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I. COMPLEX MANIFOLDS

Recall that if U ⊂ Cn is an open subset a holomorphic map f : U → Cm

is holomorphic if it is C∞ and the derivative at each point is complex-linear.
In a neighbourbood of any point of U the components of f are represented
by power series.

A complex manifold X can be defined as a C∞ manifold with an atlas of
charts such that the overlap maps are holomorphic.

Other points of view

• An almost-complex manifold is a C∞ manifold M with a complex struc-
ture on the tangent bundle TM : that is a bundle map I : TM → TM
such that I2 = −1. Certainly a complex manifold is almost-complex.
In complex dimension 1 (Riemann surfaces) an almost-complex struc-
ture is equivalent to a complex structure but not in higher dimensions;
there is an “integrability condition”. An efficient way to explain this
is to consider the complexified cotangent bundle T ∗MC. An almost
complex structure is encoded in a decomposition

T ∗MC = T ∗
1,0 ⊕ T ∗

0,1.

Then the complex-valued differential forms on M have a (p, q) decom-
position:

Ω∗M =
⊕

p,q

Ωp,q.
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In the complex case, in local complex co-ordinates zi, a form in Ωp,q

can be written as ∑

I,J

aIJdZIdzJ ,

with |I| = p, |J | = q, using “multi-index” notation. Hence or otherwise
one sees that the exterior derivative is a sum of

∂ : Ωp,q → Ωp+1,q , ∂ : Ωp,q → Ωp,q+1,

and d2 = 0 implies that ∂2 = ∂
2

= ∂∂+∂∂ = 0. Holomorphic functions
are solutions of the equation ∂f = 0 on Ω0,0.

In the general almost-complex case we can still define ∂, ∂ by taking
the components of d but we do not have d = ∂ + ∂. On Ω1,0 the
exterior derivative has an additional component Ω1,0 → Ω0,2. This is a
bundle map defined by contraction with the Nijenhuis tensor N of the
almost complex structure which is a section of TM ⊗C Λ2T ∗

0,2, i.e. an
element of Ω0,1(T ). An almost-complex structure is called integrable
if N = 0. The Newlander-Nirenberg Theorem states that in this case
the almost-complex structure arises from a complex structure. This
gives an alternative point of view which is helpful in connections with
differential geometry.

The proof of the Newlander-Nirenberg Theorem is relatively difficult
analysis, but it is formally a complex analogue of the Frobenius Theo-
rem (see Exercise 3).

• Another point of view is based on the sheaf OX of local holomorphic
functions on a complex manifold X. (This is helpful when one ex-
tends the theory to singular spaces.) We have sheaf cohomology groups
Hp(OX) which can be described in many ways. One way uses the Dol-
beault complex

∂ : Ω0,q → Ω0,q+1

analogous to the de Rham description of the topological cohomology
of a manifold. Another uses Cech cohomology.
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A good example to understand this (see Griffiths and Harris, p.34): let
X be a Riemann surface and p ∈ X a point and consider the problem
of finding a meromorphic function on X with a single pole at p.

For a Cech approach we consider the cover X = U1 ∪ U2 where U1 is
small disc about p and U2 = X \ {p}. We can certainly write down a
meromorphic function f on U1 with the required pole. The restriction
of f to U1 ∩ U2 is holomorphic and defines a 1-cocycle f | in the Cech
complex. This is zero in cohomology if and only if we can find holo-
morphic gi on Ui such that g2 − g1 = f | on the overlap. In that case
f + g1 on U1 and g2 on U2 define the required meromorphic function
on X. In other words the obstruction to solving our problem lies in
H1(OX).

For a Dolbeault approach, let χ be a cut-off function supported in U1

and equal to 1 near p. Then α = ∂(χf) is a C∞ (0, 1)-form and defines
a class in the Dolbeault cohomology H0,1 = Ω0,1/Im ∂. If this vanishes
we can write α = ∂h for a smooth function h on X. Then χf − h is
the desired meromorphic function. In other words the obstruction to
solving our problem appears in H0,1.

