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Section 5. Calabi-Yau metrics

The equations we have studied so far in this course have a
simple nonlinear structure linear + lower order.

We have considered situations with a favourable sign.
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Recall that if F = 0 is any PDE and u is a solution we have a
linearised operator F(u + tf ) = tL(f ) + O(t2). The nonlinear
PDE is said to be elliptic at the solution u if L is a linear elliptic
operator (of the same order as F).
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For example a Monge-Ampère equation

det

(
∂2u

∂xi∂xj

)

= 1.

The linearised operator is

L(f ) =
∑

Uij ∂2f
∂xi∂xj

where Uij is the matrix of co-factors of the Hessian uij of u. This
is elliptic if and only of uij is positive or negative definite: i.e. ±u
is strictly convex.
The nonlinear PDE is not elliptic at a solution like x2

1 − x2
2 − x2

3
on R3.
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In this section we discuss complex Monge-Ampère equations
which, in local complex co-ordinates, involve the analogous
expression

det

(
∂2u

∂za∂zb

)

.

But we consider a global setting, on a compact complex
n-manifold M.
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Review of some complex geometry.

A Hermitian metric on M corresponds to a positive (1, 1)
form ω. The volume form of the metric is ωn/n!.

The canonical line bundle of M is KM = ΛnT ∗M, so
sections are (n, 0) forms.

Giving a Hermitian metric on the canonical line bundle is
equivalent to giving a volume form on M.
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A Kähler metric is one with dω = 0. The Kähler metrics in
a given cohomology class [ω0] ∈ H2(M; R) are
parametrised by Kähler potentials

ωφ = ω0 + i∂∂φ.

The total volume of M with a Kähler metric is determined
by the cohomology class.

We have the Laplacian formula

−
1
2

Δf (ωn) = n i∂∂f ∧ ωn−1.

The Ricci curvature of a Kähler metric ω is Hermitian, so
can be identified with a (1, 1) form ρ. This is −i times the
curvature form of the connection on KM induced by the
volume form ωn/n!.
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We consider the question of prescribing the volume form of a
Kähler metric.
(Calabi, 1954.)

Fix a cohomology class [ω0] and let V be the corresponding
total volume. Write dμ0 = ωn

0/n!. Given a positive function F
with ∫

M
Fdμ0 = V

we want to solve the PDE

(ω0 + i∂∂φ)n = Fdμ0. (CY )
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In local coordinates this has the shape

det

(

gab +
∂2φ

∂za∂zb

)

= gF

where gab is the matrix corresponding to ω0 and g is its
determinant.
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The main result (Yau’s Theorem, 1978) is that there is always a
solution φ, unique up to a constant.

The most important application is to the case when M is a
Calabi-Yau manifold, i.e. KM is trivial so there is a nowhere
vanishing holomorphic n-form Θ. The curvature associated to a
Hermitian metric on KM with |Θ| = 1 is zero. Regarding this
metric on KM as a volume form and scaling suitably we get a
metric in any Kähler class with zero Ricci curvature.
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When KM is a negative or positive line bundle one can seek
Kähler-Einstein metrics, with Ricci = λg where λ = ±1. This
leads to equations

(ω0 + i∂∂φ)n = Γ0eλφ, (KE±)

for a positive function Γ0 determined by ω0.
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Digression. Geometry of the space of K ähler potentials
Let H be the set of Kähler potentials {φ : ωφ > 0}.
(If the Kähler class is 2π times an integral class, H can be
identified with a set of metrics on a holomorphic line bundle
L → M.)
Let H be the set of positive Hermitian forms on CN . This has
two natural geometries:

1 H is a convex set in the vector space of Hermitian matrices.
2 H is a symmetric space GL(N, C)/U(N) and splits as a

product H = R × H0 where the projection to R is given by
log det and H0 = SL(N, C)/SU(N).

The function log det is concave on the set of positive Hermitian
matrices.
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There are detailed analogies between H and H. We will just
consider one part of this story, in which H appears as a convex
subset of C∞(M). We define a functional I on H (up to a
constant) by its derivative

δI =

∫

M
δφ dμφ.

It is an exercise to see that there is such a functional. (You can
write down an explicit formula.)

