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Section 7. Introduction to Perelman’s work on Ricci flow

[Pages 1-11 in G. Perelman The entropy formula for the Ricci
flow and its geometric applications arxiv:math/0211159]

BACKGROUND I
Bounds on the curvature and injectivity radius give good control
of Riemannian metrics.

For example, suppose that (Mi , gi) is a sequence of complete
Riemannian n-manifolds with base points pi ∈ Mi .

Suppose that that there are ρ, C such that for each manifold
|Riem| ≤ Cρ−2 and inj ≥ ρ.

Then there is a subsequence which converges to a C1,α limit
(M∞, g∞, p∞), with curvature tensor in Lq for all q.
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Without the lower bound on the injectivity radius, more
complicated collapsing phenomena can occur.

For example, there is a sequence of metrics on S3 with
bounded curvature which “converge” to the round S2 by
collapsing the fibres of the Hopf fibration S3 → S2.
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Control of the volume of balls gives control of the injectivity
radius.

If |Riem| ≤ ρ−2 and the injectivity radius is much less than ρ
there is a ball Br of radius r = O(ρ) with very small volume ratio

Vol(Br )

r n .

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



This is related to Sobolev inequalities. In the above situation
there is a function f supported in Br such that ‖∇f‖L1 is very
small compared to ‖f‖Ln/n−1 .

For example, let S1
ε be the circle of length ε << 1 and

M = R × S1
ε .

Let f be a smoothing of the characteristic function of a unit ball.

Then
‖∇f‖L1 ∼ ε ‖f‖L2 ∼ ε1/2.
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BACKGROUND II
Suppose that we have a functional F on the space M of
Riemannian metrics on a compact manifold M.

The derivative of F at g is a tensor S(g) = Sij .

δF =

∫

M
〈δg, S〉dvolg .

That is, we are assuming the standard L2 metric on the infinite
dimensional space M to regard the derivative of F as a vector
field on M.

If F is invariant under the diffeomorphism group Diff the tensor
S satisfies the identity ∇∗S = 0 where ∇∗S =

∑
∇jSij .
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This is because for any vector field v on M the Lie derivative of
g along v is the symmetric part of ∇α where α is the 1-form
corresponding to v , and Diff -invariance implies that

∫

M
〈∇α, S〉 =

∫

M
〈α,∇∗S〉

vanishes for all α.
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Formally, we have a gradient flow ∂g
∂t = S(gt). (Formal in the

sense that solutions may not exist, even for a short time.)

This induces (formally) a flow on M/Diff .

More generally, we could have some other assignment
g 7→ S(g)—i.e. a vector field on the infinite dimensional space
M.

Formally this defines a flow on M, but if S does not satisfy the
identity ∇∗S = 0 it is not the gradient flow of a Diff -invariant
functional.
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The Einstein-Hilbert function I has derivative

Sij = Rij −
R
2

gij .

The identity ∇∗S = 0 is the contracted second Bianchi identity.

We cannot hope to find Einstein metrics by minimising or
maximising I (subject to the volume 1 constraint) because I is
not bounded above or below.
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The formal flow associated to I is

∂g
∂t

= −2Rij + Rgij .

This does not have short time solutions, for generic initial
conditions.
To understand this, consider small variations gij = δij + hij about
the flat metric on a torus. We can impose the “gauge fixing”
condition ∇j hij = 0. Then one finds that to first order
Rij = −Δhij and the linearised version of the flow is

∂hij

∂t
= 2Δhij − ΔTr(h)δij .

This is the heat equation for the trace-free part of h and a
backward heat equation for the trace.
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The good PDE is the Ricci flow

∂g
∂t

= −2Rij

with linearisation
∂hij

∂t
= 2Δhij .

But this is not the gradient flow of a Diff -invariant functional,
since ∇∗Ricci =

∑
∇jRij does not vanish.
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END OF BACKGROUND
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A plausible variational approach to finding Einstein metrics is to
maximise μg over conformal classes, where μ(g) is the
conformal invariant consider in the previous section, obtained
by minimising within a conformal class.

In dimension n one parametrises a conformal class by
g̃ = u4/n−2g and μg is the minimum of

Qg(u) =

∫

M
|∇u|2 + αR,

subject to the constraint ‖u‖Lp = 1 with the constants

α =
n − 2

4(n − 1)
p =

2n
n − 2

.

