines the good features of each approach, but this
will involve some more detailed differential geometry.
Let us return to the Proposition. Write s2 = s20 ⊕ R so B = B0 + Hg.

The scalar component of v 7→ Lvg is the divergence of vThe space s20 can be
identified with quadratic differentials or equally with (0, 1) forms with values in
the complex tangent bundle. Then the s20 component of the operator v 7→ Lvg
is the ∂-operator on the tangent bundle. If δg = σ + fg the equation to be
solved becomes

∂v +

(
B0

H

)

divv =

(

σ + f
B0

H

)

.

So we have to show that v 7→ ∂v +
(
B0
H

)
divv is surjective. This is an elliptic

operator as one can check. (It clearly is so near to the round metric, since ∂ is
elliptic.)
There is a general simple criterion, due to Gromov, for showing that opera-

tors of this kind are surjective. Consider first the ∂-operator. The adjoint can
be identified with another ∂-operator so the kernel can be interpreted as holo-
morphic sections of a line bundle. If this line bundle has negative degree then
there can be no kernel, since all zeros have positive multiplicty. The point is
that the same argument can be applied, with more work, to deformations of the
∂-operator such as we have at hand. The relevant bundle is the square of the
cotangent bundle (quadratic differentials) which has degree −4 so the criterion
applies.
By deforming to the round metric we see that the index of this operator is

6. This is the same as the dimension of the Euclidean group, so there can be no
more kernel and we get infinitesimal uniqueness. This is the classical rigidity
of convex surfaces (and there is an alternative classical proof which uses more
differential geometric arguments).
We can apply the same ideas to the other point of view. Amazingly, the com-

ponent of Dg mapping from s20 is again a ∂-operator, now acting on quadratic
differentials. We write B = B0 + fH and eliminate f so that our equation
becomes a single equation for B0

∂B0 = d
√
K + |B0|2.

Again we check that this is elliptic which is the good feature but now the signs
work against us, the linearisation has index −6 and there must be a cokernel of
dimension 6 (there is no kernel by the same reasoning as before).
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Now we begin the argument. Choose a 6-dimensional subspace E represent-
ing the cokernel. For all nearby metrics g′ we can use the implicit function
theorem to solve our problem “modulo E”. That is we can solve

B′ ∧B′ = K(g′) Dg′B
′ = η,

for some η(g′) ∈ E, and the solution (among sufficiently small variations) is
unique. We want to show that in fact η(g′) = 0. Such an identity usually
reflects some underlying geometric principle but in this case the underlying
cause is rather mysterious, at least for the lecturer.

Return to the infinitesimal problem with a variation δg. We know how to
solve the problem in the formulation so we have a (v, φ) with Lvg + φB = δg.
We can compute the associated infinitesimal change in B,

δB = LvB +∇∇φ+ φB
2.

Now we can substitute this formula into the other formulation and by straight
calculation show that

δ(B ∧B) = δ(Kg), δ(Dg(B)) = 0. (∗∗)

Of course it is clear on general grounds that this must be true ( by an “in-
finitesimal deformation of surface theory”) but the assertion is just a differential
geometric identity which can be verified. For example one can derive and apply
a formula

δΩg = dDg(δg),

for the curvature 2-form Ωg; and, if δg = γ,

(δDg)β = ε
ij(γia;k − γik;a)βaj + (Dgγ)aβai +Dg(γiaβaj)− γia(Dgβ)a,

for the variation in the operator Dg with respect to g. The second formula arises
from the formula for the Christoffel symbols

Γjjk =
1

2
gja(gaj,k + gak,j − gjk,a).

The first formula can be established by reducing to the two cases δg = Lwg and
δg = fg.
The discussion of the identity (**) has been in the case of a genuine solution,

i.e. η = 0. But even if g,B is not a solution we can make the same ansatz. We
solve δg = Lv(g) + φB and define δB by the formula above. The identitry does
not hold but it does modulio terms involving η. That is we get

‖δ(DgB)‖, ‖δ(B ∧B −Kg)‖ ≤ C‖η‖,

(and it does not matter what norms we use since E is finite dimensional). Now
join nearby metrics by a path so we have η(t). The inequality above implies
that

‖
dη

dt
‖ ≤ C‖η‖,
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and it follows that if η(0) vanishes then η(t) is always zero. This establishes the
openness part of the proof.

The a priori estimates use the maximum principle. We need an identity

(Hgij −Bij)Hij = ΔK + |∇B0|
2 − |∇H|2 +K(H2 − 4K). (∗ ∗ ∗).