A holomorphic vector bundle over a complex manifold X can be defined
as a C∞ complex vector bundle whose total space is a complex manifold
and such that the inclusion of fibres and projection to base are holomorphic
maps. From a more differential geometric point of view it is a C∞ bundle E
with an operator

∂E : Ω0,q(E) → Ω0,q+1(E)

such that ∂
2

E = 0 and, satisfying the Leibnitz rule, for λ ∈ Ωa:

∂E(λs) = (∂λ)s + (−1)aλ∂Es.

Local holomorphic sections of E are solutions s ∈ Ω0(E) of the equation
∂Es = 0.

Alternatively, such a bundle can be viewed as a (finite rank) locally free
sheaf of modules O(E) over the structure sheaf OX . The sheaf cohomology
groups H∗(O(E)) can be computed using the ∂E complex. (In dimension 0,
H0(O(E)) is the space of holomorphic sections of E.) In the case when E
is the holomorphic vector bundle ΛpT ∗M these cohomology groups are the
same as the cohomology Hp,q defined by the operators ∂ : Ωp,q → Ωp,q+1.
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A basic fact is that for compact X all these cohomology groups are finite
dimensional. One important tool is the generalised Riemann-Roch formula
which is a formula for the Euler characteristic (of a holomorphic bundle E
over compact X): ∑

(−1)idim H i(X; E)

in terms of the Chern classes of E and TX .

First steps into deformation theory
One feature which distinguishes the study of complex manifolds from C∞

manifolds is the appearance of continuous deformations.

Classical Example The family of Riemann surface Xλ for λ in the upper
half plane defined by the quotient of C by the lattice Z ⊕ Zλ.

In general, consider the set-up π : X → D where D is a disc in C, X is
a complex manifold of dimension (n + 1) and π is a (proper) holomorphic
submersion. Then the fibres Xt = π−1(t)make up a “holomorphically vary-
ing” family of n-dimensional complex manifolds—deformations of the central
fibre X = X0.

Let E be the restriction of the tangent bundle of X to the central fibre.
It is a rank n + 1 holomorphic vector bundle over X and fits in an exact
sequence

0 → TX → E → OX → 0.

From the general theory of sheaves we get a long exact sequence in cohomol-
ogy with boundary map

δ : H0(OX) → H1(TX).

The Kodaira-Spencer class of the deformation is defined to be δ(1) ∈
H1(TX). As usual we can understand this abstract definition in different
ways

• Thinking of X as covered by co-ordinate charts Ui, deformations are
given by deforming the overlap maps. Differentiating with respect to t
at t = 0 we get vector fields vij on Ui ∩Uj which define a Cech cocycle
representing the class in H1(TX).
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• Thinking of X as a C∞ manifold with integrable almost-complex struc-
ture, a deformation of the structure can be represented by a modified
∂-operator

∂μ = ∂ + μ∂

where μ ∈ Ω0,1(T ) (See Exercise 5). The integrability condition is a
nonlinear PDE for μ. The linearised equation, for infinitesimal defor-
mations μ̇, is just ∂TX μ̇ = 0. On the other hand there are trivial de-
formations given by applying a diffeomorphism to X. At the linearised
level these are given by ∂TX : Ω0(TX) → Ω0,1(TX). The conclusion is
that the invariantly defined information is the class of μ̇ in

Ker ∂TX : Ω0,1(TX) → Ω0,2(TX)

Im ∂TX : Ω0(TX) → Ω0,1(TX)
,

which is the Dolbeault description of the Kodaira-Spencer class in
H1(TX).

One main theorem (Kodaira-Nirenberg-Spencer) is that if X is compact,
has no holomorphic automorphisms and if H2(TX) = 0 then small deforma-
tions of the complex structure, modulo diffeomorphisms close to the identity,
are in 1-1 correspondence with a neighbourhood of 0 in H1(TX).