But let’s do the calculations for general α, p.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



Calculus
Suppose we have two families of functions As(x), Bs(x) and we
define F(s) to be the minimum of As subject to the constraint
Bs = 1.

For fixed s, at the minimum x(s) we have ∇A = λ∇B.

One finds that

∂

∂s
F =

∂A
∂s

− λ
∂B
∂s

, (∗ ∗ ∗)

evaluated at x(s).
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In our situation, s runs over the space of metrics and we have
two functions on the space of positive functions uC∞(M). We
have

F(g) = minQg(u)

subject to
∫

updvolg = 1.

(We are ignoring the question of the existence of the minimiser
for the moment.)
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The minimising function u satisfies

−Δu + αRu = pλup−1, (∗ ∗ ∗∗)

for some Lagrange multipier λ.

Writing δg = h with traceh = H, the equations (***), (****) and
the formula for the variation in the scalar curvature give: δF=
∫

M
−hij∇i u∇j u+

H
2

(|∇u|2+αRu2)+α(−ΔH+∇i∇j hij−Rijhij)u
2+. . .

∙ ∙ ∙ + p−1H(Δu − αRu)u.
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Integrating by parts, we get the sum of the integrals of

hij(−∇i u∇j u − αRiju
2 + α∇i∇j(u

2),

and

H
(

1
2
|∇u|2 + (α/2 − α/p)Ru2 + p−1uΔu − αΔ(u2)

)

.
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We can write this as

δF =

∫

M

∑
Sijhijdvol

where S is the tensor
(
−αRij + α∇i∇j(u

2) −∇i u∇j u
)

+ . . .

∙ ∙ ∙+

(
1
2
|∇u|2 + (α/2 − α/p)Ru2 + p−1uΔu − αΔ(u2)

)

gij
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In the Yamabe case the we get

S = u2 R̃icci0

where R̃icci is the Ricci curvature of the conformal metric
u4/n−2g and R̃icci0 is its trace-free part.
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We already knew that!
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Perelman found another special case, when p = 2 and α = 1/4.
(These are the values of the limits of the Yamabe parameters
as n → ∞.)

In this case the Euler-Lagrange equation is linear and F(g) is
just the first eigenvalue of the operator −Δ + R/4.

We have

(1/2)|∇u|2 + (1/2)uΔu − (1/4)Δ(u2) = 0.

Also:
−∇i u∇j u + (1/4)∇i∇j(u

2) = ∇i∇j(f )

where f = −1
2 log u.

So in this case

Sij = (−1/4)[Rij + ∇i∇j f ]u
2.
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Under the flow

∂gij

∂t
= −2(Rij + ∇i∇j f ), (∗ ∗ ∗ ∗ ∗)

we have
dF
dt

= −
∫

|Ricci + ∇2f |2 u2 dvol.

But the flow (*****) is equivalent to Ricci flow modulo
diffeomorphisms so we conclude that the same formula holds
under Ricci flow.
The point is that ∇2f is the Lie derivative of g along the vector
field gradf .
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Another way of saying this is that since ∇∗(S) = 0 we have
∫

〈S,∇2f 〉 = 0.

So ∫
〈S, Ricci〉 =

∫
〈S, Ricci + ∇2f 〉

On M/Diff the Ricci flow is the gradient flow of the functional F
with respect to the metric defined using the modified volume
form u2dvolg .

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



Now let Φ be a function on R and consider for each metric g a
functional

Qg(u) =

∫

M
|∇u|2 + R/4u2 + Φ(u),

subject to the constraint that
∫

u2 = 1. Assume that there is a
unique minimiser and define a functional on M as before. The
Euler-Lagrange equation for the minimum is

−Δu + (R/4)u +
1
2

Φ′(u) = λu.

We get the integral of
(
uΦ′(u) − 2Φ(u)

)
H

as an additional term in the formula for the variation, so we get
an additional term (uΦ′(u) − 2Φ(u)) gij in S.
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Choose Φ(u) = −u2 log u, so uΦ′ − Φ = u2. This defines a
functional which we call W . The associated tensor is

Sij = (−1/4)[Rij + ∇i∇j f + gij ]u
2.