Assuming this we argue that at a point where H is maximal the LHS above
is negative and |∇H| = 0 so we get a bound on H.
Now once H is bounded the whole second fundamental form is also. From

this it is not hard to get estimates of all higher derivatives but we postponce
this since we need to develop more standard theory.

The identity (***) can best be understood as a formula for Δ(B ∧B). The
quadratic form B ∧B is |H|2 − |B0|2 hence

(1/2)ΔK = ∇∗∇B ∧B + |∇H|2 − |∇B0|
2.

Now operate with the term ∇∗∇B. In flat space R2 we have an identity of
the shape

∇∗∇β = D∗Dβ + LDβ +∇∇Trβ,

for any symmetric 2-tensor β. Here L is the operator v 7→ Lvg. On a curves
surface we get a curvature term, schematically:

∇∗∇β = D∗Dβ + LDβ +∇∇Trβ +K ∗ β.

Apply this to β = B and use the fact that DgB = 0 to get

∇∗∇B ∧B = ∇∇H ∧B +K ∗B ∧B,

and this gives the formula.

Finally we discuss uniqueness. This is another classical “rigidity” theorem,
but we can also argue as follows. Consider first the case of the round metric g0
with K = 1. Then ΔK = 0 and the maximum principle applied to (***) shows
that B0 is identically zero, since H

2−4k ≥ 0 with equality iff B0 = 0. It follows
that the embedding is standard. Now suppose there were two embeddings of
some other metric g1. Join this to g0 by a path gt. The argument above (local
uniqueness under deformation) shows that we could deform both solutions for
g1 back to g0: a contradiction.
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6 Schauder and Calderon-Zygmund inequalities,
Sobolev embedding theorems and Singular In-
tegral operators

There is material on this in the older notes, but here we give more proofs.

The Sobolev spaces L2k are inadequate for many problems, especially involv-
ing nonlinear PDE. Thinking back to our treatment of the general theory what
we see is that we want other norms such that on functions of compact support,
say, we have ‖∇lf‖ ≤ C‖Df‖, where D is an elliptic operator of order l. There
are two standard things we can use: Holder norms and Sobolev norms based on
Lp for general p, rather than just L2. The relevant estimates are the Schauder
and Calderon-Zygmund inequalities, respectively.

6.1 The Schauder Theory

Notation Fix ν ∈ (0, 1). For any function f on Rn we write

[f ]ν = sup
x1 6=x2

|f(x1)− f(x2)|
|x1 − x2|ν

,

where sup =∞ is allowed.

Let G be the Green’s operator on Rn with n > 2. This is given by the
Newton kernel

Gρ(x) =

∫
G(x, y)ρ(y)dy.

Let D be one of the differential operators ∂2

∂xi∂xj
and define T = D ◦G. This is

certainly defined on in the sense that if, say, ρ is a smooth function of compact
support then Tρ ∈ C0 is defined pointwise.
The basic Schauder estimate is

Theorem 2 There is a constant C depending on ν, n such that for any smooth
function ρ of compact support

[Tρ]ν ≤ C[ρ]ν .

Preliminaries
It follows from the definition that T commutes with dilation. That is, if we

write fλ(x) = f(λ
−1x) then (Tf)λ = T (fλ). Using this, and linearity, it suffices

to prove the estimate
|Tρ(x1)− Tρ(x2)| ≤ C,

for points x1, x2 with |x1−x2| = 1 and for functions ρ ∈ C∞c (R
n) with [ρ]ν = 1.
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Fix a smooth function ψ supported in {|x| ≤ 1} and with Δψ(x) = 1 when
|x| ≤ δ. Let χ = Δψ, so χ = 1 on the δ ball and Tχ = Dψ. Let c0 = [χ]ν and
c1 = [Tχ]ν .
Now the proof has two main steps

Step 1 Reduction to the case when ρ(x1) = ρ(x2) = 0.

Clearly we can suppose that x1 = 0. Let λ = max(δ
−1, |ρ(x2)|1/ν) and define

σ0 = ρ(x2)χλ. Then σ0(0) = σ0(x2) = ρ(x2) but, from the scaling behaviour,

[σ0]ν ≤ c0 [Tσ0]ν ≤ c1.

Now define
σ1 = (ρ(0)− ρ(x2))χ.