This functional I is the analogue of the function log det on H.
One computes that I is concave, so the set
K = {φ ∈ H : I(φ) ≥ 0} is convex.
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A volume form dν on M defines a linear functional
ν∗ : C∞(M) → R;

ν∗(f ) =

∫

M
fdν.

Consider the problem of minimising ν∗ on the convex set K .
If we find such a minimum φ then μφ is a constant multiple of
dν and we have solved equation (CY).

End of digression
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To solve the equation (CY) we use the continuity method. We
consider a 1-parameter family Fs to give equations CYs for
s ∈ [0, 1].

We have

(ω + ti∂∂f )n = ωn + intωn−1 ∧ ∂∂f + O(t2)

The linear term is −1
2Δωf ωn. It follows that the map taking H to

volume forms of total volume V has surjective derivative and
this gives openness in our continuity path.
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We need a priori estimates for a solution φ of equation CY ,
depending only on ω0 and the right hand side F .
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Set ω = ωφ, η = ω0 and write:

τ = Trωη σ = Trηω.

At a point in M we can choose standard coordinates

ω0 = η = (1/2)
∑

a

dzadza, ω = (i/2)
∑

a

λadzadza,

with λa > 0.

Then τ =
∑

λ−1
a , σ =

∑
λa.

The product
∏

λa is the rqatio of the volume forms, which is
prescribed
So control of either σ, τ gives control of all the eigenvalues λa.
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We seek a maximum principle argument for τ . (The more
standard approach considers σ.)
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It is a simple general fact that a holomorphic map
f : (M, ω) → (N, θ) between Kähler manifolds is harmonic.
This follows from the fact that (in the compact case) we can
write the energy as a topological quantity given by a multiple of

E =
2

(n − 1)!

∫

M
f ∗(θ) ∧ ωn−1,

which depends only on the homotopy class of f . For any map in
the homotopy class we get an inequality, so f minimises energy
in the homotopy class.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6



So for f : (M, ω) → (N, θ) we have the Eells-Sampson formula

Δω|df |2 = |∇df |2 + Ricω(df 2) − Riemθdf 4.

If we compute Δ log |df |2 we get a term which is dominated by
the first term on the RHS above and we find that

Δω log |df |2 ≥ |df |−2Ricω(df 2) − |df |−2Riemθdf 4 (CL).

This is known as the Chern-Lu inequality.
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Apply this to the identity map from (M, ω) to (M, η). Then
|df |2 = Trωη = τ . We have

Riemηdf 4 = Rη
ijklω

ikωjl ,

which is bounded by C1τ
2 for some C1.

The Ricci (1, 1) form ρω is determined by the volume form,
which is controlled. So ρω ≥ −C2η for some C2. We have

Ricω(df 2) = Rω
ij ω

ikωjlηkl ≥ −C2ηijηklω
ikωjl ≥ −C2τ

2.

So we get
Δω log τ ≥ −Cτ.
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By itself, this is not very helpful. However we have

−
1
2

Δωφ = Trω i∂∂φ = Trω(ω − η) = n − τ.

So
Δω(log τ + 2Kφ) ≥ −Kn + (K − C)τ.

Choose K = C + 1 and let p ∈ M be a point where log τ − 2Kφ
is maximal. The maximum principle gives τ(p) ≤ Kn.

Now suppose that we an L∞ bound on φ:

‖Φ‖L∞ ≤ C4.

Then at any point q ∈ M:

(log τ(q) + 2Kφ) (q) ≤ (log τ(p) + 2Kφ) (p),

so
log τ(q) ≤ log τ(p) + 4KC4.
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The conclusion is that, in our continuity path, an L∞ bound on φ
gives a bound

C−1ω0 ≤ ωφs ≤ Cω0.
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The problem is to obtain an L∞ bound on φ. We fix a
normalisation ∫

M
φdμη = 0.

For simplicity we discuss the case in dimension n = 2.

The Sobolev inequality for η = ω0 is

‖f‖L4
η
≤ κ‖∇f‖L2

η
+ κ′‖f |L1

η
.

‘

For functions f of integral zero we can drop the second term on
the right hand side.
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We have ω = η + i∂∂φ so

2(ω2 − η2) = 2i∂∂φ(ω + η) = −Δωφdμω −Δηφdμ0. (∗ ∗ ∗ ∗ ∗)

Multiply (*****) by φ and integrate over M.
We get

∫

M
2φ (ω2 − η2) =

∫

M
|∇φ|2ω dμφ + |∇φ|2η dμη.