II. METRICS

Recall that a connection on a C∞ complex vector bundle V → M over a
C∞ manifold M can be regarded as a covariant derivative

∇V : Ω0(V ) → Ω1(V ).

There is then an extension to a coupled exterior derivative

dV : Ωp(V ) → Ωp+1(V ),

with dV = ∇V on Ω0(V ). The composite

d2
V : Ω0(V ) → Ω2(V )

is a bundle map defined by contraction with the curvature of the connection
which is a tensor FV ∈ Ω2(EndV ). If V has a Hermitian metric 〈 , 〉 on the
fibres then a connection is said to be compatible with the metric if

∇(s1, s2) = 〈∇V s1, s2〉 + 〈s1,∇V s2〉
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for all sections s1, s2.
Now consider a holomorphic vector bundle E over a complex manifold X

with a Hermitian metric on the fibres. There is a unique connection—the
Chern connection— on E which is compatible with the metric and also with
the holomorphic structure, in the sense that the (0, 1) component of ∇E is ∂E.
(Exercise 6) This fact is similar in style to the characterisation of the Levi-
Civita connection in Riemannian geometry but the proof is easier and the
formula for the connection is simpler. In a local holomorphic trivialisation we
identify sections of E with vector-valued functions.The metric is represented
by a Hermitian matrix-valued function h and the covariant derivative is

∇E = ∂ + ∂ + h−1(∂h), (1)

acting on vector-valued functions, where the last term is a matrix-valued
1-form acting algebraically. The curvature is the matrix-valued 2-form

FE = ∂(h−1∂h). (2)

Focus now on the case when E is the tangent bundle of the complex
manifold X. The real part of a Hermitian metric is a Riemannian metric on
X. In fact these are precisely the Riemannian metrics g which are compatible
the almost-complex structure in the sense that for tangent vectors ξ, η we
have g(Iξ, Iη) = g(ξ, η). Replacing ξ by Iξ this is equivalent to the statement
that the form

ω(ξ, η) = g(ξ, Iη)

is skew-symmetric, so a 2-form on X. (From another point of view, it is the
imaginary part of the Hermitian form). The 2-forms which arise in this way
are the “positive” (1, 1) form, of the shape

ω =
√
−1

∑
hijdzidzj , (3)

where (hij) is a positive Hermitian matrix.
We now reach the main definition of this Section II. A Hermitian metric

on TX is called Kähler if its 2-form ω is closed: dω = 0.
There are several alternative definitions which can be shown to be equiv-

alent.

1. The 2-form ω is covariant constant with respect to the Levi-Civita
connection ∇LC of the Riemannian metric: ∇LCω = 0.
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2. The Chern connection on E is equal to the Levi-Civita connection.

3. For any point p of X we can choose local holomorphic coordinates zi

such that the first derivatives of the metric tensor hij vanish at p.

Item (1) says that the holonomy of the Riemannian metric is contained
in the unitary group U(n) ⊂ O(2n). Item (2) implies in particular that
equation (2) gives a formula for the Riemann curvature tensor. Item (3) is
the statement that any complex Kähler structure osculates to order 2 to the
flat Euclidean model (Griffiths and Harris p.107).

A complex manifold is called Kähler if it admits a Kähler metric. Often
one does not distinguish between the metric and the (1 , 1) form ω. If ω0 is
one Kähler metric then we get an infinite dimensional family of the form

ωφ = ω + i∂∂φ

for real-valued functions φ such that ωφ is positive (which is certainly true
if φ is small). The ∂∂-lemma says that all Kähler forms in a given de Rham
cohomology class [ω0] ∈ H2(X,R) arise in this way.

Examples

• Any complex projective manifold X ⊂ CPN is Kähler. In general if Y
is Kähler and X ⊂ Y is a complex manifold then X is Kähler so we
just need to see thatCPN is Kähler. There is a standard Fubini-Study
Kähler form on CPN which can be seen in various ways. One is to
write

CPN = SU(N + 1)/U(N).

