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Section 1. Differential Geometric structures

Subsection (1.1) Analysis via jets.

Much of differential geometry fits into the following general
picture.
Let S be a manifold with a transitive action of GL(n,R).
(So S = GL(n,R)/G for a subgroup G ⊂ GL(n,R). )
If M is an n-dimensional manifold we have a GL(n,R)-frame
bundle Fr(M) → M. We get an associated bundle S → M,

S = Fr(M)×GL(n,R) S.

And we consider sections of S.
The group of diffeomorphisms of M acts on these sections and
we are interested in the sections modulo diffeomorphism.
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For example we are interested in the question whether all
sections are locally equivalent, modulo diffeomorphism, to the
flat model; a constant section Rn × {σ} of Rn × S.
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Examples
Example 0. S =Gr(p,n) the Grassmann manifold of
p-dimensional vector subspaces of Rn. A section is equivalent
to a rank p subbundle of TM.
Example 1. n = 2m is even and S is the space of
non-degenerate skew symmetric forms on R2m. A section
defines a 2-form ω which is non-degenerate at each point.
Example 2. n = 2m is even and S is the space of complex
structures J : R2m → R2m, J2 = −1. A section is an
almost-complex structure on M.
Example 3. S is the space of positive definite quadratic forms
on Rn, a section is a Riemannian metric on M.
Example 4. S is the space of positive definite quadratic forms
on Rn up to scale. A section is a conformal structure on M.

DIFFERENTIAL GEOMETRY: PART 1 (sections 1-3)



We can study an infinitesimal version of this using “jets” i.e.
Taylor series.

Recall that if A and B are manifolds and f : A → B is a smooth
map then for each a ∈ A there is a derivative dfa : TAa → TBf (a).

Without extra structure, the higher derivatives of f are not really
defined. But there is a well-defined notion of two maps f ,g
being equal to order k at a ∈ A.

When k = 1 this just means that f (a) = g(a) and their
derivatives at a are equal. For each k this defines an
equivalence relation.

A k -jet of maps A → B is an equivalence class.
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Going back to S → M, for p ∈ M we can form the quotient

Qk = k -jets of sections at p modulo (k + 1)-jets of
diffeomorphisms of M fixing p.

This is a finite-dimensional object (independent of M,p). From
the definitions, Q0 is a point.
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What about Q1?
Write V = TMp. The 2-jets of diffeomorphisms with a fixed 1-jet
are parametrised by the vector space s2(V ∗)⊗ V .
In co-ordinates we would write

x̃ i = x i +
∑

ai
jkx jxk .

The 1-jets of sections of with the same 0-jet σ ∈ S are
parametrised by V ∗ ⊗ U where U = TSσ.
The action of the diffeomorphisms defines a linear map

α1 : s2(V ∗)⊗ V → V ∗ ⊗ U.

Q1 can be identified with the cokernel of α1, divided by the
action of G, the stabiliser in GL(n,R) of σ.
The kernel of α1 consists of 2-jets of diffeomorphisms which fix
the 1-jet of the flat model.
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Example 1. We have U = Λ2V ∗. The nondegenerate form
σ = ω0 defines an isomorphism V = V ∗. The map α1 is the
composite of

s2(V ∗)⊗ V 7→ V ∗ ⊗ V ∗ ⊗ V 7→ V ∗ ⊗ V ∗ ⊗ V ∗ 7→ V ∗ ⊗ Λ2V ∗.

You can check that there is an exact sequence

0 → s3(V ∗) → s2(V ∗)⊗ V ∗ α1→ V ∗ ⊗ Λ2V ∗ → Λ3V ∗ → 0.

So in this case Q1 is the quotient by the symplectic group
Sp(m,R) ⊂ GL(2m,R) of Λ3V ∗ = Λ3T ∗Mp.
The class in Q1 at p of a section ω is just the exterior derivative
dω(p). So a section ω is equivalent to the flat model up to first
order at p if and only if dω(p) = 0.
Darboux’s Theorem states that if dω = 0 on M (i.e. a symplectic
structure) then ω is locally equivalent to the flat model. That is,
there are local coordinates pi ,qi such that ω =

∑
dpidqi .
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Now consider Example 3, Riemannian metrics.
We have U = s2(V ∗) and

α1 : s2(V ∗)⊗ V → V ∗ ⊗ s2(V ∗),

defined similarly to the symplectic case.
The Fundamental lemma of Riemannian geometry;
Formulation I states that this map is an isomorphism. This
implies that Q1 is a point and moreover the fact that the kernel
of α1 is zero implies that Q2 can be identified with the O9n)
quotient of the cokernel of the map

α2 : s3(V ∗)⊗ V → s2(V ∗)⊗ s2(V ∗)

defined by the action of diffeomorphisms on 2-jets of sections.
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In co-ordinates, we are considering the transformations of 2-jets

gij = δij + γij,klx ix jdxkdx l ,

by co-ordinate changes

x̃ i = x i + bi
jklx

jxkx l .
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One finds that α2 is injective so, counting dimensions, its
cokernel has dimension

d(n) =
(

n(n + 1)
2

)2

− n2(n + 1)(n + 2)
3!

− =
n2(n2 − 1)

12
.

Using the natural Euclidean structures on the spaces involved
we can identify Q2 with the O(n) quotient of the kernel of the
adjoint map

α∗
2 : s2(V ∗)⊗ s2(V ∗) → s3(V ∗ ⊗ V ∗.