Since ω2 is controlled, the left hand side is bounded by a
multiple of the L1 norm of φ, hence by a multiple of the L4 norm.
The right hand side is obviously bounded below by ‖∇φ‖2

L2
η
.
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Applying the Sobolev inequality for the fixed metric η, using the
fact that the integral of φ is 0, we get

‖φ‖2
L4

η
≤ const.‖φ‖L4

η
.

So we have an L4 bound on φ.
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Now multiply (*****) by −φ3 and integrate. We have

−
∫

φ3Δφ =

∫
∇(φ3).∇φ =

∫
3φ2|∇φ|2 =

∫
3
4
|∇(φ2)|2.

Using this we get an L4 bound on φ2 i.e. an L8 bound on φ.
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Continuing in this way, we get bounds on the L4k norm of φ for
every k ,

‖φ‖L4k ≤ Ck .

Keeping careful track of the constants, one finds that the Ck are
bounded as k → ∞ and this gives the L∞ bound.
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IF we have C2,α bounds on φ for some α > 0, standard PDE
theory using the Schauder estimates gives control of all higher
derivatives.
The L∞ bound on i∂∂φ gives C1,β estimates for any β < 1.
So there is a gap.
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This can be handled in two ways.

A maximum principle argument and a long calculation
applied to Δω|∇η∂∂φ|2ω.

A general PDE theory of Evans-Krylov.
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Apart from the L∞ bound all that we have done can be applied
to the Kähler-Einstein equations. In the negative case (λ = −1)
the L∞ bound follows from an easy maximum principle
argument, similar to the Riemann surface discussion in Section
2. Our equation is

(ω0 + i∂∂φ)n = Γ0e−φ,

and at a maximum point of φ we have i∂∂φ ≥ 0.
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In the positive case our continuity path is a family of equations

(ω0 + i∂∂φ)n = Γ0e+sφ.

Kähler-Einstein metrics do not always exist in the positive case:
there are “stability conditions”.

For example, it can be shown that for the projective plane blown
up at one point a solution in the continuity path exists exactly for
s < 6/7 and for the plane blown up in 2 points for s < 21/25.
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Section 6. The Yamabe problem
On a compact Riemannian manifold of dimension 2 the integral
of the scalar curvature is a topological invariant. In higher
dimensions it is the Einstein-Hilbert functional on the space of
metrics:

I(g) =

∫

M
Rgdμg .

Under an infinitesimal change of metric δg = h the scalar
curvature changes by

δR = −ΔH + ∇∗∇∗h − 〈Ricci, h〉 = −ΔH +
∑

∇i∇j hij − Rijhij ,

where H = Trh =
∑

hijgij .

Taking account of the variation of the volume form we get

δI =

∫

M
−〈Ricci, h〉 +

R
2

H

since the integrals of the first two terms vanish by Stokes’
Theorem.
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If dim M = n it is clear that I(α2g) = αn−2I(g).
If we consider I as a functional on metrics of total volume 1 the
Euler-Lagrange equation is

Riccig +
1
2

Rg = (λ/2)g,

with a Lagrange multiplier λ. This is equivalent to the Einstein
equation

Riccig = λ′g

with λ′ = λ/(n − 2).
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In this section we consider the functional I on a fixed conformal
class of metrics.

The Euler-Lagrange equation is then that the scalar curvature
be constant.

The Yamabe problem is to prove that there is always a solution
of this equation. More precisely:
In any conformal class there is a metric which minimises I over
the conformal metrics of volume 1.
This result follows from contributions by many people (Yamabe,
Trudinger, Aubin, Schoen, . . . ).
We call such a metric a Yamabe minimser.
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For simplicity (mainly) we take n = 3.
It is convenient to parametrise a conformal class by g̃ = u4g.
Then one finds that

Rg̃ = u−5 (−8Δgu + Rgu
)
,

so, taking account of the change in volume form by a factor u6,

I(g̃) =

∫

M
u(−8Δgu + Rgu) dμg =

∫

M
8|∇u|2 + Ru2dμ.

The volume constraint is that the integral of u6 is 1.