So the functional W is increasing under the flow

∂gij

∂t
= −2(Rij + ∇i∇j f + gij). (∗ ∗ ∗ ∗ ∗ ∗ ∗)

But this flow is also essentially equivalent to Ricci flow. If g(t) is
a Ricci flow defined for t < T0 and if we fix any T , the path of
metrics

g∗(t) = (T − t)−1g(t)

defined for t < minT , T0 satisfies

∂g∗

∂t
= −2(T − t)−2(Ricci(g∗) + g∗),

which is equivalent to (*******) up to diffeomorphisms and a
reparametrisation of the “time” variable.
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We conclude that:

for a Ricci flow g(t) the quantity

W
(
(T − t)−1g(t)

)

is an increasing function of t.
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On any compact Riemannian manifold (N, G) a Logarithmic
Sobolev inequality holds.

There is a constant C = C(G) such that for all positive
functions u with L2 norm 1:

∫
|∇u|2 − u2 log u ≥ C.

Suppose that the manifold (N, G) has small curvature,
Riem≤ 1/100 say, and there is metric ball of radius 1 with very
small volume ν.
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Let v be a suitable smoothing of the characteristic function of
this unit ball and u be the multiple of v chosen so that the
integral of u2 is 1. So u is approximately ν−1/2v and

∫
|∇u|2 ∼ ν(ν−1/2)2 = 1

while
∫

u2 log u ∼ ν(ν−1/2)2 log ν−1/2 = −(1/2) log ν

So the constant C for this metric is very negative: at most about
(1/2) log ν << 0.
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That is: the best constant in the logarithmic Sobolev inequality
detects volume collapsing (just as for the ordinary Sobolev
inequalities).
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It is clear, given the above, that our functional

Qg(u) =

∫
|∇u|2 + (R/4)u2 − u2 log u

is bounded below on the functions with L2 norm 1 so the
infimum W(g) is well-defined.

It can be shown that there is a minimiser (as we assumed in our
preceding discussion).
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Application to singularity formation in Ricci flow.
Suppose that g(t) is a Ricci flow defined on a time interval
[0, T0).

Without real loss of generality suppose that T0 = 1.

We have some number C so that W(λ g(0)) ≥ C for all
λ ∈ [1/2, 2].

At any given time τ ∈ (1/2, 1) write maxM |Riemg(τ)| + 1 = ρ−2.

Take T = τ + ερ2 for a suitable small number ε, say ε = 1/100.
So T lies in the interval [1/2, 2].

Let g∗(t) = (T − t)−1 g(t) for 0 ≤ t ≤ τ .
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By the monotonicity result

W(g∗(τ) ≥ W(T−1 g(0) ≥ C. (∗ ∗ ∗ ∗ ∗ ∗ ∗)

Write G = g∗(τ). By construction the curvature of G is bounded
by ε. For a function supported in a unit ball in (M, G) the scalar
curvature term in the formula for QG is very small.
It follows from (*******) and the preceding discussion that a unit
ball in (M, G) cannot have a very small volume.

Hence the injectivity radius of (M, G) is at least δ for some
computable number δ.
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Suppose we have a sequence of times ti → 1.
Let pi ∈ M be a point where the maximum value of |Riem(g(ti)|
is attained. Define ρi as above and Gi = ε−1ρ−1

i g(ti).

The based Riemannian manifolds (M, Gi , pi) have bounded
curvature and a lower bound on the injectivity radius.

So, possibly passing to a subsequence, there is a C1,α limit.

If in fact the size of the curvature of g(ti) at pi becomes large
then the size of the curvature of Gi at pi is at least 1 so one can
hope to show that the limit is non-trivial (i.e. not Rn).
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Results of Hamilton shows that one also gets “blow up limits” of
the Ricci flow, which is an “ancient solution”, defined for all
t < 0.
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Analysis of such limits leads to an understanding of possible
ways in which singularities can form in the Ricci flow,
particularly in dimension 3.
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Section 8. Singular perturbation problems
One approach that can be used to construct solutions to a
variety of equations involves constructing an approximate
solution and then seeking to deform this to an exact solution.
Suppose we set up our equation as F(A) = 0 for some
nonlinear map F on an open set in a Banach space H1 taking
values in a Banach space H2. Let A0 be an approximate
solution in that ‖F(A0)‖ is small in a suitable sense. Let L be
the derivative of F at A0 so

F(A0 + a) = F(A0) + La + Q(a).

