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This does not attempt to be a systematic overview, or a to present a com-
prehensive list of problems. We outline some questions in three different areas
which seem to the author interesting. Experts will learn little new; our goal is
to give some picture of the fields for non-specialists.

1 Low-dimensional topology and symplectic topol-
ogy

The general setting here is that one would like to understand the classifica-
tion of manifolds, and related objects such as knots in 3-space. The “classi-
fication”means up to an appropriate equivalence, and for definiteness we will
consider smooth (i.e. differentiable) manifolds up to diffeomorphism (equiva-
lence by differentiable homeomorphisms). Of course, what one really seeks is an
understanding of the possible phenomena, rather than a classification into long
lists of cases. Simplifying things greatly we can say that

• For 2-dimensional manifolds the classification is well-known, compara-
tively elementary and goes back to the beginnings of the subject of topol-
ogy in the 19th. century.

• The classification of “high-dimensional” manifolds, of dimension 5 or more,
was to a large extent understood through the far-reaching theories devel-
oped in the middle of the 20th. century. This should not be taken too
literally. In fact it is completely impractical to classify all manifolds in any
useful sense: any finitely presented group can occur as the fundamental
group of a manifold of dimension 4 or more so this would require something
like a classification of all such groups. What we mean is that these far-
reaching theories translate the topological questions into algebraic ones,
which are tractable in many useful cases.

• The classification of 3-dimensional manifolds might reasonably be con-
sidered to be understood through the recent resolution by Perelman of
Thurston’s “Geometrisation Conjecture”. Again, one should qualify the
degree to which this gives a precise classification.
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• For 4-dimensional manifolds a great deal is now known in the way of
“examples of phenomena that can occur”, but there is at present no kind
of systematic picture, even at the most conjectural level.

Our focus here is on the last case above. The progress since the 1980’s has
largely been achieved by the introduction of new invariants, about which we
say more below. These have been used to distinguish 4-manifolds which appear
identical from the point of view of classical algebraic topology (homology groups,
homotopy type etc.). What is completely unknown is whether these invariants
are in some sense “sufficient”or, on the other hand, whether they have just
moved our understanding forward by a few notches. It seems best to explain this
by a concrete example, for which we take a construction of Fintushel and Stern
[7] (but there are many other similar examples in the literature which one could
discuss). Fintushel and Stern start with a well-known “standard” 4-manifold: a
“K3 surface” X. Until the early 1980’s it would have been reasonable to guess
that any 4-manifold which has the same classical invariants as X is actually
diffeomorphic to X. But Fintushel and Stern showed that this guess is wildly
out. They take any knot K in ordinary 3-space and use this to define a manifold
XK by a certain surgery procedure (cutting out a piece of X and gluing back
another piece determined by K). They show that these new invariants (to be
precise, the Seiberg-Witten invariants) of XK detect the Alexander polynomial of
the knot K—a well-known knot invariant dating from the 1920’s and thoroughly
understood in terms of the algebraic topology of the complement of K in 3-space.
So, first, this gives an enormous supply of mutually inequivalent 4-manifolds
within the same homotopy type, since we can choose a knot to realise any
prescribed Alexander polynomial. But, conversely, it is easy to find pairs K,K ′

of knots with the same Alexander polynomial so then we can ask whether XK
and XK′ are equivalent; and this question is completely out of reach. Or, less
precisely, we can ask whether there is some useful list of surgery procedures of
this nature which generate all manifolds of the given homotopy type.
The outstanding problem then, in 4-manifold topology, is to find if there is

something which could play the role of Thurston’s Geometrisation conjecture,
for the case of 3-manifolds, and which might guide further research. The key
idea in Thurston’s theory, and in the proof of the conjecture via “Ricci flow”,
is to consider structures on manifolds which are not immediately present in
the topological problem. For 3-manifolds we can take these structures to be
Riemannian metrics. One is obviously lead to ask: are there structures one
can consider on 4-manifolds which are helpful in understanding the topology?
Of course there are no very solid grounds for supposing that this is the right
way forward. The royal road to understanding smooth 4-manifolds—if it exists
at all—might be quite different. But in any case work in this direction leads
to many other questions of great interest in their own right. Such work has
followed two main paths.
One path, following most closely the 3-dimensional model, is to study the