(Note: In general dimension n we use u4/(n−2)g and the
formulae involve different factors.)
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The Euler-Lagrange equation is

−8Δu + Ru = λu5.

Note that λ = I(g̃).
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This is an example of a conformally invariant variational
problem, similar to harmonic maps of surface.

It involves the borderline Sobolev embedding: in dimension 3,

L2
1 → L6,

but the inclusion is not compact.
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Let H be the completion of compactly supported functions on
R3 in the norm ‖∇f‖L2 . Let μ0 be the best constant in the
inequality

μ0

(∫

R3
f 6
)1/3

≤ ‖∇f‖2
L2 . (∗)
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The sphere S3 is the conformal compactification of R3.
Working with the Euclidean metric as our reference metric one
see that the Yamabe problem for this conformal class is
equivalent to minimising ‖∇f‖L2 over functions f on R3 with the
integral of f 6 equal to 1 and asymptotic to

const. (1 + r2)−1/2

at infinity.
This is equivalent to finding a function realising equality in (*).

It can be shown that such a minimiser exists and corresponds
to a round metric on S3.
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One can use a symmetrisation argument to reduce to functions
f (r) and get down to a calculus of variations argument in one
dimension.
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For a general compact Riemannian 3-manifold (M, g) of volume
1, let μg be the infimum of I(g̃)/8 over conformal metrics of
volume 1.
This is the best constant in the inequality:

μg

(∫

M
u6
)1/3

≤
∫

M
|∇u|2 + (R/8)u2.

It is clear that μg > −∞.
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There are two main steps in the proof of the existence of a
Yamabe minimiser.

Show that if μg < μ0 then there is a smooth minimiser in
the conformal class.

Show that μg ≤ μ0 with equality if and only g is a round
metric on S3.
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The first step uses arguments which apply to many other
problems.

We will focus on the proof of a slightly weaker statement.
Theorem A
Suppose that for s ∈ [0, 1], we have a 1-parameter family of
metrics gs with μgs < μ0. If a Yamabe minimiser exists in the
conformal class of g0 then the same is true for all s.
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As usual, the proof has an openness part and a closedness
part. We will concentrate on the closedness.

This uses the important idea of a “small energy” estimate.
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Proposition 1
Suppose that (M, g) is a Riemannian 3-manifold F is a function
on M and λ ∈ R.
There are ε0, ρ0, C (depending on g, F and λ) such that if a
positive function u satisfies the equation −Δu = λu5 − Fu on M
and if B is a ball with centre p of radius ρ ≤ ρ0 such that

∫

B
u6 = ε ≤ ε0

then |u| ≤ Cε1/6ρ−1/2 on the ρ/2 ball centred at p.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6



For simplicity we suppose that the metric is Euclidean on B, so
that B is the ρ-ball in R3, and that F = 0, λ = 1.

If u satisfies −Δu = u5 and we set ũ(x) = ν1/2u(νx) for some
ν then ũ satisfies the same equation and

∫

ν−1B
ũ6 =

∫

B
u6.

Thus we can suppose that ρ = 1 and B is the unit ball in R3.
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Let M = maxx∈Bu(x)D(x)1/2 where D(x) is the distance to the
boundary of B.

Let x0 be a point where the maximum is attained and
ν = (1/2)D(x0).
Let ψ : R3 → R3 be the obvious scaling map taking the unit ball
to the ball of radius ν centred at x0.

Define the function U on the unit ball by U(y) = ν1/2u(ψ(y)).

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6



Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6



Then U has the following properties:
1 −ΔU = U5;
2
∫

B U6 = ε;
3 U(0) = 2−1/2M;
4 U ≤ M on B.

The last property follows from the choice of x0

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6



If f is function on the unit ball B with Δf ≥ 0 then the mean
value formula shows that f (0) is at most the average of f over B.

Set f = u + 25/2

3 M5r2.

Then by (1) and (4) we have Δf ≥ 0 and we deduce, using (2),
that

U(0) ≤ C1M5 + C2ε
1/6

for computable constants C1, C2.
So, using (3), we have

M ≤ C1M5 + C2ε
1/6.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6



If ε is small (depending on C1, C2) the solutions of this
inequality fall into disjoint sets:

“small” with M ≤ Cε1/6;

“large” with M ≥ C′ ∼ C−1/4
1 > 0.

