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Abstract.

A wide class of Hamiltonian systems exhibit a mixture of slow motion with super-
imposed fast oscillations. Under the assumption of scale separation, these systems can
be investigated using the principle of adiabatic invariance. In this paper, we start with
a review of some of the main theoretical and numerical findings. We then briefly sum-
marize a few important implications for molecular dynamics (MD) before we provide
a more extensive discussion of numerical weather prediction (NWP). In particular, the
conservative Hamiltonian particle-mesh (HPM) method is extended to Euler’s equation
and the fundamental concepts of geostrophic and hydrostatic balance are illustrated
on the level of ‘fluid blobs’. We also demonstrate numerically that symplectic time-
stepping methods are able to maintain hydrostatic balance to high accuracy.
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1 Introduction

In this paper, we review some basic results about highly oscillatory Hamilto-
nian systems and adiabatic invariants. We show how these concepts can be uti-
lized in the context of molecular dynamics (MD) and numerical weather predic-
tion (NWP). While Hamiltonian techniques and symplectic integration methods
have been extensively discussed in the context of MD (see, for example, Skeel

[32]), the application to NWP is new. Hence we will mainly focus on NWP
in this paper. A necessary and fundamental step, which we outline in §3.2.2,
is the spatial discretization of Euler’s equation into a conservative system of
interacting particles. Once this step has been taken, well-known balance con-
cepts, such as hydrostatic and geostrophic balance [1], can be discussed quite
naturally in the context of classical mechanics and adiabatic invariance. One
can expect that symplectic integration methods will faithfully respect such bal-
ance principles on a discrete level. We demonstrate this in §3.2.4 for a simple
two-dimensional hydrostatic system. On the other hand, all known grid-based
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discretization methods for Euler’s equation are non-Hamiltonian and balance
typically requires the introduction of numerical dissipation.

2 Adiabatic invariants and symplectic integration methods

In the following four subsections, we introduce the concept of adiabatic invari-
ance in the context of several increasingly complex model systems.

2.1 Slowly varying harmonic oscillator

The harmonic oscillator with slowly changing frequency ω is the simplest ex-
ample of a fast-slow Hamiltonian system, i.e.

y′′ = −ω(ετ)2y,

where ε > 0 is a small parameter measuring the separation of scales between
the fast oscillations in y and the slowly-varying frequency ω = O(ε0). Upon a
rescaling of time τ to t = ετ , we can write the equation of motion in the following
form which is more convenient for later use:

(2.1) ÿ = −ε−2ω(t)2y.

As easily checked, this system does not conserve energy. However, consider the
action

J =
1

ω(t)

(

ẏ2 + ε−2ω(t)2y2
)

and its time derivative
J̇ = ω̇

(

ε−2y2 − ω−2ẏ2
)

.

Over one (short) period T = 2επ/ω(t), the motion in y(t) is approximately
harmonic with frequency ω/ε and we find that

J(t+ T )− J(t) =

∫ t+T

t

J̇(s)ds ≈ ω̇(t)

∫ t+T

t

(

ε−2y(s)2 − ω(t)−2ẏ(s)2
)

ds ≈ 0.

A more careful calculation, taking into account slow changes in ω and ω̇, yields
the estimate

J(t+ T )− J(t)

J(t)
= O(ε2).

From this result we can conclude that

|J(t)− J(0)|
|J(0)| = O(ε) for |t| = O(ε0).