Suppose that L has a right inverse S and write a = Sσ. The
equation to be solved is

σ = T (σ)

where
T (σ) = −Q(S(σ)) −F(A0).
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We seek a solution using the contraction mapping principle.
This will work if there is some r such that

‖Q(Sσ1) − Q(Sσ2)‖ <≤ (1/2)‖σ1 − σ2‖,

(say) for all ‖σ1‖, ‖σ2‖ < r and

‖F(A0)‖ << r .
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For example, suppose that Q is a quadratic function with

‖Q(A1) − Q(A2)‖ ≤ C‖A1 − A2‖ ‖A1 + A2.‖

Suppose that ‖S‖ = ε−1.

Then

‖Q(Sσ1) − Q(Sσ2)‖ ≤ Cε−2‖σ1 − σ2‖ ‖σ1 + σ2‖,

and we will find our solution provided that

‖F(A0)‖ ≤ cε2,

where c = (10C)−1, say.
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One type of application of this idea involves “gluing
constructions”.
Example Let T = C2/Λ be a 2-dimensional complex torus. The
involution of T induced by z 7→ −z on C2 has 24 = 16 fixed
points. Taking the quotient and blowing up these points gives a
Kummer surface X . This admits Kahler metrics and has zero
first Chern class so by Yau’s Theorem it has Kähler metrics with
zero Ricci curvature: one in each Kähler class.
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We can produce some of these metrics, independent of Yau’s
theorem by gluing.
X contains 16 holomorphic 2-spheres. A neighbourhood of one
of these is holomorphically equivalent to a neighbourhood of
the zero section in the total space Y of the cotangent bundle of
S2. There is an explicit Kähler metric of zero Ricci curvature on
Y . The complement of the union of the spheres in X has a flat
metric induced from T .
We can write down an approximate solution by “gluing” 16
copies of Y , scaled by factors ε1, . . . ε16, to the flat metric.
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The parameters εi and the choice of flat metric fix the Kähler
class.

When the εi are sufficiently small the strategy outlined above
can be used to deform the approximate solution to an exact
one.

This does not replace Yau’s proof because we cannot treat all
Kähler classes.

But it gives more in that one knows almost exactly what the
metrics are.
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Note that there is some connection between these gluing
constructions and our discussion of the Yamabe problem.
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In this course we will not say more about gluing but we discuss
adiabatic problems.

By this we mean geometry on a manifold which is a product
with one factor much larger than the other, or more generally a
fibration with the fibre much smaller than the base.

We will discuss one model problem, but the same techniques
apply to many other problems.
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Let X , T , N be Riemannian manifolds with X and T compact.
For ε > 0 we consider the metric gε = gX + ε−1gT on T × X .
We want to consider harmonic maps from (T × X , gε) to N.

Recall that any map f : T → N has a tension field τT (f ) and the
harmonic map condition is τT = 0. At a solution f there is a
linearised operator Jf (“Jacobi operator”), which is a self-adjoint
operator on sections of f ∗(TN).
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For example if T = S1, so we have a closed geodesic, this is
the classical Jacobi operator

J(v) = ∇2
t v + R(v , t)t ,

where R is the curvature tensor of N and t is the tangent vector
to the geodesic.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



The quadratic form 〈Jf v , v〉 defines the second variation of the
harmonic maps energy.

Suppose that we have some connected moduli space M of
harmonic maps from X to N.

We assume that M is Morse-Bott, which is to say that it is a
manifold with tangent spaces equal to the kernels of the Jacobi
operators.

The L2 metric on sections of f ∗(TN) defines a Riemannian
metric on M.
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Suppose that φ : T → M is a harmonic map. We say that φ is
rigid if the Jacobi operator of φ has zero kernel.
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A map φ : T → M defines a map Fφ : T × X → N in an obvious
way.
That is, we are using

Maps(T × X , N) = Maps(T , Maps(X , N)).
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Theorem
Suppose that M is Morse-Bott and a local minimum of the
energy functional. and suppose that φ : T → M is rigid.
Then for small ε the map Fφ can be deformed slightly to give a
harmonic map from T × X , gε) to N.
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For any map F : T × X → N the tension field with respect to gε

can be written as τX + ετT where τX , τT are the tension fields of
the restrictions of F to the slices {t} × X , T × {x}.