In terms of the γij,kl this map is symmetrisation on the first three
indices, so the kernel consists of the γij,kl such that

γij,kl + γjk ,il + γki,jl = 0
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It is a fact that the kernel of α∗
2 can be identified with the kernel

of the similarly-defined map

β∗
2 : Λ2(V ∗)⊗ Λ2V ∗ → Λ3V ∗ ⊗ V ∗.

(as evidence for this fact, note that

d(n) =
(

n(n−1)
2

)2
− n2(n−1)(n−2)

3! ).

So Q2 can be identified with the O(n) quotient of the tensors
Rij,kl ∈ Λ2 ⊗ Λ2 such that

Rij,kl + Rjk ,il + Rki,jl = 0.

We can then define the curvature tensor of a Riemannian
metric at a point p to be the tensor corresponding to the 2-jet of
the metric. Explicitly the 2-jet is given by the formula

gij = δij −
1
3

∑
kl

Rikjlxkx l .
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Subsection (1.2) Fields of subspaces and connections

The above kind of jet analysis is a machine which can be
applied in all situations but it is more powerful when
supplemented by other points of view. Let us go back to
Example 0. The basic invariant of a subbundle H ⊂ TM is a
tensor τ ∈ Λ2H∗ ⊗ TM/H which can be defined as follows. For
a point p ∈ M and ξ1, xi2 ∈ Hp ⊂ TMp choose local sections
v1, v2 of H with those values at p. Then τ(ξ1, ξ2) is the
reduction modulo Hp of [v1, v2](p), where [ , ] is the Lie bracket
on vector fields. The fact that this is independent of the choices
of v1, v2 follows from the formula

[v , fw ] = f [v ,w ] + (∇w f )v .
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The Frobenius Theorem states that if τ vanishes at each point
then the subbundle is integrable, defined by a foliation of M.
Example.
A contact structure on a manifold M of dimensions 2m + 1 is a
rank 2m subbundle H ⊂ TM such that τ is nondegenerate at
each point. Another way to define τ in this case is to choose
locally a 1-form θ such that H = ker θ. Then

τ = dθ|H ⊗ θ−1.

The contact condition is that θ ∧ (dθ)m is a volume form.
One way in which such a subbundle arises is when M is a real
hypersurface in Cm+1 and H = TM ∩ ITM. Then τ is called the
Levi form. The existence of this invariant shows that a naive
analogue of the Riemann mapping theorem fails for domains in
Cm+1, for m > 0.

DIFFERENTIAL GEOMETRY: PART 1 (sections 1-3)



Suppose that on a manifold M we have a pair of
complementary sub-bundles TM = H ′ ⊕ H ′′. Then we can
decompose the differential forms

Ω∗
M =

⊕
Ωp,q

where Ωp,q consists of forms with p-factors in the H ′-direction
and q in the H ′′ direction. We have

τ ′ ∈ H ′′ ⊗ (Λ2H ′)∗, τ ′′ ∈ H ′′ ⊗ (Λ2H ′)∗.

The exterior derivative has four components with respect to this
decomposition:

d ′ : Ωp,q → Ωp+1,q d ′′ : Ωp,q → Ωp,q+1,

ν ′ : Ωp,q → Ωp+2,q−1 ν ′′ : Ωp,q → Ωp−1,q+2.

The components ν ′, ν ′′ are algebraic operators given by wedge
product and contraction with τ ′, τ ′′
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This gives a good way to think about almost-complex structures
(Example 2).
An almost-complex structure J on M defines a decomposition
of the complexified tangent bundle TMC = TM ′ ⊕ TM ′′ where
J = i on TM ′ and J = −i on TM ′′.
Using complex-valued forms we are formally in the same
situation as above and we get tensors τ ′, τ ′′ which in this case
are complex conjugate. The tensor

τ ′′ ∈ Ω0,2(TM ′)

is the Nijenhuis tensor of the almost-complex structure. The
Newlander-Nirenberg Theorem states that if this vanishes on M
then the almost-complex structure is integrable i.e we have a
complex manifold.
In the case when the data is real analytic this theorem can be
deduced from Frobenius by complexification. For C∞ data the
proof is much harder.
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An important case is when we have a fibration π : E → X with
fibre Y and a subbundle H ⊂ TE complementary to bundle
V ⊂ TE of tangent spaces to the fibres. So we have a
decomposition of forms Ωp,q (p factors in the base direction and
q in the fibre). The exterior derivative has three components

dY : Ωp,q → Ωp,q+1 dH : Ωp,q → Ωp+1,q ν : Ωp,q → Ωp+2,q−1

where ν is an algebraic operator defined by a section τ of the
bundle

π∗(Λ2T ∗X )⊗ V .

The de Rham complex is filtered by subcomplexes⊕
p≥r

Ωp,q.

This leads to the Leray-Serre spectral sequence relating the
cohomologies of the E ,B,F .
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Now consider the sub-case of a principal G-bundle π : P → M
so there is a right action of G on P and P/G = M. A connection
on P is a field of horizontal subspaces H, as above, preserved
by the action of G.
Example.
S1 acts on the unit sphere S2m+1 ⊂ Cm+1 with quotient CPm.
The subbundle TS2m+1 ∩ ITS2m+1 we considered before is a
connection.
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In this context, our section τ is called the curvature of the
connection.
The derivative of the action defines a trivialisation of the bundle
V → P: we identify it with the trivial bundle with fibre g. So τ
can be viewed as a 2-form on P with values in the vector space
g which we will denote by F .

A G-invariant section of V corresponds to an equivariant map
from P to g, where G acts on g by the adjoint action.