Using sophisticated normal form theory, Neishtadt [22] was able to dramati-
cally improve this result under the assumption of analytic ω(t) to the following
estimate:

(2.2)
|J(0)− J(t)|

|J(0)| = O(ε) for |t| = O(ec/ε).
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The differential equation (2.1) can be discretized by the Störmer-Verlet method
[15] once the conjugate momentum py = ẏ is introduced. The resulting one-step
map is symplectic and we conclude from backward error analysis [3, 14, 25] that
there is a modified time-dependent Hamiltonian

H̃ =
1

2

(

p2
y + ε−2ω(t)2y2

)

+ (∆t/ε)2∆H(y, py, t; ∆t/ε)

such that its time-∆t-flow is exponentially close to the Störmer-Verlet map for
∆t/ε � 1. Furthermore, one can show that J is also an adiabatic invariant for
the modified Hamiltonian H̃ and, provided that

(2.3) ∆t = O(ε2),

the estimate (2.2) also holds for the numerical method. See also the paper
by Shimada & Yoshida [31]. Condition (2.3) represents a severe step-size
restriction which is not desirable for long time simulations as linear stability
alone merely dictates that ∆t = O(ε). In fact, a step-size ∆t = O(ε) often gives
excellent results.

2.2 A simple slow-fast Hamiltonian system

In this and the subsequent section we demonstrate how the simple example of
a slowly varying harmonic oscillator carries over to more complex Hamiltonian
systems. We start by considering a two degrees-of-freedom (DoF) Hamiltonian
system of the form

ẍ = − y2

2ε2
∇xK(x)−∇xV (x, y),(2.4)

ÿ = − 1

ε2
K(x) y −∇yV (x, y),(2.5)

where ε > 0 is a small parameter and K(x) = O(ε0). The system is canonical
Hamiltonian with energy

E =
1

2

[

ẋ2 + ẏ2 + ε−2K(x)y2
]

+ V (x, y).

The first observation is that y(t) = O(ε) for dynamics with bounded total energy.
Furthermore, it is intuitively clear that the motion in x(t) is slow while y(t)
is highly-oscillatory with an approximate equilibrium value yo = 0. The fast
oscillations in y are essentially described by the harmonic oscillator

ÿ ≈ − 1

ε2
K(x(t)) y

with frequency ω =
√

K(x(t))/ε depending on x(t). Hence we are back to the
situation described in the previous subsection. More precisely, the result by
Neishtadt [22] suggests that the associated adiabatic invariant

(2.6) J(t) =
1

√

K(x(t))

(

ẏ(t)2 + ε−2K(x(t))y(t)2
)
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is preserved over time intervals of O(ec/ε) up to terms of O(ε). This statement
has been made precise in Reich [28]. See the Appendix for a short outline of
the basic ideas. An important consequence of this result is that the slow DoF
approximately moves along the constant energy surface

(2.7) Ered =
1

2
ẋ2 + V (x, 0) +

J(0)

2

√

K(x).

The associated reduced canonical equations of motion in the variable x are

(2.8) ẍ = −∇xV (x, 0)− J(0)

2
∇x

√

K(x).

These equations were first derived by Rubin & Ungar [29].
Again it is relatively easy to show that a symplectic integrator will capture the

correct slow dynamics provided the step-size ∆t satisfies ∆t ∼ ε2. In particular,
the reduced energy (2.7) will be approximately preserved over exponentially long
times for analytic K(x) and V (x, y). See Reich [26] for details. Note that the
same statement is not true for general numerical methods.

2.3 More general slow-fast Hamiltonian systems

We have seen in the previous subsection that the principle of adiabatic invari-
ance is a powerful tool to eliminate a single fast DoF in Hamiltonian systems.
One would like to extend this result to slow-fast Hamiltonian systems with many
DoF, e.g., consider

ẍ = − 1

2ε2
∇x

[

yT K(x)y
]

−∇xV (x,y),(2.9)

ÿ = − 1

ε2
K(x)y −∇yV (x,y),(2.10)

where x ∈ Rn, y ∈ Rm, and K(x) is a symmetric positive-definite matrix-valued
function of x.