Our map Fφ is characterised by two properties:

τX (Fφ = 0

πτT (Fφ) = 0

where for each fixed t the map π acts as the projection from
sections of the pull-back of TN over {t} × X to the kernel of the
Jacobi operator of the map φ(t) : X → N.
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BACKGROUND
Finite-dimensional analogue

Let V → Z be a rank r real vector bundle over an r -dimensional
manifold.
Suppose that σ is a section of V which vanishes on a
submanifold Y ⊂ Z and that at each point of Y the kernel of the
derivative of σ is the tangent space of Y .
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Let Q → Y be the vector bundle formed by the cokernels of the
derivative of σ, so we have a quotient map π : V |Y → Q.

Suppose that τ is another section of V . Then π(τ) is a section
of Q over Y . Suppose that π(τ) has a transverse zero at a point
y0 ∈ Y .

Then , for small ε the section σ + ετ of V over Z has a zero near
to y0.
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To see this, consider the case r = 2 with dimY = 1.

We can suppose that Z = R2 and that V is the trivial bundle
with σ(x , y) = (x , 0), so Y is the y -axis. We can suppose that
y0 = (0, 0).

We have τ(x , y) = (f1(x , y), f2(x , y)) and the hypothesis is that
f2 vanishes at the origin but ∂f2

∂y does not vanish there.

So f2 vanishes on a curve γ through the origin transverse to the
y -axis.

It is clear that for small ε the function x + εf1 has a zero on γ.
This gives a zero of σ + ετ .

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



There is another analogue of “intermediate
infinite-dimensionality”.
Let B be a Riemannian manifold, V a real-valued function on P
and λ a real parameter.
We can deform the harmonic maps energy for maps f : T → B
using the potential function V :

Eλ(f ) =

∫

T
|∇f |2 + λ

∫

T
V ◦ f .

If T = S1 this is the Lagrangian for the motion of a particle on B
in the potential −V .
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Suppose that V is a Morse-Bott function with a critical
submanifold M ⊂ B which is a local minimum and that
φ : T → M is a rigid harmonic map.

Then for large λ there is a solution of the Euler-Lagrange
equations for Eλ which is close to φ.
Our problem fits into this setting with B the infinite dimensional
space of maps from X to N, V the energy functional and
λ = ε−1
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There are analogues of our Theorem in gauge theory. If M is a
Morse-Bott moduli space of minimising Yang-Mills connections
over a manifold X and φ : T → M is a rigid harmonic map then
we get a Yang-Mills connection over (T × X , gε) for small ε.
(Theorem of Y. Hong)
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In suitable situations where the moduli space M is a complex
manifold there are analogues for holomorphic maps φ : T → M
and solutions of first-order equations over T × X , such as the
Seiberg-Witten and instanton equations (Theorem of G.
Dostoglou and D. Salamon.)

This is what underlies the correspondence between
Ozsvath-Szabo’s “Heegard Floer Theory” and Seiberg-Witten
Theory. The Heegard theory is built using holomorphic maps to
the vortex moduli spaces (symmetric products).

It is also related to Taubes’ correspondence between
holomorphic curves and solutions of the deformed
Seiberg-Witten equation.
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The whole discussion can be extended to replace the product
X × T with a fibre bundle X → T .
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END OF BACKGROUND

START OF OUTLINE PROOF OF THE THEOREM.
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Linear Theory

Begin by considering a strictly positive self-adjoint operator J
over X equal to −ΔX plus lower order terms (for example
−ΔX + 1).

Let Δm be the Laplace operator on Rm. Then L = J − Δm is an
operator on functions on X × Rm equal to the Laplacian on
Rm × X plus lower order terms.
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Proposition 1
There is a bounded right inverse

L−1 : C,α → C2,α.

It suffices to get a bound on L−1 : C0 → C0. For if ρ ∈ C,α and
f = L−1ρ so that Lf = ρ then by applying the standard elliptic
estimates in balls of fixed size we get

‖f‖C2,α ≤ C (‖f‖C0 + ‖ρ‖C,α)
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First there is an easy L2 theory.
Define a norm on compactly supported functions on T × X

‖f‖2
1 = 〈Jf , f 〉 + 〈∇T f ,∇T f 〉.

