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Section 4: Special holonomy

For a point p in a connected Riemannian n-manifold M the
holonomy group G ⊂ SO(TMp) = SO(n) is defined by parallel
transport around contractible loops.
Special holonomy is the case G ̸= SO(n).
A metric with holonomy G ⊂ SO(n) is essentially equivalent to
a torsion free G structure. This means that the tangent bundle
is associated to a principal G-bundle P → M and there is a
torsion-free connection on P. In the language of Section 1 it is
also equivalent to having a section of the bundle over M with
fibre GL(n)/G which is flat to first order.
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A symmetric space H/K has holonomy K . There is a
classification of which groups can appear as holonomy groups,
for non-symmetric, irreducible, manifolds. There are five
“classical” families associated with R,C and the quaternions.

SO(n);
U(n/2),SU(n/2);
Sp(n/4).Sp(1),Sp(n/4);

and two exceptional cases G2 ⊂ SO(7),Spin(7) ⊂ SO(8).
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Some G2 algebra.
Let V be an oriented 7-dimensional real vector space and
ϕ ∈ Λ3V ∗. This defines a quadratic form qϕ on V with values in
the oriented line Λ7V ∗:

qϕ(v)=iv (ϕ) ∧ iv (ϕ) ∧ ϕ.

Say ϕ if this form is positive definite. So a positive ϕ defines a
conformal structure on V . Fix a Euclidean structure in the
conformal class by the normalisation |ϕ|2 = 7.
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Basic fact: the positive forms make up a single orbit under the
action of GL+(V )—-they are all equivalent. The stabiliser of
any one is a model for the exceptional Lie group G2 ⊂ SO(7)
which has dimension 49 − 35 = 14.
A positive 3-form ϕ and its associated Euclidean structure
define a cross product V × V → V :

ϕ(x , y , z) = ⟨x × y , z⟩.

The group G2 can also be obtained as the automorphisms of
(V ,×).
The cross-product can be viewed as the main part of octonion
multiplication on R1 ⊕ V (in the same way as the cross-product
on R3 is related to quaternion multiplication.)
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A G2 structure on and oriented 7-manifold M7 is given by a
3-form ϕ which is positive at each point and this defines a
Riemannian metric gϕ with Levi-Civita connection ∇ϕ and a
4-form ∗ϕϕ.

The structure is torsion free if ∇ϕϕ = 0.
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Theorem (Fernandez and Gray) The structure is torsion-free if
and only if dϕ = 0 and d(∗ϕϕ) = 0.
We have dϕ = a(∇ϕ) and ∗d ∗ ϕ = b(∇ϕ) where a is the
wedge product map

a : Λ1 ⊗ Λ3 → Λ4,

and b is the contraction map

b : Λ1 ⊗ Λ3 → Λ2.

So we want to show that a(∇ϕ) = 0,b(∇ϕ) = 0 implies ∇ϕ = 0.
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We consider the decomposition of Λ3 as a representation of G2.
There is a one dimensional piece Λ3

0 spanned by ϕ.
There is a copy of Λ1 defined by the contraction iv (∗ϕ) for
vectors v .
The orthogonal complement is an irreducible representation
Λ3

27.
So

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27.
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An infinitesimal deformation of the 3-form defines a deformation
of the metric.

So we have a linear map Λ3 → s2.

This is projection onto Λ3
1 ⊕ Λ3

27 = s2.

Since ∇ is the Levi-Civita connection we have ∇gϕ = 0.

This implies that ∇ϕ ∈ Λ3
7 ⊗ Λ1.
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To prove the Theorem, one has to check that

a ⊕ b : Λ3
7 ⊗ Λ1 → Λ4 ⊕ Λ2

is injective.

Differential Geometry, Part 2.