Solutions oscillate about an approximate equilibrium point yo = 0. The fast
oscillations in y are characterized by the linear system

ÿ = −ε−2K(t)y,

K(t) = K(x(t)). One can associate an action variable Ji with every (time-
varying) eigenvalue λi(t) of the symmetric matrix K(t). The associated nor-
mal mode has frequency ωi =

√
λi. The action variables can undergo rapid

transitions of order one near one-to-one resonances which occur whenever
ωi(t

′) ≈ ωj(t
′) for some time t′ and indices i 6= j. Hence a closed form re-

duction, as found for single fast DoF systems, is no longer feasible in general.
See Takens [33] and Bornemann [5] for a rigorous treatment. On the other
hand, numerical experiments indicate (see, e.g., Reich [27] and the numerical
example below) that the total adiabatic invariant J =

∑m
i=1 Ji drifts very little

and essentially behaves like an adiabatic invariant over relatively long periods of
time. This implies that solutions with a small initial value of J will stay close
to yo for long periods of time.
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Figure 2.1: The plot shows the difference |E(t1)−E(t0)| in energy, the difference
|J(t1)−J(t0)| in the total adiabatic invariant, and the difference |J1(t1)−J1(t0)|
in the adiabatic invariant J1 as a function of ε.

2.4 Rapid oscillations about a slow manifold

We have assumed in the previous two subsections that slow and fast variables
had already been identified. Such a setting is not normally given for problems
from physics or other applications. In fact, part of the challenge of slow-fast
dynamics is to find a proper change of variables that leads from the original
equations to equations of the form (2.9)-(2.10), at least locally. In terms of the
original variables, the equation y = yo corresponds to a manifold (often called
a ‘slow’ manifold) and Y = y − yo contains fast oscillations normal to that
manifold. See the recent survey by MacKay [21] for a careful discussion of the
concept of ‘slow’ manifolds.

2.5 A numerical experiment

We demonstrate the drift in action variables by means of a simple toy problem.
For our purposes it is sufficient to consider a time-dependent system with two
fast DoF:

ÿ1 = −ω1(t)
2

ε2
y1 − e−t2/2

[

(y2 − y1) + (y2 − y1)
3
]

,

ÿ2 = −ω2(t)
2

ε2
y2 − e−t2/2

[

(y1 − y2) + (y1 − y2)
3
]

,

with frequencies
ωi(t) =

√

1 + (−1)i(0.5− tanh t2).
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The two associated action variables are

Ji =
1

ωi

(

ẏ2
i +

ω2
i

ε2
y2

i

)

and J = J1 + J2. The energy of the system is given by

E =
1

2

∑

i=1,2

(

ẏ2
i +

ωi(t)
2

ε2
y2

i

)

− 1

4
e−t2/2

[

2(y2 − y1)
2 + (y1 − y2)

4
]

.

Note that time t takes the role of the slow variable x. We start the simulation
with initial conditions y1(t0) = y2(t0) = 0, ẏ1(t0) = ẏ2(t0) = 1 and t0 = −10.
The simulation is stopped at t1 = 10. The parameter ε is taken from the
interval [0.04, 0.1]. Note that at both t0 and t1 the time-dependence of the
system has effectively vanished and that the two oscillators essentially decouple.
This property is the reason behind the special choice of the energy E and the
frequencies ωi.

We observe from Fig. 2.1 the following qualitative behavior for the total adi-
abatic invariant J :

(2.11) |J(t1)− J(t0)| = O(e−c/ε).

The exponential dependence in (2.11) is remarkable and is currently not sup-
ported by rigorous mathematical results. The same exponential dependence was
also found for other choices of the coupling term and the fast frequencies.

3 Applications

In the following two sections, we discuss applications of adiabatic invariance
to molecular dynamics (MD) and numerical weather prediction (NWP). After a
short survey of adiabatic invariance in the context of MD, the main focus will
be on NWP.