Riemannian geometry of 4-manifolds. The natural generalisation of the constant
curvature metrics in 3-dimensions appearing in the Geometrisation conjecture
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are Einstein metrics in 4-dimensions, but one can also consider various other
“optimal” metrics. A good deal is now known through the work of Le Brun,
Anderson and others [1], [11]. Many striking special features of 4-dimensions
enter through the L2 norm of the Riemann curvature tensor (and its irreducible
components). On the one hand, this is scale-invariant in four dimensions, which
has important consequence for analytical questions. On the other hand, it is
related via Chern-Weil theory to classical topological invariants such as the
signature and Euler characteristic. A fundamental difficulty, in going from 3
dimensions to 4, is that we do not know a classification of Einstein metrics on
4-manifolds. Thus even if, very optimistically, the Ricci flow techniques can be
extended in some way to 4-dimensions—leading to, say, a decomposition of a
general 4-manifold into “Einstein pieces”— this would not directly lead to purely
topological conclusions. (The point is that in 3-dimensions the Ricci tensor
is equivalent to the full curvature tensor, so Einstein metrics have constant
curvature and the manifold is a quotient of one of three standard models, but
in dimension 4 or more the curvature tensor has another component; the Weyl
tensor.)
The other path is to look at symplectic structures. Indeed, the developments

in 4-manifold theory since the 1980’s have moved in parallel with developments
in the general field of symplectic topology. In part this has to do with structural
similarities between the techniques. The new 4-manifold invariants we have
mentioned briefly above fall into a general pattern of enumerative invariants.
They are defined by “counting” solutions to elliptic partial differential equa-
tions: the Yang-Mills instanton equation (in the earliest form of the theory) or
the Seiberg-Witten equation (in most developments since 1994). In symplectic
topology the analogous invariants are the Gromov-Witten invariants, defined by
counting holomorphic curves, which are solutions of a variant of the Cauchy-
Riemann equations. In both theories there are strong connections with algebraic
geometry, and the long history of enumerative problems there, and with math-
ematical physics. Both theories bring in ideas of “Floer homology”. All of this
has now grown into an enormous field, in which ideas from low-dimensional
topology and symplectic topology intertwine, along with much else. For exam-
ple, the “Heegard” invariants of Orzsvath and Szabo, which are almost certainly
equivalent to the Seiberg-Witten invariants, are based on a variant of the sym-
plectic Floer theory construction performed within the symmetric product of a
2-manifold. Connections are emerging with another theory developed around
about 1990: the Jones polynomials of knots. Khovanov discovered a knot invari-
ant whose output is a bigraded homology group having the Jones invariant as its
Euler characteristic (after collapsing one of the gradings), and Seidel and Smith
[13] showed that this Khovanov homology can be, at least partially, interpreted
in terms of Floer Theory. Meanwhile there are further developments, associated
to contact structures on 3-manifolds, due to Eliashberg, Givental and Hofer [6]
and Hutchings and Taubes. The author does not have the knowledge, nor the
space here, to make any attempt to discuss all this systematically: we merely
point out the general problem of understanding how all these different ideas fit
together.
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Turning from the structural similarities and connections between these new
techniques we can go back to ask, more directly, what can be said about the
classification of symplectic structures on 4-manifolds and whether this sheds
any light on the general classification problem. Again, immense advances have
been made, notably through the work of Taubes [14] from the mid 1990’s, but
equally there are fundamental questions which we know nothing about. The
simplest of Taubes’ results is that (under mild technical conditions) a certain
Seiberg-Witten invariant of a symplectic 4-manifold must be +1. For exam-
ple, a Fintushel-Stern manifold XK can only be symplectic if the Alexander
polynomial has leading co-efficient 1. Further developments, combining ideas
of Gromov and McDuff with Taubes’ results, lead to the classification theorem
of Liu [12]. We can assign an elementary numerical invariant κ to a compact
symplectic 4-manifold (M,ω)

κ =

∫

M

c1(M) ∧ ω,

where c1(M) denotes the first Chern class of the tangent bundle of M (which is
well-defined since the symplectic group retracts onto the unitary group). Then
Liu classified symplectic manifolds with κ > 0—there are no examples beyond
the standard ones furnished by rational complex surfaces and 2-sphere bundles.
This is the only reasonably general classification theorem known in the subject.
It is tempting to try to build on this, for example by extending to the borderline
case when κ = 0 (and one might expect that the only examples are the K3
surface and torus bundles), but this does not seem to be easy. One general
question is whether a symplectic structure on a 4-manifold is unique, up to
diffeomorphism, given the elementary topological invariants [ω], c1(M)
Note that these two paths, through Riemannian geometry and symplectic

geometry, are not disjoint. One meeting place is in the theory of complex
surfaces and Kähler geometry. In this case the invariant κ can be thought of as
the average scalar curvature, and is related to the Kodaira dimension.

