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Section 3. Harmonic maps
Let (M, g) and (N, h) be Riemannian manifolds with M
compact, say.

The energy of a map u : M → N is defined to be

E(u) =
1
2

∫

M
|Du|2.

Here Du is the derivative of u. At a point x ∈ M:

Dux ∈ T ∗Mx ⊗ TNu(x),

and the norm |Du| is the standard one computed using the
metrics on TM and TN.
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An infinitesimal variation in u is given by a section v of the
vector bundle bundle V = u∗(TN) over M.
This bundle has a connection, the pull-back of the Levi-Civita
connection of N.
So we have a coupled exterior derivative

d∇ : Ωp(V ) → Ωp+1(V ),

where Ωp denotes p-forms on M.
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We have formal adjoints

d∗
∇ : Ωp+1(V ) → Ωp(V ).

We can think of Du as an element of Ω1(V ).
The “tension” of u is defined to be

τu = d∗
∇Du.

The first variation of E is given by the formula

δE = −
∫

M
〈τu, v〉.
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The map u is called harmonic if τu = 0. This is the
Euler-Lagrange equation associated to the functional E .
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If we take local coordinates xi on M and yλ on N the equation is

ΔMyλ + Γλ
μνyμ

,i y
ν
,j g

ij = 0,

where Γλ
μν are the Cristoffel symbols on N and gij is the metric

on T ∗N.

When dim M = 1 we get the geodesic equations in N and when
dimN = 1 we get the equation for a harmonic function on M.
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How might one try to prove existence theorems for harmonic
maps?
The τu lie in different spaces, for different maps u, so there is
no obvious continuity path.

We can thing of the assignment u 7→ τu as defining a section of
an infinite-dimensional vector bundle over the
infinite-dimensional space of maps from M to N. This is the
typical situation for differential geometric questions.

In this case the vector bundle in question is the tangent bundle
of the space of maps and τ is formally the gradient vector field
of the energy functional E .
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We could try variational methods, in particular trying to
minimise E in a homotopy class of maps.

This works well if dimM = 1 (closed geodesics) and can be
used to give some results when dimM = 2 but fails badly for
dimM > 2.

The reason is that the Sobolev embedding L2
1 ⊂ C0 holds when

dimM = 1 and just fails when dimM = 2.
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Example. For p ≥ 3 the infimum of the energy in any
homotopy class of maps Sp → N is zero.

Regard Sp as Rp ∪ {∞} and change the metric on the unit ball
B ⊂ Rp ⊂ Sp to the Euclidean one. (It will be clear that this
makes no difference.)
Represent a homotopy class of maps Sp → N by a map U
which is constant outside B.
Let Uε(x) = U(x/ε). Then

E(Uε) = εp−2E(U).

We will see more about this later.
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A positive result (Eells and Sampson, 1964).
Suppose that M, N are compact and the sectional curvatures of
N are ≤ 0. Then any free homotopy class of maps M → N
contains a harmonic representative.
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The results of Eells and Sampson hinge on a differential
geometric formula. For f : M → N set E = 1

2 |Df |2.
The we have, schematically:

ΔE = 〈d∇τ, Df 〉 + |∇Df |2 + RicciM(Df )2 − RiemN(Df )4.

Explicitly, the curvature terms are, writing α = Df :

RM
ij αλ

k αμ
l gikgjl + RN

λμνπαλ
i αμ

j αν
kαπ

l gikgjl .
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Here RM
ij is the Ricci curvature of M and RN

λμνπ is the Riemann
curvature of N, with sign conventions such that the sectional
curvature in a bivector ξ, η is

−RN
λμνπξλξνημηπ.
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The key point is that the Ricci term is ≥ 0 if RicciM ≥ and the
other term is ≥ 0 if the sectional curvatures of N are ≤ 0.
To see this identity, observe first that the Levi-Civita connection
on N being torsion-free implies that d∇α = 0, where
α = Df ∈ Ω1(V ). Thus we have

Δ∇α = d∇τ,

where Δ∇ = d∇d∗
∇ + d∗

∇d∇.
On the other hand, writing ∇ also for the covariant derivative on
Ω1(V ), we have

ΔE =
1
2

Δ〈α, α〉 = 〈∇∗∇α, α〉 + |∇α|2.
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So what we need is a “Weitzenbock formula” comparing ∇∗∇
with Δ∇ on Ω1(V ). This is

Δ∇ = ∇∗∇ + RicciM + FV ,

where FV is the curvature tensor of the connection on V . In our
case FV is the pullback of the RiemN and one gets the formula
stated.