3.1 Molecular dynamics (MD)

Bond stretching and bending modes are responsible for the fastest oscillations
in molecular systems. However a clear scale separation is often not given and
the concept of adiabatic invariance is only applicable in special circumstances
such as hydrogen bonds. Nevertheless the concepts of averaging and ‘slow’ man-
ifolds have found important applications in MD. We start with the concept of
a ‘slow’ manifold. Molecular systems often oscillate about some mean configu-
ration and one can, under certain circumstances, ignore those oscillations and
(partially) restrict the molecule to its mean configuration. Mathematically, the
mean configuration describes a submanifold in configuration space, called the
‘slow’ manifold. For example, one can set bond stretching modes equal to their
equilibrium value, i.e. ‖ri − rj‖ = l0. This equation defines a holonomic con-
straint [2], which can be enforced numerically using SHAKE or RATTLE. These
two numerical methods were shown to be symplectic by Leimkuhler & Skeel
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[19]. A better approximation to the ‘slow’ manifold can be achieved by min-
imizing the potential (or total) energy along the bond stretching modes. The
significance of this improvement to transition rates has been demonstrated by
Reich [24]. The idea of elastic constraints has been implemented numerically by
Zhou, Reich & Brooks [34]. See also Hess, Saint-Martin & Berendsen

[16].
The true motion of a molecular system will oscillate about the ‘slow’ mani-

fold as defined by the equilibrium values of bond stretching and bending modes.
These fast oscillations can, in principle, be discussed using the concept of adi-
abatic invariance and averaging. Local coordinate transformations, which lead
from the MD equations of motion to equations similar to those of §2.3, can be
found in Takens [33], Bornemann [5] and Reich [23, 27]. However, resonances
between fast modes make an explicit elimination of these DoF impossible within
the context of classical mechanics. A successful application of averaging has re-
cently been proposed by Garcia-Archilla, Sanz-Serna & Skeel [12]. They
suggested to build local-in-time averaging into symplectic integration methods
and to thus allow for large time-steps ∆t = O(ε0). Such large time-step (LTS)
methods have been successfully implemented for MD by Izaguirre, Reich

& Skeel [17]. See the monograph [15] for related work on LTS methods by
Hairer, Hochbruck & Lubich and also Leimkuhler & Reich [18].

3.2 Numerical Weather Prediction (NWP)

We come now to the main motivation for this paper; namely numerical weather
prediction (NWP). For an introduction to atmospheric dynamics see [1]. Nu-
merical aspects are discussed, for example, in Durran [8].

We propose an extension of the Hamiltonian particle-mesh (HPM) method of
Frank, Gottwald & Reich [9] to the compressible three-dimensional Euler
equations. This conservative truncation allows us to discuss geostrophic and hy-
drostatic balance in the context of adiabatic invariance. Following general results
outlined earlier, we anticipate that symplectic methods will preserve balance to
high accuracy and over long times. Furthermore, the HPM method conserves
the Rossby-Ertel potential vorticity [1]. This can be shown along the lines of
Frank & Reich [10] and Bridges, Hydon & Reich [6].

The only other two publications on particle methods for NWP we are aware
of are Salmon [30] and Gadian [11]. Both references use the SPH method of
Lucy [20] and Monaghan & Gingold [13] and apply it to two-dimensional
(vertical and horizontal) atmospheric model systems.
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3.2.1 Euler equations of atmospheric motion

The Euler equations for inviscid isentropic motion of a perfect gas in a rotating
reference frame can be expressed in the form [8]:

dv

dt
= −θ∇xπ − gk− fk× v,(3.1)

dθ

dt
= 0,(3.2)

dπ

dt
= −R

cv
π∇x · v,(3.3)

where pressure p, as used in the standard formulation of Euler’s equations, has
been replaced by Exner’s function

π = cp(p/p0)
R/cp = cp

T

θ
,

which gives rise to the relation ρ−1∇xp = θ∇xπ.
In the preceding, g is the gravitational acceleration, f is twice the angular

velocity of the frame of reference,1 k = (0, 0, 1)T is a unit vector pointing in the
z-direction for simplicity, d( )/dt = ∂t( )+v·∇x( ) is the material time derivative,
v = (u, v, w)T is the three-dimensional velocity vector, θ = T (p/p0)

−R/cp is the
potential temperature, T is the temperature, ρ is the density, p0 is a constant
reference pressure, R is the gas constant for dry air, cp is the specific heat at
constant pressure, cv is the specific heat at constant volume, cp = R + cv =
1005 JK−1 kg−1, and R/cv ≈ 0.4, cp/cv ≈ 1.4.