The action of U(N) on the tangent space at the base point is the
standard action on CN so there is a unique Hermitian form up to scale.
This shows that there is a unique SU(N + 1)-invariant 2-form ωFS on
CPN , up to scale.

Another point of view is to regard CPN as the “symplectic quotient”
of CN+1 under the action of S1. Another is to write down an explicit
formula for ωFS.

• Any complex torus Cn/Λ, for a lattice Λ ⊂ Cn, is Kähler.

• Let Z be the quotient of C2\{0} by the relation z ∼ 2z—a Hopf surface.
It is diffeomorphic to S1 ×S3. For any compact Käher manifold the de
Rham cohomology class [ω] cannot be zero since ωn is a volume form.
Since H2(Z) = 0 the complex manifold Z is not Kähler.
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Hodge Theory
For any Riemannian manifold M the Hodge Theorem states that the de

Rham cohomology can be represented by harmonic forms, satisfying Δdα =
0, where

Δd = dd∗ + d∗d.

(Here d∗ is the adjoint of d.) The same proof shows that on any compact
complex manifold with Hermitian metric the Dolbeault cohomology groups
Hp,q can be represented by (p, q)-forms β satisfying Δ∂β = 0, where

Δ∂ = ∂∂
∗
+ ∂

∗
∂.

When the metric is Kähler, calculation shows that Δd = 2Δ∂ . It follows
from this that the cohomology of a compact Kähler n-manifold X has a
decomposition

Hk(X;C) =
⊕

p+q=k

Hp,q.

The left hand side is topological while each summand on the right hand side
has a meaning in terms of the complex geometry of X. In addition there are
symmetries

hp,q = hq,p = hn−p,n−q = hn−q,n−p

where hp,q = dimHp,q. One simple consequence is that the odd Betti numbers
of X are even. (This gives another way to see that the Hopf surface is not
Kähler.)

Line bundles, curvature and holomorphic sections

We now focus on the case of bundles of rank 1: line bundles. These
are important because they can be used to define maps to projective space.
Suppose that L → X is a holomorphic line bundle and write V for the vector
space of holomorphic sections of L. Suppose that for each point x ∈ X there
is a section which does not vanish at x. Then we have a non-zero evaluation
map

evx : V → Lx,

which defines a point in P(V ∗). This gives a holomorphic map from X to
P(V ∗).

Suppose that we have a holomorphic line bundle L → X with a Hermitian
metric. The curvature F is a pure imaginary 2-form of type (1, 1). In a local
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trivialisation the metric is given by a positive function h = eψ and by (2) the
curvature is F = ∂∂ψ. We say that the metric has positive curvature if iF
is a positive (1, 1)-form. i.e. a Kähler form. The main slogan is

positivity of curvature ⇔ many holomorphic sections.

One aspect of this appears through “Weitzenbock formulae” of which
the following is a simple example. Suppose that L has a metric of positive
curvature and use ω = iF as Kähler metric. Then for any C∞ section s of L
we have an identity

∫

X
|∂Ls|2 − |∂Ls|2dμ =

∫

X
|s|2dμ. (4)

Here ∇L = ∂L+∂L is the decomposition into (1, 0) and (0, 1) components and
dμ is the volume form ωn/n!. The identity (4) is equivalent to the formula

∂∗
L∂L = ∂

∗
L∂L + 1. (5)

(If instead we had a bundle of negative curvature, so we would put ω = −iF
the +1 would change to −1.)

The proof od identity (4) can be achieved by writing, pointwise,

(
|∂Ls|2 − |∂Ls|2

)
dμ == (∇Ls ∗ ∇Ls) ∧ ωn−1, (6)

where ∗ is the bllinear form which combines the Hermitian metric on L with
wedge product from 1-forms to 2-forms. (See Exercise 9.)

For another aspect of the slogan consider the model case of Cn with
constant Kähler form

ω0 =
√
−1

∑
dzidzi.