This implies that the curvature of the connection can also be
regarded as 2-form on the base M with values in the vector
bundle ad P associated to P by the adjoint action. We will write
this as F ∈ Ω2(M, adP).
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Formula for the curvature On our Lie group G we can identify
g∗ with left-invariant 1-forms. Thus 1 ∈ g⊗ g∗ can be viewed as
a left-invariant 1-form η with values in g. This satisfies the
Maurer-Cartan equation

dη +
1
2
[η, η] = 0,

where [η, η] combines the bracket on g with the wedge product
on forms. The form η is invariant under the right action of G on
G combined with adjoint action on g.

Note: If G is a matrix group then we can write η = g−1dg and

dη = −g−1dgg−1dg = −η ∧ η = −1
2
[η, η].
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Given a connection on P, the projection to the vertical space
defined a 1-form A on P with values in the Lie algebra g. Then
we have the important formula, for g-valued forms on P:

F = dA +
1
2
[A,A].

For practical calculations one normally chooses a local
trvialisation of P, i.e. a section s : U → P over an open set
U ⊂ M. Then write A = s∗(A)—a g-valued 1-form on U. This
section defines a local trivialisation of ad P and

F = dA +
1
2
[A,A]

which, for a matrix group G, is

F = dA + A ∧ A

for matrix-valued forms on U.
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Let ρ : G → GL(k ,R) be a representation of G. We get an
associated vector bundle W = P ×G Rk . A connection H on P
defines a covariant derivative ∇H on sections of W . This is a
differential operator

∇H : Γ(W ) → Γ(T ∗M ⊗ W ),

defined as follows. A section of W is the same as an
equivariant map σ : P → Rn. The covariant derivative of σ in
the direction of a tangent vector v ∈ TM is induced by the usual
derivative in the direction of the horizontal lift of v . If G is a
matrix group the concepts of connection and covariant
derivative are equivalent.
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For simplicity of notation suppose ρ is faithful and identify G
with its image in GL(k ,R).
Choose local coordinates x i on U ⊂ M and a local trivialisation
of P. A section of W is then given by an Rk -valued function on
U. The covariant derivative in the x i direction is the differential
operator

∇i =
∂

∂x i + Ai

where A =
∑

Aidx i . The curvature measures the failure of
these derivatives to commute

[∇i ,∇j ] = F ij =
∂Aj

∂x i −
∂Aj

∂x i + [Ai ,Aj ].
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For general vector fields v ,w on M we have

[∇v ,∇w ]−∇[v ,w ] = F (v ,w),

where F (v ,w) : W → W is defined using the embedding
ad P ⊂ End W .
Suppose that G = GL(n,R) and the principal bundle P is the
frame bundle of an n-dimensional manifold M. Then taking the
defining representation ρ, the associated vector bundle is the
tangent bundle of TM. A connection on P is called torsion-free
if for any vector fields v ,w :

∇v w −∇wv = [v ,w ].

This is equivalent to the condition that around each point p ∈ M
there are local co-ordinates x i such that the vector fields
vi =

∂
∂x i satisfy ∇vi = 0 at p.
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More generally, suppose G ⊂ GL(n,R) and we have a section
of the bundle over M with fibre S = GL(n,R)/G as considered
in Subsection 1.1. This defines a principal G-bundle over M
such that TM is the associated bundle. (For example, if
G = SO(n) then the section is a Riemannian metric and P is
the bundle of orthonormal frames.) We have the notion of a
torsion-free connection on P, as above.

DIFFERENTIAL GEOMETRY: PART 1 (sections 1-3)



Fundamental Lemma of Riemannian geometry; formulation II
There is a unique torsion-free connection (the Levi-Civita
connection) on the bundle of orthonormal frames of a
Riemannian manifold.

Exercise Show that this equivalent to formulation I in
Subsection 1.1.
In one direction, we can define the covariant derivative of a
vector field at a point p by working in a co-ordinate system
constructed using formulation I and taking the ordinary
derivative in those co-ordinates.
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In a general co-ordinate system x i the connection is given by
the matrix of 1-forms

∑
Aidx i with Ai =

(
Γk

ij

)
where the

Christoffel symbols Γk
ij are defined by the derivatives of the

metric tensor gij in these co-ordinates

Γk
ij =

1
2

∑
a

gka (gai,j + gaj,i − gij,a
)
.

(Notation: the comma in the subscript denotes partial
derivative.)
The Riemann curvature tensor Rijkl ∈ Λ2T ∗ ⊗ Λ2T ∗ ( which we
also call Riem) is defined to be the curvature of the Levi-Civita
connection. In classical notation it is

Rijkl =
∑
λ

giλ

(
Γλjk ,l − Γλjl,k +

∑
a

(
ΓλakΓ

a
jl − ΓλalΓ

a
jk

))
.
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Theorem If a Riemannian n-manifold has Riem = 0 it is locally
isometric to Rn (the “flat model”).

First, the Frobenius Theorem applied in the total space of the
frame bundle, implies that there is a local frame of orthonormal
vector fields vi with ∇vi = 0. Let ϵi be the dual frame of
1-forms. The torsion-free condition gives that all Lie brackets
[vi , vj ] vanish which implies that dϵi = 0. The Poincare Lemma
tells us that there are local functions x i with dx i = ϵi and these
give the desired co-ordinates.
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Take Rn with its standard Euclidean structure and write
Λp = ΛpRn etc. The “space of curvature tensors” is

R = ker Λ2 ⊗ Λ2 → Λ3 ⊗ Λ1.

It is a representation of O(n) of dimension d(n) = 1
12n2(n2 − 1).