Then σ1(0) = ρ(0)− ρ(x2), σ1(x2) = 0 while

[σ1]ν ≤ c0, [Tσ1]ν ≤ c1,

where we have used the fact that |ρ(x2)− ρ(0)| ≤ [ρ]ν = 1, by our hypotheses.
Now set ρ′ = ρ− σ0 − σ1. Then ρ′ vanishes at 0 and x2 and we have

[ρ′]ν ≤ [ρ]ν + 2c0 = 1 + 2c0 , [Tρ]ν ≤ [Tρ
′]ν + 2c1.

It suffices to prove that [Tρ′]ν ≤ C[ρ′]ν or, simplifying notation, to assume that
we are in the case when ρ(0) = ρ(x2) = 0.

Step 2 Integral estimates.
Let K(x, y) = DxG(x, y) where the notation indicates that the derivatives

are taken with respect to the x-variable. Then formal manipulation would
suggest that

Tρ(x) =

∫
K(x, y)ρ(y)dy (∗).

However the kernel K is not locally integrable. In fact

|K(x, y)| = c|x− y|−n

for some c. So this formula does not make sense as its stands. But if ρ ∈ C∞c (R
n)

vanishes at x then clearly the integral in (*) is well-defined.

Proposition 2 If ρ ∈ C∞c (R
n) has ρ(x) = 0 then the formula (*) holds.

This is an exercise.
Now to complete the proof we have to estimate

∫
(K(0, y)−K(x2, y))ρ(y)dy,

13



when ρ(0) = ρ(x2) = 0 and [ρ]ν = 1. First consider the region where |y| ≥ 2,
say. Clearly we have

|K(0, y)−K(x2, y)| ≤ c3|y|
−(n+1),

for some c3. Since |ρ(y)| ≤ |y|ν we have
∫

|y|≥2
|K(0, y)−K(x2, y)||ρ(y)|dy ≤ c3

∫ ∞

2

r−(n+1)rνrn−1dr,

which is finite since ν < 1.
Now we certainly have

∫

|y|≤2
|K(0, y)−K(x2, y)|ρ(y)dy ≤ I1 + I2,

where

I1 =

∫

|y|≤2
|K(0, y)ρ(y)|dy , I2 =

∫

|y−x2|≤3
|K(x2, y)ρ(y)|dy.

Using the fact that ρ(0) = 0 we have

I1 ≤ c
∫ 2

0

r−nrνrn−1dr,

which is finite since ν > 0. Similarly for I2, using the fact that ρ(x2) = 0.
Using this it is straightforward to deduce that on a compact manifold we

have
‖f‖Ck+2,ν ≤ C(‖Δf‖Ck,ν + ‖f‖C0),

and similarly for other elliptic operators.

6.2 Sobolev Inequalities

Recall some basics. On the functions on a measure space X we have Lp norms.
Knowing these is related to knowing the distribution function. We set Ω(t) =
{x ∈ X : |F (x)| > t} and μF (t) = Vol(Ω(t)). Then

‖F‖L1 =
∫ ∞

0

μF (t)dt,

and

‖F‖pLp =
∫ ∞

0

μF (t
1/pdt = p

∫ ∞

0

μF (t)t
p−1dt.

Now consider functions on Rn. The basic facts are that if F ∈ C∞c (R
n)

then
‖f‖Lq ≤ Cp,q‖∇F‖Lp ,

14



where 1 − n/p = −n/q. If 1 − n/p > 0 and if F is supported in the unit ball
then the result holds q =∞.

The proof in the case q =∞ is easy by integrating ∇F along rays, using the
fact that the function r−(n−1) is locally in Ls for s < n/n − 1 and n/n − 1 is
the conjugate exponent to n (in the sense of Holder’s inequality).

For the remainder we can easily reduce to the case F ≥ 0, p = 1, q = n/n−1,
by considering powers of |F |. So we want to show

∫
Fn/n−1 ≤ C

(∫
|∇F |

)n/n−1
.

This is equivalent to the isoperimetric inequality Vol(Ω)1/n ≤ CVol(∂Ω)1/n−1

for domains Ω ⊂ Rn. The point is that if χΩ is the characteristic function of Ω
one has

‖∇χΩ‖L1 = Vol(∂Ω),

where the left hand side is defined by a smoothing procedure. Then if

Ω(t) = {x ∈ Rn : F ≥ t},

and Ft = χΩ(t) we have

F =

∫ ∞

0

Ftdt,

so

‖F‖Ln/n−1 ≤
∫ ∞

0

‖Ft‖Ln/n−1 ≤ C
∫ ∞

0

Vol(∂Ω(t))dt.