Now we consider the case of a hyperkähler 4-manifold X i.e.
holonomy Sp(1) ⊂ SO(4). (Equivalently SU(2) ⊂ SO(4).)
This means that we have an action of the quaternions on TX ,
compatible with the Riemannian metric and preserved by
parallel transport.
If I1, I2, I3 is a standard basis for the imaginary quaternions we
get 2-forms ω1, ω2, ω3:

ωa(v ,w) = ⟨Iav ,w⟩.

with ∇ωi = 0.
In a similar manner to the G2 case, a hyperkähler structure can
be defined by a triple of closed 2-forms ω1, ω2, ω3 with

ωi ∧ ωj = δijµ,

where µ is a volume form on X .
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The metric is determined by the ωi via the formula

|v |2µ =
∑
cyclic

iv (ωi) ∧ iv (ωj) ∧ ωk .
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This can be regarded as a dimension reduction of the
G2-theory.
Take M7 = X × R3 with co-ordinates ti on R3.
Given such a triple we define

ϕ = dt1dt2dt3 −
∑

ωidti ,

Then
∗ϕ = µ+

∑
cyclic

ωi dtjdtk

from which we see that dϕ = 0,d ∗ ϕ = 0.
From the point of view of holonomy groups, this corresponds to
an embedding Sp(1) ⊂ G2.
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Digression
±-self-duality and the curvature tensor of an oriented
Riemannian 4-manifold.
Recall that the curvature tensor of a Riemannian manifold lies
in the kernel of s2(Λ2) → Λ4.
On an oriented Riemannian 4-manifold we have ∗ : Λ2 → Λ2

with ∗2 = 1 so there is a decomposition

Λ2 = Λ+ ⊕ Λ−.
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So the curvature tensor has components in
s2(Λ+),Λ+ ⊗ Λ−, s2(Λ−).
The condition that it lies in the kernel of the map to Λ4 is that
the traces of the components in s2(Λ±) are the same: they are
equal to 1/6 times the scalar curvature.

The component in Λ+ ⊗ Λ− can be identified with the trace-free
part of the Ricci curvature.

The components in s2
0(Λ

±) are the ± self-dual parts W± of the
Weyl curvature.
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On a hyperkähler 4-manifold the bundle Λ+ is flat.

It follows that Ricci = 0,W+ = 0. The curvature tensor is just
given by W− ∈ s2

0(Λ
−).
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The Gibbons-Hawking construction
Let X be a hyperkähler 4-manifold with an action of S1,
preserving the ωi . Let v be the vector field generating the
action. The ωi are symplectic forms so at least locally there are
Hamiltonian functions Hi defining a map X → R3. Away from
the fixed points of the action this is a fibration over U ⊂ R3 ,
with fibres given by the S1-orbits.
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The span of I1v , I2v , I3v defines a connection on this S1-bundle,
with a connection 1-form α on X .

Take standard co-ordinates xi on R3. By construction,

ωi = α ∧ dxi +Ωi ,

where Ωi is the lift of a 2-form on U ⊂ R3.
The orthogonality condition means that

Ωi = ϕ dxjdxk ,

for a positive function ϕ on U.
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Let F be the curvature of the connection, a closed 2-form on U.
The lift of F is dα.
The condition that the ωi are closed is that F = ∗dϕ. So ϕ is a
harmonic function on U.
Conversely, given a positive harmonic function on a domain
U ⊂ R3 satisfying the integrality condition∫

Σ
∗df ∈ 2πZ

for all 2-cycles Σ in U, we can construct a hyperkähler
4-manifold with S1-action.
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The Riemannian metric is

g = ϕ−1α2 + ϕ
∑

dx2
i .

In particular |v |2g = ϕ−1.
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Take U = R3 \ {0} and ϕ(x) = 1
2|x | . Then you find the the

4-manifold is C2 \ {0} with the flat metric and the circle action(
eiθ 0
0 e−iθ

)
.

In standard complex co-ordinates z,w one can take

ω1 =
i
2
(dzdz + dwdw) ω2 + iω3 = dzdw .

If we take ϕ(x) = µ
2|x | for a positive integer ν then the

4-manifold we construct is the quotient of C2 \ {0} by the cyclic
subgroup Cν ⊂ S1.
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Now take ν > 1 distinct points pa ∈ R3 and the function

ϕ(x) =
∑

a

1
2|x − pa|

.

The construction produces a complete hyperkähler 4-manifold
X with an S1 action having ν fixed points. We have a smooth
map

µ : X → R3 = X/S1.

The structure of X is asymptotic at infinity to that on the cone
C2/Cν .
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Suppose that the line segment Iab from pa to pb does not
contain any other of the ν points.

Then π−1(Iab) = Σab is a 2-sphere in X of self-intersection −2.

The complex structures on X are parametrised by the
directions in R3.