The first Bianchi identity states that Riem ∈ R (in the obvious
sense).
One can show that R ⊂ s2(Λ2) i.e. Rijkl = Rklij and that R is the
kernel of the wedge product map s2(Λ2) → Λ4.
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The Ricci contraction R → s2 maps Rijkl to the Ricci tensor
Rjl =

∑
a Rajal .

The trace of the Ricci tensor is the scalar curvature R =
∑

j Rjj .

In dimension n = 2 we have d(2) = 1 and R = R, the curvature
reduces to the scalar curvature (which is twice the classical
“Gauss curvature”).

In dimension n = 3 we have d(3) = 6, the Ricci contraction is
an isomorphism so R = s2.
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For dimensions n > 3 the Ricci contraction has a non-trivial
kernel W and there is a decomposition as O(n)-representations

R = R ⊕ s2
0 ⊕W,

which can be shown to be irreducible representations of O(n).

The component of Riem in W is called the Weyl curvature W of
the Riemannian manifold.
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Let us now discuss Example 4, conformal structures, briefly.
Let g be a Riemannian metric and g̃ = e2f g for a function f .
Then one finds that the Ricci curvatures are related by

R̃icci = Ricci−(∆f )g−(n−2)∇∇f+(n−2)
(
∇f ⊗∇f − |∇f |2g

)
,

where ∆f is the trace of ∇∇f .
It follows from this that for a given point p ∈ M we can find a
conformally equivalent metric g̃ with vanishing Ricci curvature
at p. When n = 3 this means that the full curvature tensor of g̃
at p is zero. So by our previous discussion the conformal
structure agrees with the flat model to second order i.e. Q2 is a
point.
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When n > 3 the space Q2 is non-trivial: it can be identified with
the O(n)× R+ quotient of the space W of Weyl tensors. The
Weyl curvature of a metric vanishes at p if and only if the
conformal structure agrees with the flat model to second order.
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Suppose that n = 3 or n > 3 and the Weyl curvature of a metric
g vanishes everywhere on M. We can regard the equation
R̃icci = 0 as a second order PDE for a function f . The metric is
conformally flat if and only if this PDE has a solution. At each
point this PDE defines ∇∇f in terms of ∇f and Ricci. It defines
a field of subspaces H in the total space of the cotangent
bundle of M, transverse to the fibres. The condition for solubility
is given by the Frobenius Theorem. The tensor τ in this
situation is a 2-form on M with values in T ∗M depending a
priori on g,∇f . In fact it only depends on g and is given by the
Cotton tensor

Cijk = ∇kBij −∇jBik

where Bij = Rij − 1
2(n−1)Rgij .
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If n > 3 one can show that the Cotton tensor can be expressed
in terms of derivatives of the Weyl curvature. The conclusion is

For n > 3 a Riemannian metric is conformally flat if and
only if the Weyl curvature vanishes.
For n = 3 a Riemannian metric is conformally flat if and
only if the Cotton tensor vanishes.
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Section 2: Geodesics, the Jacobi equation and comparison
theorems

Let (M,g) be a connected Riemannian n-manifold.
The energy of a path γ : [a,b] → M is

E(γ) =

∫ b

a
|γ′(t)|2dt .

Geodesics are solutions of the Euler-Lagrange equation
associated to the functional E . If T = γ′ is the tangent vector
field, the equation can be written as ∇T T = 0.
(If we want to be really precise, we could consider T as a
section as the pull back γ∗TM of TM and ∇T as the covariant
derivative of the pulled-back connection.)
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In coordinates x i the equation is

ẍ i + Γi
jk ẋ j ẋk = 0,

where Γi
jk are the Christoffel symbols.

We get essentially the same equations using the length
functional

L(γ) =
∫ b

a
|γ′(t)|dt .
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The infimum of lengths of paths makes M a metric space. If this
space is complete then for any tangent vector v ∈ TMp there is
a (unique) geodesic γv : [0,∞) → M with γ′v (0) = v .
(Hopf-Rinow Theorem)

In that case the exponential map expp : TMp → M is defined by
expp(v) = γv (1).

It gives a diffeomorphism from a neighbourhood of 0 ∈ TMp to
a neighbourhood of p, i.e. a preferred co-ordinate system
around p.
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Initially, we restrict the discussion to a ball on which expp is a
diffeomorphism. We have a collection of geodesic rays
emanating from p and also a collection of spheres Σr , points of
a fixed distance r from p. The rays are orthogonal to the
spheres (Gauss Lemma). Pulling back the metric g by exp we
have a metric on a region in Rn which in “polar coordinates”
(r , θ) has the schematic form

dr2 +
∑

ga,b(r , θ)dθadθb = dr2 + gr dθ2

determined by a 1-parameter family of metrics gr on Sn−1.
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Suppose that γs(t) is any 1-parameter family of geodesics. Let
T ,V be the vector fields corresponding to ∂t , ∂s.
Then ∇T T = 0 so ∇V∇T T = 0 but [V ,T ] = 0 so this gives

∇T∇T V = ∇T∇V T = ∇V∇T T + R(T ,V )T = R(T ,V )T .

Along a fixed geodesic γ0, the differential operator

J(V ) = ∇2
T − R(T ,V )T

on variation vector fields V is called the Jacobi operator,
J(V ) = 0 is the Jacobi equation and solutions are called Jacobi
fields.
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Note that the inner product ⟨R(T ,V )T ,V ⟩ is -|V |2 times the
sectional curvature in the plane spanned by V ,T .