Then ‖f‖1 ≥ c‖f‖L2 where c−1 is the first eigenvalue of J on X
so the completion H under ‖‖1 includes L2.
For ρ ∈ L2 the map g 7→ 〈g, ρ〉 is bounded on H and so by the
Riesz representation theorem there is an f such that

〈g, ρ〉 = 〈g, f 〉1

for all g, which says that f is weak solution of Lf = ρ.
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We can study this using separation of variables. Let ψλ be an
orthonormal basis of eigenfunctions for J over X . Write

ρ =
∑

λ

ρλψλ

so ρλ are functions on Rm.
A function f =

∑
fλψλsatisfies Lf = ρ if

(−Δm + λ)fλ = ρλ. (∗ ∗ ∗∗)

The equation (****) on Rm can be solved using Fourier
transform methods, or otherwise.
The Green’s function for −Δm + 1 is a function K (r) with a
standard singularity at the origin and exponential decay:
K (r) ≤ Ce−αr , for r > 1 say.
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For example in dimension m = 1 one has K (r) = e−r .
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It is then straightforward to show that the Green’s function for L
has exponential decay and is integrable in the sense that

∫
|G((t , x), (t ′, x ′)|dtdx ≤ C,

which immediately gives ‖L−1ρ‖C0 ≤ C‖ρ‖C0 .
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Now let Jt be a smooth family of such operators on X
parametrised by T which we can regard as an operator J on
T × X . Let Λ = J − εΔT , an operator over T × X .
The leading term is minus the Laplacian of (T × X , gε)
Proposition 2
For small ε the operator Λ has a right inverse with C,α 7→ C2,α

operator norm bounded, independent of ε.

As before, it suffices to get C0 7→ C0 bounds.
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Let B be a small ball of radius δ in T , in the fixed metric gT and
σB be a larger concentric ball of radius σδ.
In the metric ε−1gT the ball σB is almost isometric to a large
ball of radius σδε−1/2 in Rm.
Over σB × X we can regard Λ as a small perturbation of an
operator of the kind we considered in Proposition 1, and thus
construct an inverse P, so that for a function ρ supported in
B × X we have ΛPρ = ρ over σB × X .

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 7,8



Take a cover of T by such small balls Bi and let χi be a
subordinate partition of unity.

For each i , let χ̃i be a function supported on σBi equal to 1 on
Bi .
Then we have local inverses Pi and we define

P(ρ) =
∑

i

χ̃iPi(χiρ).
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Then

ΛP(ρ) − ρ = ∇2χ̃i ∗ Pi(χρ) + ∇χ̃ ∗ ∇Pi(χiρ). (∗ ∗ ∗ ∗ ∗)

The support of ∇χ̃i is separated from the support of χρ.
Adjusting parameters and using the exponential decay we can
make the right hand side of (*****) very small compared with
‖ρ‖ and thus prove Proposition 2.
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Now consider a family of semi-positive operators Jt with kernels
Ht forming a vector bundle H → T .

Let π0 be the projection from functions on T × X to sections of
H. We have linear operator

λ = −π0ΔT : Γ(H) → Γ(H).

This is second order self-adjoint differential operator of Laplace
type.

In the product case, when Jt is constant and H is a trivial vector
bundle, λ is just −ΔT .
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Define Λ as before.

Let H+
t be the L2-orthogonal complement of Ht , the span of the

eigenfunctions with positive eigenvalues. These form an
infinite-dimensional vector bundle over T and we have

C∞(T × X ) = Γ(H+) ⊕ Γ(H).

With respect to this the operator Λ has a “matrix” description:

Λ =

(
Λ++ Λ+0

Λ0+ Λ00

)

and Λ00 = ελ.
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Proposition 3

The operator Λ++ is invertible and the inverse has operator
norm bounded independent of ε.

If λ is invertible then, for small ε, Λ is invertible and the
inverse has operator norm bounded by Cε−1.