The co-area formula is
∫ ∞

0

Vol(∂Ωt)dt =

∫

Rn
|∇F |.

There are many proofs of the isoperimetric/Sobolev inequalities.

6.3 Singular integral operators

We encountered above the operator T = D ◦ G over Rn given formally by
convolution by K where |K(x)| = c|x|−n. More precisely, K is homogeneous of
degree −n:

K(λx) = λ−nK(x).

Suppose that D is a derivative ∂i∂j with i 6= j. Then it is easy to see that K
has the form K(x) = cxixj |x|−(n+2). In particular the average value of K over
the unit sphere is zero. Then we can define T as a singular integral operator

T (f)(x) = lim
ε→0

∫

|y|>epsilon
K(y)f(x− y)dy.

15



Similarly if D is a differential operator
∑
aij∂i∂j with

∑
aii = 0. Since

ΔG = 1 we get a formula for D ◦G for all second order D.

Such operators occur in other ways: the basic example is the Hilbert trans-
form on R

Hf(x) = π−1
∫ ∞

−∞

f(y)

x− y
dy.

Taking Fourier transforms they go over to multiplication operators by K̂
which is homogeneous of degree 0. So T is bounded on L2.
The central result (Calderon-Zygmund) is:

Theorem 3 For each p with 1 < p < ∞, T defines a bounded operator T :
Lp(Rn)→ Lp(Rn).

It is possible to prove this in many cases by a trick to reduce to the the
Hilbert transform on R–separating into radial and angular variables. This ap-
plies initially to the case when the kernel K is an odd function. But we can
take composites to extend further. However the n-dimensional proof below is
more fundamental and the ideas apply to other problems in PDE and analysis.
The strategy of this proof of Proposition 8 is to interpolate, using what we

know about L2. The first obstacle is that the result is not even true for the
other extremes p = 1,∞. For example the Hilbert transform takes a function
with a “jump” discontinuity tone one with a logarithmic singularity. It is even
more obvious that a singular integral operator T of the kind considered on Rn

cannot map L1 to L1: for any function f , say of compact support, with

∫

Rn
f 6= 0

|Tf | decays like |x|−n at infinity and so is not integrable. The way around this
is to substitute “weak-type” bounds when p = 1. A map T is said to be of weak
type (1, 1) if

|{x : |Tf(x)| > α}| ≤
C

α
‖f‖L1 .

A simple form of the Marcinkiewicz interpolation theorem is

Theorem 4 If T is of weak type (1,1) and bounded as a map from L2 to L2

then T defines a bounded map from Lp to Lp for 1 < p ≤ 2

The proof involves only simple measure theory concepts and gives explicit
bounds on the Lp operator norms.

Now consider an operator T defined by a kernel

(Tf)(x) =

∫

Rn
k(y)f(x− y)dy.

16



We may even suppose k is smooth and of compact support initially if we like.
For example if we take

kδ(x) = π
−1 x

x2 + δ2
,

we can approximate the Hilbert transform by taking δ → 0. The crucial thing
is to get estimates which are independent of δ.

Theorem 5 Suppose the operator T above with kernel k satisfies

• ‖Tf‖L2 ≤ c1‖f‖L2

• |(∇k)(x)| ≤ c2
|x−y|n+1 ;

then

|{x : |Tf(x)| < α}| ≤
C

α
‖f‖L1 ,

where the constant C depends only on c1, c2.

Corollary 1 Such an operator defines a bounded map on Lp for all p > 1.
Moreover the Lp operator norm can bounded above by an explicit expression
involving only c1, c2.

To obtain the the corollary one uses the interpolation theorem to handle the
range 1 < p ≤ 2 and a duality argument to handle the range 2 ≤ p <∞.
From this Corollary one easily deduces the main Calderon-Zygmund result,

by approximating the singular kernel by smooth ones. (In fact the possible
presence of a singularity on the diagonal is irrelevant in the proof.) o

As motivation let us prove our result under an extra hypothesis. Suppose
that for each α > 0 the set Ωα = {|f | > α} is contained in a cube of volume
comparable to that of Ωα (more generally we could assume that Ωα is covered
by a fixed number of such cubes). the measure of {|Tf | > α} is bounded by the
measure of the doubled cube plus that of the part of the set outside the doubled
cube, and the latter is O(α−1)‖f‖L1 since k decays as |x|−n.

What we really need is something a little stronger.