Note The identity map of M is harmonic and in that case the
two curvature terms cancel.
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Assuming the Eells-Sampson result on the existence of
harmonic maps, we get a proof of Preissman’s Theorem:

If N has strictly negative sectional curvature then any abelian
subgroup of π1(N) is cyclic.

If we have two commuting elements a, b of π1(N) we can
represent them by a map f : T 2 → N. Take the flat metric on
T 2. By the Eells-Sampson result we can suppose that f is
harmonic. Since the integral of ΔE vanishes we see ∇Df = 0
and the curvature term must vanish pointwise, which means
that Df has rank 1. It follows that f factors through S1 and a, b
lie in a cyclic subgroup of π1(N).
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Eells and Sampson introduced the technique of “nonlinear heat
flow” to prove their existence result.
This is the equation for a 1-parameter family of maps
ft : M → N:

∂ft
∂t

= τ(ft) = d∗
∇Dft .

The strategy is to produce a harmonic map as the limit as
t → ∞ of such a family.
(But the heat flow also has independent interest.)
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Digression : a little foundational theory for parabolic PDE.

The ordinary heat equation for functions ut on M is ∂ut
∂t = Δut .

With initial condition v there is a solution of the form ut = kt(v)
for a semigroup of operators kt which can be understood in
various ways.
Spectral description
The operator (1 − Δ)−1 : L2 → L2 is compact and self-adjoint
and so has an orthonormal basis of eigenfunctions. These give
eigenfunctions for the Laplacian: −Δφλ = λφλ where λ runs
over a sequence tending to ∞. Any function u ∈ L2 has an
expansion u =

∑
uλφλ. When M is a flat torus this is the usual

Fourier series expansion. The L2
k norm is equivalent to

‖u‖2
L2

k
=
∑

(1 + λk/2)u2
λ.
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In this description the operator kt is the multiplication operator
acting as e−λt on φλ.

The behaviour on L2
k norms is transparent.
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Kernel description

For t > 0 kt is an integral operator

kt(v)(x) =

∫
Kt(x , y)v(y)dy ,

where kt is smooth and for small t is well-approximated by the
Euclidean heat kernel

(2πt)−n/2 exp(−r2/4t).

Here n = dim M and r is the distance from x to y .
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Write L = ∂
∂t − Δ.

We can also study the inhomogeneous equation LU = χ where
χ is a given function on M × [0, T ] for some T , with initial
condition U(x , 0) = 0.
The solution is

Ut = L−1(χ) =

∫ t

τ=0
kt−τ (χτ ) dτ.
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Similar to the elliptic case, we can derive various estimates for
the operator L−1.

For example, by integrating (LU)2 over M × [0, T ] we get

‖
∂U
∂t

‖2
L2(M×[0,T ])+‖ΔM U ‖2

L2(M×[0,T ])+‖∇MUT‖
2
L2(M) = ‖χ‖2

L2(M×[0,T ]).
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We will use another result. Clearly the integral of Kt(x , y) with
respect to y is 1, for all x , t which implies that

‖U‖C0 ≤ T‖χ‖C0 . (∗ ∗ ∗)

Set

I(x , t)‖∇xKt(x , y)‖L1 =

∫
|∇xKt(x , y)|dy .

Then one can one see that I(x , t) ≤ Ct−1/2 for some C
independent of x . It follows that if LU = χ then

‖∇MU‖C0 ≤ 2CT 1/2‖χ‖C0 . (∗ ∗ ∗∗)
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Now we can study short time existence for a nonlinear equation
of the form

∂u
∂t

= Δu + F (u,∇Mu) + ρ

Here F is a smooth function of its arguments which vanishes
when u = 0 and ρ is fixed function on M, independent of t . To
simplify notation we just write F (u).