The calculation above shows that the Jacobi equation is the
linearisation of the geodesic equation, at γ0.
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Going back to our polar coordinates; along a fixed geodesic ray
corresponding to a point the ∂

∂θa are Jacobi fields Va(r),
vanishing at r = 0. Knowing the length of these Jacobi fields
determines the metric.

A first consequence is to confirm the formula

gij = δij −
1
3

∑
kl

Rikjlxkx l + O(r3)

we stated before. (Exercise)
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Fix a unit vector σ0 ∈ TMp and corresponding geodesic γ0. Let
σ1, . . . , σn−1 be an orthonormal frame for the orthogonal
complement of σ0.

Use parallel transport of the Levi-Civita connection to construct
orthonormal variation fields Ei along γ0. Then we identify
variation vector fields with Rn−1-valued functions V (r).

Write A(r) for the symmetric matrix ⟨R(T ,Ea)T ,Eb⟩.

Then ⟨A(r)V ,V ⟩ is equal to |V |2 times the sectional curvature
in the plane spanned by T ,V.
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The Jacobi equation becomes

V ′′ = −AV .
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We consider solutions V a with the initial condition
V a(0) = 0,V ′

a(0) = ea where (ea) is the standard basis for
Rn−1.
Equivalently, consider the matrix equation for a matrix-valued
function L(r)

L′′ = −AL,

with initial conditions L(0) = 0,L′(0) = 1.

The matrix L(r) defines the derivative of the exponential map, in
terms of the bases σi for TMp and Ei ,T for TMq where
q = γ0(r).

Clearly we have

L(r) = r1 − r2

2
A(0) + O(r3).
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If the manifold has constant sectional curvature c then A = c1
and the solutions are

For c = 0, L(r) = r1; the metric is dr2 + r2dθ2.
For c = ω2 > 0, L(r) = sin(ωr)1; the metric is
dr2 + sin2(ωr)dθ2

For c = −ω2 < 0, L(r) = sinh(ωr)1; the metric is
dr2 + sinh2(ωr)dθ2.

We denote these metrics by dr2 + gr ,cdθ2.
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The Rauch Comparison Theorem (not the most general
version).

Suppose that the metric g = dr2 + gr dθ2 has sectional
curvatures K bounded by a ≤ K ≤ b. Then gr ,b ≤ gr ≤ gr ,a.

Thus negative sectional curvature makes distances larger and
positive sectional curvature makes distances smaller , when
Riemannian manifolds are compared using exponential
co-ordinates.

DIFFERENTIAL GEOMETRY: PART 1 (sections 1-3)



For simplicity we just do the proof for the case K > 0, the other
cases are essentially the same.
We need to show that |L(r)(e)| < r |e| for all vectors e.

Define B = L′ L−1 so B′ = −A − B2.

We claim first that the matrix B(r) is symmetric. This follows
from the fact B ∼ r−11 as r → 0 and if B(r) is symmetric then
B′(r) is also (since A is symmetric).

In the model case of constant curvature 0 we have B(r) = r−11.
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They key point is to show that for K > 0 we have B(r) < r−11;
in other words the largest eigenvalue λ(r) of B(r) is < r−1.

By studying the asymptotic behaviour you see that this is true
for small r .
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Suppose that there is some r0 > 0 for which λ(r0) = r−1
0 , and

let r0 be the smallest such value.

So we have a unit eigenvector e with B(r0)e = r−1
0 e. Define

f (r) = ⟨B(r)e,e⟩

so f (r) ≤ λ(r) Then

f ′(r0) = ⟨B′(r0)e,e⟩ = −⟨A + B(r0)
2e,e⟩ < λ(r0)

2 = −r−2
0 .

Thus d
dr (rf ) = f + rf ′ is strictly negative at r0 which implies that

f (r) > r−1 for r slightly less than r0. Hence the same holds for
λ(r), which is a contradiction.
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Now we know that B(r) < r−1. Fix a unit vector e and write
f (r) = ∥L(r)e∥2.

Then

f ′(r) = 2⟨Le,L′e⟩ = 2⟨Le,BLe⟩ < 2∥Le∥2 = 2f (r).

This means that r−2f (r) is decreasing and since the limit is 1
when r → 0 we have f (r) < r2 . So ∥L(r)∥ < r , as required.

DIFFERENTIAL GEOMETRY: PART 1 (sections 1-3)



Any Riemannian metric defines a volume form, or measure. In
local coordinates is is

√
det(gij) times Lebesgue measure.

Let ωr be the volume of the metric gr on Sn−1, compared with
the standard volume on Sn−1. Write ωr ,c for the volumes in the
constant curvature spaces.

The metric with constant sectional curvature c has Ricci
curvature (n − 1)c.
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The Bishop comparison theorem: version 1

If g = dr2 + gr dθ2 has Ricci ≥ (n − 1)c then ωr ≤ ωc,r .
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As before, we will write the proof for the case c = 0.
We consider again the fixed geodesic γ0 and write Ω(r). We
need to show that if Ricci ≥ 0 then Ω(r) ≤ rn−1.
We have Ω = detL(r), so Ω′ = ΩTrL′L−1 = Ω TrB.
Write H = Tr(B). So H ′ = −Tr(A + B2).

Tr(A) = ⟨Ricci(T ),T ⟩ ≥ 0:
Tr(B2) ≥ (n − 1)−1(TrB)2 = (n − 1)−1H2

So (n − 1)H ′ ≤ −H2 and by a similar (easier) argument to that
before this implies H ≤ (n − 1)r−1 and Ω(r) ≤ rn−1, which
completes the proof.
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Bishop comparison, Version 2
Write V (R) =

∫ R
0 Ω(r) dr , and Vc for the constant curvature

model metric.
Then if Ricci ≥ (n − 1)c, the ratio

V (R)

Vc(R)

is decreasing along the geodesic ray.
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This follows from what we established above and a simple
calculus lemma. We have shown that V ′/V ′

c is decreasing. So
for r < R

V ′(r)
V ′

c(r)
≥ V ′(R)

V ′
c(R)

.