Lemma 1 Let � be a cube in Rn of side-length r, and let �∗ be the cube with
the same centre and side length 2r. Then if β is a function supported in � with∫
� β = 0 we have

‖Tβ‖L1(Rn\�∗) ≤ c‖β|L1 ,

where the constant C depends only on c2 (and not on the scale r).
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This is quite easy.

Now the proof uses the famous Calderon-Zygmund cube decomposition of
a function. Suppose initially that f is continuous and has compact support.
Given α we find a large cube containing the support of f such that the average
value of |f | on the cube is less than α. Then we subdivide this cube into 2n

smaller ones. The rule is that we stop subdividing any cube once the average
value of |f | exceeds α. In this way we get a collection of disjoint cubes Qi such
that the average value of f on each Qi lies between α and 2

nα and |f | ≤ α
outside

⋃
Qi. Now write f = g + b where b =

∑
bi, each bi is supported in Qi

and on Qi,

bi = f −
1

|Qi|

∫

Qi

f.

The proof now follows by applying the Lemma to each bi, the L
2 hypothesis to

g, and piecing together what we know. The crucial thing is that the average
value of |f | on any cube Qi is bounded above and below by multiples of α.

6.4 Application to the measureable Riemann mapping the-
orem

Let μ be a function onC with |μ| ≤ k ≤ 1 and consider the operator ∂μ = ∂+μ∂.
If μ is smooth we can think of it as defining an almost complex structure Jμ on
C and ∂μ is the ∂-operator of this structure. A holomorphic function, in this
structure is a solution of ∂μf = 0. The MRMT says that this is still the case
if μ ∈ L∞ with |μ| ≤ k < 1. Moreover the structure Jμ is equivalent to the
standard one: there is a solution f of the equation which gives a homeomorphism
from C to C.
To prove this we first assume that μ has compact support. Write f = z + φ

so the equation to be solved is ∂μφ = −μ. Let S be the inverse of ∂ which is
given by the Cauchy kernel z−1 and T = ∂ ◦ S. We seek a solution φ = Sρ so
the equation is

ρ+ μTρ = −μ.

We have T : Lp → Lp. When p = 2 the identity

∫
|∂g|2 − |∂g|2 = 0,

for compactly supported smooth g shows that T : L2 → L2 is an isometry. It
follows from the proof of the CZ theorem that when p is close to 2 the operator
norm is close to 1. Fix p > 2 such that ‖Tρ‖Lp ≤ (1− δ)k−1‖ρ‖Lp for all ρ and
some fixed δ > 0. Then μT has operator norm less than 1 and we can solve
the equation by the usual Neumann series. We get a solution φ with ∇φ in Lp.
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Now Lp1 → Cν with ν = 1− 2/p. (This is where it is crucial to take p > 2.) So
we get an estimate

|f(x)− f(y)| ≤ |x− y|+ C‖μ‖Lp |x− y|
ν ,

where C depends only on k.
Now suppose for the moment that μ is smooth. Then we know that f is a

diffeomorphism and we can consider the inverse diffeomorphism g = f−1. This
satisfies an equation ∂μ′g = 0 where |μ′| < k. So we get the same estimates for
g and hence

|f(x)− f(y)| ≥ Cmin(|x− y|, |x− y|1/ν).

Now remove the smoothness hypothesis on μ. Now we cannot approximate a
general μ in L∞ norm (the space is not separable). But we can choose smooth
μi with μi → μ in LN for all N . Then it is easy to show that the solutions
φi converge to φ in L

p
1 and hence in C

,ν . Since the above estimates for fi are
uniform they hold also for f and we see that f is a homeomorphism from C to
C.
Finally there is a trick to remove the assumption that μ has compact support,

but we will not go into this.
An application of this result is the Bers simultaneous uniformisation theo-

rem. Let Σ,Σ′ be compact Riemann surfaces of genus ≥ 2 and h : Σ → Σ′

a diffeomorphism. Then there is a “hyperbolic cobordism” between Σ,Σ′ in-
ducing h on homotopy. This was used by Thurston to prove the existence of
hyperbolic structures on certain compact 3-manifolds. (To be more accurate we
should distingush between a Riemann surface and its complex conjugate.)
To prove the result we pull-back the complex structure on Σ′ using h so we

have two complex structures on Σ. We know that Σ is a quotient of the disc by
a group Γ. Take this disc to be D∞ = {|z| > 1} in the Riemann sphere. Now Γ
acts also on the unit disc D0 and we use the other complex structure to define a
Γ-invariant μ supported in D0. The MRMT says that the Riemann sphere with
this structure μ is equivalent to the standard sphere. So we get Γ ⊂ PSL(2,C)
and S2 is D∗0∪D

∗
∞∪C where C is a topological Γ-invariant circle. The Riemann

surfaces Σ,Σ′ are the quotients of D∗0 , D
∗
∞ by Γ and the hyperbolic 3-manifold

is the quotient of the 3-ball. (One has to show that Γ acts freely on the ball.)