We seek a solution on M × [0, T ] with u = 0 at t = 0.
We write u = L−1(σ) so the equation is

σ = F (L−1(σ) + ρ.

Using the estimates (***), (****) we can solve this for
σ ∈ C0(M × [0, T ]) using the contraction mapping theorem,
provided that T is small compared to C−1.
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This gives a weak solution to our equation, with U in C1 in the
“space” variable.

With some work one can derive further estimates and prove
that the solution smooth.

It is clear that the same discussion applies to any similar PDE
for a vector-valued function on M.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 3,4



Now go back to our harmonic map flow.
There are various ways of fitting this into the PDE theory.
One goes as follows. Choose an embedding of N in Rp for
some p. Let Ω be a tubular neighbourhood of N ⊂ Rp with an
involutionι : Ω → Ω fixing N. Choose a Riemannian metric on Ω
which agrees with the given metric on N and is invariant under
ι, so that N is totally geodesic in Ω. This means that the flow for
maps f : M → Ω starting with a map with image in N is the
same as the flow for maps M → N.
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Writing f λ for the components of our maps in the Euclidean
co-ordinates on Rp and Γ for the Christoffel symbols of the
metric on Ω the PDE is

∂f λ

∂t
= ΔMf λ + Γλ

μν f μ
,i f ν

,j g
ij .

If our initial map is h and we set f = h + u this fits into the
framework that we discussed.
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Another approach is to first extend the PDE theory to sections
of vector bundles.

Choose an identification of a neighbourhood of the graph of the
initial map h in M × N with a neighbourhood of the zero section
in the bundle V = h∗(TN).

Then small deformations of the map h : M → N are identified
with small sections of h∗(TN) and we can apply the PDE theory.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 3,4



End of digression: we assume known now that the harmonic
map flow has a solution for small time.
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The differential geometric formula gives

∂E
∂t

= ΔE − |∇(Df )|2 − RicciM(Df )2 + RiemN(Df )4.

For general M, N this gives

∂E
∂t

≤ ΔE + C1E + C2E
2.

The term in e2 can allow finite-time blow up (compare with
E(t) = (T − t)−1).
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But under the hypothesis that N has sectional curvature ≤ 0 we
get

∂E
∂t

≤ ΔE + C1E .

This implies that
∂eC1tE

∂t
≤ ΔeC1tE .

The maximum principle for the heat equation tells us that the
maximum of eC1tE is nonincreasing with time so

E ≤ C3eC1t .

Using this it is not hard to show that the solution exists for all
time.
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To go further, we have the gradient flow identity

dE
dt

= −‖τ‖2. (∗ ∗ ∗ ∗ ∗∗)

By comparison with the solution of the heat equation we get

Et+1(x) ≤ eC1

∫
K1(x , y)Et(y)dy ,

and the right hand side is bounded by a multiple of the integral
of Et which is E(t).
So

maxMEt+1 ≤ C4E(t)

and we see that E satisfies a fixed bound for all t .
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From (******) we can choose a sequence ti → ∞ such that

‖τ(ti)‖L2 → 0.

Set fi = fti . We know that the |Dfi‖C0 are bounded so by the
Ascoli-Arzela Theorem there is a subsequence of the fi which
converge in C0 to some f∞.
(Note that this is the first time we use the compactness, as
opposed to completeness, of N.)
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Starting from the fact that the τ(ti) tend to 0 in L2, it is not hard
to show that f∞ is a smooth harmonic map.
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Flat bundles and Hitchin’s equations
Examples of manifolds with negative sectional curvature are
symmetric spaces G/K where G is a noncompact semisimple
Lie group and K is a maximal compact subgroup. We consider
a slight variant of the theory discussed above.
Let P → M be a principle G-bundle with a flat connection.
We may consider reductions of the structure group of the
bundle P (but not the flat structure) to K ⊂ G.
These correspond to sections of a bundle H → M with fibre
G/K (the bundle associated to P via the action of G on G/K .)
The bundle H has a flat structure so sections are locally given
by maps into G/K , well defined up to the action of the isometry
group G.
Thus we have a notion of a harmonic section of H and we can
ask when do these exist
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For simplicity we consider the case G = SL(2, C) when
K = SU(2).
Then G/K is the space of hermitian metrics on C2 of
determinant 1.
We have

det
(

x1 + x4 x2 + ix3

x2 − ix3 x1 − x4

)

= x2
1 − x2

2 − x2
3 − x2

4 .

