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1 The index problem

A bounded linear map T : V1 → V2 between Banach spaces is called Fredholm if
the kernel is finite-dimensional and the image of T is a closed subspace of finite
codimension. The index of such a map T is the integer

ind T = dim ker T − dim cokerT.

In the case when V1, V2 are finite dimensional this is just dim V1 − dimV2; in
particular it does not depend on T . In general, the space of Fredholm operators
is open (in the operator norm topology) and the index is constant on each
connected component.

Now let M be a compact manifold and E,F complex vector bundles over
M . Let D : Γ(E) → Γ(F ) be a linear differential operator of order l. We can
make D into a bounded linear operator by introducing suitable function spaces,
for example

D : L2
l (E) → L2(F ),

where L2
l is the Sobolev space with norm defined by sum of the L2 norms of

derivatives up to order l. The symbol σD of the operator encodes the highest
order terms. It is a section of the vector bundle slTM ⊗ Hom(E,F ). From
another point of view, for each p ∈ M and cotangent vector ξ ∈ T ∗Mp we have
a σD(ξ) ∈ Hom(Ep, Fp) and this is a polynomial function of degree l in the
variable ξ ∈ T ∗Mp.

One way to define σD(ξ) is to take a function f with f(p) = 0 and dfp = ξ.
Then for a section s of E the value of D(f ls) at p depends only on the value of
s at p and we can define

σD(ξ)(s(p)) = D(f ls))(p). (1)

For example, the Laplace operator Δ on a Riemannian manifold is elliptic
of order 2 with symbol −|ξ|2.

A basic fact of global analysis is that an elliptic operator D over a compact
manifold defines a Fredholm operator between Sobolev spaces. Moreover
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• ker D consists of smooth sections of E;

• coker D can be identified with the kernel of the formal adjoint operator
D∗ : Γ(F ) → Γ(E).

(This means that the ensuing discussion is independent of the choice of function
spaces used to set things up.)

(Recall that the formal adjoint is defined by integration-by-parts through
the identity

〈Df, ρ〉L2 = 〈f,D∗ρ〉L2 ,

where 〈 , 〉L2 is the L2 inner product. )

Thus the elliptic operator D has a index, which is independent of deforma-
tions through elliptic operators. If D is defined using a metric, connections etc.
then the index does not depend on those choices. Also, two operators with the
same symbol have the same index.

The index problem is to give a formula for ind D in terms of topological
invariants of the data (M,E,F, σD).

Examples

• The Laplace operator is self-adjoint so has index zero.

• If M is a compact Riemann surface there is a ∂-operator

∂ : Ω0 → Ω0,1.

More generally if L → M is a holomorphic line bundler we have

∂L : Ω0(L) → Ω0,1(L).

This is an elliptic operator (with E = L and F = L⊗ T
∗
Σ). The index is

given by the Riemann-Roch formula

ind ∂L = dim H0(L) − dimH1(L) = d − g + 1,

where d = 〈c1(L),M〉 and g is the genus of M , so we also have 2g − 2 =
〈c1(T ∗M),M〉.

• Choose a Riemannian metric on M and let d∗ be the formal adjoint of
the exterior derivative d. Let E be the sum of the even degree differential
forms and F the sum of the odd degree forms. Then we can write

d + d∗ : Ωeven → Ωodd.
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This is elliptic and by Hodge theory the index is the Euler characteristic
χ(M). If dimM is odd this is zero. When dim M = 2m and (for simplicity)
M is oriented we have the “Gauss-Bonnet” formula

χ(M) = 〈e(M),M〉,

where e(M) ∈ H2m(M) is the Euler class.

• Let
Γ(E0)

∂
→ Γ(E1)

∂
→ Γ(E2) . . . ,

be a complex of first order differential operators (so ∂2 = 0). The complex
is called elliptic if the sequence of symbols is exact, for non-zero ξ. This
is equivalent to the ellipticity of the operator

∂ + ∂∗ :
⊕

Γ(Eeven) →
⊕

Γ(Eodd).