The sphere Σab is holomorphic with respect to the complex
structure defined by the the direction of Iab.
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Fundamental example when ν = 2. Then X is the
Eguchi-Hanson manifold. It has two descriptions as a complex
manifold (for different complex structures).

The smooth affine quadric z2
1 + z2

2 + z2
3 = 1 in C3. This

does not contain any compact holomorphic curves.
The blow-up at the origin of the singular quadric
z2

1 + z2
2 + z2

3 = 0. The exceptional divisor is a holomorphic
sphere of self-intersection −2.
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When ν = 2 there is another explicit description of the metric,
exhibiting more symmetry.
Let β1, β2, β3 be a standard basis of left-invariant 1-forms on
SU(2) with dβi = 2βj ∧ βk . Take a co-ordinate t on an interval
I ⊂ R and functions fi(t) and define 2-forms on I × SU(2) by

ωi = d (fi(t)βi) .

Fix the volume form 2dtβ1β2β3. The orthonormality condition
for the ωi become d

dt (f
2
i ) = 1 so fi(t) =

√
t + τi for constants τi .
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If all τi are 0, if we take r = t1/4 we find that the metric is

dr2 + r2(β2
1 + β2

2 + β2
3).

This is the flat metric on R4.
If τ1 = 1 and τ2 = τ3 = 0 one finds that the metric is

1
16t

√
t + 1

dt2 +
t√

t + 1
β2

1 +
√

t + 1(β2
2 + β2

3).
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Take the quotient by ±1. The metric extends to a smooth metric
on the completion X in which the origin is replaced by a
2-sphere.

The manifold X can be regarded as T ∗S2, with isometry group
S1 × SO(3).
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The hyperkahler manifolds X obtained from the
Gibbons-Hawking construction are not compact but they are
important in the study of singularity formation in families of
compact manifolds of special holonomy.

a sequence of quartic surfaces Vi ⊂ CP3 with limit V∞, a
surface with an ordinary double point.
the Kummer surfaces Ki which are resolutions of T 4/± 1.

The products X × R3 also appear as models for singularity
formation of metrics with holonomy G2.
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Section 5; Two topics

5.1 Minimal hypersurfaces and positive scalar curvature
Does the n + 1-dimensional torus T n+1 admit a Riemannian
metric of strictly positive scalar curvature?
When n = 1: NO by the Gauss-Bonnet formula.
One might guess that in general dimensions the integral of the
scalar curvature is a topological invariant, but that is not correct.
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Alternative proof when n = 1.
Proposition A
Let M2 be a compact oriented Riemannian surface with a
metric of strictly positive scalar curvature. Then H1(M,Z) = 0.
Suppose there is a non-trivial class in H1. This can be
represented by a length-minimising closed geodesic γ.
The normal bundle of γ is trivial, so a variation vector field can
be written as fN where N is a unit normal.
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The second variation formula is

L′′ =

∫
γ
|∇f |2 − K (T ,N)f 2,

where K (T ,N) is the sectional curvature, which is half the
scalar curvature in this case.

Taking f = 1 we get a variation with L′′ < 0 which contradicts
minimality.

Remark: another, related, argument uses Myers theorem.
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This variational approach can be extended to higher
dimensions (Schoen and Yau, Manuscripta Math. 1979).

Theorem
For n ≤ 6 let Mn+1 be a compact, oriented, manifold which
admits a map f : M → T n+1 of non-zero degree. Then M does
not admit a Riemannian metric of strictly positive scalar
curvature.
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The hypothesis is equivalent to the existence of classes
α1, . . . , αn+1 ∈ H1(M,Z) such that α1α2αn+1 ≠= 0 ∈ Hn+1(M).

The restriction dimM ≤ 7 is because in this range it is known
that any class in H1 is represented by an embedded,
volume-minimising, hypersurface.

This is the difficult component of the proof, but we assume it.