2 Kahler geometry

A Kahler manifold is a complex manifold endowed with a Riemannian metric
which is compatible with the complex structure in a natural way. First, alge-
braically, we require that the Riemannian inner product on each tangent space
is induced by a Hermitian form. This means that the Riemannian metric can
equally well be viewed as a 2-form ω, the imaginary part of the Hermitian form.
Second we require a differential condition which can be expressed in various
equivalent ways. One is that ω is a closed form (so defines a symplectic struc-
ture, as discussed in the previous section). Another is that the parallel transport
of tangent vectors defined by the Levi-Civita connection commutes with multi-
plication by complex numbers (which can be phrased in terms of the holonomy
group, as discussed in the next section.) In local complex co-ordinates za, any
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Kahler metric can be represented by a Kahler potential φ;

ω = i
∑

ab

∂2φ

∂za∂zb
dzadzb.

Much work over the past half century has focused on the Ricci tensor of a
Kahler manifold, which is closely related to the volume form. When the first
Chern class c1(M) is a multiple of the Kahler class, c1 = λ[ω], one can seek a
Kahler-Einstein metric with Ricci = λω. Finding such a metric boils down to
solving a nonlinear second order PDE for the Kahler potential φ. This problem
was raised by Calabi in the 1950’s and solved in renowned work of Yau and
Aubin in the 1970’s for the case when λ is zero or negative. In the late 1980’s,
Tian solved the problem when λ is positive and the complex dimension is 2 [15],
but the higher dimensional case is still open.
There is another, more general, circle of questions which again goes back

to work of Calabi [2]. These questions involve the existence of extremal Kähler
metrics which, by definition, are the minima of the L2 norm of the Riemann
curvature tensor, viewed as a functional on the space of Kähler metrics in a
fixed cohomology class [ω]. Kähler-Einstein metrics are particular examples of
extremal metrics, but the latter are more general, not restricted to the cases
when c1 = λ[ω]. The extremal condition boils down to a more formidable
partial differential equation, of order 4 or 5, depending on the precise situation
and setting-up of the problem.
There are, at least, two different strands in the study of these questions. One

strand emphasises Riemannian geometry. Thus a major component of Tian’s
analysis of Kahler-Einstein metrics on complex surfaces is a general compactness
result for Einstein 4-manifolds. One has to consider Einstein metrics with

• Fixed volume;

• An upper bound on the diameter;

• An upper bound on the L2 norm of the Riemann curvature tensor.

As we mentioned in Section 1, this third condition is particularly powerful in
real dimension 4 (i.e. complex dimension 2), and less useful in higher dimen-
sions. The first two conditions rule out local “collapsing” of the manifold, via
the Bishop-Gromov inequality for the growth of the volume of geodesic balls,
given a bound on the Ricci tensor. The relevant compactness theorem (proved
in the late 1980’s by Anderson and Nakajima) asserts that a sequence of Ein-
stein metrics satisfying these conditions has a subsequence converging to an
“orbifold” metric. Near the orbifold points the subsequence is modelled on
shrinking “gravitational instantons” in a well-understood way.
The same ideas can be applied, at least to some extent, to existence questions

for extremal metrics on complex surfaces. By their definition one still has control
of the L2 norm of the curvature tensor but, compared with the Einstein case
above, one loses both the a priori control of the diameter and the Bishop-
Gromov theory. However, in special cases, there is another argument of Tian
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which provides an effective substitute and leads to new existence theorems [16],
[4]. The general problem, going beyond these special cases, is to deal with
situations where local collapsing may a priori occur. (Here “collapsing” means
that the volume of a ball of small radius r is much less than r4, as occurs for
example in a product N × S1 where N is a 3-manifold and the size of the S1-
factor is small compared with r.) This is somewhat similar to the problem in
the Ricci flow for 3-manifolds overcome by Perelman.
The second strand we discuss makes more connection with the general world

of nonlinear PDE. Working in local co-ordinates, a prototype of the equations
involved in the Kahler-Einstein theory is the complex Monge-Ampère equation

det

(
∂2φ

∂za∂zb

)

= 1. (1)

Similarly, it turns out that a prototype for the extremal equation is a 4th. order
PDE for the Kahler potential φ which can be neatly written as the system