• Suppose now that M is oriented of dimension 4k. Then we have ∗ : Λ2k →
Λ2k with ∗2 = 1 and the 2k-forms split into self-dual and anti-self-dual
parts Λ2k

+ ⊕ Λ2k
− . Let E be the sum of the Λ2k

+ , the even forms of degree
less than 2k and the odd forms of degree greater than 2k and let F be the
sum of Λ2k

− with the odd forms of degree less than 2k and the even forms
of degree greater than 2k. Define Dsign : Γ(E) → Γ(F ) using d, d∗ except
that for Ω2k+1 → Ω2k

− we compose with the projection Ω2k → Ω2k
− . Then

by Hodge Theory the index of Dsign is the signature of M—the signature
of the quadratic cup product form on H2k(M). The Hirzebruch signature
theorem asserts that

sign(M) = 〈Lk(p1, . . .),M〉,

where Lk is a certain polynomial in the Pontrayagin classes pi(M) ∈
H4i(M).

2 The Atiyah-Singer index formula for Dirac op-
erators

The double cover Spin(n) of SO(n) has a representation on a complex vector
space S. If n is even this is a sum S+ ⊕ S−. There is Clifford multiplication
map of representations:

S ⊗ Rn → S.

A spin structure on an oriented Riemannian n-manifold M is a principle
Spin(n) bundle which is a double cover of the frame bundle. Given such there
is an associated vector bundle S → M with bundle map c : S ⊗T ∗M → S. The
Levi-Civita connection defines a covariant derivative ∇ : Γ(S) → Γ(S ⊗ T ∗M).
The Dirac operator is

D = c ◦ ∇ : Γ(S) → Γ(S).
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This is a self-adjoint operator. For n even, so S = S+ ⊕ S−, we have D =
D+ + D− where D± : Γ(S±) → Γ(S∓).

Example
For n = 2 we can regard our Riemannian manifold also as a Riemann surface.

A spin structure is equivalent to a square root K1/2 of the canonical bundle
K = T ∗M . The Dirac operator D+ can be identified with ∂L : Ω0(L) → Ω0,1(L)
for the line bundle L = K1/2.

To get a picture of the Dirac operator in higher dimensions we can use an
inductive procedure. Suppose that we have defined D2m = D+ +D− over R2m.
Then we define the Dirac operator D2m+1 over R2m+1 = R2m × R to be

(
i∂t D−

D+ −i∂t

)

,

where t is the coordinate in the R factor in R2m×R. If we have defined D2m+1

over R2m+1 we define a pair of operators D+, D− over R2m+2 = R2m+1×R by

D+ = ∂s + D2m+1 , D− = −∂s + D2m+1.

where s is the coordinate in the R factor in R2m+1 ×R. The process can begin
in dimension 1 where the Dirac operator is i d

dx .
Now let M be a compact Riemannian manifold of even dimension 2m with

a spin structure and let V → M a complex vector bundle of rank r. Choosing
a connection on V we get a coupled Dirac operator

D+,V : Γ(S+ ⊗ V ) → Γ(S− ⊗ V ).

This is an elliptic operator, so has an index. The Atiyah-Singer formula in this
case is

ind D+,V = 〈ch(V )Â(M),M〉, (2)

where ch (V ), Â(M) are polynomials in, respectively, the Chern classes of V and
the Pontrayagin classes of M , defined as follows.

• ch (V ): Take formal variables λ1, λ2, . . . , λm and write
∑

eλi in terms of
the elementary symmetric functions

σ0 = 1 , σ1 =
∑

λi , σ2 =
∑

λiλj , . . . .

Now replace the σi by the Chern classes ci(V ). The resulting formula
begins

ch (V ) = r + c1 + (
1
2
c2
1 − c2) + . . .

• Â(M): Take formal variables μj and let â be the function

â(z) =

(
z/2

sinh(z/2)

)1/2

.
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Consider ∏

j

â(μj)
2.

Since â(z) is an even function of z this product can be written as a power
series in the elementary symmetric functions of μ2

j . Now substitute the
Pontrayagin class pi(M) for the i′th symmetric function of the μ2

j . The
resulting formula begins

Â(M) = 1 −
1
24

p1 +

(
−4p2 + 7p2

1

5760

)

+ dots.

The Chern-Weil theory represents the Chern classes and Pontrayagin classes
by differential forms obtained from the Riemannian curvature RM of M and
the curvature FV of the connection on V . The index formula (1) becomes

index =
∫

M

Tr exp(iFV /2π) det â(RM/2π). (3)

Here the expressions are defined by considering FV and RM as 2-forms with
values in the endomorphisms of V and TM respectively.

