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1 A variational problem

The aim of this article is to give an impression of some contemporary devel-
opments in complex differential geometry through the particular case of toric
manifolds where the constructions can be expressed in elementary terms. Our
starting point is a partial differential equation for a function u of n real variables
x1, . . . , xn. We require the function to be strictly convex, by which we mean
that the matrix of second derivatives

uij =
∂2u

∂xi∂xj

is positive definite at each point. Let (uij) be the inverse matrix. The partial
differential equation is

∑

ij

∂2uij

∂xi∂xj
= −A, (1)

where A is a given function of x1, . . . xn. (We are mainly interested in the cases
when A is a constant, or a linear function.) This equation was first written down
by Miguel Abreu in [1]. It is a nonlinear fourth order PDE, the nonlinearity
coming from the nonlinear map which takes the matrix (uij) to its inverse.
(uij). The equation is closely related to Monge-Ampère equations which arise
in many parts of pure and applied mathematics. These are second order PDE
which have the form

det(uij) = F,

where F is a given function of x, u and the first derivatives of u. For example,
it is an exercise to show that a solution of the Monge-Ampère equation with
F = 1 is a solution of (1) with A = 0.

We want to consider a function u on a convex polytope P ⊂ Rn. So P is a
bounded set defined by a finite number of inequalities λj(x) < 0, for affine-linear
functions λj . (By affine-linear we mean a function of the form C +

∑
cixi.) We

also fix a measure dσ on the boundary of P . This is to be just a multiple of the
standard (n − 1)-dimensional volume measure on each face of the boundary. It
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is elementary that there is a unique affine-linear function A such that for any
affine-linear function f ∫

P

fAdμ =
∫

∂P

fdσ, (2)

where dμ is the Lebesgue measure on Rn. Now, with this function A, we want to
solve the PDE (1) in P for a function u satisfying certain boundary conditions.
These are, roughly speaking, that as we approach a point p on a face on which
the measure dσ is mα times the volume measure the function u should behave
like mαD log D + u(p) where D is the distance to the boundary. The boundary
conditions can be built into a variational formulation of the problem. For a
function f on the closure P define

LP (f) =
∫

∂P

fdσ −
∫

P

fAdμ.

Now define a functional on convex functions u on P , smooth in the interior, by

M(u) = −
∫

P

log det(uij) + LP (u). (3)

The function − log det H on positive symmetric matrices H is convex, so the
same is true of the functional M and any critical point is a minimum. A
variational analysis shows that a minimiser is the same as a solution of equation
(1) satisfying the boundary conditions. The relevance of the condition (2) on A is
clear from this variational point of view, because if it did not hold the functional
is obviously not bounded below, since adding an affine-linear function to u does
not change log det(uij).

2 Toric geometry

To explain where the PDE (1) comes from, we begin with the case of surfaces of
revolution. Away from the fixed points we can choose “equiareal” co-ordinates
(x, θ) in which the metric has the form hdx2 +h−1dθ2 where h is a function of x
and the circle action rotates the θ co-ordinate. (Equiareal means that the area
form of the metric is the standard form dxdθ in these co-ordinates.) The Gauss
curvature is given by the formula

K = −
1
2

d2 h−1

dx2
. (4)

If we integrate twice to write h = d2u
dx2 for a convex function u(x) this gives the

expression on the left hand side of (1) up to a factor −1/2, so the equation (1)
is prescribing the Gauss curvature as a given function A(x). Take, for example,
the case of the standard round 2-sphere in R3 rotating about an axis. Then, by
a result of Archimedes, the equiareal co-ordinate x is the projection onto this
axis and the metric is

(1 − x2)−1dx2 + (1 − x2)dθ2
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so h(x) = (1 − x2)−1 and

u(x) =
1
2

((1 − x) log(1 − x) + (1 + x) log(1 + x))

on the interval (−1, 1), which is our polytope P in this case.