This determines ε0.
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We can apply the whole argument starting with the ball ηB in
place of B, for η < 1. So we set

M(η) = maxx∈ηBu(x)Dη(x)1/2.

where Dη is the distance to the boundary of ηB.

We get either M(η) ≤ Cε1/6 or M(η) ≥ C′.

Clearly when η is sufficiently small the first alternative holds
and by continuity it must be true for all η ≤ 1.

This proves Proposition 1.
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Once we are in the “small energy” regime on a ρ-ball as in
Proposition 1 we get elliptic estimates on all derivatives of u in
the interior, depending on ρ.
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Proposition 2
Suppose that μg = μ0 − K−1 for K > 0.

For any ε > 0 there is a computable δ > 0, depending on
K , g, ε, such that if uis a Yamabe minimiser for g then the
integral of u6 over any δ-ball is less than ε.
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Together with Proposition 1 and the remarks above, this implies
the closedness part of Theorem. A.
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Since we will be working in a small neighbourhood Ω of a point
there is no real loss in supporting that the metric g is Euclidean
in this neighbourhood.
The function u satisfies the equation −Δu = μu5 for μ = μg .

Let χ be any function of compact support in Ω.

Multiply the equation by χ2u and integrate by parts to get
∫

∇(χ2u).∇u = μ

∫
χ2u6.
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We have
∇(χ2u).∇u = |∇(χu)|2 − |∇χ|2u2.

So ∫
|∇(χu)|2 = μ

∫
χ2u6 +

∫
|∇χ|2u2.

Applying the Euclidean Sobolev inequality to χu we get

μ0‖χu‖2
L6 ≤ μ

∫
χ2u6 +

∫
|∇χ|2.

We estimate the two terms on the RHS using Hölder’s
inequality with exponents 3, 3/2 to get

μ0‖χu‖2
L6 ≤ μ‖χu‖2

L6‖u‖4
L6 + ‖∇χ‖2

L3‖u‖2
L6 .
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Recall that u is normalised so that the integral of u6 is 1. Thus
we have

(μ0 − μ)‖χu‖2
L6 ≤ ‖∇χ‖2

L3

so
‖χu‖2

L6 ≤ K‖∇χ‖2
L3 .
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Important fact; Exercise

For any given σ > 0 we can find δ < δ′ so that for each point
p ∈ M there is a cut-off function χ supported in the δ′

neighbourhood of p, equal to 1 on the δ-neighbourhood of p
and with ‖∇χ‖L3 ≤ σ.

This is a reflection of the failure of the Sobolev embedding
L6

1 → L∞ in dimension 3.
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This completes the proof of Proposition 2.
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Leaving aside the openness in Theorem A for the moment, we
return to discuss the variational problem of finding a Yamabe
minimiser.

For p < 6 consider the modified problem of minimising
∫

|∇u|2 + R/8u2,

subject to the constraint
∫

up = 1.
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The compact inclusion L2
1 → Lp means that a minimising

sequence ui can be chosen to converge to a limit u∞ in Lp.
We can also suppose that it converges weakly in L2

1.
i.e. up,∞ ∈ L2

1 and for any test function ψ

〈∇ψ,∇ui〉 → 〈∇ψ,∇up,∞.

This implies that up,∞ is a weak solution of the Euler-Lagrange
equation and a bootstrapping argument shows that it is smooth.
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Assuming that μg < μ0 a modification of the arguments above
gives a priori estimates on all derivatives of up,∞, independent
of p.

Taking the limit as p → 6 gives a minimiser for the original
problem.
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If we try to use this minimising argument directly in the critical
case p = 6 we can still choose a weakly convergent minimising
sequence but the weak limit could be zero.
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Go back to the openness problem in Theorem A.

This is a Digression from our main thread in this section.

Openness is straightforward, using the implicit function
theorem, provided that for a minimiser g̃ the Laplace operator
does not have an eigenvalue −(1/2)Rg̃ .

To handle the general case we can use the method of
“reduction to finite dimensions”, similar to a discussion in
Section 4.
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Suppose that μg < μ0 and g is a Yamabe minimiser.
The arguments above show that the space K corresponding to
volume 1 minimisers in the conformal class of g is compact.
We regard K as a subset of the space U of positive functions u
with L6 norm 1
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Using the same idea as for “Kuranishi models” we can
construct a compact finite dimensional manifold Σ with
boundary and an immersive embedding ι : Σ → U such that
K = ι(K ) where K lies in the interior of Σ.