The index formula for Dirac operators is important because:

1. In the general theory, the calculation for any elliptic operator can be
reduced to the case of Dirac operators.

2. Most of the natural operators that arise in geometry can be expressed as
coupled Dirac operators.

We say something more about the first item in Section 3 below. For the second
item, examples are:

• Let E be a holomorphic vector bundle over a complex Kähler manifold
M . We have a ∂ complex ∂E : Ω0,q(E) → Ω0,q+1(E). The index of the
operator PE = ∂E + ∂

∗
E is the holomorphic Euler characteristic of E. On

the other hand PE can be identified with the Dirac operator coupled to the
bundle E ⊗ K−1/2 where K is the canonical bundle. The index formula
(2) yields the Riemann-Roch formula for E.

• Taking V = S, the coupled Dirac operator becomes the signature oper-
ator Dsign. The index formula (2) yields the Hirzebruch formula for the
signature in terms of Pontrayagin classes.

• Taking V = S+ − S−, with an obvious interpretation, the index formula
(2) yields the “Gauss-Bonnet” formula for the Euler characteristic. That
is, one has an identity ch (S+) − ch (S−) = e(M).
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Families
An important generalisation of the numerical index is the index of a family.

Let π : M → B be a fibration with the structure of a compact 2m-dimensional
Riemannian spin manifold on each fibre Mb = π−1(b). Let W → M be a
complex vector bundle with a connection over each fibre Mb. Then for each
b ∈ B we have a coupled Dirac operator D+

b and so finite dimensional spaces
ker D+

b , coker D+
b . In a case when the dimensions of these are constant, for

b ∈ B, we get a pair of vector bundles Ker, Coker over B and a virtual bundle

Ind = Ker − Coker ∈ K(B)

In general, when the dimensions of the spaces can jump the kernels and cokernels
do not form vector bundles over B but the formal difference can be still be
defined in K(B). The index formula for families is

ch (Ind) = π∗

(
Â(TvM)ch (W)

)
, (4)

where Tv → M is the vector bundle given by the tangent spaces of the fibres
and

π∗(H
i(M) → Hi−2m(B),

is the “integration over the fibre” map.

Pseudodifferential operators
Another generalisation involves pseudodifferential operator. In the simplest

case of an operator on vector-valued functions over Rn a pseudodifferential
operator T is defined by a matrix valued function P (x, ξ) on Rn ×Rn and the
formula

(Tf)(x) =
∫

P (x, ξ)e−ixξ f̂(ξ)dξ,

where f̂ is the Fourier transform of f . The function P is required to have an
asymptotic expansion as |ξ| → ∞ with a leading term of some order O(|ξ|l).
The degree of the operator is defined to be this number l. The symbol of
the operator is the leading (order l) term and the operator is elliptic if this is
invertible: i.e. if P (x, ξ) is invertible for large ξ. If P (x, ξ) is a polynomial in ξ
we have a differential operator but we also get integral and “singular integral”
operators and more. For example over a compact Riemannian manifold Δ1/2 is
a pseudodifferential operator of order 1 and (1 + Δ)−1/2 is a pseudodifferential
operator of order −1.

3 Fragmentary proof sketches

There are three approaches to the proof of the index formula, with slogans:
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1. Cobordism;

2. K-theory;

3. Heat equation.

Cobordism

The basic input is that if the spin manifold M2m is the boundary of a
spin manifold N2m+1 and if the bundle V extends over N then the index of
D+

V vanishes. For simplicity consider the case when V is trivial and write DN

for the Dirac operator over N and D± for the operators over M . On the
boundary the spin bundle of N is the sum S+ ⊕ S−. Consider the subspace
L ⊂ Γ(S+)×Γ(S−) of pairs (s+, s−) which are the boundary values of solutions
of the Dirac equation DNσ = 0 over N . One shows that L is the graph of an
isomorphism T : Γ(S+) → Γ(S−). This is a global construction, so T is not
determined by local data but it is a pseudodifferential operator of order zero
and its symbol is determined locally. Write Δ+ for the Laplace-type operator
D−D+ on Γ(S+) and Δ− for D+D− on Γ(S−). So 1+Δ+, 1+Δ− are invertible
operators. One finds that the symbol of T is the same as that of the zero order
operator

T̃ = D+ ◦ (1 + Δ+)−1/2 : Γ(S+) → Γ(S−).