Take the trivial holomorphic line bundle L0 → Cn but with the metric such
that h = |σ0|2 = exp(−|z|2) where σ0 is the trivialising holomorphic section.
Then

i∂∂ log h = ω0.

In other words, we have a holomorphic section of L0 → Cn which decays
rapidly at infinity. (If instead we wanted negative curvature −ω0 then we
would get a section which grows very rapidly at infinity.)

One precise statement in the direction of our slogan is that a holomorphic
line bundle L over compact X admits a metric of positive curvature if and
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only if it is an ample line bundle: i.e. if the sections of Lk for large k define
a projective embedding of X. This is the Kodaira embedding theorem.

One way to establish existence of holomorphic sections of Lk for L positive
and k >> 0 goes on the following lines.

Replacing L by Lk replaces the Kähler form ω by kω which corresponds
to scaling lengths in the Riemannian metric by

√
k. In this rescaled metric,

for k >> 0 the geometry is close to the flat model at fixed length scales. Pick
a point p ∈ X and a ball BR of large radius O(R) in the rescaled metric,
centred at p. We can identify Lk with L0 over BR, so σ0 gives a holomorphic
section s0 over this ball. Let χ be a suitable cut-off function, so χs0 is a
smooth section over Lk over X. This is not holomorphic but

|∂Lks0| = O(e−R2

),

and so is very small. We have constructed an “approximately holomorphic”
section.

The other step is to adjust s0 slightly to get an exactly holomorphic
section. This uses a Weitzenbock formula for the Laplacian

Δ∂ = ∂
∗
Lk∂Lk + ∂Lk∂

∗
Lk

on Ω0,1(Lk). The formula has the shape, schematically,

Δ∂ = D∗D + (1 − O(k−1)).

In particular we have, for the L2 inner product and large enough k,

〈Δ∂s, s〉 ≥ (1/2)‖s‖2.

This implies that there is an inverse operator Δ−1
∂

with L2 operator norm at
most 2. Now a holomorphic section is defined by the formula

s = s0 − ∂
∗
LkΔ−1

∂
(∂Lks0) (7)

This approach can be developed to give a proof of the Kodaira embedding
theorem. It can also be developed to give a proof of a coarse form of the
Riemann-Roch Theorem. As k → ∞:

dim H0(Lk) ∼ (2π)−nknVolω(X), (8)

where Volω is the volume in the metric ω.
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Exercises

1. Show, from the definition d = ∂ + ∂, that in local holomorphic coordi-
nates zi = xi +

√
−1yi:

∂f =
∑

i

∂f

∂zi

dzi,

where ∂
∂zi

= 1
2

(
∂

∂xi
+
√
−1 ∂

∂yi

)
.

2. For v ∈ Sm−1 ⊂ Rm let Rv ∈ O(m) be the linear map which takes v
to −v and is the identity on the orthogonal complement of v. Fix a
basepoint v0 ∈ Sm−1 and define

fm : Sm−1 → SO(m)

by fm(v) = RvR
−1
v0

.

(a) Show that the sphere S2n has an almost-complex structure if and
only if the map f2n is homotopic to a map into U(n) ⊂ SO(2n).

(b) Show that S4 does not have an almost-complex structure. (Hint:
you may want to recall/read up that SO(4) has a double cover S3 ×S3

in which U(2) ⊂ SO(4) lifts to S1 × S3.)

(In fact the only spheres which have almost-complex structures are S2

and S6.)

3. Let M be a C∞ manifold with a direct sum decomposition TM =
T+ ⊕ T−, so the differential forms on M are a sum of terms Ωp,q, where
Ωp,q denotes the sections of ΛpT ∗

+ ⊗ ΛqT ∗
−.

(a) Show that there is a section N of T+ ⊗Λ2T ∗
− such that for a 1-form

α ∈ Ω1,0 the component of dα in Ω0,2 is the contraction N.α.