More recent developments perhaps extend the results to all
dimensions (taking account of singularities in the hypersurface).
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Recall that the Euler Lagrange equation for the volume
functional on hypersurfaces is H = 0 where H = Tr B and B is
the second fundamental form. Given such a minimal
hypersurface P ⊂ M with unit normal N we need the second
variation formula for volume. For a variation fN it is

δ2Vol =
∫

P
|∇f |2 − f 2

(
|B|2 + RicciM(N)

)
(∗∗)

Remark The term |B|2 in (**) does not appear in the case of
geodesics. To see why it enters, consider a variation with f = 1.
Then, as discussed in Section 2, the derivative of B expressed
in terms of parallel transport along normal geodesics is

dB
dt

= −B2 + curvature,

and Tr (B2) = |B|2
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The obvious deduction from (**) is that if RicciM > 0 then P
cannot be volume minimising (taking f = 1). So we have

RicciM > 0 ⇒ H1(M) = 0;

but we already knew that, from Myers’ Theorem.
More to the point, we only have a hypothesis on the scalar
curvature SM not the Ricci curvature.
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Suppose for the moment that P ⊂ M is totally geodesic, so the
curvature tensor of P is given by the restriction of the curvature
tensor of M. In terms of an orthonormal frame ei with e0 = N
we have

SM =
∑
i,j≥0

Rijij =
∑
i,j≥1

Rijij + 2RicciM(N) = SP + 2RicciM(N).

In general one finds that

SM = SP + 2RicciM(N) + |B|2,

(think of the case of a minimal surface in R3).
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Consider a Euclidean vector bundle written as an orthogonal
direct sum V = V1 ⊕ V2. A connection ∇ on V has a
decomposition (

∇1 B
−BT ∇2

)
and the curvatures are related by

F |V1 = F1 − B ∧ BT F |V2 = F2 − BT ∧ B.
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So we can the second variation formula as

δ2Vol =
∫

P
|∇f |2 − f 2

2

(
|B|2 + SM − SP

)
. (∗ ∗ ∗∗)

It is now easy to prove the theorem in the case n = dim P = 2.
Recall we have three classes α0, α1, α2 ∈ H1(M) with
non-vanishing product α0α1α2.
Let P be an volume-minimising hypersurface representing α0.
Apply the second variation formula (****) with f = 1. Since
SM > 0 by hypothesis we get∫

P
SP > 0.

But α1 ∪ α2 is non-zero in H2(P), so α1 is non-zero in H1(P),
which gives a contradiction by Gauss-Bonnet (or you can avoid
Gauss-Bonnet by using Proposition A and a variant of the
conformal deformation argument below.) (or use
Gauss-Bonnet).
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The proof of the Theorem for n > 2 involves an additional idea.
We want to show:
Proposition B If SM > 0 and P ⊂ M is a volume-minimising
hypersurface then P admits a metric of positive scalar
curvature.
Given this, the proof of the Theorem goes by induction on n.
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The proof of Proposition B involves conformal deformation. In
general, on an n-dimensional Riemannian manifold (P,g), let u
be a positive function and consider the conformal metric
g′ = u4/n−2g. Then one finds that

4(n − 1)/(n − 2)∆u + Sgu = Sg′un+2/n−2 (∗ ∗ ∗ ∗ ∗∗),

where ∆ = ∇∗∇.
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Write Lg for the linear operator 4(n−1)/(n−2)∆+Sg . Assume
now P is compact. Then Lg is a self-adjoint linear operator with
a discrete spectrum. In particular if Lg > 0 as an operator (i.e.
⟨Lgϕ, ϕ⟩ > 0 for all nonzero ϕ) then the first eigenvalue λ0 is
positive and there is an eigenfunction ϕ0 with Lgϕ0 = λ0ϕ0.
A “rounding corners” argument shows that ϕ0 cannot change
sign so we can suppose ϕ0 > 0. Taking u = ϕ0 in (******) we
see that Sg′ > 0.
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Conclusion (Kazdan and Warner, 1975): if P is a compact
manifold with a metric g such that Lg > 0 then there is a
conformal metric with positive scalar curvature.
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To prove Proposition B go back to the second variation formula
in the shape (for SM > 0):

δ2Vol <
∫

P
|∇f |2 + f 2

2
Sg , (∗ ∗ ∗∗)

where now we are writing g for the induced metric on P.
The volume-minimising condition gives∫

P
2|∇f |2 + f 2 Sg > 0

for non-zero f . But
4(n − 1)

n − 2
> 2

so ∫
P

4(n − 1)
n − 2

|∇f |2 + f 2 Sg > 0

which is the statement Lg > 0.

Differential Geometry, Part 2.