The index of T is zero, since T is an isomorphism, and the indices of T̃ and
D+ are equal since (1 + Δ+)−1/2 is invertible. The indices of T, T̃ are the same
since they have the same symbol.

K-Theory

A fundamental case is that of a “compactly supported” pseudodifferential
operator T over Rn. That is, we have a function P (x, ξ) on Rn×Rn with values
in N × N matrices such that P (x, ξ) is the identity for |x| large. This means
that for for any f we have Tf(x) = f(x) for large x, so the functions in the
kernel of T have compact support and similarly for the adjoint. Suppose that
P is elliptic. Then P (x, ξ) is invertible for (x, ξ) large in Rn ×Rn. Restriction
to a large sphere gives a map p : S2n−1 → GL(N,C).

The Bott periodicity theorem asserts that for N >> n the homotopy group
π2n−1(GL(N,C)) is Z. Thus we have a “degree” deg(p) ∈ Z and the index
formula in this situation is

ind(T ) = deg(p). (5)

To connect this to the previous discussion, consider the Dirac operator D+
V

on Sn (for n even) coupled to a rank r vector bundle V → Sn. Let D− be the
Dirac operator on the trivial rank r bundle Cr. Then consider

D = D+
V ⊕ D− : Γ(S+ ⊗ V ⊕ S− ⊗ Cr) → Γ(S− ⊗ V ⊕ S+ ⊗ Cr).
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The index of D is the difference ind D+
V − ind D+

Cr . The order 0 operator

D(1 + D∗D)−1/2 can be deformed to be the identity near the point at infinity
in Sn = Rn ∪ {∞}, so fits into the framework above. One finds that

ind D+
V − ind D+

Cr = 〈ch(V ), Sn〉,

which proves the Atiyah-Singer formula (2) for bundles over spheres.

Now go back to the case of an elliptic operator D : Γ(E) → Γ(F ) over a
manifold M . Writing π : T ∗M → M , the symbol gives a bundle isomorphism
σ : π∗(E) → π∗(F ) over the complement of the zero section on T ∗M . Let
ΣM → M be the compactification of T ∗M obtained by adding a point at
infinity in each fibre. We use σ to define a bundle E ]σF over ΣM , equal to
π∗E on the “zero” disc bundle and π∗(F ) on the “infinity” disc bundle, glued
together using σ. The K group with compact supports Kc(T ∗M) can be defined
as the kernel of the restriction map

K(ΣM) → K(M∞)

where M∞ ⊂ ΣM is the section at infinity. The virtual bundle E ]σF − π∗F
lies in this kernel so we have an element [E,F, σ] ∈ Kc(T ∗M). The deformation
invariance of the index implies that indD depends only on [E,F, σ]. Moreover
the index defines a homomorphism

ind : Kc(T
∗M) → Z.

From this point of view, the index problem is to define, using algebraic topol-
ogy, a homomorphism Kc(T ∗M) → Z and to show that this coincides with
analytically defined index.

The importance of the Dirac operator, in this setting is that it defines
the K-theory analogue of the Thom class in compactly supported cohomology
H∗

c (T ∗M). This becomes the statement that any elliptic operator is equivalent,
in a suitable sense, to a coupled Dirac operator.

Heat equation

Go back to a compact, even-dimensional, Riemannian manifold M and bun-
dle V . The Laplace-type operator Δ+ on Γ(S+⊗V ) decomposes this space into
a sum of eigenspaces

E+
λ = {s ∈ Γ(S+) : Δ+s = λs}.

Similarly for Γ(S− ⊗ V ). For non-zero λ, the operator D+ defines an isomor-
phism from E+

λ to E−
λ . For t > 0 we can define an operator exp(−tΔ+). For

any section s the 1-parameter family st = exp(−tΔ+)s is the solution of the
“heat equation”

∂st

∂t
= −Δ+st,
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with initial condition s0 = s. The operators are represented by a heat kernel

st(x) =
∫

M

H+
t (x, y)s(y) dy.

The trace of exp(−tΔ+) is given on the one hand by the sum
∑

e−λt over
eigenvalues and on the other hand by the integral

∫

M

tr (H+
t (y, y)) dy.