Exner’s function can also be expressed in the form [8]

π = cp

(

ρθ

ρ0T0

)R/cv

, ρ0T0 = p0/R.

This suggests to introduce a new density µ = ρθ/(ρ0T0) and to replace the
equations (3.1)-(3.3) by the modified set

dv

dt
= −θ∇xπ − gk− fk× v,(3.4)

dθ

dt
= 0,(3.5)

dµ

dt
= −µ∇x · v,(3.6)

with Exner’s function now taking the form π = cp µ
R/cv .

External heating or cooling of the atmosphere can be taken into account by
replacing equation (3.5) by

(3.7)
dθ

dt
=

Qθ

cpT
=
Q

π
,

1The angular velocity is assumed, for simplicity, to be constant. This is often referred

to as the f-plane approximation. A more realistic approximation is provided by the β-plane

approximation f = f0 + βy.
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where Q is the diabatic heating rate per unit mass.

3.2.2 Hamiltonian truncation of Euler’s equations

The equations (3.4)-(3.6) can be discretized by a natural extension of the
Hamiltonian particle-mesh (HPM) method. In particular, given a computational
grid {xi} and K Lagrangian particles {Xk(t)}, an approximation to µ at the
grid point xi is provided by

(3.8) µi(t) =
1

γi ρ0T0

∑

k

mkθk ψi(Xk(t)).

Here ψi(x) are positive basis functions, which form a partition of unity
∑

i ψi(x) = 1, the constants γi are defined by γi =
∫

ψi(x)dx, mk is the mass of
the k-th particle and θk its potential temperature. An important identity is the
interpolation formula

π(x, t) =
∑

i

ψi(x)πi(t),

which implies, for example,

∇xπ(x, t) =
∑

i

πi(t)∇xψi(x).

Next we define ei = e(µi) such that e′(µi) = ρ0T0πi and πi = cp[µi(t)]
R/cv . A

simple calculation yields

∇Xk

(

∑

i

γiei(t)

)

= mkθk

∑

i

πi∇Xk
ψi(Xk) = mkθk∇xπ(x, t)|x=Xk

.

Here the gradient w.r.t. Xk = (Xk, Yk, Zk)T stands for the column vector

∇Xk
( ) = (∂Xk

( ), ∂Yk
( ), ∂Zk

( ))
T
.

Using these identities, the momentum equation (3.4) is now discretized to

(3.9)
d

dt
vk = −θk

∑

i

πi∇Xk
ψi(Xk)− gk− fk× vk,

and particles are advected according to

(3.10)
d

dt
Xk = vk,

for k = 1, . . . ,K. The discrete equations of motion are Hamiltonian with con-
served energy

E =
1

2

∑

k

mk‖vk‖2 + g
∑

k

mkk ·Xk +
∑

i

γie(µi).
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The (non-canonical) symplectic two-form is given by

ω =
∑

k

mkdvk ∧ dXk +
f

2

∑

k

mkdXk ∧ (k× dXk).

Smoothing, as used in the original HPM method, can be achieved by intro-

ducing the smoothed/filtered density µ̃ =
(

1− α2∇2
)−1

µ and its corresponding
numerical approximation

(3.11) µ̃i = aijµj ,

where {aij} is a discrete approximation to the inverse modified Helmholtz op-
erator. The smoothing operator essentially filters out fast sound waves with a
wave length shorter than the smoothing length. This allows for larger time-steps
with an explicit symplectic method such as Störmer-Verlet.

To obtain a closed system of equations, appropriate boundary conditions need
to be imposed. However, we do not need to specify them for the purpose of this
paper and will not dwell on this issue here any further.