5.2: The Gauss-Bonnet formula, equivariant cohomology
and the Mathai-Quillen form
There is a generalisation of the Gauss-Bonnet formula to
compact manifolds of even dimension 2m but it involves an
integrand which is a polynomial function of degree m in the
curvature tensor.
This is easy to prove in the case of a hypersurface
M2m ⊂ R2m+1. Then, by topological arguments, the Euler
characteristic χ(M) is twice the degree of the Gauss map
γ : M → S2n. The second fundamental form B can be viewed
as the derivative of the Gauss map so

Vol (S2m) χ(M) = 2
∫

M
det B. (∗ ∗ ∗ ∗ ∗ ∗ ∗)

In this situation, the Riemann curvature tensor of M is just
−B ∧ BT : in index notation

Rijkl = BikBjl − BjkBil .
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For skew-symmetric 2m × 2m matrix Z the Pfaffian Pfaff(Z ) is a
polynomial of degree m in the entries of Z such that

det(Z ) = Pfaff(Z )2.

In fact if we identify these matrices with Λ2R2m then

Pfaff(Z )vol = Z m/m!,

where Z m is computed in the exterior algebra Λ∗R2m and vol is
the standard volume form
More invariantly, for an oriented Euclidean vector space V of
dimension 2m the Pfaffian is well-defined on the Lie algebra
so(V ) of SO(V ).
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For any oriented Riemannian 2m-manifold M regard the
curvature as a 2-form with values in the vector bundle so(TM)).
Combining the Pfaffian polynomial with the wedge product on
2-forms we can define

Pfaff(Riem) ∈ Ω2m.

The generalised Gauss-Bonnet formula (Chern, 1948) , for
compact M, is

(2π)mχ(M) =

∫
M

Pfaff(Riem).

It is an algebraic exercise to see that this reduces to (*******) in
the case of a hypersurface in R2m+1.
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Example For a compact oriented Riemannian 4-manifold M:

χ(M) =
1

8π2

∫
M

1
24

|S|2 + |W+|2 + |W−|2 −
1
2
|Ricci0|2.

Thus an Einstein 4-manifold has χ ≥ 0 with equality if and only
if the metric is flat.
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The Gauss-Bonnet formula can be developed as part of the
general Chern-Weil theory of characteristic classes and
invariant polynomials.
We will develop it from the point of view of the Thom class and
equivariant de Rham theory.

Differential Geometry, Part 2.



Let V → B be an oriented real vector bundle of rank 2m.
The Thom class is the unique class in H2m

c (V ) which restricts to
the standard generator on each fibre.
Suppose that dim(B) = 2m and we have a de Rham
representative τ of the Thom class: a compactly supported
closed 2m-form on the total space of V .
Let s be a section of V → B. Then we can form

I =
∫

B
s∗(τ).

By homotopy invariance, this does not depend on the section s.
Deforming s suitably we see that I is the Euler number of V , the
signed count of zeros of a generic section. On the other hand
taking s = 0 we see that I is equal to the integral of τ over the
zero section B ⊂ V .
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Thus our problem is to construct an explicit representative of
the Thom class.
Equivariant de Rham theory gives a machinery for doing that.
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Let X be a manifold with an action of a compact Lie group G.
For any principle G-bundle P → B we have an associated
bundle X → B with fibre X .
An equivariant cohomology class on X can be thought of as an
ordinary cohomology class α together with a procedure for
extending α over X for any such bundle X .
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Write sp for the polynomials of degree p on the Lie algebra g.
Then G acts on sp ⊗ Ωq

X . Define Cp,q to be the G-invariant part:

Cp,q(X ) =
(
Ωq

X ⊗ sp)G
.

Define a grading by saying that Cp,q has degree q + 2p.
We have d : Cp,q → Cp,q+1 and an algebraic operator

I : Cp,q → Cp+1,q−1

defined as follows. For each x ∈ X the derivative of the action
lies in g∗⊗TXx . Then I is the tensor product of the multiplication

g∗ ⊗ sp → sp+1

and contraction TX ⊗ Ωq → Ωq−1.
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BASIC FACT I. (d + I)2 = 0 on C∗,∗.

We define the equivariant de Rham cohomology H∗
G(X ) to be

the cohomology of (C∗∗,d + I).
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Example Take G = S1. Then C∗∗(X ) can be viewed as the
invariant forms with coefficients in the polynomial ring R[t ]. The
differential is d + tiv where v is the vector field generating the
action.