Another kind of application is to nonlinear PDE. Suppose that f satisfies
an equation ∂f + μ(f)∂f = 0, where |μ(f)| ≤ k < 1 if |f | ≤ C. For example we
might have

μ(f) =
|f |

√
1 + |f |2

.

Suppose we know a solution f has |f | ≤ C. Let β be a cut-off function and
g = βf . Then

∂g + μ(f)∂g

is bounded in L∞. By arguing as above we get an Lp bound on ∇g, hence
∇f , for close to 1. Thus we get a Holder bound on f . A similar argument
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can be applied to the equations DgB = 0, B ∧ B = K arising in the isometric
embedding problem.

7 Tubular ends and gluing theorems

7.1 Linear theory on manifolds with tubular ends

We begin with a cylinder M × R and consider a translation invariant elliptic
operator D. Specifically we consider either D1 =

∂
∂t
+ A where A is first order

self-adjoint elliptic on M or D2 = − ∂
2

∂t2
+ ΔM + c where c is constant. In the

first case a model example is M = S1 and A = i ∂
∂θ
+ c.

In the case of D1 the basic fact is that D1 : L
p
k → Lpk−1 is an isomorphism

provided that A has trivial kernel. To see this consider an orthonormal basis of
eigenfunctions φλ for A. Given ρ =

∑
bλ(t)φλ we solve D1f = ρ by reducing to

a system of ODE’s. Thus f =
∑
aλ(t)φλ where

d

dt
aλ + λaλ = bλ.

Provided λ 6= 0 we get a solution with ‖aλ‖L2 ≤ C‖bλ‖L2 for a fixed C indepen-
dent of λ. It is straightforward to develop the theory from there on. Note that
in the bad case when we do have a zero eigenvalue the operator is not Fredholm.
This can be seen by considering

d

dt
: L21(R)→ L2(R).

The Sobolev inclusions between the spaces Lpk on the cylinder behave well.
We have Lpk ⊂ Lql if p < q, k > l, k − n/p ≥ l − n/q. The reason is that
if p < q the Lp norm is “stronger” with regard to decay properties. To be
more precise, consider n = 4 and the embedding L21 ⊂ L4. For any compact
4-manifold-with-boundary Ω one has

(∫

Ω

f4
)1/2

≤ C
∫

Ω

|∇f |2 + |f |2.

This can be proved by considering the “double” of Ω. Now take Ω = M × [0, 1]
and consider the decomposition of M ×R into “bands” Ωi. For f on M ×R
write

ai =

∫

Ωi

|∇f |2 + |f |2,

Then ∫

M×R
|f |4 ≤ C2

∑
a2i ≤ C

2
(∑

ai

)2
= C2‖f‖4L21 .

There is an even simpler argument to show thatLpk ⊂ C
0 if k − n/p > 0.
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We can consider weighted Sobolev spaces. This is exactly the same as con-
jugating our operator by eαt which changes A to A+ α. Since the spectrum is
discrete, we can always choose α to arrive in the “good” case.
Similarly for D2 we have a straightforward theory if c > 0.

Now we consider a noncompact manifold X with a cylindrical end modelled
on M × R+ and an elliptic operator which has the given form over the end.
Provided the spectral condition on the cross-section is satisfied we get a Fred-
holm theory in Lpk spaces–the cokernel is the L

2-complement of the kernel of
the formal adjoint etc.

Suppose we have two such manifolds X1, X2 with the “same” end. For T > 0
we can glue them to get a compact manifold XT with a neck of length T . A
basic fact is that if the operator D is surjective on each side X1, X2 then on XT ,
for T >> 0, the operator D has a uniformly bounded right inverse. That is, on
XT we can solve Df = ρ with ‖f ≤ C‖ρ‖ with C independent of T >> 0.

This allows us to make certain “gluing constructions” for nonlinear problems.
A well known example is that of holomorphic curves. Here there are some
complications since A has a kernel given by the constants so one has to use
weighted spaces, or some other device.