∑
φab

∂2L

∂za∂zb
= 0 ; L = log det

(
∂2φ

∂za∂zb

)

. (2)

(This system defines metrics of zero scalar curvature, which are prototypes of

extremal metrics. We use the notation φab for the inverse of the matrix ∂2φ
∂za∂zb

.)
There is a well-known analogy in which one replaces the function φ on do-

main in Cn by a function f on a domain in Rn and the differential operator
∂2

∂za∂zb
by the ordinary Hessian ∂2

∂xi∂xj
. Thus the analogue of (1) is, of course,

the real Monge-Ampère equation

det

(
∂2f

∂xi∂xj

)

= 1, (3)

for a convex function f . The second equation (2) can be viewed as a special
case of a family of 4th. order PDE’s; with both real and complex versions. We
take any convex function S(t) of one real variable and consider (formally) the
functionals

FR =
∫

Rn
S

(

det(
∂2f

∂xi∂xj
)

)

, FC =
∫

Cn
S

(

det(
∂2φ

∂za∂zb
)

)

in the two cases respectively. The Euler-Lagrange equations δFR = 0, δFC = 0
are equations which can be written in the same shape as (2), or the obvious real
analogue. The equation (2) occurs, in the complex case, when S(t) = t log t.
Another example studied in the literature, in the real case, is the equation
defining an “affine maximal” hypersurface in Rn+1. Other equations of this
type have been studied by Trudinger and Wang [17].
There is an enormous body of theory dealing with real Monge-Ampère equa-

tions. One celebrated result, proved by Jörgens in dimension 2 and by Calabi
and Pogorelov in higher dimensions, is that the only solutions of (3) on the whole
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of Rn are the obvious ones: quadratic functions. A complex analogue of this,
for solutions of (1) on Cn, would be an important step towards understanding
Kahler-Einstein metrics on compact manifolds. (The passage from a compact
manifold to Cn occurs when one makes a rescaling or “blow-up” argument.)
But this complex analogue is not known.

To sum up, from the PDE point of view, these questions in Kähler geometry
lead one, first, to try to extend the deeper parts of the real Monge-Ampère
theory to the complex case and, second, to study the more formidable 4th.
order equations like (2).

3 Special holonomy and calibrated geometry

The Levi-Civita connection of a Riemannian manifold M defines the operation
of parallel transport of tangent vectors along paths. Parallel transport around
a loop starting and ending at some fixed base point p gives an orthogonal trans-
formation of the tangent space TMp and the set of all such transformations is a
Lie subgroup of the orthogonal group: the holonomy group of the Riemannian
manifold. We can easily reduce to a case when this group is connected. In the
1950’s Berger discovered that there is only a short list of possible holonomy
groups (leaving aside the rigid “symmetric spaces”). The generic case, when M
has dimension n, is the full group SO(n). If n = 2m is even and M is a Kähler
manifold of complex dimension m one gets, generically, holonomy U(m) while
if the Ricci tensor vanishes one gets SU(m). If n is divisible by 4 there are two
other families, involving quaternionic structures. Beyond these 5 families there
are just two exceptional cases, in dimensions 7 and 8. These are connected to
special algebraic structures involving the Cayley numbers but they also fit into
a pattern of low-dimensional phenomena related to spinors. In each dimension
n we have a spin representation S of Spin(n) (the double cover of SO(n)) which
comes with various algebraic structures depending on the reduction of n modulo
8. For n ≤ 6 the spin representation is so small that this leads to exceptional
isomorphisms with other familiar Lie groups

Spin(3) = SU(2), Spin(4) = SU(2)× SU(2), Spin(5) = Sp(2), Spin(6) = SU(3).