This gives V ′(r)V ′
c(R)− V ′

c(r)V ′(R) ≥ 0. So∫ R

0
V ′

c(R)V ′(r)− V ′
c(r)V

′(R) dr ≥ 0,

Which is V ′
c(R)V (R)− Vc(R)V ′(R) ≥ 0. Dividing by Vc(R)2,

this says that the derivative of V/Vc is decreasing.
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The symmetric matrix B(r) we encountered above is the
second fundamental form of the sphere Σr , expressed in terms
of the frame Ei .

Let V → X be a vector bundle with connection (covariant
derivative) ∇. Suppose V = V1 ⊕ V2 and write π1, π2 for the
projections. Then πi∇ defines a connection on Vi . The map

π2∇ : Γ(V1) → Γ(T ∗X ⊗ V2)

is a bundle map defined by a tensor
B1 ∈ Γ(T ∗X ⊗ Hom(V1,V2); the second fundamental form of
V1. Similarly we have a B2. If V has a Euclidean structure and
V2 is the orthogonal complement of V1 then B2 = −BT

1 .
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Let N ⊂ M be a hypersurface in a Riemannian manifold (M,g)
and choose a normal direction, so TM|N = TN ⊕ R and the
discussion above applies. We get B ∈ T ∗N ⊗ T ∗N and the fact
that the connection is torsion-free implies that B ∈ s2(T ∗N).

Suppose ft : N → M is a 1-parameter family of embeddings
with f0 the inclusion and the t-derivative of ft at t = 0 equal to
N. For each t we have an induced metric f ∗t (g) on N and

d
dt

|t=0f ∗t (g) = B.

In particular this applies to the family of spheres Σr . Another
way of thinking about the comparison theorems is in terms of
the evolution of the geometry of these spheres.
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Subsection II.2. Global theory of geodesics
In a complete Riemannian manifold, any two points can be
joined by a length minimising geodesic segment.
( Sketch proof. Suppose for simplicity that M is compact. Then
for some sufficiently small ϵ any two points of distance ≤ ϵ can
be joined by a minimising geodesic. Suppose that for some L
any two points of distance ≤ L can be joined by a minimising
geodesic. Let p,q ∈ M with d(p,q) ≤ 3L/2. Then there are
points r ∈ M such that d(p, r),d(r ,q) ≤ L. Such a point can be
joined to p and q by minimising geodesics. Now minimise
d(p, r) + d(r ,q) over the set of such points r .)
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So for a complete manifold M the exponential map
expp : TMp → M is surjective.
Consider again a geodesic emanating from p: γ0(r) = exp(rσ0.
Define R(σ0) to be the supremum of the r such that
γ0 : [0, r ] → M is a length-minimising geodesic from p to
exp(rσ0.
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1 For any r < R(σ0) the geodesic segment γ0[0, r ] is length
minimising.

2 For r0 < R(σ0) there is a unique minimising geodesic from
p to γ0(r).

3 For r0 < R(σ0) the matrix L(r0) is invertible, so the
exponential map is a local diffeomorphism at r0σ0.

(1), (2) are reasonably straightforward. For (3) we go back to
consider the Jacobi operator etc.
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Let γ0 : [a,b] → M be any geodesic segment and γs a
1-parameter family of variations, not necessarily through
geodesics but with the fixed end points γs(a), γs(b). Let V be
the variation vector field as before (derivative of γs in s,
ats = 0). We can suppose that V is normal to T .
Let L(s) be the length of γs. We know that L′(0). The “second
variation” formula is L′′(0) = Q(V ) where Q is the quadratic
form

Q(V ) =

∫ b

a
|∇T V |2 − ⟨R(T ,V )T ,V ⟩.

The fixed end-point condition implies that V vanishes at the
end-points and we can integrate by parts to write this as

Q(V ) =

∫ b

a
⟨V , J(V )⟩,

where J(V ) is the Jacobi operator we defined before.
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The index of the segment is the dimension of a maximal
subspace on which Q is negative definite. It is the number of
negative eigenvalues of the operator J, on variation fields V
vanishing at the end points.
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Going back to item (3): if r0 < R(σ0) and L(r0) is not invertible
then there is a variation V ̸= 0 vanishing at r = 0, r0 with
J(V ) = 0.

Now construct a 1-parameter family γs of paths from p to γ0(r0)
as above such that L(s) = r0 + O(s3).

By definition, there is some r1 > r0 so that γ0[0, r1] is
minimising.

Composing the γs with the segments γ0[r0, r1] we get a family of
paths γ̂s from p to γ0(r1) of length r1 + O(s3).

Choose a suitable small s and round off the corner of γ̂s to get
paths with length less than r1, which is a contradiction.
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In general, if there is a Jacobi field along a geodesic segment γ
from p to q, vanishing at the end points, then p,q are called
conjugate points (on γ).
The Morse Index Theorem states that if p,q are not conjugate
then the index is equal to the number of conjugate points of p in
the interior of the segment.
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Let K ⊂ TMp be the closed set given by the union over unit
vectors σ ∈ TMp of the ray-segments [0,R(σ)]σ. Then

1 expp maps K onto M.
2 expp gives a diffeomorphism from the interior int (K ) to

M \∆ where ∆ ⊂ M is a closed set of measure 0.
The boundary ∂K = K \ int (K ) is called the cut-locus at p.
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Our comparison theorems apply along a geodesic γ0 provided
we do not hit any conjugate points.