(d + tiv )2 = d2 + t2i2v + t(iv d + div ).

We have iv d + div = Lv , the Lie derivative along v , and this
vanishes on the invariant forms. A class of degree q in
equivariant cohomology is defined by some

α = αq + tαq−2 + t2αq−4 + . . .

where αq is a closed invariant q-form and

dαq−2 = −ivαq dαq−4 = −ivαq−2,

etc..
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In particular, suppose that ω is an S1-invariant symplectic form
on X . To promote it to a closed equivariant form we need a
Hamiltonian function h with dh = ivω.

More generally, for a symplectic form ω invariant under a group
G the data required to promote it to an closed equivariant form
is a moment map

m : X → g∗.

Differential Geometry, Part 2.



Now let X = P ×G X be a bundle over B with fibre X , as
discussed above. Choose a connection on the principal
G-bundle P. This has curvature which is a form on the total
space P ; F ∈ Λ2T ∗B ⊗ g.
For any polynomial λ ∈ sp we can define λ(F ) ∈ Λ2pT ∗B. This
induces a map µ : Cp,q → Ω2p+q(X ).

BASIC FACT II.
µ defines a map of cochain complexes, with respect to the
differential (d + I) on C∗∗ and the exterior derivative d on
Ω∗(X ).
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Example Take G = S1. The curvature of the connection is a
2-form F on B. The connection defines a horizontal subbundle
H ⊂ TX and Ω∗(X ) =

⊕
Ωp,q. The action defines a vertical

field v on X . With respect to this decomposition
d = dX + dH + ν where

ν : Ωp,q → Ωp+2,q−1

is F ∧ iv .
Suppose we have a closed equivariant form
α = αq + tαq−2 + t2αq−4 + . . . as above.
Then

µ(α) = αq +Fαq−2+F 2αq−4+ · · · ∈ Ω0,q ⊕Ω2,q−2⊕Ω4,q−4⊕ . . .
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Another description of C∗∗ is as the G-equivariant polynomial
maps

f : g → Ω∗
X

with the differential

(Df )(ξ) = d(f (ξ)) + iρ(ξ)f (ξ),

where ρ : g → TX is the Lie algebra action.
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The Mathai-Quillen form
Now take G = SO(2m) and X = R2m. Identify the Lie algebra g
with the 2-forms Λ2. The Mathai-Quillen equivariant form is the
map f : g → X given by

f (ξ) = (2π)−m ∗ exp(ξ)e−r2/2,

where ∗ : Λp → Λ2m−p and r is the usual radius function on R2m.
The proof that Df = 0 comes down to the identity

i∂r (exp(ξ)) = (i∂r ξ) ∧ exp(ξ),

where ∂r is the radial vector field .
For example in the case m = 1 the statement is equivalent to
saying that the function e−r2/2 is a Hamiltonian for the circle
action with respect to the symplectic form e−r2/2r dr dθ.
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The component of the Mathai-Quillen form in C0,2m is
(2π)−me−r2/2vol where vol is the standard volume form on R2m.
This is a (2m)-form on R2m of integral 1.

The component of the Mathai-Quillen form in Cm,0 is (2π)−mλ
where λ is the polynomial of degree m on g defined by ξm/m!.
This is just the Pfaffian polynomial.
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Let V → B be an oriented Euclidean vector bundle of rank 2m
associated to a principal SO(2m) bundle. Choosing a
connection, our general machinery defines a closed 2m-form τ
on the total space of V with integral 1 over each fibre and which
restricts to (2π)m times the Pfaffian of the curvature on the zero
section. This form has very rapid decay but is not compactly
supported so is not precisely a Thom form.
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However
Suppose dim B = 2m and that s is a generic section of V .
Take a large parameter λ and consider sλ = λs. Then one
sees that as λ → ∞ the form s∗

λ(τ) becomes concentrated
around the zeros of s and one can derive the relation with
the Euler number.
Alternatively, choose a suitable diffeomorphism
χ : B2m → R2m. Then χ∗(Mathai − Quillen)) is a form on
B2m and one sees that extending this by zero defines a
smooth compactly supported form on R2m. Now the
general machinery gives a compactly-supported Thom
form on V .
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