μ

u(x)

−1 x 1

The round 2-sphere and its symplectic potential function

The introduction of u may seem artificial in this 1-dimensional case but
becomes essential in higher dimensions. The general setting is a Kähler metric
on a manifold of dimension 2n, with an isometric action of a n-dimensional
torus Tn. Thus, on the subset where the action is free, we have n angular
co-ordinates θ1, . . . , θn and it can be shown that that there are additional co-
ordinates x1, . . . , xn and a “symplectic potential” function u(x1, . . . , xn) such
that the metric has the form

∑
uijdxidxj + uijdθidθj , (5)

where uij and uij are defined as before. The expression on the left hand side
of (1) gives minus the scalar curvature of this metric. Solutions of the equation
(1) with a constant A give constant scalar curvature Kähler (CSCK) metrics.
When A is an affine-linear function they give extremal Kähler metrics, a no-
tion introduced by Calabi. For the purposes of this article the reader does
need to know this differential geometric background: the point is that CSCK
and extremal metrics are natural higher dimensional generalisations of constant
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Gauss curvature surfaces. On the 2-sphere there are two points where the θ
co-ordinate is not defined, the fixed points of the rotation action. We have a
map μ : S2 → [−1, 1] mapping these two points to the endpoints of the interval
and the description above is valid over the interior (−1, 1). The general story
for a compact 2n-dimensional Kähler manifold X with Tn action is that there
is a map μ : X → Rn with image a closed convex polytope P . Over the interior
P of P the fibres of μ are free Tn-orbits but over boundary points the fibres are
lower dimensional tori. The polytopes that arise in this way form a special class
called Delzant polytopes. The definition involves an integrality condition: there
must be n faces meeting at each vertex and these must be equivalent, under the
action of GL(n,Z) and translations, to the standard co-ordinate hyperplanes.
The integral structure defines a measure on each face of the boundary of P , for
the face is contained in a hyperplane H + p and we have a lattice H ∩Zn in H
which fixes a measure.

Kähler geometry is the intersection of symplectic geometry and complex
geometry and the discussion above is the symplectic picture. We could go on
to write down a complex structure on X in which the action of the torus Tn

extends to a holomorphic action of Tn
C = (C∗)n, with an open dense orbit—just

as for C∗ ⊂ S2. But to keep things short let us move on to an algebro-geometric
point of view.

Any convex set Π ⊂ Rn defines a graded algebra R = RΠ. First take the
cone on Π, the set

C(Π) = {(x, h) ∈ Rn × R : h ≥ 0, x ∈ hΠ},

and let ΣΠ be the intersection of C(Π) with the integer lattice Zn × Z. The
algebra RΠ has an additive basis sν corresponding to points ν ∈ ΣΠ and multi-
plication defined by sλsν = sλ+ν . The grading is provided by the Z component
of ν. Similarly, there is an obvious action of Tn

C on R. For a general convex set
Π this algebra will not be finitely generated but in the case of a closed polytope
P which is the convex hull of a finite number of points in the integer lattice
Zn ⊂ Rn it will be. In that case, by general foundational results in algebraic
geometry (the “Proj” construction), RP is the coordinate ring of a “toric vari-
ety” X ⊂ CPN with a Tn

C action on X induced by that on RP . If the polytope
P also satisfies the Delzant condition, X will be a complex projective manifold.
We will call such polytopes integral Delzant polytopes.

For an example, let P be the interval [−1, 1] in R. Then the ring RP is
generated by the three elements U, V,W corresponding to the lattice points
(−1, 1), (0, 1), (1, 1) with a single relation V 2 = UW . This is the co-ordinate
ring of the conic curve in CP2 defined by the same equation in homogeneous
co-ordinates.

The differential geometric and algebro-geometric discussions are compatible,
so for an integral Delzant polytope P the Tn-invariant Kähler metrics on the
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complex projective manifold X we defined algebraically above correspond to
convex functions u on P satisfying our boundary conditions. (More precisely,
the correspondence is with Kähler metrics in the cohomology class determined
by the projective embedding.)