3.2.3 Geostrophic and hydrostatic balance

Large scale atmospheric flow regimes are characterized by the relative small-
ness of the acceleration term on the left hand side of (3.1) compared to the
forcing terms on the right hand side of the equation. Consider, for example,
the vertical momentum equation. Following [1], the vertical acceleration can be
estimated to

d

dt
w ∼ 10−7 m s−2,

which is much smaller than g ∼ 10 ms−2. The only remaining term is θ∂π/∂z,
which then has to be in balance with the gravitational forcing term. More
generally, we are led to the numerical approximation

(3.12) 0 ≈ −θk

∑

i

πi∇Xk
ψi(Xk)− gk− fk× vk.

Exact equality in (3.12) defines a manifold S of dimension d = 3K in the space
of all particle locations and velocities. The first two components in equation
(3.12) yield the (numerical) geostrophic balance conditions

fvk = +θk

∑

i

πi ∂Xk
ψi(Xk),(3.13)

fuk = −θk

∑

i

πi ∂Yk
ψi(Xk),(3.14)

while the last component gives rise to the (numerical) hydrostatic balance rela-
tion

(3.15) 0 = −θk

∑

i

πi ∂Zk
ψi(Xk)− g,
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which acts as a holonomic constraint on the particle locations. Upon differen-
tiating this constraint with respect to time and making use of the geostrophic
balance relations (3.13)-(3.14), one obtains an algebraic equation for the verti-
cal particle velocity wk . This hidden velocity constraint, equation (3.15), and
equations (3.13)-(3.14) define the proper ‘slow’ manifold Sp of dimension 2K.

Note that setting the acceleration equal to zero would corresponds in molecular
dynamics to finding a static minimum of the potential energy landscape. On the
other hand, equation (3.12) involves the horizontal particle velocities and leads to
(reduced) dynamic equations of motion on the ‘slow’ manifold Sp. These reduced
equations are, in fact, constrained Euler-Lagrange equations with (degenerate)
Lagrangian

(3.16) L =
f

2

∑

k

mkXk · (k× Ẋk) + g
∑

k

mkk ·Xk +
∑

i

γie(µi).

We now go back to the full equations (3.9)-(3.10) and investigate the solution
behaviour near the ‘slow’ manifold Sp. Let us consider hydrostatic balance first.
Assume we are given a set of static particle locations X0

k, which are in perfect
balance, i.e.

0 = θk

∑

i

π(µ0
i ) ∂Zk

ψi(X
0
k) + g, µ0

i =
1

γi ρ0T0

∑

k

mkθkψi(X
0
k).

Next we slightly perturb the location of one of the particles in the z-direction.
Then, following the standard linearization arguments, such a perturbation δZk

approximately satisfies the linear second-order differential equation

δZ̈k ≈ −θk

∑

i

π(µ0
i ) ∂Zk

ψi(X
0
k + δZkk) + g ≈ −θk

∑

i

π(µ0
i ) ∂

2
Zk
ψi(X

0
k) δZk,

and the motion is oscillatory with frequency ωk provided that

ω2
k = θk

∑

i

π(µ0
i ) ∂

2
Zk
ψi(X

0
k)

is positive. We also note that the hydrostatic balance condition is equivalent to

∑

i

π(µ0
i ) ∂Zψi(X) = − g

θ(X)

for X = X0
k. But, in fact, one can use this relation for all X and, hence,

ω2 = −θ∂Z
g

θ
=
g

θ

∂θ

∂Z
,

which coincides with the standard definition of the buoyancy (or Brunt-Väisälä)
frequency [1]; for the lower atmosphere the corresponding period 2π/ω is on the
order of a few minutes.
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Slow external heating or cooling, which leads to time-dependent potential
temperature coefficients θk(t) via the differential equation (3.7), implies that the
buoyancy frequencies ωk become (slowly) time-dependent. Hence the ratio of
oscillatory energy

(3.17) Eos
k (t) =

1

2

[

(δŻk)2 + ωk(t)2(δZk)2
]

to frequency ωk(t) is a candidate for adiabatic invariance under external heating
or cooling. Similar to MD simulations, this simple picture is again made more
complex due to possible resonant interactions between different particles with
(resonant) frequencies ωk and ωl.