When n = 7 the spin representation gives a subgroup Spin(7) ⊂ SO(8) and
this is the exceptional holonomy group in 8 dimensions featuring on Berger’s
list. This subgroup Spin(7) acts transitively on the unit sphere in R8 and the
stabiliser of a point defines a subgroup G2 ⊂ Spin(7) which, it turns out, can
be viewed as a subgroup G2 ⊂ SO(7). This is the other exceptional holonomy
group, in 7 dimensions. The study of Riemannian metrics with these exceptional
holonomy groups G2, Spin(7) is a very active field, with intriguing special phe-
nomena which, as outlined above, can perhaps be seen as lying on the borderline
between “low dimensional” and “high dimensional” Riemannian geometry; in a
similar vein to our topological discussion in Section 1.
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From now on we restrict attention to the case of 7-manifolds and holonomy
G2. The definition sketched above means that one characterisation of these
is as manifolds with a parallel spinor field, but there are many other charac-
terisations which turn out to be equivalent. From one point of view, one can
regard the structure as being a “cross-product”on tangent vectors, modelled on
the imaginary Cayley numbers and analogous to the familiar cross product on
R3. From another point of view one can regard the structure as being a dis-
tinguished 3-form φ on M . This determines, by a purely algebraic procedure, a
Riemannian metric g(φ) and hence a 4-form ∗g(φ)φ. The differential condition,
analogous to that in Kahler geometry, is that φ and ∗g(φ)φ are both closed.
The global theory of these Riemannian manifolds really began with work of

Joyce [8], who constructed compact examples. A different construction, pro-
ducing further examples, was found by Kovalev [10]. Their work brings to the
fore the obvious question of classifying all compact manifolds with holonomy
G2. More precisely, one would like to know

• Which compact 7-manifolds admit a metric with holonomy G2?

• If M is such a manifold, describe the “moduli space” M of all such met-
rics, modulo diffeomorphism. (To be more precise, we will take diffeomor-
phisms isotopic to the identity.)

In connection with the first item, various constraints on the topology are known:
in particular the main questions involve simply connected manifolds. Thus, as
outlined in Section 1, we have quite a good hold on the topological classification
of the 7-manifolds in questions, especially when H2(M) = 0. In connection
with the second item, we have a map π :M→ H3(M ;R) taking the de Rham
cohomology class of φ (somewhat analogous to the Kahler class [ω] in Section
2) and it is known that this is a local diffeomorphism. Thus the image of π is
an open set U ⊂ H3(M). A refinement of the second question is to ask for a
description of U and whether in fact π is a global diffeomorphism from M to
U .
Little is known about these questions. Compactness results for Riemannian

metrics, similar to those discussed in Section 2, are very relevant to the second
question, and much progress in this direction has been made by Cheeger and
Tian [3]. Suppose we have a sequence of manifolds of holonomy G2, normalised
to volume 1, with bounded diameter. Then Cheeger and Tian show that there
is a subsequence which converges to a possibly singular space with singularities
of codimension at least 4. Roughly speaking, the picture transverse to the
singular set, at a generic point, is the same as that encountered for Einstein
4-manifolds, modelled on shrinking gravitational instantons. Thus, if we have
a sequence in M and take a suitable subsequence, either we see this kind of
“orbifold convergence” or the diameter must tend to infinity. This alternative
fits in well with the known examples. The constructions of Joyce and Kovalev
are by analytical “gluing” methods, which essentially analyse a neighbourhood
of a point on the boundary of the set U . Joyce’s construction yield explicit
sequences of the first kind, and Kovalev’s of the second.
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These exceptional structures in dimensions 7 and 8 fit into another general
picture of “calibrated geometry” due to Harvey and Lawson. What this means
is that one can define special classes of minimal submanifolds, satisfying sys-
tems of first order PDE. The prototype is the class of complex submanifolds
of a Kahler manifold, which are always minimal. Another class is furnished
by “special Lagrangian” submanifolds in an ambient manifold of holonomy
SU(m). In a manifold of holonomy G2 we have “associative” 3-dimensional sub-
manifolds and “co-associative” 4-dimensional submanifolds. There are similar
higher-dimensional analogous of the Yang-Mills instanton equations [5]. These
theories have the basic differential-geometric properties required to define “enu-
merative invariants” of the kind discussed in Section 1. These should, roughly
speaking, “count” special Lagrangian submanifolds, co-associative submanifolds
etc. A theory of this kind could be expected to have applications to the clas-
sification problems for manifolds with special holonomy, and would fit in with
developments in the theoretical physicists M-theory. A great deal of work has
been done in this direction, notably by Joyce on special Lagrangian submani-
folds [9], but the outstanding overall difficulty involves compactness questions,
of a similar general nature to those for Riemannian metrics discussed above.
It is clear that, a priori one has to consider singular solutions but there are
serious obstacles in extending the differential-geometric constructions to these.
Going back to the prototype example of complex submanifolds: we are familiar
with the notion of a singular complex subvariety and we can call upon all the
resources of commutative algebra and algebraic geometry to handle them. In
these other calibrated geometries we expect to encounter phenomena of equal
complexity, but we do not have recourse to the same algebraic machinery.
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