With this background we have reached the main point. An important ques-
tion in complex differential geometry is: when does a projective manifold admit
an extremal metric? This includes (for the special class of manifolds with van-
ishing first Chern class) the question of the existence of Calabi-Yau metrics
with zero Ricci curvature, which was famously answered by Yau in 1978. But
in general the extremal condition is the right one to consider. By what we have
said, in the case of toric manifolds X this question comes down to the solubil-
ity of our PDE (1). (The Calabi-Yau condition, in the toric case, becomes a
Monge-Ampère equation.)

3 The existence theorem

Fix a base point p0 in the interior of our polytope P and call a convex function
u normalised if u ≥ 0 and u(p0) = 0. By adding affine-linear functions we can
restrict attention to normalised functions u. Contemplating the formula (3) one
sees that the minimisation problem involves two competing effects. To make
the integral of − log det(uij) small we should make det(uij) large, so we should
make the second derivatives of u large in at least some directions, but that will
make the function u large on the boundary so the term in (3) involving the
integral of u over the boundary will be large. The question is whether a balance
between these two effects can be achieved. An answer to this question is known,
at least for Delzant polytopes.

Theorem 1 Let P ⊂ Rn be a Delzant polytope and LP ,MP be the correspond-
ing functionals. There is a minimiser of the functional MP on normalised func-
tions u if and only if LP (f) > 0 for all non-zero normalised convex functions f

on P . This minimiser is unique.

This statement combines work of many people, the final step being achieved
in the recent preprint [6]. Earlier work of the author [4],[5] and B. Chen,Li,
Sheng [3] dealt with the case n = 2. For higher dimensions, the breakthrough
comes from work of X. Chen and Cheng [2], in the larger setting we discuss in
the next section. The entire proof involves a mountain of analysis and we only
attempt to make the statement plausible.

The convexity of the functional M gives the uniqueness part of Theorem
1. Another simple fact is that if there is a smooth convex function f with
LP (f) < 0 then M is not bounded below. For if we take any convex function
u satisfying the boundary conditions and set u(s) = u + sf then for s ≥ 0
the function u(s) is convex and also satisfies the boundary conditions. We have
M(u(s)) ≤ M(u0)+sLP (f) since det(u(s))ij) ≥ det(uij), hence M(u(s)) → −∞
as s → ∞. Turning to the existence question, consider a finite-dimensional
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analogue of our infinite dimensional situation, with a function F on a Euclidean
space RN . The lack of compactness of RN means that, even if F is bounded
below, there may be no minimum: for example the function F (x) = ex on R.
But a “coercive inequality” of the form F (x) ≥ ε‖x‖−C for some ε > 0 implies
that a minimiser must exist. In our problem, suppose we know that there is a
bound, for some λ > 0 and all normalised convex functions f on P :

LP (f) ≥ λ‖f‖L1(P ). (6)

Then it is not hard to show, using the slow growth of the logarithm function,
that this implies that the nonlinear functional F satisfies a coercive inequality,
for normalised u:

M(u) ≥ ε‖u‖L1(P ) − C, (7)

for some ε > 0. One of the main results of Chen and Cheng is that such an in-
equality implies the existence of a minimiser—the infinite-dimensional problem
behaves like the finite-dimensional analogue. The recent work of Li, Zian and
Shen [6] establishes a convex analysis result, that the positivity hypothesis in
the statement of Theorem 1 is equivalent to a “uniform” inequality (6), which
is an a priori stronger condition.

4 Stability of complex projective manifolds

The theorem of the previous section gives, in a sense, a complete answer to the
question of the existence of extremal Kähler metrics on toric manifolds. It fits
into a larger picture, for general projective manifolds, where the final answer is
not yet known.

Recall that any convex set in Rn defines a graded ring. Let f be a convex
function on our polytope P and define a convex subset Q of Rn+1 = Rn × R
by

Q = {(x, h) ∈ P × R : h ≥ f(x)},

so we get a ring RQ. The translation (x, h) 7→ (x, h + 1) induces the structure
on RQ of an algebra over the polynomial ring C[t]. We can also obtain RQ as
the Rees algebra of a filtration of the graded RP . In general, let R be an algebra
over C with a filtration by vector subspaces

0 = F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ . . . ,

such that
Fa.Fb ⊂ Fa+b. (8)

The Rees algebra is the algebra over C[t]

Rees(R,F∗) =
⊕

a

Fata ⊂ R[t].