The space G/K can be identified with a one sheet of a quadric
in R3,1 and thence with hyperbolic 3-space H3. (This is a
consequence of the local isomorphism SL(2, C) ∼ SO(3, 1).)

It has a compactification H
3
, adjoining a 2-sphere at infinity.

SL(2, C) acts on the sphere at infinity by Möbius maps.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 3,4



Consider a vector bundle E → M with structure group SL(2, C)
and a flat SL(2, C) connection. This is equivalent to a
representation

ρ : π1(M) → SL(2, C).

Our bundle H with fibre H3 is the bundle of determinant 1
hermitian metrics on E . The harmonic equation for a section h
is, in a local flat trivialisation, d∗(h−1dh) = 0.
We also have a well-defined heat equation

∂h
∂t

= d∗(h−1dh).
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Since the local differential geometry is the same the previous
discussion carries over except for the fact that H3 is not
compact.
We deduce that if the heat flow ht lies in compact subset of H
then there is a harmonic section.
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We need a very simple observation in hyperbolic geometry. Let

ξ1, ξ2 be distinct points in the sphere at infinity in H
3

and let R
be any positive number. Then we can find neighbourhoods

U1, U2 of ξ1, ξ2 in H
3

such that the hyperbolic distance between
U1 ∩ H3, U2 ∩ H3 exceeds R.
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It is elementary to show, using this observation, that if ∇ht is
bounded and ht do not lie in a compact set then there is a point
if S2 fixed by the monodromy ρ(π1(M).
In other words, the representation is reducible.
So an irreducible flat SL(2, C) bundle E has a harmonic metric.
One can show that this metric is unique and that conversely if E
has a harmonic metric it is either irreducible or decomposes as
a sum of flat line line bundles L ⊕ L∗.
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Remark
“Irreducibility”, above, is a simple example of a “stability
condition” on a geometric object ( a flat bundle) under which
one can solve a related PDE (for a harmonic metric).
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We can take another point of view on the same equation. Let
now E be rank 2 vector bundle over M with structure group
SU(2) and write adE for the bundle of self-adjoint trace-zero
endomorphisms of E . Consider pairs (A, φ) consisting of an
SU(2) connection A on E and Φ ∈ Ω1(adE). Then A + iΦ is an
SL(2, C) connection with curvature

(F (A) − Φ ∧ Φ) + i(dAΦ).

One part lies in adE and the other in iadE so this connection is
flat if and only if F (A) = Φ ∧ Φ and dAΦ = 0.
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The harmonic condition is d∗
AΦ = 0. So the moduli space of

(irreducible) solutions of the equations:

F (A) = Φ ∧ Φ;

dAΦ = 0;

d∗
AΦ = 0;

is identified with the space of conjugacy classes of irreducible
representations π1(M) → SL(2, C).
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Now let M be a compact Riemann surface. Extending what we
discussed for line bundles, any connection on a complex vector
bundle over M defines a holomorphic structure on the bundle.
We can write Φ = φ − φ∗ where φ ∈ Ω1,0(End0E) and φ∗ is
defined using the Hermitian structure on E . The last two
equations above are equivalent to ∂Aφ = 0, i.e. that φ is a
holomorphic 1-form with values in the holomorphic vector
bundle End0(E).
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We can think of the data as being:

a holomorphic vector bundle E → M with structure group
SL(2, C);

a holomorphic section φ of End0(E) ⊗ KM ;

a Hermitian metric h on E whose associated connection
has curvature Fh satisfying the equation (Hitchin’s
equation)

Fh + [φ, φ∗
h] = 0 (∗ ∗ ∗ ∗ ∗ ∗ ∗∗).