Let us now turn to geostrophic balance. The horizontal momentum equations
are

d

dt
uk = +fvk − θk

∑

i

πi ∂Xk
ψi(Xk),

d

dt
vk = −fuk − θk

∑

i

πi ∂Yk
ψi(Xk),

with the vertical velocity wk = 0, for simplicity. We also assume that f is much
larger than one. Then the motion in the horizontal velocity field u = (u, v) is
highly oscillatory about the geostrophic equilibrium values (ug

k, v
g
k) defined by

equations (3.13)-(3.14), i.e.

d

dt
uag

k ≈ +fvag
k ,

d

dt
vag

k ≈ −fuag
k ,

with the ageostrophic velocities defined by

uag
k = uk − ug

k, vag
k = vk − vg

k .

Since f is here taken to be identical for all particles, we have to expect strongly
resonant interactions and only the total ageostrophic kinetic energy

Eag(t) =
1

2

∑

k

mk

[

(uag
k )2 + (vag

k )2
]

is a candidate for adiabatic invariance. Results by Benettin, Galgani &

Giorgilli [4] suggest that this quantity is, in fact, approximately preserved
over time-periods of order O(ecf ), c > 0 some constant, in the formal limit
f → ∞ provided the Exner function π stays sufficiently smooth. Indeed,
as demonstrated for the two-dimensional shallow-water equations by Frank,

Gottwald & Reich [9], smoothing (as defined by (3.11)) is essential for main-
taining geostrophic balance in a particle method. See also Cotter [7]. We very
much expect that the same is true for hydrostatic balance and we demonstrate
this by means of the following simple test example.
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Figure 3.1: Velocity field for ‘conveyor belt’ circulation at time t = 15 plotted
at grid points.

3.2.4 Numerical experiment

Let us start by considering strictly vertical motion along the z-axis based upon
the equations of motion

Z̈ = −θ∂Zπ − g.

We introduce an Eulerian grid zi = i∆z, i = 1, 2, . . . , I , and particles Xk(t) such
that Zk(0) > 1/2 for all k = 1, . . . ,K. In fact we simply set

Zk(0) =
∆z

4
k + 1/2.

Next we postulate an Exner function with grid values π0
i = 10 + 1/(zi)

2. Hence
π0(z) =

∑

i ψi(z)π
0
i and hydrostatic balance dictates that

θk∂Zk
π0(Zk) = −g,

which defines the particle’s potential temperature θk. We finally assign to each
particle a mass mk such that π(µi(t)) ≈ π0

i and set R = p0 = R/cv = cp = 1,
for simplicity. The discrete equations of motion are now set equal to

Z̈k = −θk

∑

i

∂Zk
ψi(Zk)

[

πi(t) + π0
i − πi(0)

]

− g, πi(t) = π(µi(t)).

The reason for this particular setup is that the discrete system is in perfect
hydrostatic balance at time t = 0.

It is straightforward to extend this approach to a two-dimensional vertical slice
model with horizontal variable denoted by x. We assume that initially the system
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Figure 3.2: Kinetic energy relaxation after smooth (adiabatic) activa-
tion/deactivation of ‘conveyor belt’.

is homogeneous in x and apply periodic boundary conditions in the x-direction.
The computational domain is taken to be equal to (x, z) ∈ [0, 2π]2. We use a
128×128 grid, tensor product cubic B-splines as basis functions, andK = 262144
particles. The time-step is set to ∆t = 0.01. The density µ is smoothed using a
modified Helmholtz operator with smoothing length α = 0.3927.