(b)Use the Frobenius Theorem to show that N = 0 if and only if T−

defines a foliation of M . (That is, in a neighbourhood of any point of
M there are functions fi whose derivatives vanish on T− and form a
basis for T ∗

+.
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4. The Riemann-Roch formula, for a line bundle L over a compact Rie-
mann surface Σ of genus g, is

dim H0(L) − dim H1(L) = d − g + 1,

where d is the degree (or first Chern class) of the line bundle.

Show that, for g ≥ 2 the deformation space H1(TΣ) has complex di-
mension 3g−3. How can you see this same dimension from the descrip-
tion of Σ as the quotient of the upper half-plane by a discrete subgroup
of PSL(2,R)?

5. Let μ be a real-valued function on C with |μ| < 1. Show that there
is an almost-complex structure on C in which the forms of type (1, 0
have the shape a(dz +μdz) for complex-valued functions a on C. Show
that a function f on C is holomorphic with respect this almost-complex
structure if and only if

∂f

∂z
− μ

∂f

∂z
= 0.

6. Derive the formulae ((1) in notes) for the Chern connection of a holo-
morphic bundle with Hermitian metric and ((2) in notes) for the cur-
vature.

7. Verify the equivalence of the three characterisations in the notes of the
Kähler condition.

8. (a) Let α be a (0, 1) form on a compact Riemann surface Σ and β a
holomorphic 1-form: i.e β ∈ Ω1,0 and ∂β = 0. Use Stokes’ Theorem to
show that if there is function f with ∂f = α then

∫

Σ
α ∧ β = 0.

(b) Now let Σ be the Riemann surface which is the quotient of C \ {0}
by the equivalence z ∼ 2z. Show that the (0, 1)-form dz/z descends to
a (0, 1) form α on Σ and that α defines a non-zero element of H0,1(Σ).
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(c) Let A be the (0, 1) form ∂(log r) on C2\{0} where r2 = |z1|2 + |z2|2.
Show that A descends to a (0, 1) form on the Hopf surface Z which
defines a non-zero element of H0,1(Z).

(d) Show that there is no non-trivial holomorphic 1-form on Z, i.e.
H1,0(Z) = 0. (Hint: Hartogs Theorem from several complex variables
theory says that, for n ≥ 2, a holomorphic function on Cn\{0} extends
holomorphically over the origin.)

(In fact, for any compact complex surface the first Betti number is
h1,0 + h0,1. In the case of the Hopf surface h1,0 = 0 and h0,1 = 1.)

.

9. (a) Show that on a complex n-manifold with Hermitian form ω one
has, for a 1-form α of type (1, 0):

iα ∧ α ∧ ωn−1 = |α|2ωn/n,

and for a form of type (0, 1) the same identity with sign reversed.

(b) Apply Stokes’ Theorem to show that if f is a complex-valued func-
tion on a compact Kähler manifold then

∫

|∂f |2dμ =
∫

|∂f |2dμ.

10. Let U be the “tautological” line bundle over CPn (i.e. the fibre of U
over a line L is that line) and let Λ → CPn be the dual line bundle.

(a) Show that, for k ≥ 0, a homogeneous polynomial of degree k in the
co-ordinates of Cn+1 defines a holomorphic section of Λk.

(b) Show that any holomorphic section of Λk → CPn defines a holo-
morphic function f on Cn+1 \ {0} with f(λz) = λkf(z). Hence show
that the holomorphic sections of Λk all arise from homogeneous poly-
nomials on Cn+1.

(c) Show that dim H0(Λk) ∼ kn/n! as k → ∞.

11. What is the image of the holomorphic map CP1 → CP3 defined by the
sections of Λ3 → CP1? Show that the image is an algebraic variety (i.e.
the common zero set of a finite number of homogeneous polynomials).
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12. Let f be a real valued function on the ball in Cn such that i∂∂f is
a strictly positive (1, 1) form. Show that f cannot have an interior
maximum. Hence show that a holomorphic Hermitian line bundle with
negative curvature over a compact complex manifold has no non-trivial
holomorphic sections.
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