If (M,g) has sectional curvature ≤ 0 then there are no
conjugate points and expp is a covering map.
(Cartan-Hadamard Theorem). So all higher homotopy groups
of M vanish.

If (M,g) has Ricci curvature ≥ (n − 1)c > 0 then along γ0 we
must reach a conjugate point at distance at most π/

√
c. So the

diameter of M is at most π/
√

c (Myers Theorem) and, applying
this to the universal cover, π1(M) is finite.
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Bishop Theorem, Version 3
Given p, let V (r) be the volume of the r -ball Br ,p. Let Vc(r) be
the volume of the r -ball in the space of constant sectional
curvature c.
Then if Ricci ≥ (n − 1)c the volume ratio

V (r)
Vc(r)

is a decreasing function of r .
For small r this follows immediately from Version 2 by
integrating over the unit sphere in TMp.
In general one sees that the effect of the cut locus works the
right way in the inequality.
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Application to convergence theory.

Let (A,dA), (B,dB) be compact metric spaces. The
Gromov-Hausdorff distance between them is defined to be the
infimum of ϵ > 0 such that there is a metric on A ⊔ B equal to
the given metrics on each component and with both A,B
ϵ-dense.

Roughly: if the distance between A,B is ≤ η then at scales
bigger than O(η) the metric spaces are essentially equivalent.
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Gromov compactness theorem.
Let (Xi ,di) be a sequence of compact metric spaces with
diameters ≤ D and with the following property.

For each δ > 0 there is an N(δ) such that each Xi can be
covered by N(δ) balls of radius δ.

Then there is a subsequence of the (Xi ,di) which converges in
the Gromov-Hausdorff metric to some limiting space (Z ,dZ ).

The proof is not too difficult. (For example, start with the case
of finite spaces Xi .)
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Now suppose that (Mi ,gi) is a sequence of compact
Riemannian manifolds with diameters ≤ D and Ricci ≥ (n−1)c.
We show that this satisfies the covering condition, so the
compactness theorem applies. Write M = Mi .
Given ϵ > 0 choose a collection of disjoint ϵ-balls Bα in M which
is maximal in the sense that one cannot add another disjoint
ϵ-ball.
Then the balls of radius δ = 3ϵ with same centres cover M.
Let Vα be the volume of Bα. Since the balls are disjoint∑

α

Vα ≤ Vol(M).

The Bishop Theorem gives a lower bound Vα ≥ κVol M where
κ > 0 depends only on c,D. So if N is the number of balls we
have N ≤ κ−1.
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Section III: Symmetric spaces

Let G be a Lie group with Lie algebra g. The bracket on the Lie
algebra can be defined by the bracket of left-invariant vector
fields. Any positive definite quadratic form on g defines a
left-invariant Riemannian metric on G. If the quadratic form is
preserved by the adjoint action of G then this metric is
bi-invariant. Any compact Lie group admits such a metric.
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For a bi-invariant metric one finds that, for left-invariant vector
fields X ,Y ,

∇X Y =
1
2
[X ,Y ].

The geodesics through the identity are 1-parameter subgroups.
Some lines of calculation using the Jacobi identity show that
the curvature is

R(Z ,X )Y =
1
4
[Y , [Z ,X ]].

The sectional curvature in the plane spanned by orthonormal
X ,Y is

K (X ,Y ) =
1
4
|[X ,Y ]|2.

For example SU(2) = S3, up to a scale factor.
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If K is a Lie subgroup of a Lie group G then M = G/K is a
homogeneous space. If we have a vector space complement
g = k⊕ p and a positive definite form on p which are both
invariant under the restriction of the adjoint action of G to K , we
get a Riemannian metric on M, preserved by the action of G.
We get many interesting Riemannian manifolds in this way.
Symmetric spaces are particularly important.
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A Riemannian symmetric space is a (complete, connected)
Riemannian manifold (M,g) with the property that for each
p ∈ M there is an isometry σp : M → M which fixes p and acts
as −1 on TMp.
Then the identity component G of the isometry group of M acts
transitively so, choosing a base point p0, we have M = G/K for
some compact subgroup K .

DIFFERENTIAL GEOMETRY: PART 1 (sections 1-3)



Conjugation by σ0 = σp0 induces an automorphism τ of G and
hence of g. The +1 eigenspace is k and the −1 eigenspace is a
complement p which can be identified with TMp0 .
( Note that τ may or may not be an inner automorphism in G.)
We have

[k, k] ⊂ k [k, p] ⊂ p [p, p] ⊂ k.
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Conversely suppose we have
1 a Lie group G with an involutive automorphism τ and the

identity component of the fixed set of τ is a compact
subgroup K ⊂ G;

2 with respect to the induced decomposition g = k⊕ p, there
is a positive definite quadratic form on p invariant under the
action of K ;

Then M = G/K becomes a Riemannian symmetric space.
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Other points of view
The symmetry forces ∇Riem = 0. Conversely the universal
cover of a manifold satisfying this condition is a symmetric
space.
The group K acts on TMp0 = p. Consider G as a principal
K -bundle over M. The translates of p define a connection.
The tangent bundle TM is the associated bundle defined
by the action of K on p and the induced connection is the
Levi-Civita connection. In the language of the next section,
the manifold M has holonomy K .
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Any Lie group G has an ad G-invariant quadratic form on its Lie
algebra, the Killing form

q(ξ) = −Tr(adξ)2.