7.2 Calabi-Yau metrics

We illustrate these ideas by constructing Calabi-Yau (Ricci flat, Kahler) metrics
on certain K3 surfaces.
The differential geometric background if that if Z is a complex m-manifold

with a nowhere-vanishing holomorphic m-form χ and if Ω is a Kahler metric
on Z with Ωm = χ ∧ χ then Ω is Ricci flat. If Ω0 is some Kahler form we seek
Ω in the form Ω0 + Dφ where D = 2i∂∂. The resulting PDE for φ is, in local
co-ordinates,

det

(

G0 +
∂2φ

∂zi∂zj

)

= |χ|2,

where G0 is the matrix of Ω0.
There are two building blocks in the construction

• X = T 4/ ± 1 is an orbifold with 16 singular points. We consider the flat
metric ωX on X

• Y is the resolution of the singularity C2/± 1. All we need to know about
Y is that outside a compact set it is identified with C2/± 1. There is an
asymptotically flat, Ricci flat, Eguchi-Hanson metric on Y .
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Really we will need 16 copies of Y , one for each singular point, but to simplify
language we will speak as though there is just one. .

First we review the Eguchi-Hanson metric. Work on C2 minus the origin
and consider a Kahler metric D(ψ) where ψ = F (ρ) with ρ = |z1|2 + |z2|2. We
have a holomorphic form dz1dz2. Our CY equation becomes (F

′)2−ρF ′F ′′ = 1
and a solution (for the derivative) is

F ′ =
√
1 + ρ−2,

from which we can integrate to find F . All we really need to know is that
F = ρ + G(ρ) where G(ρ) = O(ρ−1) as ρ → ∞. When we take the quotient
by ±1 and resolve the singularity to get the complex manifold Y we find that
this gives a smooth Ricci-flat metric ΩY . But the internal structure of Y is
irrelevant for our purposes. We think of Y as having a fixed identification with
a subset of C2/ ± 1 outside a compact set, and consider a function ρY on Y
which agrees with the given one outside this set. Write rY =

√
ρY .

Given R >> 0 we construct another Kahler metric on Y in the form

ωR,Y = ωY + cD(βRG(ρY ),

where βR is a cut-off function of “scale” R
1/2. Thus ∇βR = O(R−1/2) etc. Now

ΩR,W agrees with the flat metric on rY > 2R
1/2 say and

Ω2R,Y = (1 + η)
−1Ω2Y ,

where |η| ≤ R−2 and η is supported in the annulus
√
R < rY < 2

√
R.

Similarly on X we consider a positive function ρX equal to |z1|2+ |z2|2 near
the singular point, and write rX =

√
ρX .

We want to use the tubular ends machinery and for this we use conformal
changes. Suppose in general that Z,Ω is a Kahler surface and that V is a fixed
positive function on Z. Then Θ = V −1Ω is a Hermitian metric. Define

Qf = V 1/2DV −1/2f,

and �f = (Q(f)∧Θ)/Θ2. What is important to note is that Q is unchanged if
we multiply V by a constant. A short calculation shows that

�f = ΔΘf +Wf

where W = V 3/2ΔKahlerV
−1/2 and ΔΘ, mean the Laplacians with respect to

the two metrics. In the case Z = C2 \ {0} and V = ρ the conformal metric Θ
is the cylinder S3 ×R and the function W is 1.
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Now on Y we take VY = ρY and on X \ singularities we take VX = ρX .
Rescaling the metric ωR,Y by V

−1
Y we get a metric which is a cylinder on ρY >

4R. This is isometric to the rescaling V −1X ωX . We glue the cylindrical ends so

that the sphere rY = 2
√
R in Y maps to the sphere rX = 2/

√
R in X. The

resulting manifold is Z. It has a nowhere vanishing holomorphic form. We have
a hermitian metric Θ on Z containing a long cylinder. There is also a Kahler
metric ω = VΘ where V = VX on the “X part” and V = VYR

−2 on the “Y
part”

Now we return to the PDE. We seek φ on Z such that

(ω +Dφ)2 = (1 + η)ω2.

Write φ = V 1/2f so the equation is

(Θ + V −3/2Q(f))2 = (1 + η)Θ2,

which is
�f + V −3/2Q(f)2 = ηV 3/2.