Starting from zero initial velocities, an internal circulation (conveyor belt) is
created by heating the system near (X,Z) = (3π/2, π) and cooling it at (X,Z) =
(π/2, π). A fully activated circulation pattern at time t = 15 is displayed in
Fig. 3.1. Furthermore, the ‘conveyor belt’ is smoothly activated and deactivated
over a time period of thirty time units. As shown in Fig. 3.2, the kinetic energy
approaches zero at t = 30 indicating that the system has returned adiabatically
to a stationary state. The final value of the kinetic energy is Ekin = 9.0279×
10−5. Since the oscillatory energy (3.17) can be bounded by the kinetic energy
we can also conclude that very little hydrostatic imbalance has been generated
in the course of the simulation.

4 Conclusions

The concepts of ‘slow’ manifolds, balance, and fast oscillations underpin
a significant number of flow regimes in atmospheric and ocean dynamics [1]
even though a clear separation of time-scales between different flow regimes
does not apply in general. Similar to MD, the importance of appropriate
numerical methods should not be underestimated. In our view, classical particle
mechanics, adiabatic invariance, symplectic and large time-stepping (LTS)
methods have a lot to offer in that respect. The development and testing of
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the Hamiltonian particle-mesh (HPM) methods, as proposed in this paper, for
realistic three-dimensional problems is clearly the next challenge to tackle.

Acknowledgements. Partial financial support by EPSRC Grant GR/R09565/01
is gratefully acknowledged.

Appendix

We show how to apply the normal form result of Neishtadt [22] to the slow-
fast system (2.4)-(2.5) and essentially follow the exposition of [28]. We first have
to introduce conjugate momenta py = ẏ and px = ẋ and restate (2.4)-(2.5) in
the form:

ẋ = px, ṗx = −ε−2y2∇xK(x)/2−∇xV (x, y),
ẏ = py, ṗy = −ε−2K(x) y −∇yV (x, y).

These equations are canonical with Hamiltonian function

H =
1

2

(

p2
x + p2

y + ε−2K(x)y2
)

+ V (x, y).

We next perform a non-canonical change of variables ỹ = y/ε and also rescale
time t to τ = t/ε. This results in the non-canonical equations

x′ = εpx, p′x = −εỹ2∇xK(x)/2− ε∇xV (x, εỹ),
ỹ′ = py, p′y = −K(x) ỹ −∇ỹV (x, εỹ),

with new Hamiltonian

H =
1

2

(

p2
y +K(x)ỹ2

)

+
1

2
p2

x + V (x, εỹ)

and non-canonical symplectic structure

Ω = ε dpx ∧ dx + dpy ∧ dỹ.

We further transform (ỹ, py, x, px) to new variables (ŷ, p̂y, x̂, p̂x) using a gener-
ating function [2]

F = ε−1x̂px + ŷK(x̂)−1/4py

and the symplectic structure Ω. This yields

x = x̂, ỹ = K(x̂)−1/4ŷ, p̂y = K(x̂)−1/4py, p̂x = px + εŷpy∇xK(x̃)−1/4.

In the new coordinates the Hamiltonian H is equivalent to

H =
ω(x̂)

2

(

p̂2
y + ŷ2

)

+
1

2
p̂2

x + V (x̂, 0) +

ε
[

K(x̂)−1/4ŷ∇yV (x, 0)− ŷp̂yp̂xK(x̂)1/4∇xK(x̂)−1/4
]

+O(ε2),
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where ω = K1/2. We finally transform to action-angle variables (J, φ) via

ŷ =
√
J cosφ, p̂y =

√
J sinφ,

and average over the rapidly rotating angle φ [2]. This yields the averaged
Hamiltonian

Hreduced =
ω(x̂)

2
J +

1

2
p̂2

x + V (x̂, 0) +O(ε2),

and the reduced equation (2.8) is obtained up to perturbations of order O(ε). It
has been the crucial observation of Neishtadt [22] that a further transformation
of variables ε-close to the identity can remove the undesirable order ε term up
to a remainder term exponentially small in ε. Hence the corresponding action
variable, call it J̄ , is preserved over exponentially long periods of time. We also
have J̄ − J = O(ε) and this explains the order ε variations in the observable
action variable (2.6). Note that these exponential estimates require that both
K(x) and V (x, y) are real-analytic functions.
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