The group is called semi-simple if this is nondegenerate. If the
group is compact semi-simple the Killing form is positive
definite. In the non-compact case we get a metric of indefinite
signature on G, but the same discussion above applies to
identify its curvature. If we have an involution τ as above and q
is ± on the subspace p ⊂ g then taking ±q we get a
Riemannian metric on G/K .
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Define X ⊂ G to be the fixed point set of g ∈ G of the map
τ ′(g) = (τ(g))−1.
For q ∈ M set gq = σqσ0. Then

τ(gq) = σ0σqσ0σ0 = σ0σq = g−1
q .

So q 7→ gq gives a map ι : M → G. The derivative of ι at p0 is
the inclusion p ⊂ g and one sees that ι gives a covering map
from M to a connected component of X .
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Example 1
Let M be the set of positive definite symmetric n × n real
matrices with determinant 1. Then M = SL(n,R)/SO(n) and
SO(n) is the fixed point set of the involution τ(g) =

(
gT )−1 of

SL(n,R). On the other hand M is naturally embedded in
SL(n,R) as the set of g with τ(g) = g−1.

Example 2
Let M = Sn−1. Fix a unit vector p0 ∈ Sn−1 ⊂ Rn. Then the
SO(n) orbit of p0 is Sn−1 and the stabiliser is SO(n − 1) so
M = SO(n)/SO(n − 1). The subgroup SO(n − 1) is the identity
component of fixed point set of the involution given by
conjugation by the reflection in the (n − 1)-dimensional
orthogonal complement of p0.
The map ι : Sn−1 → SO(n) factors through RPn−1. It takes a
point q ̸= ±p0 to a rotation in the plane spanned by q,p0.
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Any Lie group G has an ad G-invariant quadratic form on its Lie
algebra, the Killing form

q(ξ) = −Tr(adξ)2.

The group is called semi-simple if this is nondegenerate. If the
group is compact semi-simple the Killing form is positive
definite. In the non-compact case we get a metric of indefinite
signature on G, but the same discussion above applies to
identify its curvature.
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The involution τ ′ preserves the metric on G so its fixed set X is
a totally geodesic submanifold and the sectional curvatures of
X are given by restriction from those of G.
Since the map ι is a local isometry we get a formula for the
sectional curvature of the symmetric space G/K :

K (ξ1, ξ2) = ±1
4
|[ξ1, ξ2]|2,

where we take the + sign if q is positive on p and the − sign if it
is negative.
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Duality
Given a Lie algebra g = k⊕ p as above we can define another
Lie algebra structure on the same vector space by changing the
sign of the component [p, p]. This changes the sign of Killing
form on p.
The two Lie algebras are different real forms of the same
complex Lie algebra.
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Example
Consider Lie(SL(n,R)) = Lie(SO(n))⊕ p where p is the set of
trace-free symmetric n × n matrices.

The dual Lie algebra is Lie(SU(n)) and they are different real
forms of the complex Lie algebra SL(n,C).
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Conclusion of the theory (E. Cartan)
Take any simple real Lie algebra g such that the Killing
form is indefinite.
The automorphisms of the Lie algebra form a Lie subgroup
G− ⊂ GL(g) with Lie algebra g.
There is an involution τ of G defining a (maximal) compact
subgroup K ⊂ G−.
The manifold M− = G−/K is a symmetric space with
sectional curvatures ≤ 0.
The dual Lie algebra is the Lie algebra of a compact group
G+ containing K .
The manifold M+ = G+/K is a symmetric space with
sectional curvatures ≥ 0.
Up to coverings and taking products, including flat factors
Rm, all symmetric spaces are obtained this way.
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The simple real Lie algebras are classified through analysis of
the real forms of simple complex Lie algebras (types
A,B,C,D,E,F,G).
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Examples
Sn = SO(n + 1)/SO(n), non-compact dual
Hn = SO(n,1)0/SO(n)—the spaces of constant sectional
curvature.
Grassmann manifolds SO(p + q)/SO(p)× SO(q),
noncompact dual SO(p,q)0/SO(p)× SO(q). Similarly for
the complex and quaternionic cases.
For any compact Lie group K = K × K/K . Non-compact
dual K c/K where K c is the complexified group. e.g
SL(n,C)/SU(n).
SU(n)/SO(n) is the space of special Lagrangian
subspaces. The dual is SL(n,R)/SO(n), the space of
positive definite symmetric matrices of determinant 1.
Similarly for complex and quaternionic versions.
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Sp(n,R)/U(n) is the (noncompact) space of complex
structures on on R2n compatible with a fixed symplectic
form. The compact dual is Sp(n)/U(n).
SO(2n)/U(n) is the (compact) space of complex
structures on R2n compatible with a fixed Euclidean
structure. The noncompact dual is SO∗(2n)/U(n) where
SO∗(2n) = SO(2n,C) ∩ GL(n,H).
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Example of calculation: for CP2 the sectional curvatures lie
between 1/4 and 1.
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Remark For any simple real Lie algebra we have an
embedding ad : g → End(g). If we have a Euclidean structure h
on g we have a transposition map Th : End(g) → End(g).
The whole theory (not the classification) can be derived easily
from the following statement: there is a Euclidean metric h on g
such that the image of ad is preserved by Th.
This has a variational description. The Lie algebra structure is a
tensor σ ∈ Λ2g∗ ⊗ g. A Euclidean structure h defines a norm
|σ|h, a function V (h) on the space of Euclidean structures h of
fixed determinant. The desired structure is the one that
minimises this norm.
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