The problem is that the coefficient V −3/2 of the quadratic term can be very
large. Its maximal value M is O(R3). Write f = M−1g, then the equation
becomes

�g + vQg2 =MV 3/2η,

where v = V −3/2M−1 ≤ 1. Now the problem has been transferred to the right
hand side. On the support of η, V 3/2 is O(R−3/2) and |η| is O(R−2). So the
right hand side is O(R−1/2) (and supported on a band in the cylinder of fixed
width, so the derivatives have the same order of magnitude, working in the
cylindrical metric).

Now the nonlinear problem is reduced to linear theory. On the cylinder
� = Δ+1 so we have a Fredholm theory in any Lpk. Suppose �f = 0 on Y and
f tends to zero at infinity. Then ΔKahler(r

−1
Y f) = 0 and r−1Y f tends to zero at

infinity, so by the maximum principle f = 0. Similarly if �f = 0 on X then
φ = r−1X f is harmonic with respect to the flat metric and φ = o(r−1). Since
the fundamental solution of the Laplacian in four dimensions is O(r−2) the only
possibility is that φ is constant.
Thus we do have a small complication, since � has a one dimensional cokernel

on the X part. But we should expect this since we cannot solve our equation for
all η; there is a constraint that the volume of the manifold is fixed. To handle
this we introduce an auxiliary function σ of non-zero integral, supported inside
X and solve the equation

�g + vQg2 = ηMV 3/2 + λσ

for a pair (g, λ) where λ ∈ R. A posteriori we find that λ = 0, by considering
the volume.
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Questions
For those who wish to be assessed on the course: please send solutions to

a selection of the problems to me at s.donaldson@imperial.ac.uk by April 19th.
Solutions written in tex are preferred, but any other form is acceptable. As a
guide, reasonable attempts at about 4-5 problems should get a good mark.

1. Find a formula for the Green’s Function on the round sphere Sn.

2. Find a family of functions fρ on R
n, for ρ < 1, with the following

properties

• fρ(x) = 1 if |x| ≤ ρ;

• fρ(x) = 0 if |x| > 1;

• ‖∇fρ‖Ln → 0 as ρ→ 0.

3. Let E be a vector bundle over a compact Riemannian manifold M with
a metric on the fibres. A covariant derivative on E is a map ∇ from sections of
E to sections of E ⊗ T ∗M such that

∇(fs) = f∇s+ df ⊗ s.

Give a characterisation of covariant derivatives in terms of their symbol.
A covariant derivative is compatible with the fibre metric if for any two sec-

tions s1, s2
d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉.

Show that in this case the “Kato inequality” holds:

|∇|s| | ≤ |∇s|.

(You may restrict attention here to points where s does not vanish, although in
fact the inequality holds everywhere, with a suitable interpretation.) Now let F
be another bundle over M and σ : T ∗M ⊗ E → F be a bundle map such that
the composite D = σ ◦ ∇ is an elliptic operator. Show that there is a constant
k < 1 such that for all sections s with Ds = 0 we have

|∇|s| | ≤ k|∇s|,

(again, at points where s does not vanish).

4. Let M be an compact oriented Riemannian manifold. Show that the
operator

d∗ ⊕ d : Ωeven → Ωodd
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is elliptic. (The notation means the direct sum of all even/odd forms respec-
tively.) Identify the kernel and cokernel of d+ d∗ in terms of harmonic forms.

5. Let F be a smooth function on a compact Riemannian 2-manifold M and
let I be the functional

I(u) =

∫

M

|∇u|2 + (u− F )4dμ.

Show that there is a function u which minimises I and which satisfies the equa-
tion Δu + 4(u − F )3 = 0. (You could use the continuity method, or a direct
calculus of variations approach.)

6. Suppose K is a smooth function on R2 \ {0} with K(λx) = λ−2K(x) for
λ > 0 and K(−x) = −K(x) and let T be the singular integral operator defined
by K. Assuming known that the Hilbert transform is bounded as an operator
Lp(R)→ Lp(R), show that T : Lp(R2)→ Lp(R2) is bounded.

7. Prove “Lemma 1” on page 17 of these notes (used in the proof of the
Calderon-Zygmund Theorem).

8. Let K be a smooth function on R2 and with K ≥ ε > 0. Let B be a
function with values in 2 × 2 symmetric matrices which satisfies the equations
detB = K and

∂Bij

∂xk
=
∂Bik

∂xj
.

Suppose that |B| =
√∑

B2ij ≤ C. Obtain an a priori Holder bound on B of

the form
|B(x)−B(y)| ≤ c|x− y|α

for all x, y with |x− y| ≤ 1 (say) where α > 0 and α, c depend only on C, ε.
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