We make the construction so that for each σ ∈ Σ we have a
finite-codimension submanifold Nσ ⊂ U through ι(σ) and the
tangent space of Nσ at ι(σ) is complementary to the tangent
space of ι(Σ).
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The subset K is the minimising set of the functional I on U with
minimal value 8μ on K .

We make the construction so that ι(σ) is a nondegenerate
minimum of the restriction of I to Nσ.

We have a finite-dimensional reduction of the functional to a
function I = I ◦ ι on Σ and K is the set of minima of I.
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The crucial point is that there is some δ > 0 so that I ≥ 8μ + δ
on ∂Σ.
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Suppose that we make some small perturbation of our
functional I to I ′.

The nondegeneracy condition means that for each σ there is a
unique nearby minimum of I ′ on Nσ (using the implicit function
theorem in the standard way).

This defines a perturbed map ι′ : Σ → U and hence a perturbed
function I ′ = I ′ ◦ ι′ on Σ.

Minima of I′ on U correspond to minima of I ′ on Σ, provided that
the latter do not occur on the boundary.
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By compactness, there is at least one minimiser of I ′ on the
compact manifold-with-boundary Σ.

The “crucial point” implies that that, for sufficiently small
perturbations, the minimisers are not on the boundary of Σ.

So we get a minimiser of the perturbed functional I′.

End of digression
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Theorem B
Any compact Riemannian 3-manifold (M, g) has μg ≤ μ0 with
equality if and only if (M, g) is conformal to the standard sphere.
The fact that μg ≤ μ0 is relatively easy.

Suppose first that g is Euclidean in a small neighbourhood of a
point p.

Recall that inversion x 7→ x/|x |2 is a conformal map on
R3 \ {0}.
Using this, it is clear that we can find a conformally equivalent
metric ĝ on M̂ = M \ {p} which is complete and Euclidean
outside a compact set.
We can arrange that (M̂ \ K , ĝ) is isometric to the complement
R3 \ 1

2B, for a suitable compact set K ⊂ M̂.
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Let gS be the standard round metric on S3 of volume 1 and fix
a point q ∈ S3.
For small ρ, conformally deform gS slightly in an O(ρ)
neighbourhood of q to get a metric gS

ρ which contains an
isometric copy Bρ of the Euclidean ρ-ball.
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Let J be the 1/8 the integral of the scalar curvature of ĝ.
Scale ĝ to ĝρ = ρ2ĝ.
Then ∫

M̂
Rĝρ

= 8ρJ.

The metrics ĝρ and gS
ρ can be glued isometrically along an

annular region isometric to a neighbourhood of ∂Bρ.
This gives a metric g]

ρ on M, conformal to g.
The volume is 1 + O(ρ3) and the integral of the scalar curvature
is 8μ0 + O(ρ).

Letting ρ → 0 shows that μg ≤ μ0.

If g is not Euclidean near p we get a small extra error in the
gluing construction but the same argument works.
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There is a similar discussion for the harmonic maps energy
functional E in dimension (of the domain) 2.

For example, consider a flat torus T 2 and maps f : T 2 → S2 of
degree d > 0.

If ω is the area form on S2 of total area 1 we have
∫

T 2
f ∗(ω) = d .

On the other hand there is a pointwise inequality

|f ∗(ω)| ≤
1
2
|df |2dμT ,

So E(f ) ≥ d . Equality holds if and only if f is holomorphic.
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A similar construction to that above shows that for any d the
infimum of the energy functional is d . (“Glue” a constant map
on T 2 minus a small disc to a degree d holomorphic map from
S2 to S2.)

When d = 1 there is no holomorphic map, so the infimum is not
attained.

A minimising sequence will develop a “bubble”.

The essence of the Yamabe problem is to show that the
analogous phenomenon does not occur.
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For our discussion of Theorem B we continue to ASSUME that
g is Euclidean in a neighbourhood of some point p ∈ M
Suppose we have a conformal metric ĝ on M̂ with scalar
curvature R̂ ≤ 0 and not identically zero and which is
asymptotically Euclidean in the sense that outside a compact
set the manifold is identified with the complement of a ball in R3

and
ĝij = (1 + φ)δij

where φ is O(r−2), with corresponding estimates for
derivatives. In particular the scalar curvature R̂ is O(r−4).
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Choose a large number L and flatten ĝ in the annulus of size
O(L) to get a metric ĝL

That is, multiply φ by a suitable cut-off function.