We skip the proof. The statement is clearly true in the product
case. The main point can be seen for 2 × 2 matrices

(
1 Bε

Cε Dε

)

which are invertible for small ε if D 6= 0.
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This completes our discussion of the linear theory.
We go back to our harmonic map problem for (T × X , gε) → N.
We suppose that N is an open subset in Rq with some
Riemannian metric having Christoffel symbols Γλ

μν so a map is
a vector valued function u.

(Using the same device as in Section 3 we can treat the
general N this way.)
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We want to solve the equation F(u) = 0 where

F(u) = τX (u) + ετT (u).

We have τX (u) = ΔX u + Γλ
μν∇X uμ.∇X uν and similarly for τT .

Here Γ is evaluated at the point u(t , x).
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In this set-up, at any u we have a derivative Du of F . It is a
linear map from Rq-valued functions to Rq-valued functions.

BUT we should keep in mind that if u is not a harmonic map
this derivative does not have a completely geometric meaning:
it depends on the “co-ordinates” i.e. the description of the maps
from T × X to N as an open subset of a vector space.

We write Du = Du,X + εDu,T in the obvious way.
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Let U be the function corresponding to φ : T → M.

This is our first attempt at an “approximate solution”.

We have
F(u) = ετT (U)

and for each t ∈ T we have a linearised operator Jt on X as
considered above.

The kernel of Jt is the tangent space of M at φ(t). We have an
operator J as before.

The condition that φ is a harmonic map says that
π0(τT (U)) = 0.

So there is a function ξ such that J(ξ) = −τT U.

Let u = U + εξ. This is an “improved approximate solution”.

We have ‖F(u)‖C,α ≤ Cε2.
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We have DU,X = J but Du,X will differ from this by O(ε).
There is an operator μ such that

Du,X = J + εμ + O(ε2),

so
Du = J + ε(DU,T + μ) + O(ε2).

Let λ : Γ(H) → Γ(H) be defined by

λ = π0 ◦ (DU,T + μ).
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Key Lemma λ is the Jacobi operator of the harmonic map
φ : T → M.
To understand this consider a finite dimensional analogue with
a function f (x , y) = a(x2 − y)2 on R2. This has the parabola
y = x2 as critical submanifold. Let g be another function on R2

whose restriction to the parabola has a nondegenerate critical
point at the origin. Our problem is to find a critical point of
f + εg for small ε.

The hypothesis on g is not the same as saying that gxx is
non-vanishing at the origin.

This is a reflection of the fact that the Hessian does not have an
intrinsic (coordinate independent) meaning at non-critical
points.
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If we parametrise the parabola by (x = t , y = t2) we have

gtt(0) − gxx(0) = 2gy (0) (∗ ∗ ∗ ∗ ∗ ∗ ∗)

Here gtt is the analogue of the operator λ.
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Let ξ = (1/2a)gy and consider the point p = (0, εξ).
This point p is the analogue of u.

We have ∇(f + εg)(p) = O(ε2) and

fxx(p) = fxx(0) + εξfxxy + O(ε2).

Since fxxy = 4a at the origin this is

fxx(p) = fxx(0) + ε2gy + O(ε2)

The change in fxx going from (0, 0) to p matches up with the
defect term (*******).
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The operator Λ = J + ε(DU,T + μ) is not exactly of the form we
considered before but the same arguments apply and we
deduce that Λ−1 has operator norm bounded by Cε−1.

The derivative Du differs from Λ by O(ε2) so D−1
u has the same

bound.

We know that ‖F(u)‖ is O(ε2) but this is not quite good enough
to apply the contraction mapping argument.

That would work if ‖F(u)‖ ≤ cε2 for some possibly small
number c (computable from the various bounds we have).
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So we look for an improved approximate solution of the form

u′ = u + εθ + ε2η

for a suitable θ ∈ Γ(H), η ∈ Γ(H+).

We find that

F(u′) = F(u) + ε2(J(η) + (DT ,U + μ)(θ)) + O(ε3).

So we can solve for θ, η to remove the O(ε2) term in F(u). We
get F(u′) = O(ε3).

For small ε, this u′ is a sufficiently good approximate solution to
use the contraction mapping argument.
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One can also go on to construct a formal power series solution

U +
∞∑

i=1

ξiε
i + θiε

i .

This means that one could get by with weaker bounds on the
inverse operators.
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