Thus we have that for all t

index D+ =
∫

M

tr H+
t (y, y) − tr H−

t (y, y) dy. (6)

The ordinary heat kernel on Rn is

Ht(x, y) = (4πt)−n/2exp(−(x − y)2/4t).

In general there is an asymptotic expansion as t → 0:

tr H+
t (y, y) ∼ a+

0 t−n/2 + a+
1 t−n/2+1 + a+

2 t−n/2+2 + . . . ,

where ai are functions of y. The first term a0 is (4π)−n/2 times the rank of
the bundle V , just like the model case. By general theory all the ai can be
computed locally, in terms of the metric and its derivatives in local coordinates.
Similarly for H−

t . Then (6) implies that there must be a cancellation a+
i = a−

i

for i < n/2 and

index D+ =
∫

M

a+
n/2(y) − a−

n/2(y) dy (7)

where the integrand can be computed by local differential geometry. The prob-
lem is to show that this integral gives the the combination of Pontrayagin and
Chern classes appearing in ch(V )Â. This is a priori difficult because the asymp-
totic expansion theory is inductive and calculations get very long in higher di-
mensions, but there are ingenious ways to simplify the calculations. In the
end this gives a stronger statement (the local index theorem): the integrand is
exactly the Chern-Weil integrand in (3).

Exercises
1. Let T0 : V1 → V2 be a Fredholm operator. Show that any small deforma-

tion of T0 is also Fredholm and has the same index.
(Hint: First do the case when T0 is surjective. In general, choose a map

τ : CN → V2 such that T0 + τ : V1 ⊕ CN → V2 is surjective and thence reduce
to the first case.)

2. Check that the definition (2) of the symbol is independent of choices.
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3. Compute the symbols of the exterior derivative d and its adjoint d∗. Show
that d+d∗ : Ωeven → Ωodd is elliptic. Use Hodge theory to show that the index,
on a compact Riemannian manifold, is the Euler characteristic.

4. (i) Given that there is a number a such that sign M4 = ap1 for any
compact oriented 4-manifold M4, find a.

(ii) Given that there are numbers b, c such that sign M8 = bp2
1 + cp2 for any

compact oriented 8-manifold M8 find b and c by calculating with the examples
CP4 and CP2 × CP2.

5. Let M be a compact oriented manifold of dimension 4k which is the
oriented boundary of a (4k + 1)-manifold N . Use Poincaré duality and the
exact sequence of the pair (N,M) to show that the signature of M is zero.

6. Show that for a spin manifold of dimension 4 the bundles S+, S− are
naturally quaternionic vector bundles and D± are quaternion-linear. Use the
index formula to deduce Rohlin’s Theorem: the signature of a spin 4-manifold
is divisible by 16.

7. Show that on a spin 4-manifold the difference ch(S+)− chS− is the Euler
class.

8. The Hilbert transform H is the linear map from functions on R to func-
tions on R defined by

(Hu)(x) = π−1 lim
δ→0

∫

|y−x|>δ

u(y)
x − y

dy.

(You might want to think of this as defined initially on smooth functions u
of compact support.)

Show that there is a holomorphic function on the upper half-plane with
boundary value u + iH(u).

Show that H is a pseudodifferential operator of order 0 with symbol σ(ξ) =
isgn(ξ).

(Hint. Show that

(Hu)(x) = π−1 lim
ε→0

∫
(x − y)u(y)
(x − y)2 + ε2

dy,

and that

F (x + it) = π−1

∫
tf(y)

(x − y)2 + t2
dy,

is a harmonic extension of f over the upper half-plane. )
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9. Let σ be the symbol of the Dirac operator D+ over R4, so for each ξ ∈ R4

we have σξ : C2 → C2. Show that the map from S3 to GL(2,C) obtained by
restricting to ξ in the unit sphere defines the generator of π3(GL(2,C)).

10. Let L be a complex line bundle over the flat torus C/Z + 2πiZ with
curvature −idxdy. Consider the ∂-operator ∂L : Ω0(L) → Ω0,1(L) and the
second order operators Δ+ = ∂

∗
L∂L, Δ− = ∂L∂

∗
L. Use the constant form dz =

dx − idy to identify Ω0(L) with Ω0,1(L) so that Δ+, Δ− can be regarded as
acting on the same space. With that interpretation, show that Δ− = Δ+ + 2
and hence relate the the heat kernels of Δ±. Use this to show that the index of
∂L is 1.
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