The change in the scalar curvature is O(L−4) over the annulus
of volume O(L3) so the change in the integral of the scalar
curvature is O(L−1) which tends to zero as L → ∞.
So we can fix L such that I(ĝL) < 0.
Then the same gluing construction as before shows that
μg < μ0.
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To find a suitable metric ĝ we use the Dirac operator.

Any oriented Riemannian 3-manifold (M, g) admits a spin
structure and hence D : Γ(S) → Γ(S).

If g′ = u4g is a conformal metric we get a spin structure for g′

with the same bundle S but multiply the structure map
T ∗M → EndS by u−2.

Important fact The Dirac operator is conformally invariant, in
the sense that

D′s = u−4D(u2s).
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In general, suppose that D : Γ(E) → Γ(F ) is an elliptic operator
of order r between sections of Hermitian bundles over a
compact n-manifold X . Let p ∈ X and α ∈ F ∗

p . This defines a
distribution, a linear map from Γ(F ) to C. We can consider
solutions s of the equation Ds = δα. Such a section satisfies
Ds = 0 on X \ {p} and has a “pole” at p.
For r < n the order of growth of s is dr−n where d is the
distance to p.
In the case of the ∂-operator on a Riemann surface we get
meromorphic functions.
The general theory says that if the kernel of the adjoint operator
D∗ is trivial then such a solution exists, for any p, α.
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Note that a constant spinor field on R 3 goes over under
inversion to a spinor field on R 3 with a pole at 0.
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To get quickly to the main point note that on a 3-manifold the
Dirac operator is self adjoint and we expect that for typical
metrics the kernel is trivial.
Also the spin bundle S has real rank 4 so generic sections have
no zeros.
So ASSUME for the moment that kerDg = 0 and solve the
equation Ds = δα for some α at p ∈ M.
ASSUME also that this s does not vanish anywhere on M \ {p}.

We have
|s|2 = Cd−4 + O(d−2) (∗ ∗ ∗)

near p for some C 6= 0.
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Let g′ be the conformal metric u4g with u = |s|1/2 so s′ = u−2s
satisfies D′s′ = 0 and by construction |s′| = 1 everywhere. The
asymptotics (***) show that g′ is asymptotically Euclidean in the
sense we considered above.
The Lichnerowicz formula gives

Δ′|s′|2 = |∇′s′|2 + R′|s′|2

But the left hand side is zero so R′ ≤ 0 and if R′ = 0
everywhere ∇′s′ = 0.
If ∇′s′ = 0 it is easy to show that g′ is the Euclidean metric on
R3.
(The group SU(2) acts freely on the unit sphere in C2 so the
“holonomy” is trivial.)

This completes the proof of Theorem B, under the three
ASSUMPTIONS.
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1. The assumption that s has no zeros
Take uε = Fε(|s|) for a suitable family of positive functions Fε(t)
approximating t1/2.

Calculations show that the contribution to the integral of the
scalar curvature from such a change goes to zero as ε → 0.
So the only problem could be when ∇′s′ = 0 outside the zero
set of s.
A maximum principle argument shows that this cannot happen.
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2. The assumption that kerD = 0.
Suppose that s is a non-trivial element of the kernel. If s has no
zeros we consider the same conformal deformation to get a
metric with scalar curvature ≤ 0 which shows that μg ≤ 0 and
hence μg < μ0.

If s has zeros we argue as in (1) above.
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3. The assumption that g is Euclidean in the neighbourhood of
some point.
We can make the same constructions but now we have a
slightly deformed metric on S3. Calculations show that this is
O(ρ2) and so does not affect the argument.
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Higher dimensions
The same argument works in dimension n for spin manifolds
which are (conformally) Euclidean in some neighbourhood.
In general:

For manifolds which are not conformally Euclidean in any
neighbourhood one has to take account of the slightly
deformed metric on Sn.

For a conformally flat manifold M there is a problem if M is
not spin. The discussion is related to the “Positive Mass
Theorem”.
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