In the case at hand, let Σa be the set of lattice points

Σa = {(x, k) ∈ Zn × Z : k ≥ 0, x ∈ kP , f(x/k) ≤ a/k}.
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This is a subset of the set of lattice points defining RP and we define Fa to
be the subspace spanned by these basis elements. The convexity of f implies
that Σa + Σb ⊂ Σa+b and this gives the multiplicative property (8). From the
definitions, the Rees algebra of this filtration of RP is canonically identified with
RQ.

Degeneration of a conic

UW = tV 2

CP2

−1 1x

f(x)

Suppose that P is an integral Delzant polytope and that f is a piecewise
linear convex function of the form

f(x) = max(μ1(x), . . . , μr(x)) (9)

where μi are affine-linear functions with integral coefficients. Then the Rees
algebra RQ has an algebro-geometric interpretation. It is finitely generated
over C[t] and the Proj construction over C[t] defines a variety X ⊂ CPN × C.
Projection to the second factor gives a map π : X → C with the property that
for t 6= 0 the fibre π−1(t) is a copy of our complex manifold X but the central
fibre π−1(0) is a different variety: a degeneration of X. For example, if P is
the interval [−1, 1] in R—so X is the Riemann sphere embedded as a conic
curve in CP2—and f is the function f(x) = max(x,−x) the degeneration has
central fibre a pair of lines in the plane; a singular conic. In general a function
of the form (9) defines a decomposition of P into a union of convex pieces on
each of which f is affine-linear, and the central fibre is a reducible variety with
components corresponding to these pieces. From the more algebraic point of
view, for any filtered algebra R one considers Rees(R,F∗) ⊗C[t] C, where C[t]
acts on C by evaluating t at some τ ∈ C. If τ 6= 0 this tensor product is
isomorphic to R but for τ = 0 it is the associated graded ring

⊕

a

Fa/Fa−1.
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The differential-geometric and algebro-geometric constructions we have en-
countered all extend beyond the toric case. For any complex projective manifold
X there is a Mabuchi functional on the space of Kähler metrics and the problem
of finding an extremal metric is the problem of minimising this functional. The
work of Chen and Cheng shows that the existence of a minimiser is equivalent
to a coercive inequality like (7) but a complete algebro-geometric criterion for
this is not yet known. Whatever the final answer may be it must be bound
up with algebro-geometric notions of “stability” which stretch back to Mum-
ford’s Geometric Invariant Theory from the 1960’s and, further, to Hilbert. In
place of the positivity criterion on convex functions we expect to see a crite-
rion involving filtrations of the co-ordinate ring R(X). Filtrations which satisfy
a finite-generation condition correspond to degenerations of X and there is a
numerical invariant of these—the Futaki invariant—which reduces in the toric
case to L(f). The manifold X is called K-stable if the Futaki invariant is pos-
itive for all non-trivial degenerations. In the toric case this corresponds to the
positivity of L(f) for all functions f of the form (9) where the μi have rational
co-efficients. (Multiplying P by a scale factor one can then reduce to the case
of integral co-efficients.) The extension to more general filtrations was made by
Székelyhidi in [7] (whose treatment we have followed above). This leads to a
strengthening of the notion of K-stability to K̂-stability, which corresponds in
the toric case to the positivity criterion in our Theorem. In another direction,
there is a notion of uniform K-stability which corresponds in the toric case to
the existence of an inequality (6). In the toric case, K̂-stability, uniform K-
stability and the existence of an extremal metric are all equivalent, and perhaps
the same will turn out to be true in general. For some classes of manifolds, such
as Fano manifolds, the condition of K-stability is also equivalent but this is not
expected to be true in general.

In any case there is much current activity in this area and much to be done,
both in proving abstract existence theorems and in understanding more deeply
these interactions between algebraic and differential geometry.
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