(Note that φ∗
h depends on h.)
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Now we have another PDE problem: given the “holomorphic
data” (E , φ) can we choose a Hermitian metric h to solve
(*******)?
This PDE is quite similar to the harmonic section equation we
have discussed.
The main result is that the existence of a solution is equivalent
to a stability condition on the pair (E , φ).
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The upshot is that the same moduli space appears as

equivalence classes of irredicuble representations
π1(M) → SL(2, C);

equivalence classes of stable “Hitchin pairs” (E , φ).

Both descriptions are algebro-geometric in nature but the
equivalence depends on solving two PDE.
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Section 4. The Seiberg-Witten equations and symplectic
4-manifolds
Review of spin structures in dimensions 3,4.
Dimension 3.
The Lie algebra su(2) of SU(2) is a 3-dimensional vector space
with a natural orientation and Euclidean structure. The adjoint
representation gives a 2-1 homomorphism SU(2) → SO(3)
with kernel {±1}.

We can define a spin structure on a 3-dimensional oriented
Euclidean space Λ to be a 2-dimensional complex vector space
S with Hermitian metric and trivialised determinant and an
isomorphism Λ = su(S), compatible with the given structures.
S is unique “up to sign”.
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For φ ∈ S we have φφ∗ ∈ End(S). Define q(φ) to be trace-free
part of φφ∗. Then iq(φ) lies in su(S).
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Key observation

〈q(φ)φ, φ〉 =
1
2
|φ|4.
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A spin structure on an oriented Riemannian 3-manifold Y is a
complex vector bundle S → Y with structure group SU(2) and
an isomorphism TY = su(S).

Equivalently, it a lift of the frame bundle P of Y to a principal
SU(2) bundle P̃. Then S is the vector bundle associated to the
fundamental representation of SU(2).
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Dimension 4.
Let S+, S− be two complex vector spaces as above. They can
be regarded as 1-dimensional quaternionic vector spaces.
Then Hom(S−, S+) is the complexification of a 4-dimensional
real vector space V (S−, S+) of quaternion linear maps.
The action on V (S−, S+) defines a 2-1 homomorphism
SU(2) × SU(2) → SO(4). A spin structure on an oriented
Riemannian 4-manifold M is a pair of bundles S+, S− → M
each with structure group SU(2) and an isomorphism
TM = V (S−, S+).
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Equivalently, it is a lift of the frame bundle P of M to a principal
SU(2) × SU(2) bundle P̃. Then S± are the vector bundles
associated to the fundamental representations of the two
SU(2) factors.
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Recall that the two-forms on M decompose as Λ2
+ ⊕ Λ2

− where
the bundles Λ2

± have rank 3. Given a spin structure as above
we have

Λ2
+ = su(S+),

and for φ ∈ S+ we have iq(φ) ∈ Λ2
+.
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The Dirac operator D : Γ(S−) → Γ(S+) is the composite of the
covariant derivative ∇ : Γ(S−) → Γ(S− ⊗ T ∗M) with the map
S− ⊗ T ∗M → S+ defined by TM = V (S−, S+).

Note: We will later give another description of this which may
be more familiar.
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Let M be a Riemannian 4-manifold with spin structure and
L → M be a Hermitian complex line bundle.
The Seiberg-Witten equations are for a pair (A, φ) where A is a
connection on L and φ is a section of S− ⊗ L.

DAφ = 0;

F+(A) = −iq(φ).
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Here
DA : Γ(S− ⊗ L) → Γ(S+ ⊗ L)

is the coupled Dirac operator defined by the connection A and
q(φ) is defined using the Hermitian metric on L.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 3,4



The Lichnerowicz/Weitzenbock formula for coupled Dirac
operators gives

D∗
ADA = ∇∗

A∇A +
R
4

+ iF+
A . (∗ ∗ ∗ ∗ ∗)

Here R is the scalar curvature and F+
A ∈ Λ2

+ acts on S+ via the
identification Λ2 = su(A+).
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So, for a solution of the Seiberg-Witten equations we get

0 = ∇∗
A∇Aφ +

R
4

φ + q(φ)φ.

Taking the L2-inner product with φ and using the key
observation this gives

‖∇Aφ‖2
L2 +

1
2
‖φ‖4

L4 +

∫

M

R
4
|φ|2 = 0.

In particular, if R ≥ 0 the only solution could be with φ = 0 and
F+(A) = 0.
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